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ABSTRACT

Suboptimal generalization of machine learning models on unseen data is a key challenge which
hampers the clinical applicability of such models to medical imaging. Although various methods
such as domain adaptation and domain generalization have evolved to combat this challenge, learning
robust and generalizable representations is core to medical image understanding, and continues to be
a problem. Here, we propose STRAP (Style TRansfer Augmentation for histoPathology), a form
of data augmentation based on random style transfer from non-medical style source such as artistic
paintings, for learning domain-agnostic visual representations in computational pathology. Style
transfer replaces the low-level texture content of an image with the uninformative style of randomly
selected style source image, while preserving the original high-level semantic content. This improves
robustness to domain shift and can be used as a simple yet powerful tool for learning domain-agnostic
representations. We demonstrate that STRAP leads to state-of-the-art performance, particularly in the
presence of domain shifts, on two particular classification tasks in computational pathology.

1 Introduction

While deep learning has demonstrated remarkable performance on medical imaging tasks over the past few years, the
performance drop usually observed when generalizing from internal to external test data remains a key challenge in the
medical application of machine learning models. Supervised learning assumes that training and testing data are sampled
from the same distribution, i.e., in-distribution, whereas in practice, the training and testing data typically originate
from related domains, but which follow different distributions, i.e., out-of-distribution. This phenomenon, known as
domain shift [1], hampers the clinical applicability of such models, especially when the annotated datasets are limited
in size or the target domain is highly heterogeneous.

One approach to tackling this domain shift problem is domain adaptation, which learns to align the feature distribution
of the source domain with that of the target domain in a domain-invariant feature space. However, domain adaptation
typically requires access to at least a few data samples from the target domain during training, which is not always
available for medical applications. Another approach is domain generalization, which aims to adapt from multiple
labeled source domains to an unseen target domain without needing to access data samples from the target domain.
However, domain generalization typically requires multi-source training setting. Additionally, these approaches assume
the target data are homogeneously sampled from the same distribution, an unrealistic scenario in most real-world
medical applications, where models must deal with mixed-domain data (e.g., scanner, protocols, medical sites) without
their domain labels. In the present study, our focus is to address a challenging yet practical problem of knowledge
transfer from one labeled source domain to multiple target domains, a task referred to as domain agnostic learning [2]
or single-domain generalization [3], where we train the model on source data from a single domain and generalize it to
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Figure 1: Overview of STRAP

unseen target data from multiple domains. A solution to domain-agnostic learning/single-domain generalization should
learn domain-invariant and class-specific visual representations, as humans do.

Geirhos et al. [4] showed that 1) convolutional neural networks (CNNs) trained on the ImageNet dataset are biased
towards texture, whereas humans are more reliant on global shape for distinguishing classes, 2) CNNs tend not to cope
well with domain shifts, i.e., the change in image statistics from those on which the networks have been trained to
those which the networks have never seen before, and 3) increasing shape bias by training on a stylized version of the
ImageNet generated using style transfer improves accuracy, robustness, and generalizability.

Neural style transfer [5] refers to a CNN-based image transformation algorithm that manipulates the low-level texture
representation of an image, i.e., style, while preserving its semantic content. The original method by Gatys et al. uses
Gram matrices of the activations from different layers of a CNN to represent the style of an image. Then it uses an
iterative optimization method to generate a new image from white noise by matching the activations with the content
image and the Gram matrices with the style image. Huang and Belongie later proposed an improved approach called
adaptive instance normalization (AdaIN) [6], which aligns the mean and variance of the content features with those of
the style features. AdaIN enables arbitrary style transfer in real-time. Jackson et al. [7] demonstrated that, in computer
vision tasks for natural images, data augmentation via style transfer with randomly selected artistic paintings as a
style source improves robustness to domain shift, and can be used as a simple, domain-agnostic alternative to domain
adaptation.

In medical imaging, machine learning models often suffer from domain shift in test data caused by heterogeneity from
various sources, such as scanners, protocols, and medical sites. We know that human experts, such as radiologists and
pathologists, are able to learn domain-agnostic visual representations and, thus, generalize across domains, particularly
in the presence of domain shifts. We postulate that 1) human experts in medical imaging are also biased towards shape
rather than texture as Geirhos et al. demonstrated [4], and 2) the low-level texture content of an image tends to be
domain-specific, leading to suboptimal performance of deep learning models on domain-shifted unseen data, whereas
high-level semantic content is more domain-invariant, from which ubiquitous class-specific visual representations can
be learned.

Here, we propose STRAP (Style TRansfer Augmentation for histoPathology), a form of data augmentation based on
random style transfer with non-medical style source, as a solution to learning domain-agnostic visual representation,
particularly in computational pathology (Figs. 1, 2). In this study, the term “domain” refers to scanners, stain and
scan protocols, and, more broadly, medical sites. We introduce STRAP as a solution to domain agnostic learning
(i.e., single-domain generalization), and then, further assess its efficacy on conventional domain generalization setting
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Figure 2: Style transfer with artistic paintings as a style source (stylization coefficient of 1.0) applied to a histopathology
image (content on the left). Overall geometry is preserved, but the style, including texture, color, and contrast, is
replaced with an uninformative style of a randomly selected artistic painting.

