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Bayesian Methods for Assessing Importance of Effects

Henry Rouanet
Centre National de la Recherche Scientifique and Université René Descartes

In experimental data analysis when it comes to assessing the importance of effects of interest, 2
situations are commonly met. In Situation 1, asserting largeness is sought: “The effect is large in the
population.” In Situation 2, asserting smallness is sought: “The effect is small in the population.” In
both situations, as is well known, conventional significance testing is far from satisfactory. The claim
of this article is that Bayesian inference is ideally suited to making adequate inferences. Specifically,
Bayesian techniques based on “noninformative” priors provide intuitive interpretations and exten-
sions of familiar significance tests. The use of Bayesian inference for assessing importance is dis-
cussed clementarily by comparing 2 treatments, then by addressing hypotheses in complex analysis

of variance designs.

When a researcher examines the statistical results of an ex-
periment, two situations are commonly encountered when it
comes to assessing the importance of effects of interest.!

In Situation 1 (largeness), the descriptive conclusion is infor-
mally expressed as “There is an effect”; the underlying idea is
that presumably the true effect is (substantially ) Jarge. Then the
researcher looks at the corresponding ¢ or F ratio in hopes of
finding a statistically significant result and of concluding “There
is evidence of an effect” (p < .01, ¢.g.). Though formally cor-
rect, this sentence is open to misinterpretation, however, as the
well-known Ritual Warning 1 states, Statistical significance is
not practical significance.

In Situation 2 (smallness), the descriptive conclusion is infor-
mally expressed as “There is no effect”; the underlying idea is that
presumably the true effect is (trivially) small. The researcher then
looks at the F ratio in hopes of now finding a statistically nonsig-
nificant result and of concluding “There is no evidence of effect”
(p > .50, e.g). Again, though formally correct, this sentence is
open to misinterpretation because as Ritual Warning 2 says, No
evidence of effect is not proof of no effect.

Situation 1 is quite common: One wishes to show that there
is a marked difference between two experimental conditions or
between the performances of two populations. Situation 2 is,
however, perhaps not so uncommon; One may wish to show that
two teaching methods differ only slightly; that some interaction
effect is small enough to be ignored; or that the fit of some
model, though imperfect, is acceptable as a first approximation.
In the context of model validation, the often-read conclusion
“Experimental evidence is consistent with the model”—albeit
cautious and in itself legitimate—becomes adventurous, as
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soon as with ensuing developments the model’s validity is taken
for granted.

I propose in this article techniques for handling Situations 1
and 2. Two preliminary points are worth mentioning. First,
there is some mathematical statistics literature about the sub-
ject, going back to Hodges and Lehman (1954), at least. Sec-
ond, there is an abundant number of related articles in biomet-
rics, and more specifically pharmacokinetics, where trying to
assert that two drugs differ"only by a slight amount (Situation
2) is known as testing for the bioeguivalence of the two drugs.
For this situation, at least two competing frequentist techniques
have been advocated: one based on a noncentral F and another
based on two one-sided ¢ tests ( for a discussion, see Schuirman,
1987). Such techniques are potentially of general interest and,
as it turns out, variants of them have already been addressed to
psychologists, namely by Rogers, Howard, and Vessey (1993)
and under the banner of the good-enough principle by Serlin
and Lapsley (1985, 1993).

In the field of biometrics, in addition to frequentist articles,
there is a growing Bayesian literature, as reflected for instance
by the special issue of The Statistician (Smeeton, 1994). Ad-
mittedly, the philosophy underlying the Bayesian approach has
been a matter of debate among statisticians, but the thrust of
this contemporary Bayesian literature is the building of con-
crete answers to contemporary problems of interest, leaving the
“grand debate” between frequentists and Bayesians in the
background.

This article finds its proper place within this developing, prag-
matic Bayesian literature. Its basic claim is that Bayesian tech-
niques are ideally suited for handling Situations 1 and 2 alike.
This article thus offers an introduction to the use of Bayesian
techniques in experimental data analysis, in connection with a
topic of psychological interest. After all, perhaps the best way to
render the Bayesian approach attractive is to show that it offers
a sensible and practical answer to a major issue.

