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Chapter 4Introduction toCombinatorial InferenceHenry Rouanet and Marie-Claude BertOne could treat of Probability without uttering the word Chance,just as one can treat of Electricity without uttering the word Frog.Paul Val�eryIntroductionThis chapter is an introduction to Combinatorial Inference, or Set-theoretic Inference (See Section 4.3), an alternative to frequentistinference that our Math & Psy Group has been developing since theearly eighties: see Rouanet, Bernard, Lecoutre (1986) and Rouanet,Bernard, Le Roux (1990). Its motivation is to provide researcherswith a framework that can be used when the \validity assumptions"of the common procedures are not met. In the making of combina-torial procedures, the dissociation made in earlier chapters betweenalgorithm and statistical framework is put to use. Roughly speak-ing, the algorithms of combinatorial procedures coincide with those



98 Henry Rouanet and Marie-Claude Bertof conventional tests, while the random framework is discarded. Asa result, in data analysis, it will be possible to keep many famil-iar algorithms, while the conclusions of Combinatorial Inference arestated in terms of new concepts, such as typicality and homogeneity,formalized in a nonprobabilistic way.We will �rst present Typicality tests (Section 4.1), and Homo-geneity tests (Section 4.2). Then we will outline the making of com-binatorial inference and discuss related viewpoints (Section 4.3).4.1 Typicality TestsIn this �rst section, we present typicality situations (1.1) and charac-terize the typicality problem (1.2), and, in the elementary context of�nite sampling, we present the typicality test for the mean (1.3) andthe hypergeometric typicality test for a relative frequency (1.4). Wewill proceed by making some general comments about combinatorialinference (1.5). Last, the extension to sampling from a distributionwill be outlined (1.6).4.1.1 Typicality SituationsConsider the following situations:Committee. Among the members of a club, a committee is ap-pointed. Can the committee be declared to be atypical of the clubwith respect to the mean age, or the sex ratio, etc.?Schoolboys. At the Louvre station of the Paris metro, a groupof 20 schoolboys get o�, 7 of whom are red-haired. Assuming thatamong the French, the percentage of red-haired people is around10 %, can it be inferred that the group of schoolboys is atypical ofFrench schoolboys?Vacation. A tourist has spent a period of 20 days in August in aresort; 7 of the days were rainy days. An advertisement claims thatthe percentage of rainy days in August is 10 %. Can the tourist inferthat the vacation period was atypical of the advertised climate?



Combinatorial Inference 99Gifted children. In a follow-up study of 5 gifted children, a psy-chologist has found that for a certain task the mean grade of hergroup is 30, with an SD of 6, whereas for a reference population ofchildren of the same age the mean is known to be 25. Is she entitledto claim that her group of gifted children is on the average superiorto the reference children?4.1.2 The Typicality ProblemThe preceding situations exemplify what we call typicality situations.In such a situation there is a given group of observations, and there isalso a known reference population. Some statistic is considered, suchas the mean of a variable of interest. Then the typicality problem israised, intuitively formulated as follows: \Can the group of observa-tions be assimilated to the reference population, or is it atypical ofit?"; or more speci�cally: \How can a typicality level be assessed forthe group of observations (with respect to the population, accordingto some statistic of interest)?"In typicality situations, it is tempting to do a signi�cance test.Yet the conventional statistical framework is not valid, since no ran-domness is assumed in the data generating process. In the Commit-tee example, the group under investigation is a subset | but not arandom subset, as a rule | of the reference population; in the GiftedChildren example, the group under investigation is not even a subsetof the reference population.Even for a random sample, the typicality issue may be raised asan issue that is perfectly distinct from randomness. As an example,suppose a trial jury of 9 members that happens to include not a singlewoman; even if the jury has been lawfully constituted by randomsorting, its competence might be questioned on the grounds that itis not typical with respect to the sex-ratio.In order to o�er a solution to the typicality problem, the basicidea will be to compare the group of observations to the samples ofthe reference population, where samples are simply de�ned as subsetsof the population.



100 Henry Rouanet and Marie-Claude Bert4.1.3 Finite Sampling: Typicality Test for the MeanIn the context of �nite sampling, the term population will always referto a �nite set. Let n denote the size of the group of observations, andN the size of the reference population. In combinatorial inference,a sample of the population will be de�ned as an n-element subset ofthe reference population, and the set X of all �Nn� n�element subsetsde�nes the sample space. We will now describe the typicality testin the case of a numerical variable, taking the mean as a statisticof interest. The mapping M on X that, with each sample x 2 X ,associates its mean M(x), de�nes the Mean as a statistic. Let mobsdenote the observed mean of the group of observations, � the meanof the reference population, and suppose | to �x our ideas | thatmobs > �. Then we consider the samples whose means are greaterthan (or equal to) mobs, that is, which satisfy the property (M �mobs). Let p = P (M � mobs) (observed upper level)be the proportion of those samples. This proportion will be taken asde�ning the level of typicality for the mean, with respect to the refer-ence population. The smaller the value of p, the lower the typicality.For any � between 0 and 1/2, if P (M � mobs) � �, the group ofobservations will be declared to be atypical of the reference popula-tion, with respect to the mean, upwise at level � (one-sided). Whenmobs < �, the observed lower level will be similarly considered, andthe typicality level de�ned accordingly. A group of observations willbe declared atypical if it is atypical whether upwise or downwise.Example. Committee with N = 9, n = 3 (Rouanet et al, 1990, p.94). Let a committee of 3 members with mean age mobs = 69 to becompared to the club of 9 members with ages (58; 61; 64; 64; 64; 67;67; 70; 70). There are �93� = 84 samples (of size n = 3), whose meansgenerate the sampling distribution of the statisticM : see Figure 4.1.By inspection, it is found that out of the 84 samples, 2 satisfy theproperty (M � 69); hence p = 2=84 = 0:024. Thus for any � � 2=84,the result is signi�cant. Taking the conventional grid described inChapter 2, since we have 2=84 < 0:025 but 2=84 > 0:005 (signi�cant