(i.e., multi-source domain generalization). More specifically, we studied the proposed approach on two classification
tasks in different domain generalization scenarios. The first is classifying colorectal cancer into two distinct genetic
subtypes based on microsatellite status using hematoxylin and eosin (H&E)-stained, formalin-fixed, paraffin embedded
(FFPE) whole-slide images (WSIs) of surgically resected colorectal cancers in single-domain generalization setting
(models are trained on a single-domain dataset and tested on a mixed-domain dataset), hereafter referred to as genetic
subtype classification task. The second is classifying presence or absence of breast cancer metastases in image patches
extracted from histopathlogic scans of lymph node sections in multi-source domain generalization setting (models
are trained on a multi-source domain dataset and tested on a single-domain dataset), hereafter referred to as tumor
identification task. We compare STRAP against two standard baseline methods widely used in computational pathology,
stain normalization [8] and stain augmentation [9], both of which apply medically-relevant transformation to the source
images, whereas STRAP performs medically-irrelevant transformation.

We studied the effect of difference in style source by using artistic paintings, natural imaging, and histopathologic
imaging as style sources (the former two apply medically-irrelevant style transfer, whereas the latter applies medically-
relevant style transfer), and the effect of difference in stylization coefficient on the STRAP performance. Moreover, to
gain insights into the differences in learning dynamics among the three approaches (STRAP, stain normalization, and
stain augmentation), we performed following three experiments on the genetic subtype classification task: 1) we tested
model performance on stylized version of the out-of-distribution test data; 2) we evaluated differential responses to the
low-frequency components of the out-of-distribution test data; and 3) we visualized saliency maps on the low-frequency
components of the out-of-distribution test data using integrated gradients [10]. The latter two experiments were inspired
by Wang et al. [11], who showed that 1) CNNs can exploit high-frequency image components which humans do not
consciously perceive and 2) models which exploit low-frequency components generalize better than those which exploit
the high-frequency spectrum.

Our contributions are summarized as follows: 1) we present STRAP, a form of medically-irrelevant data augmentation
based on random style transfer for computational pathology; 2) we utilize STRAP to improve both single-domain and
multi-source domain generalization for two classification tasks in computational pathology; and 3) our experiments
suggest that STRAP helps models learn from semantic contents and low-frequency components of the data, on which
humans tend to rely in recognizing objects [12].

2 Methods

2.1 Style transfer augmentation with non-medical style source (STRAP)

Inspired by Geirhos et al. [4] and Jackson et al. [7], we propose STRAP, a form of medically-irrelevant data augmentation
based on random style transfer for computational pathology, which replaces the style of the histopathology image
(including texture, color, and contrast) with an uninformative style of a randomly selected non-medical image, while
predominantly preserving the semantic content (global object shapes) of the image. We hypothesize that the style of the
histopathology images is domain-specific and class-irrelevant, whereas the semantic content is domain-irrelevant and
class-specific; therefore, STRAP facilitates learning domain-agnostic representations.
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Figure 3: Style transfer with the Natural Imaging style source applied to a histopathology image (content on the left).
Overall geometry is preserved, but the style, including texture, color, and contrast, is replaced with the uninformative
style of a randomly selected natural image. The outputs are medically irrelevant and resemble the outputs using the
Artistic Paintings style source.

Figure 4: Style transfer with randomly selected histopathologic images from the non-stain normalized version of the
Stanford-CRC dataset, applied to a histopathology image (content on the left). The outputs are medically relevant and
resemble the outputs obtained with stain augmentation (Figure 5).

We constructed stylized version of the datasets by applying AdaIn style transfer [6] following the method proposed
in [4]. AdaIn style transfer takes a content image and an arbitrary style image as inputs, and synthesizes an output
image that recombines the content of the former and the style of the latter. After encoding the content and style images
in feature space via an encoder, both feature maps are fed to an AdaIN layer that aligns the mean and variance of
the content feature maps to those of the style feature maps, producing the target feature maps. Then the stylized
output image is generated by a decoder from the target feature maps. We chose AdaIN style transfer because it
enables to transfer arbitrary styles in real-time. Each histopathology image was stylized with the style of a randomly
selected image from the style source through AdaIN with a stylization coefficient of 1.0. We studied three distinct style
sources: 1) artistic paintings from the Kaggle’s Painter by Numbers dataset (79, 433 paintings), downloaded via
https://www.kaggle.com/c/painter-by-numbers, hereafter referred to as the Artistic Paintings style source; 2)
natural images from the miniImageNet dataset proposed by Vinyals et al. [13], consisting of 60, 000 color images from
ImageNet with 100 classes, each having 600 examples, hereafter referred to as the Natural Imaging style source; and 3)
the original Stanford-CRC dataset, containing 66, 578 histopathological images without stain normalization (to preserve
the original variability in staining) as described in section 2.2.1, hereafter referred to as Histopathologic Imaging
style source. The former two apply medically-irrelevant transformation (Figs. 2 and 3), whereas the latter applies
medically-relevant transformation (Fig. 4). Of note, when applying STRAP, we resized the content histopathology
images to 1024× 1024 pixels and the style source images to 256× 256 pixels to maintain geometric features of the
content images during the stylization. We prepared stylized version of the datasets in advance, because random style
transfer via AdaIN as an on-the-fly data augmentation is still computationally expensive.