!'In this article, the word important is understood throughout in
terms of magnitude, not of impact for psychological theories where, as
a referee pointed out, asserting the smallness of an effect may be of
“theoretical importance.”
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I first discuss Bayesian procedures for assessing importance
in the elementary case of comparing two treatments. I then turn
to procedures for addressing hypotheses in the context of com-
plex analysis of variance (ANOVA ) designs.

Beyond Effect Sizes

The warnings above are ritual because they are well known,
and various recommendations have been made for alleviating
misinterpretations of significance testing. A sensible recom-
mendation is to look at effect sizes (see, e.8., Tatsuoka, 1993),
that is, at the magnitudes of observed effects, estimated by vari-
ous indicators such as the standardized difference between
means or the proportion 52 of total variance accounted for by a
source of variation, and so forth. As good sense suggests (and
maximum likelihood confirms), observed effects reflect corre-
sponding population effects, allowing for sampling fluctuations.
By looking at effect sizes, one can therefore avoid gross errors.
Thus, getting a small observed effect, even though statistically
significant, precludes asserting largeness of the corresponding
population effect; similarly, getting a large observed effect, even
though statistically nonsignificant, precludes asserting small-
ness. In such cases, however, what positive assertions may be
made? Could one contemplate asserting largeness when the
effect is large though statistically nonsignificant? Could one
contemplate asserting smallness when the effect is small though
statistically significant? Such questions are moot ones, because
in significance testing it is hard to sort out the influences of
effect size and sample size.

It is my contention that in both Situations | and 2, looking at
observed effects should be done at the start of data analysis and
not as an afterthought following significance testing, Descrip-
tion comes first. In Situation 1, the descriptive conclusion
should be that the observed effect (taken with its sign of course)
is large; in Situation 2, that it is small (regardless of sign). If
this is not the case, no corresponding inferential conclusion is
reachable. If this is the case, the aim ascribed to inferential pro-
cedures should be fo extend descriptive conclusions to the popu-
lation, allowing for sampling fluctuations. In other words, in
Situation 1, one should try to assert that the population effect is
itself large, and in Situation 2, that the population effect is itself
small. Naturally, if the observed effect happens to be in an “in-
termediate zone,” there is no hope to assert either largeness or
smallness.

For the conceptual discussion, consider the matched pairs de-
sign, where n subjects undergo two treatments, with a numeri-
cal dependent variable (score). Let d; be the difference of the
two scores, or individual effect for Subject i/, hence the mean
effect

4_z
$%4-3

henceforth denoted d for simplicity. Let § denote the corre-
sponding population effect. Let o2 denote the variance of indi-
vidual effects in the population, and

2 o d, — dy’
s E(n—l)

its unbiased estimate (with ¢ = n — 1 df). It is convenient for
the purpose of this article to use the standardized eflect d/s.
which seems to have become common practice in behavioral
research. Specifically, starting from the idea that |d|/s = 0.5
may represent a typical medium-sized effect (see, €.g., Cohen,
1977, 1992), the following conventions are adopted in the se-
quel: If | d|/s exceeds 0.6, the effect will be deemed large; if
| d|/s is below 0.4, it will be deemed small. Needless to say, the
foregoing conventions ought to be viewed as rules of thumb.
Specifying “good-enough values™ depends on the state of the
art in the field under study and should be reconsidered in each
concrete situation.

Bayesian Inference

Now assume the usual normal sampling model, that is, as-
sume that the individual effects (d;)(i = 1,.. ., n) are indepen-
dently normally distributed N(3, o2) (with mean § and variance
o?), Consequently, the sampling distribution of the mean 4 is
N(8, 0%/n). To test the null hypothesis Ho: é = 0, the usual test
statistic is ¢ = Vn(d/s), which under Hy is distributed as ¢,
(elementary Student’s ¢ with ¢ = n — 1 df). If to denotes the
observed value of ¢, Hp is rejected if given the hypothetical event
& = 0, the probability that ¢, exceeds Lo (upper-sided test, ¢.8.)
or that | .| exceeds | fo| (two-sided test) is small enough.