Combinatorial Inference 101457456357345 356 567257 347 467 579256 346 459 578245 247 267 458 569235 246 259 367 568234 237 258 359 479157 236 249 358 478156 167 248 349 469147 159 239 348 468145 146 158 238 279 379 679135 137 149 179 278 378 678125 134 136 148 178 269 369 589124 127 129 139 169 268 368 489 789123 126 128 138 168 189 289 389 68961 62 63 64 65 66 67 68 69Figure 4.1: Sampling distribution of Meanresult S?), we conclude that the committee | indeed any group ofobservations with mean mobs = 69 | is atypical of the club withrespect to the age, on the upper side, at the level .025 (one-sided).As another example, consider a group of observations with meanmobs = 68, together with the same reference population; then wehave p = 5=84. Since 5=84 > 0:025 (nonsigni�cant result: NS), wecannot conclude that the group of observations is atypical, at theconventional two-sided .05 level.Fundamental typicality property. The construction of the typ-icality test extends to any numerical (or simply ordinal) statistic,taking as a typicality index the proportion of samples that are moreextreme than (or as extreme as) the data, with respect to this statis-tic. The typicality test can be applied to every sample of the refer-ence population, viewed as a particular group of observations. Thenfor any speci�ed �, the test will separate out those samples which areatypical at the �-level. The fundamental typicality property statesthat the proportion of these samples is at most �| \at most" ratherthan \equal to", owing to the discreteness of the sampling distribu-tion.



102 Henry Rouanet and Marie-Claude Bert4.1.4 Hypergeometric Typicality Test for a RelativeFrequencyWith categorized data, combinatorial inference leads to explicit for-mulas. To illustrate, we will present the typicality test for a relativefrequency, in the context of �nite sampling.Suppose that in a group of n observations, a observations possessa character of interest, hence the observed relative frequency of thischaracter fobs = a=n. Suppose that in the reference population ofsize N , the corresponding relative frequency is '0 = A=N . Thecombinatorial test here amounts to comparing the observed frequencyfobs to the reference frequency '0 for a population of size N . LetF (statistic) be the mapping on the sample space that, with eachsample x, associates its relative frequency F (x). The number ofsamples for which the property (F = a=n) holds is �Aa� � �N�An�a �;hence the observed upper level p is given byp = P (F � a=n) =Pna0=a�Aa0�� �N�An�a0�=�Nn�The algorithm of the typicality test for a relative frequency is the oneused in the classical hypergeometric test for frequencies; recastingthe latter test in a combinatorial framework amounts to retaining itsalgorithm while discarding the probabilistic interpretation.Example. Committee with N = 20, n = 5. Among the 20 membersof a club, 6 are women; a committee of 5 members is appointed, 4of whom are women; is the committee atypical of the club withrespect to the sex ratio? We have here n = 5, fobs = 4=5(= :80),'0 = :30, N = 20. There are �205 � = 15504 samples, and amongthem �64� � �141 � + �65� � �140 � = 216 for which F � 4=5. Hence p =216=15504 = :014. Taking conventional levels, since p lies between.025 and .005, the frequency fobs = 4=5 = :30 is signi�cantly higher(in a combinatorial sense) than the reference frequency '0 = :30, atthe .025 level (one-sided). In typicality terms, it is concluded thatthe committee | indeed any group of 5 observations with observedfrequency fobs = 4=5 | is atypical of the club, with respect to thesex ratio, at the one-sided level .025 (S?). An interpretation of theover-representation of women in the committee is called for.



Combinatorial Inference 103A more thorough presentation of combinatorial inference for fre-quencies, including the derivation of combinatorial con�dence limits,can be found in Rouanet et al. (1986) and Rouanet et al. (1990).4.1.5 Remarks on Combinatorial InferenceTypicality test and descriptive statistics. The concept of typ-icality that we have de�ned here is in harmony with that of \typicalvalue" of a distribution: mean, median, etc. More importantly, as-sessing the typicality level of a group of observations appears as thedirect extension, for n � 1, of the natural statistical procedure ofassessing the performance of an individual in a given task by meansof the proportion of scores exceeding the score of that individual ina reference population. For a group of observations, however, thetypicality level depends on the size of the group, therefore, as soonas n > 1, it is not a descriptive statistic | in the technical sensethat was speci�ed earlier in Chapter 1. Combinatorial inference isthus to be regarded as the �rst stage of inductive statistics.From typicality tests to frequentist inference. On the otherhand, the link between combinatorial notions and those of frequen-tist inference is apparent, when the data set is a sample from thepopulation. The samples from a population in combinatorial infer-ence are just the \unordered samples without replacement" of thefrequentist �nite sampling theory except that no probabilities areattached to them; for each property of interest, what is assessed in-stead is simply the proportion of samples for which that propertyholds. The conventional frequentist framework will be \recovered"if we introduce the additional assumption of random sampling, thatis | in the �nite theory considered here | we now suppose that allsamples (subsets) have equal probabilities of being extracted. Thenthe conversion property holds: Under the assumption of random sam-pling, the proportion of samples (subsets) satisfying a certain prop-erty becomes the probability that a sample will satisfy that property.Thus, for the preceding numerical example, under the random sam-pling assumption, the proportion of samples for which the property