We compared STRAP against two standard baseline approaches; stain normalization (SN) and stain augmentation
(SA). The STRAP model was trained on stylized datasets alone, whereas the SN model was trained on non-stylized
original datasets that were stain-normalized by the Macenko’s method [8] and the SA model was trained on non-stylized
original datasets with on-the-fly stain augmentation by following the method described by Tellez et al. [9] (Fig. 5).
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Stain normalization is a widely used method in computational pathology to account for variations in H&E staining
[14, 15, 16, 17]. On the other hand, Tellez et al. [9] demonstrated that stain augmentation improved classification
performance when compared to stain normalization, by increasing the CNN’s ability to generalize to unseen stain
variations.

Figure 5: Stain augmentation applied to a histopathology image (original on the left).

2.2 Experiments

We evaluated our proposed approach on two classification tasks, genetic subtype classification and tumor identification,
in different domain generalization scenarios, single-domain generalization and multi-source domain generalization,
respectively.

2.2.1 Genetic subtype classification in single-domain generalization setting

The genetic subtype classification task was to classify colorectal cancer into two distinct genetic subtypes based
on microsatellite status (either microsatellite stable (MSS) or microsatellite unstable (MSI)) using hematoxylin and
eosin (H&E)-stained, formalin-fixed, paraffin embedded (FFPE) whole-slide images (WSIs) of surgically resected
colorectal cancers. We evaluated our proposed approach in single-domain generalization setting (models are trained on
a single-domain dataset and tested on a mixed-domain dataset).

We reused three datasets that were created and used in previous publications; Stanford-CRC from Yamashita et al. [16]
and CRC-DX-TRAIN as well as CRC-DX-TEST from Kather et al. [18] (See the original publications for details,
such as inclusion/exclusion criteria and clinico-pathological parameters). These datasets consists of image patches
called tiles, which were generated from the WSIs with a size of 512× 512 pixels at a resolution of 0.5 µm/pixel and
subsequently stain normalized with the Macenko’s method [8].

The Stanford-CRC is an in-house dataset that originates from a single institution and contains 66, 578 image tiles
(31, 789 tiles from 50 MSS and 34, 789 tiles from 50 MSI H&E-stained FFPE WSI) from 100 unique patients. The
WSIs were originally scanned at 40× base magnification level (0.25 µm/pixel). This single-institutional dataset has
equal class distribution, with 50 MSS and 50 MSI patients.

The CRC-DX-TRAIN dataset stems from the TCGA-COAD and TCGA-READ diagnostic slide collections of the
Cancer Genome Atlas (TCGA) [19], consisting of data from 18 institutions with various scanners and protocols, i.e.,
a multi-domain dataset, and contains 93, 408 image tiles (46, 704 tiles from 223 MSS and 46, 704 tiles from 40 MSI
H&E-stained FFPE WSI) from 263 unique patients. The WSI were scanned at either 20× or 40× base magnification
(0.5 or 0.25 µm/pixel). This multi-institutional dataset was balanced in class distribution.

The CRC-DX-TEST dataset stems from the same diagnostic slide collections of TCGA as the CRC-DX-TRAIN
dataset, i.e., consisting of data from 18 institutions with various scanners and protocols, and contains 99, 904 image
tiles (70, 569 tiles from 74 MSS and 29, 335 tiles from 26 MSI H&E-stained FFPE WSI) from 100 unique patients.
This multi-institutional dataset maintains the original class imbalance, which reflects real-world prevalence of MSI in
colorectal cancer.

We performed both in-distribution and out-of-distribution experiments using the above three datasets. For in-distribution
analysis, models were trained on CRC-DX-TRAIN and evaluated on CRC-DX-TEST. Our out-of-distribution experiment
follows the single-domain generalization setting, where models were trained on single-domain Stanford-CRC dataset
and evaluated on multi-source domain CRC-DX-TEST dataset. We applied 4-fold cross-validation to account for the
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selection bias introduced by randomness in splitting Stanford-CRC, given its relatively limited sample size; therefore,
average and standard deviation of the evaluation metric across the folds were reported. Of note, all the STRAP models
were trained on the stylized version of the training datasets by applying the style transfer method described in section
2.1.