At this point, recall the principle of the Bayesian approach,
referring for a detailed presentation to standard Bayesian text-
books such as those by Lindley (1965), Box and Tiao (1973),
Press (1989), or Lee (1989). A prior distribution, expressing
one’s uncertainty about parameters independently from the
data, is postulated. This prior is combined with the sampling
distribution and data using the classical Bayes’ theorem and
yields a posterior distribution, which expresses the uncertainty
about the parameters, conditionally on data.

Noninformative Priors

What distribution should be taken as a prior? According to
one Bayesian conception, the prior should incorporate all avail-
able information or opinion about the parameters. Early at-
tempts at introducing Bayesian inference in psychology, such as
those by Edwards, Lindman, and Savage (1963), were strongly
committed to this conception. There is, however, another con-
ception, more in the spirit of this article, where priors are cho-
sen to express a “state of ignorance” about the parameters, with
the following motivation: If the prior expresses ignorance about
parameters, the posterior expresses the evidence brought by the
data. In current Bayesian terminology, such priors are called
noninformative.®

Posterior Distributions

In the above elementary situation, it can be shown, assuming
the noninformative prior on (8, o), that given d = do, (the ob-
served value of d) and s = sque (the observed value of s), the poste-
rior distribution of & is such that V71 (8 — dawe)/(Sows) is distributed

2 Technically, in this article, noninformative priors derived from clas-
sical Jeffreys’ rule are used (see Box & Tiao, 1973, pp. 41-42).
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Figure 1. Sampling distribution under Hy, (left) and posterior distribution (right).

as an elementary 1, variable (Box & Tiao, 1973, p. 97). In other
words, the distribution of § is a scaled t, with mean d and scale
52/ n (taking d = 0 and 53,/ 7 = 1, one gets back to the elemen-
tary t). Using the notation of scaled #, (standard in Bayesian
statistics), the basic result about the posterior distribution of § is
written (where ~ is read “is distributed as”):

] ~t,(d.b.,s—i5).

The connection between sampling and posterior distribu-
tions is apparent if one scales both the observed effect d,, and
the population effect & by the observed value s.,. Using
(d/5)ee to denote the observed standardized effect dope/ Sotms
one gets the posterior distribution 8/ s ~ 1{(@/5)es, 1/7] by
shifting the sampling distribution under H, by the amount
(d/ 5)ore (see Figure 1).

At this point, the methodology basic to this article should
emerge. With the observed effect taken as an estimate of the
population effect, the Bayesian approach provides a distribution
around this estimate, and this distribution is used to draw infer-
ences about how large or small the effect may be in the popula-
tion. It is clear how this methodology contrasts with that of sig-
nificance testing. Instead of asking whether a population in
which the null hypothesis were true could have produced the
observed effect (significance testing), one asks what a popula-
tion that has produced the observed effect may look like
(Bayesian inference).

Owing to the way the distribution of 4 is expressed in terms
of s2,,, to assess the importance of effect in the population, the
simplest choice is to take |8|/s.u as an index of importance.
This will be done in the sequet to this article.?

Asserting Largeness or Smallness

The conclusions that can be drawn from a posterior distribu-
tion are direct extensions of the descriptive conclusions taken
from the observed effects. If the bulk of the distribution lies in
the region of large effect values, the probability is high that the
population effect is large, so largeness will be asserted; if it lies
in the region of small effect values, the probability is high that
the population effect is small, so smallness will be asserted.

Example 1

Let (d/5)obe = 0.9 (large observed effect) with n = 25, The
posterior distribution is 8/S.we ~ f24(0.9, 'bs) (see Figure 2).
Most of the distribution clearly lies on the region of large effects,
which means that largeness can be asserted.

To get a compact assertion stating that the probability is high
that the effect is large, one may set up (a) a credibility level v (>
0.50) and (b) a limit for largeness I,,,; one may then attempt to
show that P(3/Sows > har) > 7. For example, letting v = .90 and
be = 06, one finds from the 1,4 distribution that
P(3/Sem > 0.6) = .927,* and because 0.927 > 0.90, one may
assert that the effect in the population exceeds 0.6 with a prob-
ability higher than .90. Alternatively, one finds the value 0.64
such that P(8/ s > 0.64) = .90 (see Figure 2), and because
0.64 > 0.6, one reaches the same conclusion. In short, for y =
.90 and /,, = 0.6, largeness of effect is asserted.