104 Henry Rouanet and Marie-Claude Bert(M � 69) holds | a proportion that we wrote P (M � 69) | be-comes the probability that a randomly extracted sample satis�es thissame property (M � 69) | a probability that we may also writeP (M � 69), now reading P \probability" instead of \proportion".The conversion property thus transforms combinatorial proceduresinto frequentist ones. Clearly, it not just \a matter of semantics" tospeak of the proportion of samples satisfying a certain property, or ofthe probability that a sample satis�es this property. The �rst state-ment is valid without restriction, whereas the second one demandsthe additional assumption that all samples are equally probable.The foregoing discussion applies to the whole of CombinatorialInference. Whenever a combinatorial procedure technically coincideswith the algorithm of a frequentist procedure, the familiar signi�-cance formulations can be retained, while quali�ed as \combinato-rial", since no probabilistic interpretation is intended.Summarizing: While conceptually, combinatorial inference is adirect extension of descriptive statistics, technically it involves algo-rithms of frequentist inference. Combinatorial Inference is thus the�rst stage of Inductive Data Analysis.4.1.6 Sampling from a DistributionThe typicality test can be extended to sample spaces de�ned bysampling from a distribution (rather than from a population), bygeneralizing the notion of a sample and making use of mathematicalconvergence theorems.The binomial typicality test. As a �rst example, let us take thecomparison of an observed relative frequency f = a=n to a referencevalue '0, when no population size N is speci�ed. We may then con-sider a sequence of populations, such that the population frequency' = A=N approaches '0 when N tends toward in�nity. Then thepreviously written hypergeometric expression of the upper level con-verges to the binomial expressionp = P (F � a=n) =Pna0=a'0a0 (1� '0)n�a0



Combinatorial Inference 105Even though the number of samples is not �nite in the limit, this bi-nomial expression may be taken as de�ning a proportion of samples,when no population size is speci�ed. Intuitively, the procedure maybe thought of as an inference for an arbitrarily large population. Arelated approach consists in considering ordered samples with replace-ment in a population. The number of such samples is Nn and theproportion of those that satisfy (F � a=n) isPna0=a(AN )a0 (1� AN )n�a0 .When A=N approaches '0, we again obtain the binomial expression.Examples. Schoolboys, Vacation. For both examples we have n =20, f = 7=20 and '0 = :10. We then �nd P (F � 7=20) = :0001, ahighly signi�cant result (S??), leading to a conclusion of atypicality.Sampling from a distribution. In frequentist inference, samplesfrom distributions | e.g. samples form a normal distribution |are considered even though there is no relevant (�nite) population,and de�ned in terms of independent identically distributed (i.i.d.)random variables. In combinatorial inference, a sample from a dis-tribution will be de�ned in measure-theoretic terms, namely as anelement of a product-measure space (Un;�n), where U is a measur-able space and � is a positive measure of total mass 1 over U . Eventhough the number of samples may be in�nite, the proportion of thosethat satisfy a given property is well-de�ned by the �(n)-measure ofthe property of the sample space. As a consequence, the intuitiveformulations of the �nite theory may be carried over (Rouanet et al,1990, p. 103).Student's combinatorial t-test. As an example, let us recast Stu-dent's t-test | comparing an observed mean to a reference meanvalue | in combinatorial terms. Taking as a sample space the sam-ples of size n from a normal distribution of mean �, the classicalStudent property, in combinatorial terms, reads: the proportion ofsamples for which the ratio M��S=pn exceeds t� is equal to �; that is,for any �, we have P (M��S=pn > t�) = �Now consider a group of n numerical observations, and a referencemean value �0. Let T = M��0S=pn . Thanks to the Student property, we



106 Henry Rouanet and Marie-Claude Bertmay assess the typicality of this group, for the mean, with respect toany normal reference distribution of mean �0. Thus for the Studentdata (cf. Chapter 2), we have n = 10, mobs = 1:58 (observed mean),and �0 = 0 (reference mean), and the observed t-ratio is tobs =4:06. Hence the one-sided observed level is p = 0:0014 (S**). Incombinatorial inference, the p-value is interpreted as the typicalitylevel of the group of observations, for the mean, with respect to anormal distribution of mean 0. The conclusion of the combinatorialtest is that the group is atypical, for the mean, on the positive side,of a normal distribution of mean 0, at the .005 level (one-sided).The semantic di�erence with the frequentist t-test is apparent.In the frequentist test, normality is an assumption, whereas in thecombinatorial one, it is a reference. In the combinatorial test, thereis no validity issue, even though there is a relevance isssue, sincethe choice of a particular distribution as a reference may be moreor less appropriate. In this connection, the combinatorial t-test willoften be better justi�ed than the frequentist one, because the nor-mal distribution is a privileged reference in many situations. Let ustake for instance the Gifted Children example of Section 1.1, withn = 9, mobs = 30, s = 6, �0 = 25 (mean score of reference children),and hence tobs = 2:5. The result is signi�cant at the 0.025 level(one-sided) (S?). In so far as the distribution for reference childrenis based on normalized scores | a widespread psychometric tech-nique | the psychologist is entitled to claim that her group of giftedchildren is on the average superior to the reference children. Thisexample illustrates how the combinatorial framework may o�er real,interesting, and plausible settings | to paraphrase Freedman et al.(1991, p. A20) | for common procedures such as the t-test.4.2 Homogeneity TestsIn this section, we will outline homogeneity tests along an approachsimilar to the one used for typicality. We �rst present homogeneitysituations and state the homogeneity problem (2.1). Then we will



