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a b s t r a c t 

Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens highly depend on 

the phenotype and topological distribution of constituting histological entities. Thus, adequate tissue rep- 

resentations for encoding histological entities is imperative for computer aided cancer patient care. To 

this end, several approaches have leveraged cell-graphs, capturing the cell-microenvironment, to depict 

the tissue. These allow for utilizing graph theory and machine learning to map the tissue representa- 

tion to tissue functionality, and quantify their relationship. Though cellular information is crucial, it is 

incomplete alone to comprehensively characterize complex tissue structure. We herein treat the tissue as 

a hierarchical composition of multiple types of histological entities from fine to coarse level, capturing 

multivariate tissue information at multiple levels. We propose a novel multi-level hierarchical entity- 

graph representation of tissue specimens to model the hierarchical compositions that encode histologi- 

cal entities as well as their intra- and inter-entity level interactions. Subsequently, a hierarchical graph 

neural network is proposed to operate on the hierarchical entity-graph and map the tissue structure to 

tissue functionality. Specifically, for input histology images, we utilize well-defined cells and tissue re- 

gions to build HierArchical Cell-to-Tissue ( HACT ) graph representations, and devise HACT -Net, a message 

passing graph neural network, to classify the HACT representations. As part of this work, we introduce 

the BReAst Carcinoma Subtyping (BRACS) dataset, a large cohort of Haematoxylin & Eosin stained breast 

tumor regions-of-interest, to evaluate and benchmark our proposed methodology against pathologists 

and state-of-the-art computer-aided diagnostic approaches. Through comparative assessment and abla- 

tion studies, our proposed method is demonstrated to yield superior classification results compared to 

alternative methods as well as individual pathologists. The code, data, and models can be accessed at 

https://github.com/histocartography/hact-net . 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

r

(  

i

t

o

h

1

. Introduction 

Breast cancer is the most commonly diagnosed cancer and 

egisters the highest number of deaths for women with cancer 
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 Sung et al., 2021 ). A study by Allemani et al. (2015) exhibits that

ntensive early diagnostic activities have improved 5-year survival 

o 85% during 200509 for breast cancer patients. Early diagnosis 

f cancer, primarily through manual inspection of histology slides, 

nables the acute assessment of risk and facilitates an optimal 

reatment plan. Though the diagnostic criteria for breast cancer 

re established, the continuum of histologic features phenotyped 

cross the diagnostic spectrum prevents the distinct demarcation. 
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1 BRACS dataset for breast cancer subtyping: https://www.bracs.icar.cnr.it . 
hus, manual inspection is tedious and time-consuming with sig- 

ificant intra- and inter-observer variability ( Gomes et al., 2014 ; 

lmore et al., 2015 ). The increasing incidence rate of breast cancer 

ases per year ( Siegel et al., 2020 ) and the complications in manual

iagnosis demand for automated computed-aided diagnostic tools. 

Whole-slide scanning systems empowered rapid digitiza- 

ion of pathology slides into high-resolution whole-slide im- 

ges (WSIs) and profoundly transformed pathologists’ daily 

ractice ( Mukhopadhyay et al., 2017 ). Further, they enabled 

omputer aided diagnostics to leverage artificial intelligence 

 Litjens et al., 2017 ; Deng et al., 2020 ), especially deep learn-

ng, to address various pathology tasks, such as nuclei segmen- 

ation ( Kumar et al., 2017 ; Graham et al., 2019a ), nuclei classi-

cation ( Pati et al., 2021 ; Verma et al., 2020 ), gland segmenta-

ion ( Graham et al., 2019b ; Binder et al., 2019 ), tissue segmenta-

ion ( Mehta et al., 2018 ; Mercan et al., 2019b ), tumor detection

 Aresta et al., 2019 ; Bejnordi et al., 2019 ; Pati et al., 2018 ), tu-

or staging ( Aresta et al., 2019 ; Mercan et al., 2019a ), and sur-

ival analysis ( Zhu et al., 2017 ; Yao et al., 2021 ). Deep learn-

ng techniques primarily use Convolutional Neural Networks ( CNN ) 

 Madabhushi and Lee, 2016 ; Parwani 2019 ) to process histology 

mages in a patch-wise manner. CNN s extract representative pat- 

erns from patches and aggregate them to perform image-level 

asks. However, patch-wise processing suffers from the trade-off

etween the resolution of operation and the utilization of ade- 

uate context ( Bejnordi et al., 2017 ; Sirinukunwattana et al., 2018 ). 

perating at a higher resolution captures local cellular informa- 

ion but limits the field-of-view due to computational burden and 

imits the access to global tissue microenvironment information. 

n contrast, operating at a lower resolution hinders resolvability 

f cells and access to cellular properties. Bejnordi et al. (2017) ; 

irinukunwattana et al. (2018) ; Tellez et al. (2019a) have proposed 

NN methods to address such trade-off by leveraging visual con- 

ext, however, CNN s, which operate on fix-sized input patches, are 

onfined to a fixed field-of-view and are restricted to incorporate 

nformation from varying spatial distances. Further, pixel-based 

rocessing in CNN s disregards the notion of histologically mean- 

ngful entities ( Hagele et al., 2020 ), such as cells, glands, and tissue

ypes. The inattention to histological entities severely limits the in- 

erpretability of CNN s by pathologists, and any utilization of estab- 

ished entity-level prior pathological knowledge in the CNN -based 

iagnostic frameworks. Additionally, CNN s disregard the structural 

omposition of tissue, where fine entities hierarchically constitute 

o form coarser entities, such as, epithelial cells organize to form 

pithelium, which further constitutes to form glands. Such hierar- 

hical structure is relevant both for diagnostics and interpretation. 