It may be remarked that assessing importance is a more de-
manding task than significance, and experience suggests that
taking v = .90 may be a reasonable (not mandatory) conven-
tion (rather than, e.g., taking the complementary values of fa-
miliar « levels).

Example 2

Let (d/$)os = 0.1 (small observed effect) with n = 25, The
posterior distribution iS 8/5us ~ 24(0.1, 'hs) (see Figure 3).
Here most of the distribution lies in the region of small values.

To assert smallness, again take v = .90 as a credibility level
and lme = 0.4 as a limit for smallness. Then one can find P(}5|/
Sope < 0.4) = 917, and because .917 > .90, one may assert that
the effect in the population is (in absolute value) smaller than
0.4 with a probability higher than .90. Alternatively, one finds
P(|8]/Sope <0.38) = .90 (see Figure 3), and because 0.38 is less
than 0.40, one reaches the same conclusion, that P(}8]/ s <

P(z2- > 0.64) = .90

Sobs
4 ?ﬁa'
(%)obs=0.9 o

Figure 2. Example 1: P(3/Sws > 0.6) > .90. Largeness of effect is as-
serted (for v = .90 and /. = 0.6).

0.64

3 if one took 3/ o as an index, Bayesian inference would still be feasible
but technically more complicated: One would replace the ¢, distribution
by a distribution that I call the L} distribution, which is closely linked
to the classical noncentral ¢, distribution ( Rouanet & Lecoutre, 1983).

4 Accurate ¢ distributions are nowadays obtainable from any standard
software and even calculators.
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P(3 < 0.38) > .90
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Figure 3. Example 2: P({6!/So0e < 0.4) > .90. Smallness of effect is
asserted (fory = .90 and /,,,, = 0.4).

0.4) > .90. In short, for v = .90 and /g, = 0.4, smallness of
effect is asserted.

Taking y = .90, largeness can actually be asserted in Example
1 for any /,, less than 0.64; smallness can actually be asserted in
Example 2 for any /., greater than 0.38. Therefore, in the pro-
cess of data analysis, instead of setting rigid upper or lower lim-
its, it is often more convenient for the psychologist to first set v,
for example, v = .90, and then to figure out whether the corre-
sponding value can be deemed large (in Situation 1) or small
(in Situation 2).

Role of Sample Size

Sampile size controls the dispersion of posterior distributions:
The greater the sample size, the more concentrated the distri-
bution is. In Situation 1, for a given (d/ $)ous > Jiar, the probabil-
ity P(8/5o0e > lar) is an increasing function of n. For instance,
with (d/$)epe = 0.9, one finds for n = 100, P(8/5us > 0.60) =
.998; for n = 400, P(5/ 550 > 0.60) = 1.

Similarly, in Situation 2, given | d/ 5| ovs < lxma, the probability
P(|5]/Sobs < lyma) i8 again an increasing function of 7. For in-
stance, with (d/$)oe = 0.1, one finds for n = 100, P(}8}/Sops <
0.4) = .998; for n = 400, P(}5]/sops < 0.4) = 1. Thus, in Situa-
tion 2 as well as in Situation 1, the more observations one has,
the better position one is in to enforce a conclusion, a highly
desirable property from a statistical standpoint. Large samples
can do no harm.?

Choosing an Appropriate Sample Size

Bayesian calculations may be performed prior to gathering
data. Thus, in Situation 1, one may calculate in advance that
for a sample size of # = 20, the standardized observed effect
should be at least 0.9 to assert largeness (with the aforemen-
tioned conventions); for n = 25, a value of 0.87 would suffice,
and so forth. Such calculations prove helpful for choosing a
sample size, according to plausible values for the effect to be
observed.

In Situation 2, because dowe = 0 is obviously the observed
value most favoring smallness, an absolute minimal sample size
can be determined. If for d.p,, = 0, one wants to have P(]8|/ Sovs
< 0.4) > .90, n must be such that P(|t,.| < 0.4Vn) > .90,
which leads to n» = 19. Stated otherwise, if one hopes to assert
smallness, at least 19 subjects are needed in any case.