Combinatorial Inference 107present the homogeneity tests for two basic structures (2.2), andrelated combinatorial tests (2.3). Then we will expose the passagefrom Combinatorial inference to frequentist inference (2.4) and tothe Bayesian framework (2.5).4.2.1 Homogeneity SituationsConsider the following situations.Summer school. Participants in a summer school are allocated toseveral teaching groups. At the end of the course, an exam is givento the participants, revealing substantial di�erences among the meanscores of the groups. Can it be said that the groups are heterogeneouswith respect to their mean scores?Wage modi�cation (adapted from Faverge, 1956, p. 88). A mod-i�cation in the wage system is introduced in a workshop of a factory.For the 12 workers in the workshop (\subjects" s1 through s12),the outputs (number of items per hour) are the following (a aftermodi�cation, b before):s1: a 220, b 203 s2: a 226, b 222 s3: a 254, b 246 s4: a 246, b 221s5: a 296, b 287 s6: a 222, b 224 s7: a 293, b 275 s8: a 247, b 246s9: a 240, b 246 s10: a 269, b 258 s11: a 236, b 216 s12: a 199, b 197The mean of the individual output di�erences (\after" � \before")is 8.92, and the (corrected) S.D. 9.59. Thus descriptively, there is asubstantial mean increase (0.67 times the S.D.). Are the two groupsof scores (\before" and \after") heterogeneous?The homogeneity problem. The preceding situations exemplifywhat we call homogeneity situations. There are several groups ofobservations, and some statistic of interest is considered. The homo-geneity problem is raised, intuitively formulated as \Can the groupsbe merged, or are they heterogeneous?"; \Can a level of homogene-ity be assessed?" As in the typicality problem, it is tempting todo some conventional signi�cance test. Yet again, no randomness isassumed in the data generating process. To get combinatorial ho-mogeneity tests, one may, like for typicality, take signi�cance teststhat were originally devised within a frequentist framework and just



108 Henry Rouanet and Marie-Claude Bertretain their algorithms. For our purpose here, we will take the clas-sical permutation tests, or Fisher-Pitman tests, initiated by Fisherand by Pitman (1937); for a brief historical account, see Edgington(1987, p. 17-21).Permutation tests. The familiar nonparametric tests, such as thesign test, rank tests, Fisher's exact test for a 2 � 2 table, etc. arevariants of permutation tests, for which explicit formulas can bederived and tables can be constructed. This has rendered thosetests applicable before the computer era. By contrast, for the basicFisher-Pitman tests, a considerable amount of computation is re-quired, even for modest sample sizes. This formidable computationobstacle, which has long hindered the full use of permutation tests,is being overcome nowadays. For small data sets, exact combinato-rial computations can be carried out. For intermediate sizes, MonteCarlo procedures, that is, computer sampling from permutation dis-tributions, can be used. For large data sets, approximate methodsinvolving classical distributions are often available.Leaving aside the computational obstacle, the justi�cation of per-mutation tests in the frequentist framework is intricate and oftenelusively treated in textbooks. Readers who are not too clear aboutpermutation tests will �nd it advantageous to get acquainted withthem through the combinatorial framework, whose logic is straight-forward and will lighten the slippery paths leading to frequentistinterpretations.4.2.2 Homogeneity Tests for Two Basic StructuresTo say that several groups are homogeneous amounts to saying thatthe subdivision into groups may be ignored, that is, any observationbelonging to a group might have belonged as well to any one of thegroups. This exchangeability principle leads us to consider the base-line data set obtained by disregarding the subdivision into groups,and then to construct all possible data sets obtained by reallocatingthe observations of this baseline data set to the groups in all possibleways. Technically, this amounts to applying a permutation group to



Combinatorial Inference 109the observed data set, thus generating a set of possible data sets |all of the same structure as the observed one | or protocol space,against which the observed data set (observed protocol) will be sit-uated. The remainder of the test procedure will be the same as fortypicality tests, replacing \sample space" by \protocol space" andtypicality by homogeneity. For each protocol in the protocol space,the statistic of interest is calculated, and the proportion of protocolsfor which this statistic is more extreme than (or as extreme as) theobserved value de�nes the level of homogeneity of the groups.The permutation group used to generate the protocol space de-pends on the design structure. Hereafter we describe homogeneitytests, �rst for the structure of two independent groups (SummerSchool), then for that of two matched groups (Wage modi�cation).Independent group design (Nesting structure) (Rouanet et al.,1990, p. 116). Consider several independent groups of observations,that is the design where Subjects are nested within a Group factor.Disregarding this Group factor, the derived baseline data set is thepool of the groups. Hereafter we describe in detail the case of twogroups, g1 and g2, of sizes n1 and n2; the derived baseline data set isthe pool of the n1+n2 observations. The protocol space is generatedby reallocating n1 of the pool of n1 + n2 observations to g1 and theother n2 to g2; it thus comprises �n1+n2n1 � protocols.For instance, suppose there are two groups of sizes 4 and 5, withthe following numerical data set: g1 : 3; 8; 10; 10; g2 : 1; 1; 2; 5; 5.Taking the di�erence of means D as the statistic of interest, theobserved value of this statistic is dobs = 7:75 � 2:8 = 4:95. Thepool of g1 and g2 is the group of 9 observations (written in increas-ing values): g1 g2: 1; 1; 2; 3; 5; 5; 8; 10; 10. Applying the permutationgroup, 9!=5! 4! = 126 protocols are constructed. Thus starting withg1: 3; 8; 10; 10; g2: 1; 1; 2; 5; 5 (observed data set), and permuting the�rst observations of g1 and g2, we get the protocol: g1: 1; 8; 10; 10;g2: 3; 1; 2; 5; 6, etc. For each protocol the value of D is calculated:thus 4.95 (for the data set), then 4.05, etc. Then, by inspection, itis found that out of the 126 protocols, there are 3 for which the dif-