In this paper, we address the aforementioned limitations by 

hifting the analytical paradigm from pixel to entity-based pro- 

essing. In an entity paradigm, a histology image is described as 

n entity-graph, where nodes and edges of a graph denote biolog- 

cal entities and inter-entity interactions, respectively. An entity- 

raph can be customized in various aspects, e.g ., in terms of the 

ype of entity set, entity attributes, and graph topology, by in- 

orporating any task-specific prior pathological knowledge. Thus, 

he graph representation enables pathology-specific interpretability 

nd human-machine co-learning. In addition, the graph represen- 

ation is memory efficient compared to pixelated images and can 

eamlessly describe a large tissue region. Demir et al. (2004) first 

ntroduced cell-graphs using cells as the entity type. Though a cell- 

raph efficiently encodes the cell microenvironment, it cannot ex- 

ensively capture the tissue microenvironment, i.e ., the distribution 

f tissue regions such as necrosis, stroma, epithelium, etc. Simi- 

arly, a tissue-graph comprising of the set of tissue regions can- 

ot depict the cell microenvironment. Therefore, an entity-graph 

epresentation using a single type of entity set is insufficient to 

omprehensively describe the tissue composition. To address this, 
2 
e propose a multi-level entity-graph representation, i.e ., HierAr- 

hical Cell-to-Tissue ( HACT ), consisting of multiple types of entity 

ets, i.e ., cells and tissue regions, to encode both cell and tissue 

icroenvironment. The multiset of entities is inherently coupled 

epicting tissue composition at multiple scales. The HACT graph 

ncodes individual entity attributes and intra- and inter-entity re- 

ationships to hierarchically describe a histology image. Upon the 

raph construction, a graph neural network ( GNN ), a deep learn- 

ng technique operating on graph-structured data, processes the 

ntity-graph to perform image analysis. Specifically, we introduce a 

ierarchical GNN , HierArchical Cell-to-Tissue Network ( HACT -Net), 

o sequentially operate on HACT graph, from fine-level to coarse- 

evel, to provide a fixed dimensional embedding for the image. The 

mbedding encodes morphological and topological distribution of 

he multiset of entities in the tissue. Interestingly, our proposed 

ethodology resembles the tissue diagnostic procedure in clinical 

ractice, where a pathologist hierarchically analyzes a tissue. 

We propose a methodology that consists of HACT graph con- 

truction and HACT -Net based histology image analysis. We char- 

cterize breast tumor regions-of-interest ( TRoI s) to evaluate our 

ethodology. A preliminary version of this work was presented 

s Pati et al. (2020) . Our substantial extensions herein include, 

) an improved HACT representation and HACT -Net architecture, 

) a larger evaluation dataset (twice the earlier size), 3) detailed 

blation studies and evaluation on public data, and 4) a benchmark 

omparison against independent pathologists. Specifically, the ma- 

or contributions of this paper are: 

• A novel hierarchical entity-graph representation ( HACT ) and hi- 

erarchical learning ( HACT -Net) methodology for analyzing his- 

tology images; 
• Introducing a public dataset, BReAst Carcinoma Subtyping 

(BRACS 1 ), a large cohort of breast TRoI s annotated with seven 

breast cancer subtypes. BRACS includes challenging atypical 

cases and a wide variety of TRoI s representing a realistic breast 

cancer analysis; 
• An evaluation of our proposed methodology on the BRACS 

dataset by comparing with three independent pathologists, 

where an extensive assessment demonstrates our classifica- 

tion performance outperforming several recent CNN and GNN 

approaches for cancer subtyping, while being comparable to 

pathologists on per-class and aggregated classification tasks. 

. Related work 

Tumor subtyping in digital pathology: Several deep learn- 

ng algorithms have been proposed to categorize histopathol- 

gy images into cancer subtypes ( Komura and Ishikawa, 2018 ; 

rinidhi et al., 2021 ; Deng et al., 2020 ; Spanhol et al., 2016 ;

raujo et al. (2005) ; Aresta et al., 2019 ). For this task, 

ost algorithms employ CNN s in a patch-wise manner: 

n Araujo et al. (2005) ; Bardou et al. (2018) ; Roy et al. (2019) ;

ercan et al. (2019a) , CNN s are used to classify breast histology 

mages. These methods use single stream patch-wise approaches 

o capture local patch-level context, aggregate the patch-level 

nformation, and classify the image using aggregated informa- 

ion. However, single-stream approaches do not capture adequate 

ontext from the tissue microenvironment to aptly encode a 

atch. Sirinukunwattana et al. (2018) address this issue by in- 

luding multi-scale information from concentric patches across 

ifferent magnifications. Tellez et al. (2019a) propose neural 

mage compression, where WSIs are compressed using a neural 

etwork trained in an unsupervised fashion, followed by a CNN 

rained on the compressed representations to classify the images. 

https://www.bracs.icar.cnr.it
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haban et al. (2020) include an attention module with an auxiliary 

ask to improve neural image compression for histology image 

lassification. Yan et al. (2020) propose a hybrid convolutional 

nd recurrent neural network to utilize spatial correlations among 

atches for analyzing histology images. Bejnordi et al. (2017) pro- 

ose a stacked CNN architecture to capture large contexts 

nd perform end-to-end processing of large histology images. 

inckaers et al. (2020) propose a streaming CNN to accommodate 

ulti-megapixel images. Campanella et al. (2019) utilize a multiple 

nstance learning approach to process whole-slide images in an 

nd-to-end manner, which is extended by Lu et al. (2021) to au- 

omatically identify sub-regions of high diagnostic value through 

n attention mechanism. Though the aforementioned methods 

se different strategies to encode a tissue, they all operate on 

 square and fix-sized patches. However, actual TRoI s can be of 

ighly varying dimensions and shapes depending on the cancer 

ubtype and the site of tissue extraction. Our proposed entity- 

raph methodology can acquire both local and global context from 

rbitrary-sized TRoI s to address the aforementioned limitations. 