Reinterpreting Significance Levels

Posterior distributions based on noninformative priors pro-
vide reinterpretations of frequentist procedures in terms of

probabilities about parameters (Box & Tiao, 1973, p. 102;
Lewis, 1993; Lindley, 1965). In the elementary case, the rein-
terpretation readily follows from the relation between sampling
and posterior distributions. If p denotes the two-sided, observed
level (p value), then (1 — p)/2 is simply the probability that the
effect 6 has the same sign as the observed effect d, and 1 — p
is the probability that & lies between 0 and 2 d, (see Figure 4).

Now apply those reinterpretations to Situations 1 and 2. In
Situation 1, it seems natural to reinterpret the directional level.
Thus, in Example 1, the observed value of the ¢ statistic iS fons =
¥25 X 0.9 = 4.5, hence p/2 = .00007, and therefore P(5 > 0) =
99993 (see Figure 5). With a very high credibility, one may
assert that the effect is positive. Clearly, this does not amount to
asserting that with a high credibility, the effect is large. Thus,
Warning 1 interpreted in Bayesian terms says: A high probabil-
ity that 5 has the sign of d,,, does not entail a high probability
that § is large. Finding a statistically significant effect is perhaps
a first step, but not a sufficient one, toward asserting largeness.

In Situation 2, it seems natural to reinterpret the two-sided
level. Thus, in Example 2, one has 7 = V25 X 0.1 = 0.5, hence
p = .622. That is, one may state that P(8/ 5. €[0,0.2]) = .378
(see Figure 6). Now this in no sense points toward asserting
smaliness. If one considers the limit case where p = 1 (a “per-
fectly statistically nonsignificant™ resuit), the reinterpretation
tells no more than P(6 € [0, 0]) = 0, a trivial statement. Thus,
Warning 2 interpreted in Bayesian terms says: Not having a high
probability that § is of the sign of dy, does not entail a high
probability that & is small. In plain words, finding a statistically
nonsignificant result is not at all a step toward asserting
smallness.

At this point, the main contribution of the Bayesian approach
in Situation 2 becomes apparent: It distinguishes those situa-
tions where, owing to insufficient sample size, the conclusion in
favor of some approximate null hypothesis is not obtainable
and those situations where the sample size is big enough for a
genuine smaliness conclusion to be reached. In this connection,
consider the following situation. Suppose that not only d,, but
2d.p is small and that the result is significant, that is, p is low,
and consequently | — pis high. Then, from the reinterpretation
of the two-sided level, it follows that the probability is high that
& is between 0 and 2 du,, hence the probability is high that é is
small. As a conclusion, when the observed effect is very small,
getting a statistically significant result—far from ruling out the
conclusion of a small effect—is actually a cue for it. This is what
1 call the negligibility paradox (Rouanet, in press).

Bayesian Extensions of ANOVA

Psychological experiments often involve complex designs,
and there is no “established” Bayesian ANOVA, covering nu-
merous common designs, comparable to frequentist ANOVA
textbooks like, for example, Winer'’s (1979).5 My colleagues

3 Large samples may not be necessary, of course. Moreoves, as pointed
out by a referee, it is a strength of the Bayesian approach that it enables
an investigator to monitor the accumulation of data and search for an
early conclusion, when practical, ethical, or both considerations make
it desirable (as reflected in the biometric literature ).

¢ The excellent book by Box and Tiao (1973), in spite of its mathe-
matical sophistication, far from covers most common designs.
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Figure 4. Sampling distribution under H, (left) and posterior distribution (right). Reinterpretations of
observed levels: directional p/2 (top) and two-sided p (bottom). Figures for dow > 0.

and I have long been working on filling in this gap by devising
methods and software that include Bayesian procedures in ad-
dition to significance tests. A good part of my work and that of
my colleagues has dealt with Bayesian ANOVA (see Hoc, 1983;
Lecoutre, 1984; Lépine & Rouanet, 1975; Rouanet & Lépine,
1977). Another part has been concerned with categorized data
(see Bernard, 1991, in press). Worked examples of real data
sets are also found in Rouanet, Lépine, and Pelnard-Considére
(1976); Rouanet, Lépine, and Holender (1978); Bernard,
Blancheteau, and Rouanet (1985); Rouanet, Bernard, and Le
Roux (1990); and Rouanet, Bernard, Lecoutre, and Le Roux
(in press). Especially relevant to this article is the reference of
Rouanet and Lecoutre (1983), which discusses specific infer-
ence (see Bayesian Distributions) on the same concrete
example.