110 Henry Rouanet and Marie-Claude Bertference of means is greater than or equal to the observed di�erence;hence: P (D � dobs) = 3=126 = :024. Since 3=126 lies between .025and .005, it is concluded that the two groups are heterogeneous |g1 being higher than g2 | at level .025 (one-sided) (S?).The homogeneity test for two independent groups is seen to beequivalent to a typicality test, taking the pool of the two groups(baseline data set) as a \reference population" and one of the twogroups as a \sample."Of special interest are extremal data sets, that is, data sets thatare more extreme than all other protocols. For an extremal data set,the two groups are \separated," in the sense that all observations ofone group exceed all observations of the other. Then the homogeneitylevel is simply 1/�n1+n2n1 �. Taking for simplicity two groups of equalsizes, it is readily seen that for n1 = n2 � 3, two separated groupscannot be said to be heterogeneous (at the two-sided level .05); thatfor n1 = n2 = 4, they are heterogeneous at the one-sided level .025(S?); and that for n1 = n2 � 5, they are heterogeneous at the one-sided level .005 (S??).Matched-group design (crossing structure) (Rouanet et al., 1990,p. 121). Now consider the S �T design, where n subjects are crossedwith a factor T (\treatments", or \trials", etc.). Each experimentalunit is nested in | indeed is confounded with | the crossing offactors S and T . Therefore, disregarding factor T , the derived base-line data set is characterized by the sole structure of the nesting ofunits within factor S (restricted exchangeability). Hereafter we dealwith the case of a two-level factor T , i.e. the matched-pair design;then the group of permutations is de�ned by permuting the observa-tions within each pair in all possible ways. The protocol space thuscomprises 2n protocols.For instance, for the Wage modi�cation data, there are 212 =4096 protocols. Let D denote the mean of the individual outputdi�erences \after � before" (statistic of interest). For the observeddata set we have dobs = 8:92. The baseline data set is the set of 12unordered pairs (written in increasing value order):



Combinatorial Inference 111s1: 203, 220 s2: 222, 226 s3: 246, 254 s4: 221, 246s5: 287, 296 s6: 222, 224 s7: 275, 293 s8: 246, 247s9: 240, 246 s10: 258, 269 s11: 216, 236 s12: 197, 199Applying the permutation group, starting with the observed data set,we get, by permuting the two observations of subject s1 (hereafterwritten in boldface characters):s1: a 220, b 203 s2: a 226, b 222 s3: a 254, b 246 etc.Then, among the 4096 protocols, the number for which D is greaterthan or equal to 8.92 is easily found | using a computer progamsuch as the infer program described in Rouanet et al. (1990) | tobe 20, hence the proportion P (D � dobs) = 0:0049 (one-sided). Atthe .005 level (one-sided), it is concluded that the matched pairs areheterogeneous (S??), \after" being higher than \before".Here again, of special interest are extremal data sets, here, thosefor which all individual di�erences have the same sign; then thehomogeneity level is simply 1/2n. It is readily seen that for n � 5,the matched pairs of an extremal data set cannot be said to beheterogeneous (at the two-sided level .05); that for n = 6 and n = 7,they are heterogeneous at the one-sided level .025 (S?); and that forn � 8, they are heterogeneous at the one-sided level .005 (S??).An example of an extremal data set is provided by the classicalStudent data, for which 9 di�erences are strictly positive, and oneis null, hence P (D � dobs) = 1/29 = :0020. The conclusion ofheterogeneity is attained at the one-sided level .005 (S??). It may benoticed that the homogeneity level .0020 di�ers from the value .0014found for the typicality level with respect to a normal distribution,obtained by Student's t-test. Such a discrepancy is not surprising,since the two tests answer di�erent questions.4.2.3 Related Combinatorial TestsStructured data. The approach of homogeneity tests extends tovarious sorts of structured data commonly encountered in plannedexperimentation or observation. In order to investigate a factor ofinterest, the general principle remains the same: construct the base-line data set by removing this factor from the structure, then gener-



112 Henry Rouanet and Marie-Claude Bertate the space of all protocols sharing the original structure, by meansof a permutation group associated with that structure.Combinatorial independence test. The combinatorial approachalso applies to a problem akin to homogeneity, namely the indepen-dence problem (Rouanet et al., 1990, p. 125-130), in connection withthe bivariate structure in observations.As an example, let us consider the following Sex bias situation(from Freedman & Lane, 1983). In the 1973-74 academic year, at oneof the largest departments of the U.C. at Berkeley, there were 191men and 393 women who applied for admission to graduate school;54 men and 94 women were admitted, hence an appreciable di�erencein percentages (28% for men vs 24% for women). Can it be suspectedthat there was a sex bias in the University's admission policy? Interms of independence, the problem reads: \Can the two attributesSex and Admission be said to be independent or associated?"The baseline data set, obtained by removing the bivariate struc-ture, consists here of the two derived sets of 584 observations per-taining to each one of the separate attributes Sex and Admission. Inthe combinatorial independence test, the protocol space will consistof all possible matchings between those two sets. For two dichoto-mous attributes, the algorithm of the independence test amounts toFisher's classical exact test, and in turn, when the number of obser-vations is large, to the familiar �2-test. In the present example, thevalue of the �2 statistic, for the corresponding 2� 2 table, is foundto be �2obs = 1:29, hence P (�2 > �2obs) = 0:26. The observed levelis not low enough to be declared signi�cant (at conventional levels).In combinatorial terms, the conclusion is that it cannot be inferredthat there is an association between Sex and Admission. The U.C.at Berkeley cannot be charged with Sex bias.4.2.4 From Combinatorial to Frequentist InferenceThe preceding discussion reinforces the view of combinatorial infer-ence as the �rst stage of inductive data analysis. In some situations,the conclusions reached through combinatorial inference may be felt