Graphs in digital pathology: Entity-graph-based tissue rep- 

esentations can effectively describe the tissue composition by 

ncorporating morphology, topology, and interactions among bi- 

logically comprehensible entities, unlike CNN s. Using cells as 

ntities, Demir et al. (2004) introduced a cell-graph ( CG ) rep- 

esentation of a tissue, where cell morphology can be em- 

edded in the nodes via hand-crafted ( Demir et al., 2004 ; 

hou et al., 2019 ; Pati et al., 2020 ) or deep-learning based fea-

ures ( Chen et al., 2020 ). The graph topology is often heuristi- 

ally defined, e.g ., using k-Nearest Neighbors, probabilistic mod- 

ling, or a Waxman model ( Sharma et al., 2015 ). Subse- 

uently, a CG is processed by classical machine learning tech- 

iques ( Sharma et al., 2016, 2017 ) or GNN s ( Zhou et al., 2019 ;

ati et al., 2020 ; Chen et al., 2020 ; Anand et al., 2020 )

or mapping to tissue function. Recently, graph representa- 

ions using patches ( Aygunes et al., 2020 ) and tissue re- 

ions ( Pati et al. (2020) ; Anklin et al., 2021 ) as entities have

een proposed for better tissue representation. Other graph- 

ased applications in computational pathology include cellu- 

ar community detection ( Javed et al., 2020 ), WSI classifica- 

ion ( Zhao et al., 2020 ; Adnan et al., 2020 ), WSI segmenta-

ion ( Anklin et al., 2021 ). Notably, entity-graphs consist of bio- 

ogical entities to which the pathologists can readily relate. So, 

he entity-graph paradigm enables to incorporate pathologically- 

efined, task-specific entity-level prior knowledge in constructing 

meaningful” tissue representations. This implicitly enables inter- 

retability and explainability of graph-based networks for pathol- 

gists. To this end, Zhou et al. (2019) analyzes the clustering 

f nodes in a CG to group cells according to their appear- 

nce and tissue types. Jaume et al. (2020) introduces a post-hoc 

raph-pruning explainer to identify decisive cells and interactions. 

ureka et al. (2020) employs robust spatial filtering that utilizes an 

ttention-based GNN and node occlusion to highlight cell contribu- 

ions. Jaume et al. (2021b) propose quantitative metrics leveraging 

athologically relevant cellular properties to characterize graph ex- 

lainability for CG analysis. 

. Preliminaries 

.1. Notation 

We define an attributed, undirected entity-graph G := (V, E, H) 

s a set of nodes V , edges E, and node features H. Each node v ∈
 is represented by a feature vector h (v ) ∈ R 

d , thus, H ∈ R 

| V | × d .

denotes the number of features per node, and | . | denotes set 

ardinality. An edge between two nodes u, v ∈ V is denoted as e u v .

he graph topology is described by a symmetric adjacency matrix 
3 
 ∈ R 

| V | ×| V | , where A u, v = 1 if e u v ∈ E. The neighborhood of a node

 ∈ V is denoted as N (v ) := { u ∈ V | v ∈ V, e u v ∈ E } . 

.2. Graph neural networks 

GNN ( Kipf and Welling 2017 ; Xu et al., 2019 ; 

amilton et al., 2017 ; Velickovic et al., 2018 ) defines a class 

f neural networks that operate on graph-structured data. In this 

ork, we use message-passing GNN s ( Gilmer et al., 2017 ), where 

ode features h (v ) , ∀ v ∈ V are iteratively updated in two-steps,

) AGGREGATE , and ii) UPDATE . In the AGGREGATE step for node v ,
he features of neighboring nodes N (v ) are aggregated into a sin- 

le feature representation. In the UPDATE step, the features of node 

 is updated by using the current node features and the aggregated 

eatures from the AGGREGATE step. A series of T such iterations, 

n the form of GNN layers, are employed to obtain updated node 

eatures ∀ v ∈ V , incorporating information up to T -hops from each 

ode. Finally, the node features h T (v ) are pooled in the READOUT 

tep to build a fix-sized graph-level embedding h G . AGGREGATE, 

PDATE , and READOUT operations must be differentiable to allow 

ack-propagation for GNN training. Additionally, AGGREGATE and 

EADOUT operations must be permutation-invariant such that the 

ggregated representation is invariant to node ordering. Formally, 

he three steps are presented as, 

 

t + 1 (v ) = AGGREGAT E ( { h 

t (u ) : u ∈ N (v ) } ) 
 

t + 1 (v ) = UP DAT E ( h 

t (v ) , a t + 1 (v ) ) 
h G = READOUT ( { h 

T (v ) : v ∈ V } ) 
(1) 