The principle of Bayesian ANOVA that underlies this article
can be simply stated. For any sampling model, the correspond-
ing noninformative Bayesian inference is obtained by assuming
a noninformative prior on the parameters of the model. There-
fore, for any source of variation for which there is a valid F test,
there is a corresponding valid Bayesian procedure based on the
same two sums of squares (SS) as the F statistic.

The material in the remainder of this article is organized as
follows. In this section, I state the basic theoretical results for
one then several degrees of freedom (df); then I turn to assump-
tions and computing considerations. In the next sections, I pre-
sent a concrete numerical example in detail.

P(5>0)=.90993

3 i

(%)obs=0.9

8obs

Figure 5. Example 1. Reinterpretation of significance level: p/2 =
00007, 1 — p/2 = 99993 = P(3 > 0).

Basic Results

1-df source of variation: Inference on effect. A 1-df effect is
a signed effect and can be represented by a contrast among cells.
Carrying over the notations of the clementary case, I denote &
as the population effect, d.,, as the corresponding observed
effect, and 52, as the observed variance (corrected, with g df)
based on n units. Then the posterior distribution of the popula-
tion effect, standardized by the observed (corrected) standard
deviation, reads like in the elementary case,

w456

As a consequence, for any 1-df source of variation, Bayesian
inference involves only the elementary ¢ distribution. The prac-
tical interest of this result cannot be overemphasized, owing to
the paramount importance of |-df comparisons in experimen-
tal data analysis.

It may be remarked that the index of importance that has
been taken in this article is scale invariant. Consequently, for
assessing the importance of a 1-df effect of interest, the scale
of the contrast selected to represent the effect is irrelevant. In
practice, of course, analyses will more naturally be conducted
in terms of “meaningfully scaled” contrasts, such as differences
between means for main effects, differences of differences for
interaction, and so forth.

Several-df source of variation: Inference on importance of
effect. Asclassically donein ANOVA (see, ¢.8., Scheffé, 1959),
the magnitude of an effect with m df(m = 1; m denotes a num-
ber of df’) may be defined as a variance (corrected, with m df).
From now on I use ANOVA notations: o2 denotes the magni-
tude of effect in the population; sy, the corresponding observed
magnitude; if MS.q denotes the mean square of effect, and n,y,
the coefficient of ¢2y in E(MS.yr), one gets the following
equation: s3y = MS.a/n.s. Similarly, for the corresponding er-
ror term, I define 52, (with g df) and ne, with s4; = MSerr/ Nerr.
Last, let 7 = Neg/ Nere, With Fope = Ais2y/5%.. Then the posterior
distribution of the population variance, standardized by the ob-
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P(0< 72-<0.2)= 378
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Figure 6. Example 2. Reinterpretation of significance level: p = .622,
1 —p=.378 = P(0 <3/5us <0.2).

served error variance, reads, as a direct generalization of Roua-
net and Lecoutre (1983, p. 262),

1& ~ _l_. ¢2 mF.
sa R r‘im n.q( ob) .

The distribution Y2, ,( mF) ( psi-square distribution with df
m and g and eccentricity parameter mF,,) is the Bayesian
noncentral extension of the classical F distribution (see Roua-
net & Lecoutre, 1983; Schervish, 1992); its numerical evalua-
tion has been investigated in Lecoutre, Guigues, and Poitevi-
neau (1992).

As a consequence, all computations may be performed from
the relevant terms that appear in the ANOVA table, using a sin-
gle computer program implementing the y2 distribution.

1dfagain. The foregoing result becomes

o3 1
s—g’; ~ = ¥ialtde).