Combinatorial Inference 113to be su�cient. Or alternatively, it may be wished to prolong themby probabilistic conclusions. Taking homogeneity situations onceagain, we are going to discuss how, starting with a combinatorialconclusion, frequentist tests can be constructed.With the notion of homogeneity we may associate a null hypoth-esis expressing, in intuitive terms, that the factor of interest \has noe�ect." Then, in order to make a statement about this hypothesis,we will try to build | as we did for typicality tests | a frequentistframework entailing a conversion property, that is, for that matter,transforming proportions of protocols into (frequentist) probabilities.For homogeneity tests, things are not as straightforward as they arefor typicality tests. To begin with, more than one single frameworkmay be devised. Below we sketch two frameworks | both classi-cal | for comparing two independent groups, that share the samealgorithm but rest on di�erent assumptions, and lead to di�erentinterpretations of the notion of \no e�ect".Random sampling and conditional test. In this framework, arandom sampling model of the conventional frequentist kind is as-sumed for each group, that is, each group is assumed to be a randomsample from some unknown continuous parent distribution | thecontinuity assumption being made to dispose of the problem of ties.The null hypothesis states that the two parent distributions are iden-tical. Under the null hypothesis, the pool of the two samples | ourbaseline data set de�ned in Section 2.2 | can be regarded as a sin-gle sample (of size n1 + n2) from the common parent distribution.Therefore, conditionally to the baseline data set, all �n1+n2n1 � protocolsgenerated by permutation are equally probable.Thus, for the Summer School data, we have a combinatorial con-clusion of heterogeneity. Under the random sampling model (con-ditional test), the null hypothesis tested is that the two groups aresamples from two identical parent distributions, and the combina-torial conclusion becomes the frequentist conclusion that this nullhypothesis is not compatible with the data (at level .025, one-sided,that is: S?).



114 Henry Rouanet and Marie-Claude BertFormally, a conditional test can be devised for any homogeneitysituation | as well as for independence situations: Fisher's exacttest for a 2 � 2 table is classically justi�ed as a conditional test.Random sampling, however, may not be a realistic assumption. Fur-thermore, in many homogeneity situations, the question of interestdoes not really pertain to some conjectural parent populations, butrather to the experimental units at hand. Thus, for the SummerSchool, the real question is to investigate whether or not the GroupFactor | speci�cally, the sources of variation linked with the divi-sion into groups: di�erent teachers, etc. | has had an e�ect on theperformance of the participants. Similarly, in the Sex bias exam-ple (Section 2.3), the independence question is raised about the 584students under consideration, rather than to some conjectural popu-lation from which these students would be supposed to be extracted.There is a broad range of situations where the random samplingassumption either is unrealistic or induces the wrong question.Randomization tests. The concern just mentioned is undoubtlytaken up in the randomization model, in which no underlying parentdistribution is assumed, and the inference sought only pertains tothe units that appear in the experiment. The null hypothesis nowstates that for each unit, the two observations that can be made donot depend on which condition is applied to that unit. Under thisnull hypothesis, all �n1+n2n1 � protocols are again equiprobable. For in-stance, in the Summer School example, the parameters are now theunknown scores that the participants (units) would have obtained ifthey had been assigned to the other group rather than to the groupto which they were actually assigned. The primary frequentist jus-ti�cation of the test, now, is the physical act of randomization, bywhich conditions have been allocated to experimental units. Thusin the Summer School example, suppose the participants have beenassigned to groups by means of a random device. Then the nullhypothesis considered will be that all 9 participants would have ob-tained the same scores in the group to which they were not assigned.Then, from the heterogeneity conclusion of the combinatorial test, it



Combinatorial Inference 115may be inferred that this null hypothesis is not compatible with thedata. Conditional and randomization tests are further discussed byCox and Hinkley (1974, p. 179-204).Status of randomization. The methodological status of random-ization as an experimental procedure has been matter of debate.In sensitive domains like medical research, randomization raises im-mense ethical problems that are beyond the scope of this book.Con�ning ourselves to statistical issues, it is a fact that experimen-tal randomization generates a consensus about the probability ofobservables under privilegied null hypotheses, and this is often ade�nite advantage, in research areas where knowledge is limited orcontroversial. This statistical advantage is sometimes erected as aprinciple, along which | when random sampling is lacking | ran-domization is a must for statistical inference that might be drawnfrom data. We do not adhere to this principle, if only because thereare too many situations that are not amenable to randomization andfor which statistical inference still appears desirable. One such sit-uation is the nesting structure when the groups do not pertain to\conditions" | to which units may be allocated or not | but arenatural groups, such as boys and girls in a classroom, etc. Other sit-uations are the crossing structure such as the before and after design(see next subsection), the bivariate structure (leading to the com-binatorial independence test), etc. In such situations, should onerenounce statistical inference just because randomization is out ofthe question? We think not. We �rstly propose combinatorial in-ference, as a nonprobabilistic statistical inference that is applicablein any case. We then suggest that probabilistic inference might berethought along the line we sketch below.4.2.5 Toward the Bayesian FrameworkIn this subsection, we submit re
ections and tentative suggestionsaiming at overcoming the limitations of frequentist inference, whenrandomness assumptions (random sampling or randomization) arenot met.



116 Henry Rouanet and Marie-Claude BertThe randomization paradox. In theWage Modi�cation example,the question of interest is to assess the e�ectiveness of wage modi�-cation for the group of the 12 workers in the workshop. Now, if wetake the randomization principle seriously, the lack of randomizationin the before and after design precludes interpreting heterogeneity interms of some \no e�ect" hypothesis pertaining to the group of 12workers. Now instead of the before and after design, we might haverandomly divided the 12 workers into two groups g1 and g2 of 6 work-ers each, and proceeded to make \before" observations only on the 6workers belonging to g1 and \after" observations only on the 6 work-ers belonging to g2. We would then have two independent groups of6 observations each, to which an unobjectionable randomization testmight be applied and allow one, in the case of a signi�cant result,to assess the e�ectiveness of the wage modi�cation. Equivalently,starting with the full matched-pair data set at hand, we may ran-domly sample 6 \before" observations and 6 \after" ones and con�neour statistical analysis to these 12 observations. Now the before andafter design, where subjects are their own controls, is surely betterthan the preceding \randomization design." It thus seems paradox-ical that using all available information should preclude a sort ofconclusion that would be authorized using only partial information.The \no e�ect" hypothesis. Leaving aside randomness assump-tions of frequentist models | random sampling and randomizationalike | let us take a new look at the \no e�ect" hypothesis in ho-mogeneity situations, starting with the remark that whatever formalmeaning is given to this hypothesis, the baseline data set does notcontain information about this hypothesis. Now suppose an individ-ual is shown the set of protocols generated from the baseline dataset, and asked to guess which one of the protocols is the observeddata set. If this individual believes that there is no e�ect, then allprotocols will be equiprobable for that individual | and under thebelief that there is an e�ect they will presumably not be equiprob-able | hence a conversion property from proportions to probabili-ties, valid regardless of any randomness assumption. We submit this