An important aspect of designing a GNN is the characteriza- 

ion of its expressive power, which is measured by the GNN ’s abil- 

ty to map non-isomorphic graphs to unique graph embeddings, 

enoting an injective mapping between the graph and the em- 

edding space. A line-of-research exploring the expressive power 

f GNN s ( Xu et al., 2019 ; Morris et al., 2018 ; Jaume et al., 2019 )

ighlight the connection between iterative message passing steps 

f GNN and the popular Weisfeiler-Lehman (WL) ( Weisfeiler and 

ehman 1968 ) test for graph isomorphism. It is established that 

rchitectures such as the Graph Isomorphism Network (GIN) 

u et al. (2019) can perform as well as the 1-dimensional WL test 

or discrete node feature spaces, e.g ., the study of molecule de- 

ign where the nodes represent atoms that are discrete in nature. 

ecent studies show that for continuous node features, e.g ., CNN - 

ased node features, the use of multiple permutation-invariant 

ggregators, such as sum, max and mean, can build expressive 

NN s ( Dehmamy et al. (2019) ; Corso et al., 2020 ). To this end,

orso et al. (2020) proposed the Principal Neighbourhood Aggre- 

ation ( PNA ) network by using a combination of aggregators with 

egree-scalers . The series of aggregators replace the sum opera- 

ion in GIN and the degree-scalers scale neighboring aggregated- 

essages according to the node degree. Illustrations of GIN and 

NA architectures are presented in Fig. 1 . 

. Methodology 

In this section, we detail our proposed methodology for hierar- 

hical tissue analysis, as illustrated in Fig. 2 . For an input Hema- 

oxylin and Eosin (H&E) stained histology TRoI image, first, we 

pply pre-processing to standardize the input. Then, we identify 

athologically relevant entities and construct a HACT graph repre- 

entation of the TRoI by incorporating the morphological and topo- 

ogical distribution of the entities. Finally, HACT -Net, a hierarchical 

NN , is devised to map the HACT graph to a corresponding cate- 

ory, e.g ., cancer subtype. 
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Fig. 1. Overview of GIN and PNA layers, where h t v and { h t u } denote the represen- 

tation of, respectively, node v and its neighbors at layer t . GIN uses sum as the 

AGGREGATE function, followed by a sum and multi-layer perceptron ( MLP ) for the 

UPDATE function. PNA uses a set of aggregators (element-wise mean, standard devi- 

ation, maximum, and minimum) followed by degree-scalers (identity, amplifier, and 

dampener) as the AGGREGATE function. The UPDATE function consists of a concate- 

nation followed by an MLP . 
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.1. Pre-processing 

H&E stained tissue images exhibit appearance variability due 

o various reasons, such as different specimen preparation tech- 

iques, staining protocols, fixation characteristics, and imaging 

evice characteristics. Such variability adversely impacts compu- 

ational methods for downstream diagnosis Veta et al. (2014) ; 

ellez et al. (2019b) . To alleviate the variability, we use the unsu- 

ervised, reference-free stain normalization algorithm proposed by 

acenko et al. (2009) . The algorithm is based on the principle that 

GB color of each pixel is a linear combination of two unknown 

tain vectors, Hematoxylin and Eosin, that need to be estimated. 

irst, the algorithm estimates the stain vectors of a TRoI by us- 

ng a Singular Value Decomposition of the non-background pixels. 

econd, the algorithm applies a correction to account for the in- 

ensity variations due to noise. The algorithm requiring no model 

raining is computationally inexpensive. Specifically, for stain nor- 

alization we employ the scalable and fast pipeline proposed by 

tanisavljevic et al. (2018) . 
ig. 2. Overview of the proposed hierarchical entity-graph based tissue analysis methodo

 tissue is constructed, and it is processed via a hierarchical graph neural network to lea

est viewed in color). 

4 
.2. Graph representation 

A stain normalized TRoI is processed to identify relevant en- 

ities and construct a hierarchical entity-graph representation. In 

his work, we consider nuclei and tissue regions as the entities. 

herefore, the HACT graph consist of three components: 1) a low- 

evel cell-graph , capturing cell morphology and interactions, 2) a 

igh-level tissue-graph , capturing morphology and spatial distribu- 

ion of tissue regions, and 3) cells-to-tissue hierarchies, encoding 

he relative spatial distribution of cells with respect to the tissue 

istribution. The details of the components are presented in the 

ollowing subsections. 

.2.1. Cell-graph representation 

A cell-graph ( CG ) characterizes cell microenvironment, where 

odes denote cells and encode cell morphology, and edges denote 

ellular interactions and encode cell topology. It is constructed in 

hree steps, i) nuclei detection, ii) nuclei feature extraction, and 

ii) topology configuration, as shown in Fig. 3 . 

Precise nuclei detection enables reliable CG representation. To 

his end, we use HoVer-Net, a nuclei segmentation network pro- 

osed by Graham et al. (2019a) , pre-trained on MoNuSeg dataset 

y Kumar et al. (2017) . HoVer-Net leverages the instance-rich infor- 

ation encoded in the vertical and horizontal distances of nuclear 

ixels to their centers of mass. These distances are used to accu- 

ately segment clustered nuclei, particularly in areas with overlap- 

ing nuclei. The centroids of the segmented nuclei form the spatial 

oordinates of nodes in CG . 