We employed the MobileNetv2 [20] model pretrained on ImageNet [21] via transfer learning with stochastic gradient
descent with momentum [22], using a fixed learning rate of 4e−3 and epoch of 40, along with early stopping with
a patience of five. We used a binary cross entropy loss. All input images were resized to 224 × 224 pixels before
being fed into the network. Random horizontal and vertical flipping (with a probability of 0.5 for each) and random
resized cropping were applied as a common data augmentation method. Tile-wise model outputs were aggregated into a
patient-wise score by taking their average. The particular metric of interest was the area under the receiver-operating-
characteristic curve (AUROC).

We further compared the STRAP model against two state-of-the-arts, Kather et al. [15] and Yamashita et al. [16] in
the same single-domain generalization scenario for genetic subtype classification. Both approaches are similar to our
SN baseline, though there are some differences in model architecture, training protocols, and configuration of data
augmentation. For example, Kather et al. used a ResNet-18 architecture [23] and applied horizontal and vertical flips
and random translation along the x and y axes for data augmentation. Similarly, Yamashita et al. used a MobileNetV2
architecture and applied data augmentation with random horizontal flips, random rotations, and random color jitter.
Model performance for Kather et al. [15] and Yamashita et al. [16] was either computed using the code available
at https://github.com/jnkather/MSIfromHE and https://github.com/rikiyay/MSINet, respectively, or
obtained from the literature.

Impact of differences in style source and stylization coefficient As sensitivity analyses, we performed two additional
experiments. First, we studied the effect of difference between medically-irrelevant and medically-relevant STRAP
approaches. More specifically, we compared the performance of the STRAP models using Artistic Paintings and Natural
Imaging style sources (medically-irrelevant approach) against the STRAP model with Histopathologic Imaging style
source (medically-relevant approach) on the genetic subtype classification task. We also studied the effect of difference
in stylization coefficient, where the STRAP models using stylization coefficient of 1.0, 0.8, and 0.6 were compared on
the genetic subtype classification task.

Assessment on stylized images with random test-time styles To understand how content and style are being utilized,
we compared the model performance for STRAP, SA, and SN on stylized version of the CRC-DX-TEST with random
test-time styles of the Natural Imaging style source. For STRAP, we tested both STRAP with Artistic Paintings
and STRAP with Histopathologic Imaging to assess the difference in sensitivity between medically-irrelevant and
medically-relevant approaches.

Assessment on low-frequency components To gain insights into what frequency components the three models (STRAP,
SA, and SN) exploit for learning representations, we tested model performance on the low-frequency components of the
CRC-DX-TEST dataset, hereafter referred to as LF-CRC-DX-TEST. We constructed the LF-CRC-DX-TEST dataset
by following the method described in [11], where all image tiles in the CRC-DX-TEST dataset were decomposed
into low- and high-frequency components by applying the fast Fourier transform (FFT) algorithm. Low-frequency
components were obtained from the centralized frequency spectrum by applying circular low-pass filters with various
radii. All frequencies outside the circular filter were set to zero and the inverse FFT was applied subsequently to get the
low-frequency images (Fig. 6). To identify the low-pass filter size that corresponds to the highest model performance,
the AUROC for each of the STRAP, SA, and SN models was assessed using varying low-pass filter sizes (the radii
ranged from 14 to 154).

We also visualized saliency maps on the LF-CRC-DX-TEST (with a low-pass filter size of 70) using integrated gradients
attributions [10] to highlight which pixels of an input image contribute more to model inference.

2.2.2 Tumor identification in multi-domain generalization setting

The tumor identification task was to classify presence or absence of breast cancer metastases in image patches extracted
from histopathlogic scans of lymph node sections in multi-source domain generalization setting (models are trained on
a multi-source domain dataset and tested on a single-domain dataset).

We used the CAMELYON17-WILDS dataset [24], a patch-based variant of the original Camelyon17 dataset [25]
created as a benchmark dataset for domain generalization, where the domains are hospitals and the goal is to learn
models that generalize to data from a hospital that is not in the training subset. The specific task is to predict if a
given region of tissue contains any tumor tissue, which was modeled as binary classification, where the input is a
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Figure 6: A schema for generating low-frequency components of an image. Image tiles are decomposed into low-
and high-frequency components by applying the fast Fourier transform (FFT) algorithm. Low-frequency components
are extracted from the centralized frequency spectrum by applying circular low-pass filters with various radii. All
frequencies outside the circle were set to zero and the inverse FFT was applied subsequently. Of note, the high frequency
components were not used in this study.

96× 96-pexel histopathological image, the label is a binary indicator of whether the central 32× 32 region contains
any tumor tissue.