It can be shown that the ratio seg/ ser is equal (up to the sign)
to the ratio (d/ s ) defined before, that i, Sex/ Serr = | @75 | obes
similarly, that oc/ Sere = |3/ Sors» and lastly that 7 here is equal
to n. Provided the sign of d,g is taken into account, the study of
a 1-df effect can therefore be also conducted from the ANOVA
table.

Assumptions on Sampling Models

The assumptions for the noninformative Bayesian inference
are the assumptions of the corresponding sampling model. Sev-
eral error terms may be available for a given source of variation,
depending on the degree of restrictiveness in the assumptions
made on the model. In this connection, recall the assumptions
in repeated measurement designs (se¢ Rouanet & Lépine,
1970). For each within-subject source of variation, one can take
as an error term either a term that is specific to this source or
under circularity (sometimes called sphericity) assumptions, a
term that is common to several sources. Different choices lead
to different F ratios and consequently to different posterior
distributions.”

The extension to m df sources of variation (with m > 1) is
straightforward, assuming circularity assumptions leads to
both valid F ratios and posterior distributions of o2 based on
the y2, , distribution (see Rouanet & Lecoutre, 1983).

Computing Considerations

If one knows how to build the ANOVA table, one knows how to
get its Bayesian extensions. All I-df analyses can be carried out,

similar to elementary comparisons between means, with a calcu-
lator equipped with the ¢ distribution. For any number of df, a
program such as Programme d’Inférence Fiducio-Bayésienne
(PIF; Lecoutre & Poitevineau, 1991), which implements the y/?
distribution, may be used. For each source of variation, this pro-
gram takes as input the effect and error SS with their df'and con-
structs the posterior distribution, from which it furnishes on re-
quest all probabilities relevant for asserting either largeness or
smaliness as the case may be. More extensive software packages
have also been written: Lecoutre and Poitevineau (1991) and Ber-
nard and Poitevineau (1986). An assistant software for assessing
importance in the context of categorical data is currently being
written ( Le Roux, Durand, & Walfard, 1995).

Bayesian Inference in Practice

The practice of Bayesian inference for assessing importance
in the context of ANOVA designs is best conveyed by means of
an example of moderate complexity. On this example, I derive
Bayesian distributions for the effects of interest. In the next sec-
tion, I use these distributions to assess importance.

Reaction Time Data

Consider the following experiment (after Rouanet & Lecou-
tre, 1983) devised to investigate the model of additive stages in
reaction times (RT). Four conditions were defined by crossing
the following two within-subject factors: Signal Frequency
(Factor A) with two levels, frequent (al) and rare (a2); and
Foreperiod Duration (Factor B), also with two levels, short
(b1)and long (52). Because the psychological model of additive
stages entails the absence of interaction between the experimen-
tal Factors A and B, the main research hypothesis was that the
interaction between Signal Frequency and Foreperiod Dura-
tion, denoted 4.5, was (about) null.®

There was also a between-subject Factor G, classifying the 12
subjects into three groups of 4 subjects cach. The data treated
here are RTs (averaged over trials) for subjects and conditions
asshown in Table 1.

This table also shows the 12 individual main 4 effects [e.g.,
(435 +473)/2 — (387 + 416)/2 = 52.5] and the 12 individual
interaction A.B effects (e.g., —387 + 435 + 416 — 473 = —9).
The ANOVA table is presented in Table 2.

Bayesian Distributions

First example: Main effect of factor A (1 df). The source of
variation denoted 4 in the ANOVA table has 1 df. In what fol-
lows, the effect is defined by the contrast (~'%, +'%, —'4, +%)

7 In the reaction time (RT) data set, specific errors terms have been
taken leading to “F" ratios,” as defined in Rouanet and Lépine (1970).
Taking common error terms, leading to * F* ratios™ would lead to vir-
tually the same conclusions (as may be checked from the data).

* The motivation for denoting A. B the interaction is that I reserve the
notation A X B for the source of variation associated with the Cartesian
product of 4 and B. Investigating the source 4 X B herc would mean
examining the overall differences between the four levels defined by the
crossing of Factors 4 and B.