Following nuclei detection, morphological features are ex- 

racted by processing patches of size h × w centered around nu- 

lei centroids via ResNet He et al. (2016) pre-trained on ImageNet 

ataset Deng et al. (2009) . Spatial features of the nuclei are ex- 

racted as the spatial coordinates of the nuclei, normalized by the 

RoI dimensions. Morphological and spatial features together con- 

titute the nuclei features, which are collocated for all nodes as the 

ode-feature matrix H CG ∈ R 

| V CG | × d CG . 

For the CG topology E CG , we utilize the fact that spatially 

lose cells have stronger interactions ( Francis and Palsson 1997 ) 

ith distant cells having weaker cellular interactions. Accord- 

ngly, we connect nearby cells with edges to model their inter- 

ctions. To this end, we use the k-Nearest Neighbors (kNN) al- 

orithm to build an initial topology, that we subsequently prune 
logy. Following some pre-processing, a hierarchical entity-graph representation of 

rn the mapping from tissue compositions to respective tissue categories. (Figure is 
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Fig. 3. Overview of hierarchical cell-to-tissue ( HACT ) graph construction for a TRoI . Our HACT graph representation consists of a cell-graph, a tissue-graph, and cell-to-tissue 

hierarchies, while encoding the phenotypical and topological distributions of tissue entities to describe the cell and tissue microenvironments. (Figure is best viewed in 

color). 
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y removing edges longer than a threshold distance d min . We 

se Euclidean distances between nuclei centroids in the image 

pace to quantify cellular distances. Formally, for each node v , 
n edge e v u is built if 

 ∈ { w | dist (v , w ) ≤ d k ∧ dist (v , w ) < d min , ∀ w, v ∈ V CG , 

d k = k th smallest distance in dist (v , w ) } (2) 

G topology is presented by a binary adjacency matrix E CG ∈ 

 

| V CG | × | V CG | . Fig. 3 illustrates the CG representation for a 

ample TRoI . Formally, a CG representation is formulated as 

 CG := { V CG , E CG , H CG }. 

.2.2. Tissue-graph representation 

A tissue graph ( TG ) depicts a high-level tissue microenviron- 

ent, where the nodes and edges denote tissue regions and their 

nteractions, respectively. A TG is constructed by first identifying 

issue regions ( e.g ., epithelium, stroma, lumen, necrosis etc.), fol- 

owed by encoding the tissue regions, and finally the topology 

uilding. The steps are illustrated in Fig. 3 . A parallel approach in- 

olving superpixel detection and neighborhood information aggre- 

ation is adopted by Mercan et al. (2018) to semantically segment 

issue regions in histology images. 

Tissue regions are identified in two-steps. First, we oversegment 

he tissue to detect non-overlapping homogeneous superpixels. We 

perate at a low magnification to avoid noisy pixels and compute 

fficiently. Specifically, we use the Simple Linear Iterative Cluster- 

ng (SLIC) algorithm ( Achanta et al., 2012 ). SLIC follows an unsuper- 

ised approach by associating each pixel with a feature vector and 

erging the pixels using a localized version of k-means clustering. 

ext, we iteratively merge neighboring superpixels that have sim- 

lar color attributes, i.e ., channel-wise mean, to create superpixels 

hat capture meaningful tissue information. A sample tissue-region 

nstance-map is shown in Fig. 3 . 
A

5 
To extract feature representations of tissue regions, we follow a 

wo-step procedure: first, we extract CNN -based features for over- 

egmented superpixels, i.e ., patches of size h × w centered around 

he superpixel centroids are processed by ResNet. Second, morpho- 

ogical features of a tissue region are obtained by averaging the 

eep features of its constituting superpixels. Similar to CG , we in- 

lude spatial features as the normalized centroids of the tissue re- 

ion. For a TRoI with a set of V TG tissue regions, we denote the TG 

ode-feature matrix as H TG ∈ R 

| V TG | × d TG . 

We assume adjacent tissue regions to biologically interact the 

ost, and thus connect in the TG topology. To this end, we con- 

truct a Region Adjacency Graph ( Potjer 1996 ) where an edge is 

uilt between adjacent tissue region. The topology is presented by 

 binary adjacency matrix E TG ∈ R 

| V TG | ×| V TG | . Formally, a TG repre- 

entation is formulated as G TG := { V TG , E TG , H TG }. 

.2.3. Hierarchical Cell-to-Tissue graph representation 

Tissues in histopathology can be considered as hierarchical or- 

anizations of biological entities ranging from fine-level, i.e ., cells, 

o coarse-level, i.e ., tissue regions. There exist intra- and inter-level 

oupling based on topological distributions and interactions among 

he entities. Following this motivation, we propose HACT , a Hier- 

rchical Cell-to-Tissue ( HACT ) graph representation to jointly rep- 

esent low-level CG and high-level TG . Intra-level topology is al- 

eady captured by CG and TG standalone. Inter-level topology is 

resented by a binary assignment (cell-to-tissue hierarchy) matrix 

 CG → TG ∈ R 

| V CG | × | V TG | that utilizes the relative spatial distributions 

f nuclei with respect to tissue regions. For the i th nucleus and j th 

issue region, the corresponding assignment is given as, 

 CG → TG [ i, j ] = 1 , if i th nucleus centroid ∈ j th tissue region 

 CG → TG [ i, j ] = 0 , otherwise 
(3) 
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Fig. 4. Overview of the proposed HACT -Net architecture. The network processes an input HACT graph representation in a hierarchical manner, from fine cell-level to coarse 

tissue-region level, to obtain a contextualized graph embedding, and consequently classify the input graph. (Figure is best viewed in color). 
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Cell-to-tissue hierarchies for a tissue region are presented in 

ig. 3 . Each nucleus is assigned to one and only one tissue region.

f a segmented nucleus is at the border of multiple tissue regions, 

he nucleus is assigned to the tissue region that it has the maxi- 

um overlap with. Formally for a given TRoI , a HACT representa- 

ion is formulated as G HACT := { G CG , G TG , A CG → TG }. 