The CAMELYON17-WILDS dataset was adapted from WSIs of breast cancer metastases in lymph nodes sections,
obtained from the CAMELYON17 challenge [25], where the WSIs were scanned at a resolution of 0.23–0.25µm, and
each WSI contains multiple resolution levels, with approximately 10, 000 × 20, 000 pixels at the highest resolution
level. Image patches were generated using the third-highest resolution level, corresponding to reducing the size of
each dimension by a factor of 4. The CAMELYON17-WILDS dataset comprises 455, 954 patches extracted from
50 WSIs of breast cancer metastases in lymph node sections, with 10 WSIs from each of 5 hospitals. The label
for each patch was determined by the segmentation masks manually annotated with tumor regions by pathologists,
which were provided along with the original Camelyon17 dataset. We split the CAMELYON17-WILDS dataset by
domain (i.e., which hospital the patches were taken from) using the metadata. We used the Test(OOD) subset of the
CAMELYON17-WILDS dataset as our out-of-distribution test subset, which contains 85, 054 patches taken from 10
WSIs from the 5th hospital (center 2 in the provided metadata), which was chosen by the original WILDS project
because its patches were the most visually distinctive. We split the rest patches into training and validation based on the
split column provided in the metadata (split 0 for training and split 1 for validation), where 333, 866 and 37, 034
patches taken from 40 WSIs, with 10 WSIs from each of the 4 hospitals, were assigned to the training and validation
sets, respectively. Of note, the training/validation and test sets comprise class-balanced patches from separate hospitals
(See the original publication [24] for more details).

We employed the ResNet-50 [23] model pretrained on ImageNet [21] via transfer learning with stochastic gradient
descent with momentum [22], using a fixed learning rate of 4e−3 and epoch of 40, along with early stopping with a
patience of five. We used a binary cross entropy loss. Random horizontal and vertical flipping (with a probability of 0.5
for each) and random resized cropping were applied as a common data augmentation method. Model performance
was evaluated by average accuracy and AUROC across patches. Of note, unlike the genetic subtype classification task
where the ground truth labels are patient-level, the ground truth labels for the tumor identification task are patch-level,
meaning no output aggregation procedure is required.

2.3 Statistical analysis

We assessed model performance using the AUROC for genetic subtype classification, and accuracy as well as AUROC
for tumor identification. We calculated 95% confidence intervals (CI) using bootstrapping with the percentile method
with 2, 000 resamples. Statistical comparisons were performed using the DeLong’s test [26] for individual AUROC, a
paired t-test for average AUROC, and a permutation test with 2, 000 resamples for accuracy. For the main analyses of
both genetic subtype classification and tumor identification (results are shown in Tables 1 and 5, respectively), p-values
were adjusted using the Benjamini-Hochberg method [27] to account for multiple comparisons by controlling the false
positive rate to less than 0.10. Otherwise, a two-tailed alpha criterion of 0.05 was used for statistical significance.
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3 Experimental Results

3.1 Genetic subtype classification in single-domain generalization setting

The STRAP model with Artistic Paintings style source achieved an average AUROC of 0.876 on the out-of-distribution
multi-domain CRC-DX-TEST dataset, and outperformed the SA, SN, and the two state-of-the-art models (Table 1).
STRAP also demonstrated a minimal, even negative, performance drop from in-distribution to out-of-distribution testing
(see column Delta in Table 1), whereas SA presented near-zero performance drop and the others showed positive
performance drops. These results suggest that the STRAP model has the ability to learn more discriminative and
generalizable (i.e., class-specific and domain-irrelevant) visual representations, compared to the other approaches that
may exploit some extent of the domain-specific features.

Table 1: Comparison of style transfer augmentation (STRAP), stain augmentation (SA), stain normalization (SN), and
two state-of-the-arts on in-distribution and out-of-distribution (single-domain generalization) scenarios on the genetic
subtype classification task.

CRC-DX-TRAIN→ CRC-DX-TEST (ID) Stanford-CRC→ CRC-DX-TEST (OOD) Delta§
(ID−OOD)AUROC† p-value (vs STRAP) AUROC‡ p-value (vs STRAP)

STRAP (AP) 0.847 [0.741, 0.932] REF 0.876 (0.015) REF −0.029
SA 0.816 [0.709, 0.917] 0.471 0.814 (0.020) 0.002* 0.002
SN 0.794 [0.684, 0.892] 0.456 0.765 (0.031) 0.003* 0.029

Kather et al. 0.759 [0.632, 0.873] 0.219 0.742 (0.013) 0.001* 0.018
Yamashita et al. 0.816 [0.712, 0.914] 0.456 0.786 (0.020) 0.010* 0.030

Arrows indicate: train data→ test data, e.g., CRC-DX-TRAIN→ CRC-DX-TEST means training on CRC-DX-TRAIN and
testing on CRC-DX-TEST.
* indicates a significant difference.
† represents AUROC with 95% CI in square brackets.
‡ represents average AUROC of models obtained via cross-validation, with standard deviation in parentheses.
§ indicates average performance drop from in-distribution (CRC-DX-TRAIN→ CRC-DX-TEST) to out-of-distribution (Stanford-
CRC→ CRC-DX-TEST) scenarios.
Stylization coefficient (alpha) of 1.0 was used for the STRAP model.
P-values were adjusted using the Benjamini-Hochberg method [27].
Abbreviations: AP, Artistic Paintings; AUROC, areas under the receiver-operating-characteristic curve; CV, cross-validation; ID,
in-distribution; OOD, out-of-distribution; SA, stain augmentation; SN, style normalization; STRAP, style transfer augmentation.