Combinatorial Inference 117conversion property to be taken in all situations as the operationalprobabilistic characterization of the null hypothesis of \no e�ect".We hope that readers will feel with us that this characterization ofthe null hypothesis is natural. The reason for which it is not classicalis that the probabilities involved may not interpretable as long-runfrequencies; they basically express degrees of belief in particular sit-uations. In Bayesian terms, those probabilities are predictive andconditional upon the null hypothesis. The Bayesian framework isoften presented | as in the late chapters of this book | as an en-largement of the frequentist one, that is, as a superstructure that isadded to a frequentist model. The foregoing discussion suggests adirect way from combinatorial inference to the Bayesian framework,bypassing the intricacies of the frequentist framework(s).Chance formulations. When the \no e�ect" hypothesis is com-patible with the data (nonsigni�cant result), it is commonly saidthat the result \might have occurred by chance" | i.e. as a matterof coincidence, or luck, fortuitousness, 
uke, etc., suggesting, by im-plication, that attempting to interpret the e�ect any further wouldbe fruitless. When on the contrary the \no e�ect" hypothesis is notcompatible with data (signi�cant result), it is commonly said thatthe result \is not due to chance," which means that attempting inter-pretation is in order. Such formulations have a long-standing historythat goes back to Laplace, at least. As a Laplace-inspired example,suppose that a child using a typewriter for the �rst time composes thefollowing 12-character sequence: kindergarten. The reason thatleads us to think that this arrangement is not due to chance, Laplacewould explain, cannot be the fact that, physically speaking, it is lessprobable than the others, because, if the word kindergarten werenot in use in any language, this arrangement would be neither lessnor more probable, and we would then not suspect any particularcause in connection with it. But as the word is in use among us, it isincomparably more probable that the arrangement of characters isintentional rather than due to chance (Laplace, 1825/1986, p. 229).Such Laplacian comments again point to the Bayesian framework.



118 Henry Rouanet and Marie-Claude Bert4.3 The Making of Combinatorial Inference4.3.1 Frequencies and ProbabilitiesBoth probabilities and relative frequencies are isomorphic, that is,they obey the same formal rules of a more general calculus of pro-portions. Yet the semantics of probabilities refers to uncertainty,and that of frequencies, to observed statistical data. To confuse twoisomorphic entities is to commit a structural fallacy1.In Appendix 2 of Chapter 1, we discussed the fallacious assim-ilation of probabilities to frequencies. In Rouanet (1982), we dis-cussed the fallacious converse assimilation, which is conveyed whenthe probabilistic language is used to introduce theoretical distribu-tions, such as the normal distribution. The �rst step toward Combi-natorial Inference thus consists in characterizing such distributionsas \stylized" frequency distributions, instead of \probability" dis-tributions. Along this line, the notation P (Z > 1:96) = 0:025 isinterpreted as \the proportion of standard scores greater than 1.96is 2.5%." There are indeed some statistical textbooks that adoptsuch a nonprobabilistic presentation, above all, those written in thepsychometric tradition, such as Faverge (1956). In our statisticalteaching, we have constantly adhered to this tradition, as re
ectedin Lecoutre and Lecoutre (1979), and then in Rouanet, Bernard, LeRoux (1990, chapters 2 and 3).4.3.2 The Crucial StepAdmittedly, nonprobabilistic formulations of statistical inference areoccasionally found in textbooks. For instance, the sentence \95 per-cent of calculated con�dence intervals will cover the parameter'svalue" is commonly found. Nonetheless, such sentences appear inisolation, and the basic combinatorial structures of statistical infer-ence are masked by the probabilistic phraseology. Virtually all sta-1. As an example of structural fallacy discussed by Je�reys (1961): Heat andvapor obey the same di�erential equations, but it does not follow from thisthat heat is a vapor.



Combinatorial Inference 119tistical textbooks stress the probabilistic framework and randomnessassumptions. The randomness habit is so rooted that \sample" isoften used as a synonym of \random sample"! Incidentally, such aninsistence on randomness is further evidence that the change fromprobabilities to proportions is not just a \matter of semantics".To arrive at combinatorial inference, the crucial step is the sec-ond one, which consists in stripping the concept of a sample of its\randomness" character, and replace the probabilistic formulationsby the formulations in terms of \proportions of samples." We tookthis step in the early eighties, when we started teaching introductorystatistical inference.4.3.3 Teaching MotivationsThe di�culties of teaching statistical inference are well-known, andindeed, the teaching motivations have been strong in our making ofcombinatorial inference. In the early eighties, the idea emerged inthe re
ections of our colleagues and ourselves that the algorithmsof the elementary inference procedures could be taught immediatelyfollowing descriptive statistics, dropping the traditional \probabil-ity prerequisites". Such a strategy, we felt, would allow studentsto concentrate �rst on computational aspects, without being pre-maturely concerned with the conceptual di�culties of probabilisticinterpretations. We started teaching proportion formulations, anddevising interpretations in terms of typicality and homogeneity. Thephrase Set-theoretic Inference was coined to refer to the new ap-proach, and a �rst presentation of it was made at the InternationalConference on Teaching Statistics held in She�eld (England), withthe provocative title \Teaching statistical inference without probabil-ity prerequisites" (Rouanet et al, 1992). A more detailed paper fol-lowed: Rouanet et al. (1986), and then the reference book Rouanet,Bernard, Le Roux (1990), with its companion teaching software in-fer. At the University Ren�e Descartes, Combinatorial Inference hasbeen taught continuously since 1982, both to psychology studentswith no previous knowlege of either probability or statistical infer-