.3. Graph learning 

The HACT graph for a TRoI is processed by a hierarchical GNN 

o map TRoI composition to TRoI subtype. To this end, we pro- 

ose HierArchical Cell-to-Tissue Network ( HACT -Net), a hierarchical 

NN architecture shown in Fig. 4 . 

.3.1. HACT-Net Architecture & learning 

HACT -Net intakes G HACT as input and outputs a graph-level rep- 

esentation h HACT ∈ R 

d HACT . Subsequently, a multi-layer perceptron 

 MLP ) categorizes h HACT , e.g ., to a cancer subtype. Formally, HACT - 

et consists of two GNN s, i.e ., Cell- GNN ( CG − GNN ) and Tissue- 

NN ( TG − GNN ), to hierarchically process the HACT graph from 

ne to coarse level. In this work, we leverage the recent advances 

n GNN s and model HACT -Net using PNA layers ( Corso et al., 2020 ). 

First, CG − GNN intakes G CG := { V CG , E CG , H CG } , and applies T CG 

NA layers to build contextualized cell-node embeddings, inline 

ith Eq. (1) . The node embeddings h (t) (v ) , ∀ v ∈ V CG are iteratively

pdated as, 

 

(t + 1) 
CG 

(v ) = �u ∈ N CG (v ) M 

(t) 
CG 

(
h 

(t) 
CG 

(v ) , h 

(t) 
CG 

(u ) 
)

 

(t + 1) 
CG 

(v ) = U 

(t) 
CG 

(
h 

(t) 
CG 

(v ) , a (t + 1) 
CG 

(v ) 
)

(4) 

here t = 0 , . . . , T CG is the iteration index. As shown in Fig. 1 ,

or a node v , first, the set of neighboring node embeddings 

 h (t) 
CG 

(u ) } , ∀ u ∈ N CG (v ) is concatenated with h (t) 
CG 

(v ) , and processed

y M 

t 
CG 

, a MLP , to produce a set of neighborhood-aware embed- 

ings. Then, multiple aggregators with degree-scalers denoted by 

operate on the set of MLP embeddings to extract a set of mul- 

ivariate information that express the neighborhood distribution of 

ode v . Finally, the set of information is concatenated to produce 

he aggregated message a (t+1) 
CG 

(v ) for node v . Afterwards, a (t+1) 
CG 

(v )
nd h (t) 

CG 
(v ) are concatenated and processed by U 

t 
CG 

, a MLP , to up-

ate the node embedding, i.e ., h (t+1) 
CG 

(v ) . Details of � is presented

s, 

= 

[ 
I, S(D, α = 1) , S(D, α = −1) 

] 
�

[ 
μ, σ, max , min 

] 
(D, α) = 

log (D +1) α

δ
, δ = 

1 
| V | 

∑ 

i ∈ V train 
log ( d i + 1) 

(5) 
train 

6 
here I is identity matrix, S is degree-scaler matrix, D is node 

egree matrix, δ is normalization constant, α is scaling variable, 

nd V train is nodes in the training dataset. [ I, S(D, α = 1) , S(D, α =
1)] and 

[ 
μ, σ, max , min 

] 
denote the list of scalers and the list 

f aggregators, respectively. The aggregators compute statistics on 

eighboring multiset of nodes, and the injective scalers discrimi- 

ate between the multisets of various sizes. α = {−1 , 0 , 1 } controls

he attenuation, no scaling, or amplification of the scaling, respec- 

ively. � denotes tensor product between scalers and aggregators, 

nd produces twelve operations that extract the set of multivari- 

te information. The schematic diagram of a PNA layer is shown in 

ig. 1 . 

After T CG PNA layers, an LSTM -based jumping knowledge tech- 

ique ( Xu et al., 2018 ) is employed to adapt to different CG sub- 

raph structures, i.e ., 

 

(T CG +1) 
CG 

(v ) = LSTM 

({ 

h 

(t) 
CG 

(v ) 
∣∣∣ t = 1 , . . . , T CG 

} )
(6)

Following the CG − GNN , the cell-node embeddings, 

 

T CG +1 

CG 
(v ) | v ∈ V CG , and the assignment matrix A CG → TG are used to

ncorporate hierarchical information and initialize the tissue-node 

eatures in the TG , i.e ., 

 

(0) 
TG 

(w ) = CONCAT 

(
H TG (w ) , 

∑ 

v ∈ M (w ) 

h 

(T CG +1) 
CG 

(v ) 
)

(7) 

here CONCAT denotes concatenation and M (w ) := { v ∈ 

 CG | A CG → TG (v , w ) = 1 } is the set of nodes in G CG mapping

o a node w ∈ V TG . Analogous to Eq. (4) , G TG is processed by

G − GNN to compute tissue-node embeddings h (t) 
TG 

(w ) , ∀ w ∈ V TG . 

t t = T TG , the embedding of each tissue-node w encodes the cell 

nd tissue information up to T TG -hops from w . 