3.1.1 Impact of differences in style source

For genetic subtype classification, medically-irrelevant STRAP using Artistic Paintings and Natural Imaging as style
sources achieved superior performance compared to the medically-relevant STRAP using Histopathologic Imaging as
style source. In comparison to Histopathologic Imaging, the Artistic Paintingsyielded a significantly higher performance,
whereas there was no statistically significant difference between the Natural Imaging and Histopathologic Imaging style
sources (Table 2).

3.1.2 Impact of stylization coefficient

We also tested the effect of the stylization coefficient on STRAP model performance. We found that, among stylization
coefficients of 1.0, 0.8, and 0.6, the larger the stylization coefficient (i.e., with a stylization coefficient of 1.0), the
higher the model performance (Table 3), which suggests that the STRAP model can learn more discriminative and
generalizable representations when more low-level content within an image was removed and replaced by the style
transfer operation.

3.1.3 Assessment on stylized images with random test-time styles

We assessed the model performance on stylized version of CRC-DX-TEST created using Natural Imaging as style
source. As shown in Table 4, STRAP with Artistic Paintings style source, a medically-irrelevant style transfer, achieved
significantly higher performance compared to SA and SN and tended to have higher performance compared to medically-
relevant STRAP with Histopathologic Imaging style source. STRAP with Artistic Paintings also demonstrated the
smallest performance difference between original and stylized CRC-DX-TEST. This result suggests that the medically-
irrelevant STRAP successfully biased the networks to content/shape, which may explain its superior performance
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Table 2: Effect of different style sources on STRAP model performance.

Stanford-CRC→ CRC-DX-TEST
Style Source AUROC† p-value (vs HI)

Artistic Paintings (AP) 0.876 (0.015) 0.037*
Natural Imaging (NI) 0.867 (0.016) 0.088

Histopathologic Imaging (HI) 0.822 (0.042) REF

Arrow indicates: train data → test data, i.e., Stanford-CRC →
CRC-DX-TEST means training on Stanford-CRC and testing on
CRC-DX-TEST.
* indicates a significant difference.
† represents average AUROC of models obtained via cross-
validation, with standard deviation in parentheses.
Stylization coefficient (alpha) of 1.0 was used for the STRAP model.
Abbreviations: AUROC, areas under the receiver-operating-
characteristic curve; CV, cross-validation.

Table 3: Effect of stylization coefficient on STRAP model performance.

Stanford-CRC→ CRC-DX-TEST
Stylization Coefficient AUROC† p-value (vs SC 1.0)

SC 1.0 0.876 (0.015) REF
SC 0.8 0.856 (0.036) 0.189
SC 0.6 0.846 (0.024) 0.024*

Arrow indicates: train data→ test data, i.e., Stanford-CRC→
CRC-DX-TEST means training on Stanford-CRC and testing
on CRC-DX-TEST.
* indicates a significant difference.
† represents average AUROC of models obtained via cross-
validation, with standard deviation in parentheses.
Abbreviations: AUROC, areas under the receiver-operating-
characteristic curve; CV, cross-validation; SC, stylization co-
efficient.

and out-of-distribution generalizability compared to the other three (i.e., medically-relevant STRAP, SA, and SN)
approaches.

3.1.4 Assessment on low-frequency components

We evaluated the STRAP, SA, and SN models on the LF-CRC-DX-TEST dataset with a wide range of low-pass
filter sizes. As shown in Fig. 7, the STRAP model reached its peak performance at a radius of 84, whereas the
other two reached their peaks at a radius of 112. These results suggest that the STRAP model can exploit lower-
frequency components for learning representations, whereas the other two baselines rely more on higher-frequency
components. We speculate that, because the STRAP model is biased toward shape [4], it performs well on lower-
frequency components, which preserve most of the geometry and thus, almost look identical to the original image
to human. On the contrary, the baseline SA and SN approaches do not address style and content explicitly and thus,
require texture and/or higher-frequency components to reach their peak performance.

Saliency maps with integrated gradients show that the STRAP model presented high attributions at specific areas and
less diffusely distributed attributions, whereas the SA and SN models showed more broadly distributed attributions that
might correspond to the low-level texture content of the images (Fig. 8). A board-certified, subspecialty gastrointestinal
pathologist interpreted these saliency maps and concluded that STRAP picks up tumor-infiltrating lymphocytes as well
as mitotic figures, which are well-known human-recognizable histomorphologic features that are associated with the
genetic subtype of interest.
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Table 4: Model performance on CRC-DX-TEST dataset with and without random test-time styles.