120 Henry Rouanet and Marie-Claude Bertence, and to mathematical students as a complement of the standardstatistical curriculum2.4.3.4 Combinatorial Data AnalysisA growing trend in statistics in the last few years has been Combina-torial Data Analysis, which emphasizes algorithms instead of prob-abilistic models. This trend has been especially active in the areaof Classi�cation and is seen to naturally include all those techniquessuch as half-split, jacknife, bootstrap, etc. where the probabilisticphraseology is often misleading. It soon became clear that \Set-theoretic inference" was part of this trend | a point well taken byArabie et al. (1996, p. 5) and others. The Rouanet et al. book(1990) thus appears to be the �rst Introduction to statistical in-ference written along the line of Combinatorial Data Analysis. Inorder to emphasize this connection, Ove Frank suggested we calledthe approach \Combinatorial Inference", and we have now de�nitelyadopted this welcome suggestion.4.3.5 Toward Recognition of Combinatorial InferenceA variety of reasons concur that should facilitate the acceptance |paving the way to recognition | of Combinatorial Inference by thecommunity of researchers. Firstly, statistical procedures are oftenused in situations where the frequentist \validity assumptions" arenot met. By providing assumption-free interpretations, combinato-rial inference makes sense of common practice. Here is a revealingcomment made by a psychologist: \But this is just what I have al-ways done!"3 Secondly, the terms of typicality and homogeneity areso natural that they are spontaneously adopted. Thirdly, following2. Similarly, at the University Ren�e Descartes, an introduction to Bayesianinference has been taught since 1993, as an extension of classical signi�cancetesting, in the line of the last chapter of Rouanet, Bernard, Le Roux (1990)and of the subsequent chapters of the present book.3. This comment curiously echoes the one (by a statistician) reported by Freed-man and Lane (1982): \This is just what I have always thought!"



Combinatorial Inference 121Rosch's work, cognitive psychologists have been deeply interested intypicality; from this viewpoint, statistical typicality appears as theapplication of the general notion to collective objects. Fourthly, thereis the current prestige of exact tests in statistics. The magic of \ex-actness" must be quali�ed, of course. Student's t-test was (and stillis) an exact test too! Rather than striking up the \exactness cant",we prefer to stress that combinatorial inference does not require un-veri�able assumptions.4.3.6 Related ViewpointsOnce Combinatorial Inference had taken shape, we started inquiringabout related approaches. Then, leaving aside the abundant techni-cal developments about permutation tests, Monte-Carlo procedures,etc., we discovered that there have been really few publications de-veloping conceptual viewpoints akin to combinatorial inference. Inwhat follows we sketch three such signi�cant contributions4.Maurice Allais and nonprobabilistic models. Allais' name isfamiliar to econometric statisticians for his famous 1954 paradox inDecision Theory | also, perhaps, for the Nobel prize he got in 1989.Now in the early eighties, Maurice Allais vigorously denounced theconfusion of frequencies with probabilities in the current interpreta-tion of econometric models. Here is what we read in Allais (1983):\The so-called mathematical theories of probability could all be pre-sented without ever using the words chance, probable, random, orany similar term... All the fundamental theorems of the so-calledProbability theory, the Bernoulli law of large numbers5, or the cen-tral limit theorem of convergence to the normal law, the law of iter-4. Other references are also worth mentioning, such as Matheron (1989), a ref-erence that did not escape Shafer's (1994) attention.5. In Rouanet et al. (1990), we state the Bernoulli law of large numbers interms of the limit proportion of central paths. We are not aware of any singlereference | other than Allais | that would suggest (even remotely) thatsuch combinatorial formulations of standard probability theorems are notonly possible but highly meaningful.



122 Henry Rouanet and Marie-Claude Bertated logarithm, the arcsine law, etc. are only asymptotic propertiesof frequency distributions based on calculations of combinatorial tech-niques." (Author's italics). To enhance his claim, Allais exhibits aquasi-periodic model | hence fully deterministic | whose predic-tions could typically (and fallaciously) be interpreted in terms of astochastic model. In spite of the author's notoriety, Allais' messagewent virtually unnoticed | and unchallenged.Edgington and nonrandom samples. Starting from the factthat nonrandom samples are widely used in experimentation, andbuilding on the distinction between random sampling and random-ization | cf. Section 2.4 | Eugene Edgington, in numerous publi-cations such as Edgington (1987, 1995), has cogently and valiantlydefended the position that frequentist inference may be performedin nonrandom samples, whenever randomization is available. We arebasically in full sympathy with a position which stresses a statisti-cal framework | i.e. randomization | which is badly neglected.As a counterpart, the physical act of randomization seems to befor Edgington a necessary requirement (along the \randomizationprinciple"), and this departs from our viewpoint, as we discussed inSection 2.5.David Freedman and nonstochastic settings. In Freedman andLane (1982, 1983), the authors consider the following problem. \Dataare obtained in a nonstochastic [i.e. nonrandom] setting, and forsome attribute of this data, the question is raised: can this attributebe dismissed as an artifact, or does it require a more substantial ex-planation?" The solution suggested by the authors, and illustratedthrough examples | such as the Sex Bias example (Section 2.3) |comes very close in spirit to Combinatorial Inference. One may re-gret that those thought-provoking papers have not been followed bysystematic developments, and that the introductory statistical bookwritten by David Freedman and his colleagues (Freedman et al, 1991)| in all respects a most commendable book | is con�ned to thefrequentist viewpoint.