Similar to CG , the tissue-node embeddings in TG are processed 

ia an LSTM -based jumping knowledge technique to combine the 

ntermediate tissue-node embeddings. Finally, the graph-level em- 

edding h HACT is produced by summing all the tissue-node em- 

eddings. An MLP and a softmax operation follows to map h HACT 

o respective TRoI label. HACT -Net is trained end-to-end by mini- 

izing the cross-entropy loss between the softmax output and the 

round-truth TRoI label. 

Following Dwivedi et al. (2020) , after each PNA layer we include 

raph normalization (GraphNorm) followed by a batch normaliza- 

ion (BatchNorm). Graph normalization scales the node features by 

he number of nodes in the graph. Intuitively, it prevents the node 

epresentations from being at different scales, for graphs of differ- 

nt sizes. This normalization helps the network to learn discrimi- 

ative topological patterns when the number of nodes vary signif- 

cantly within a class. 
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Fig. 5. Samples of class-wise tumor regions-of-interest in BRACS dataset. (Figure is best viewed in color). 
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. Datasets 

BRACS dataset: As part of this work, we introduce a new 

ataset termed as BReAst Cancer Subtyping ( BRACS ). It con- 

ains 4391 TRoI s from 325 H&E breast carcinoma WSIs. The 

SIs were selected from the archives of the Department of 

athology at National Cancer Institute- IRCCS-Fondazione Pascale, 

aples, Italy. They are scanned with an Aperio AT2 scanner at 

.25 μm/pixel resolution. The TRoI s were selected and annotated 

sing QuPath ( Bankhead et al., 2017 ) as being Normal, Benign, 

sual ductal hyperplasia (UDH), Atypical Ductal Hyperplasia (ADH), 

lat Epithelial Atypia (FEA), Ductal Carcinoma In Situ (DCIS), and 

nvasive. Fig. 5 presents sample TRoI s from all cancer subtypes 

n BRACS. Each TRoI was first annotated independently by three 

athologists. TRoI s with disagreement were further discussed and 

nnotated by the consensus. Note that the pathologists used the 

ntire WSI context during annotation. Fig. 6 presents some DCIS 

amples in BRACS dataset, and highlight the included appearance 

ariability. Such TRoI variability is typical in practice, and were in- 

luded in BRACS to mimic the real world diagnosis. It ensures a 

ealistic and representative evaluation set, with results readily ap- 

licable in the field. 

Table 1 presents category-wise statistics of the TRoI s in BRACS. 

he statistics demonstrate a high variation in TRoI dimensions. We 

lso include the statistics for the CG and TG representations con- 

tructed by our framework, which indicate a large variation in the 

ize of the entity-graph representations. For evaluations on BRACS, 

e partition the TRoI s into train, validation, and test sets at the 

SI-level, such that two TRoI s from the same WSI do not fall in 

ifferent sets. The WSI-level splitting was performed randomly, en- 

uring a comparable number of TRoI s per cancer subtype. Such 

artitioning aimed for a fair evaluation of the compared methods. 

BACH dataset: We evaluated the proposed methodology 

lso on the publicly available microscopy image dataset, 

.e ., the Grand Challenge on BreAst Cancer Histology images 
d

7 
ACH ( Aresta et al., 2019 ). It consists of 400 training and 100

est images from four breast cancer subtypes, i.e ., Normal, Benign, 

CIS, and Invasive. All images are acquired using a Leica DM 20 0 0 

ED microscope and a Leica ICC50 HD camera. These images are in 

GB TIFF format and have a fixed size of 2048 × 1536 pixels and 

 pixel scale of 0.42 × 0.42 μm. Notably, BRACS presents three 

ajor advantages over BACH: 

• Number of images : The train and test sets of BRACS are nearly 

10 times and 6 times the size of the train and test sets of BACH,

respectively. The large test set ensures a robust evaluation of 

the methods. 
• Diverse subtypes : BRACS includes diagnostically complex pre- 

cancerous atypical (ADH and FEA) categories, which repre- 

sent a major diagnostic dilemma typical in practice due to 

their high risk of progressing to cancer. The seven cancer sub- 

types in BRACS represent a broad spectrum of breast cancer in 

histopathology. 
• Large variability : The aforementioned high variability in BRACS 

in terms of TRoI appearances and dimensions is clinically more 

representative, and corresponds to a more realistic scenario of 

breast cancer subtyping. 

. Results 

In this section, we comparatively assess the proposed method 

or breast cancer subtyping. First, we introduce state-of-the-art 

NN and GNN baselines, and their implementation schemes. Sec- 

nd, we conduct ablations on BRACS to examine the impact of var- 

ous components in our framework. Third, we evaluate the classifi- 

ation performance of our method and compare with the baselines, 

n BRACS and BACH datasets for different classification settings. 

inally, we include a comparison of HACT -Net with three indepen- 

ent expert-pathologists. 
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Fig. 6. Overview of the variability for DCIS category in BRACS. The samples depict variations in, (a, b, c) tumor size, (d, e) staining appearance, sub-patterns: (f) low-grade 

Papillary, (g) moderate-grade Cribriform, (h, i) high-grade Solid and Comedo, (j, k) number of glandular regions per TRoI , and artifacts due to tissue and slide preparation: 

(l) tissue-folding or tear, (m) ink stain, (n) blur. Similar variability also persists in other categories in BRACS. (Figure is best viewed in color). 