AUROC on CRC-DX-TEST†
Original Stylized Delta§ p-value‡

STRAP (AP) 0.876 (0.015) 0.830 (0.020) 0.046 REF
STRAP (HI) 0.822 (0.042) 0.711 (0.077) 0.111 0.085

SA 0.814 (0.020) 0.726 (0.055) 0.084 0.047*
SN 0.765 (0.031) 0.633 (0.577) 0.132 0.015*

* indicates a significant difference.
† represents average AUROC with standard deviation in parentheses.
§ represents average performance difference between original and
stylized CRC-DX-TEST.
‡ represents p-value for comparing model perfromance on stylized
CRC-DX-TEST.
Stylized CRC-DX-TEST was created using Natural Imaging style
source.
Stylization coefficient (alpha) of 1.0 was used for the STRAP mod-
els.
Abbreviations: AP, Artistic Paintings; AUROC, areas under the
receiver-operating-characteristic curve; HI, Histopathologic Imag-
ing; SA, stain augmentation; SN, style normalization; STRAP, style
transfer augmentation.

14 28 42 56 70 84 98 112 126 140 154
radius

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

AU
RO

C

style transfer (STRAP)
stain augmentation (SA)
stain normalization (SN)

Figure 7: Results of the experiments using the low-frequency components of the CRC-DX-TEST dataset (LF-CRC-
DX-TEST). The x-axis represents the radii of low-pass filters used to generate the LF-CRC-DX-TEST dataset, and the
y-axis shows the average area under the receiver-operating-characteristic curves (AUROC) across cross-validation folds.
Each dot marker represents the corresponding peak performance.

3.2 Tumor identification in multi-domain generalization setting

On the tumor identification task using CAMELYON17-WILDS dataset, we developed models on the tiles from four
out of five hospitals, and assessed the performance on the tiles from the 5th hospital, i.e., the Test(OOD) subset of the
CAMELYON17-WILDS (multi-domain generalization setting). As shown in Table 5, the medically-irrelevant STRAP
model using Artistic Paintings style source achieved the highest accuracy and AUROC with significant differences
compared to the other approaches. The results have a similar trend as those for genetic subtype classification, where
another medically-irrelevant STRAP with Natural Imaging style source demonstrated the second highest performance,
medically-relevant STRAP using Histopathologic Imaging style source and SA presented similar performance that was
the next highest, and SN showed the lowest performance.
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Figure 8: Pixel-wise integrated gradient attributions of the low-frequency components (generated with a radius of 70)
of the CRC-DX-TEST dataset (LF-CRC-DX-TEST), visualized as saliency maps for the STRAP, SA, and SN models.

Table 5: Comparison of style transfer augmentation (STRAP), stain augmentation (SA), stain normalization (SN) on
out-of-distribution (multi-source domain generalization) scenarios on the tumor identification task.

CAMELYON17-WILDS
Accuracy p-value AUROC p-value

STRAP (AP) 0.937 [0.935, 0.938] REF 0.981 [0.980, 0.982] REF
STRAP (NI) 0.923 [0.921, 0.925] <0.0001* 0.977 [0.976, 0.978] <0.0001*
STRAP (HI) 0.831 [0.829, 0.834] <0.0001* 0.888 [0.885, 0.890] <0.0001*

SA 0.833 [0.830, 0.835] <0.0001* 0.916 [0.914, 0.918] <0.0001*
SN 0.631 [0.628, 0.634] <0.0001* 0.859 [0.856, 0.861] <0.0001*

* indicates a significant difference.
Stylization coefficient (alpha) of 1.0 was used for the STRAP models.
P-values were adjusted using the Benjamini-Hochberg method [27].
Abbreviations: AP, Artistic Paintings; AUROC, areas under the receiver-operating-
characteristic curve; HI, Histopathologic Imaging; NI, Natural Imaging; SA, stain
augmentation; SN, style normalization; STRAP, style transfer augmentation.

4 Discussion

We present STRAP (Style TRansfer Augmentation for histoPathology), which achieved improved performance and
generalizability when compared with two standard baselines (stain augmentation (SA) and stain normalization (SN))
on two classification tasks (i.e., genetic subtype classification in single-domain generalization setting, and tumor
identification in multi-domain generalization setting) using digitized histopathology images in computational pathology.

We speculate that STRAP helps models learn domain-agnostic and class-specific visual representations by removing
the original texture and/or high-frequency components from the histopathology images, which are domain-specific and
class-irrelevant, and predominantly leaving shape-biased and/or low-frequency content, which are domain-irrelevant and
class-specific. In fact, more intensive style transfer with a higher stylization coefficient resulted in superior performance.
Furthermore, when tested on stylized version of the out-of-distribution test dataset with random test-time styles, STRAP
with Artistic Paintings showed significantly higher performance compared to the baseline SA and SN approaches.
Also, our experiments on the low-frequency components demonstrated that the STRAP approach helps models exploit
lower frequency components, in contrast to the standard SA and SN approaches that rely more on higher frequency
components. This speculation is also consistent with the hypotheses proposed by Geirhos et al. [4] and Wang et
al. [11]—that shape-biased and/or low-frequency features are essential for deep learning models to learn robust and
generalizable visual representations.

To the best of our knowledge, no previous study has applied medically-irrelevant image manipulation for the development
of deep learning models for medical imaging. Four previous studies have applied the style transfer technique to medical
imaging tasks in computational pathology [28, 29] and skin lesion classification [30, 31]. However, these studies
employed medically-relevant transformation with the aim of combating data scarcity, class imbalance, and stain
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variation. Our study demonstrates that medically-irrelevant transformation, i.e., STRAP with Artistic Paintings or
Natural Imaging style sources, can result in improved performance and generalizability, when compared with medically-
relevant transformation, i.e., style transfer with Histopathologic Imaging style source and stain augmentation. A possible
explanation for this phenomenon is that medically-irrelevant style transfer can result in a wider variety of transformation
using a more diverse set of styles compared to the medically-relevant approaches for which the variations in color and
texture are more uniform and thus, limited. Tobin et al. [32] showed that an object detection model that generalizes to
real-world images can be trained by using unrealistic simulated images with a diverse set of random textures, rather
than by making the simulated images as realistic as possible. As in the human learning process, learning class-specific
and domain-irrelevant patterns from data is essential for deep learning models, and the style transfer technique with a
diverse set of random styles can be a powerful tool to control the representations models learn.

Although data augmentation is widely used when training deep learning models for medical imaging tasks, its potential
has not yet been fully studied and still remains an active area of research. Moreover, an optimal configuration of
data augmentation methods may vary among applications. As our study suggests, data augmentation can be a simple
yet powerful tool for learning domain-agnostic representation. Further research is warranted to identify optimal data
augmentation techniques for a variety of medical imaging tasks, and medically-irrelevant transformations such as the
proposed STRAP approach should be considered, along with established methods.

As shown in Table 1, STRAP with Artistic Paintings achieved higher performance in the out-of-distribution setting,
compared to the in-distribution setting, whereas opposite results were observed for the other baseline approaches and
state-of-the-arts. As described in Section 2.2.1, the training data in the in-distribution setting was a multi-source domain
dataset, whereas the training data used for the out-of-distribution setting was a single-source dataset. Although it is
often said that diverse multi-institutional datasets are needed for training models that generalize on unseen data [33], our
study may suggest that a well-curated homogeneous dataset could provide value in training domain-agnostic models,
if a model has sufficient capability to learn domain-invariant and class-specific representations, similar to the way in
which humans learn from a set of representative examples (e.g., content presented in textbooks).

Besides supervised learning, our approach may be applicable to self-supervised learning. A contrastive learning
framework, such as SimCLR [34] and MoCo [35], learns representations by maximizing agreement between differently
augmented views of the same data example via a contrastive loss (thus, relying heavily on a stochastic data augmentation
module). Chen et al. [34] showed that the composition of data augmentation operations is crucial in yielding effective
representations, and that unsupervised contrastive learning benefits from strong data augmentation. In medical imaging,
contrastive learning may require a tailored composition of data augmentation operations, and our medically-irrelevant
STRAP has the potential to serve as one of the core transformation operations.

One limitation of this study is that we only tested our approach with classification tasks in the field of computational
pathology. Further studies are warranted to investigate whether our approach could prove its efficacy and robustness 1)
for non-classification tasks such as detection, segmentation, and survival prediction, and 2) in other medical imaging
domains, such as radiology, ophthalmology, and dermatology. Another limitation is STRAP’s relatively longer runtime
compared to the other two baseline approaches, where the average runtime was 1.08 s for STRAP, 8.13 ms for SA, and
6.42 ms for SN on a workstation with a GeForce RTX 2080 Ti (NVIDIA, Santa Clara, CA) graphics processing unit,
a Core i9-9820X (10 cores, 3·3 GHz) central processing unit (Intel, Santa Clara, CA, and 128 GB of random-access
memory. Improvement in computational efficiency is required to apply STRAP as one of on-the-fly data augmentations.

In conclusion, we have introduced STRAP, a form of data augmentation based on random style transfer with medically-
irrelevant style source, for learning domain-agnostic visual representations in computational pathology. Our experiments
demonstrated that our approach yields significant improvements in test performance on classification tasks in computa-
tional pathology, particularly in the presence of domain shift. Our study provides evidence that 1) CNNs are reliant
on low-level texture content and are therefore vulnerable to domain shifts in computational pathology, and that 2)
medically-irrelevant STRAP can be a practical tool for mitigating that reliance and, therefore, a possible solution for
learning domain-agnostic representations.
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