Table 1 

Key statistics of the BRACS dataset. 

Metric Normal Benign UDH ADH FEA DCIS Invasive Total 

Image Number of images 512 758 471 568 783 749 550 4391 

Number of pixels (in million) 2.8 ±2.7 5.7 ±4.5 2.4 ±2.9 2.2 ±2.0 1.2 ±1.1 5.0 ±5.0 8.2 ±5.4 3.9 ±4.3 

Max/Min pixel ratio 75.3 97.9 180.1 75.3 58.3 128.6 62.4 235.6 

CG Number of nodes 994 ±732 1826 ±1547 903 ±910 863 ±730 470 ±352 1723 ±1598 3609 ±2393 1468 ±1642 

Number of edges 3759 ±2643 6103 ±5420 3371 ±3675 3098 ±2781 1738 ±1395 5728 ±5811 12490 ±10011 5102 ±6089 

Max/Min node ratio 71.9 126.6 133.3 104.2 45.2 161.3 113.6 256.4 

TG Number of nodes 107 ±106 217 ±233 88 ±93 100 ±91 45 ±32 225 ±217 423 ±317 172 ±217 

Number of edges 509 ±545 1012 ±1236 393 ±450 480 ±474 194 ±159 1111 ±1123 2025 ±1741 815 ±1125 

Max/Min node ratio 169.5 312.5 125.0 178.6 416.7 312.5 101.0 434.8 

Image split Train 342 586 303 405 599 562 366 3163 

Validation 86 87 88 77 85 97 82 602 

Test 84 85 80 86 99 90 102 626 

WSI split Train 67 86 59 38 37 33 41 198 

Validation 28 24 24 28 17 21 19 68 

Test 15 16 20 17 12 16 16 59 
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.1. CNN And GNN baselines for comparative evaluation 

• Single-scale CNN processes TRoI s at a single magnification. 

 CNN is trained to predict patch-wise cancer subtypes, and we 

ggregate the patch-wise predictions to produce a TRoI -level pre- 

iction. We experiment with images at three magnifications, i.e ., 

0 ×, 20 ×, and 40 ×, denoted herein as CNN (10 ×), CNN (20 ×), 

nd CNN (40 ×), using the same network architecture and training 

cheme. For each scale, we extract patches of size 128 × 128 pix- 

ls with a stride of 64 pixels. The CNN follows the single-scale 

raining procedure by Sirinukunwattana et al. (2018) , and patch- 

ise predictions are aggregated using the Agg-Penultimate strat- 

gy by Mercan et al. (2019a) . We use transfer learning with a 

esNet-50 architecture, pre-trained on ImageNet, as the CNN back- 
8 
one. Following feature extraction by ResNet-50, a two-layer MLP 

ith 128 channels classifies the patches. To improve the clas- 

ification, the ResNet-50 parameters are fine-tuned. Adam opti- 

izer ( Kingma and Ba 2015 ) with 10 −3 learning rate, a batch size

f 16, and a dropout of 0.2 is used to optimize the categorical 

ross-entropy objective. 

• Multi-scale CNN processes the TRoI s at multiple scales. We 

xtract concentric patches of size 128 × 128 pixels from multi- 

le magnifications and follow the “Late fusion with single-stream + 

STM ” training procedure from Sirinukunwattana et al. (2018) . We 

perate at two settings, i.e ., (10 ×+20 ×) and (10 ×+20 ×+40 ×), and

enote by prepending Multi-scale CNN in front of each. The patch- 

ise predictions are aggregated using the Agg-Penultimate strat- 

gy by Mercan et al. (2019a) . On the concatenated features from 
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Table 2 

Ablation: Impact of node features. Mean and standard deviation of 7- 

class weighted F1-scores. Results expressed in % . 

Weighed F1 

CG- GNN : No morphological features 45.24 ±1.51 

CG- GNN : Hand-crafted morphological features 48.34 ±5.22 

CG- GNN : CNN morphological features 55.94 ±1.01 

TG- GNN : No morphological features 36.81 ±0.71 

TG- GNN : Hand-crafted morphological features 51.62 ±2.11 

TG- GNN : CNN morphological features 56.62 ±1.35 

CONCAT- GNN : No morphological features 47.62 ±1.56 

CONCAT- GNN : Hand-crafted morphological features 51.55 ±1.32 

CONCAT- GNN : CNN morphological features 57.01 ±2.27 

HACT -Net: No morphological features 48.70 ±0.16 

HACT -Net: Hand-crafted morphological features 52.46 ±0.19 

HACT -Net: CNN morphological features 61.53 ±0.87 
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he LSTM , we use a two-layer MLP of 128 channels to classify the 

atches. The training strategy and hyperparameters are the same 

s Single-scale CNN . 

• CGC-Net is the Cell Graph Convolutional Network (CGC-Net) 

roposed by Zhou et al. (2019) , and it is the state-of-the-art 

n classifying CG representations for TRoI s. We construct the CG 

opology for a TRoI using thresholded kNN strategy presented in 

ection 4.2.1 . We initialize the CG nodes with hand-crafted fea- 

ures, employ the Adaptive GraphSage-based CGC-Net architecture, 

nd follow the training strategy proposed by Zhou et al. (2019) . 

• Patch-GNN implements the method proposed 

y Aygunes et al. (2020) , which is the state-of-the-art GNN 

ethod for classifying patch-graph representations of TRoI s. It 

ncorporates local inter-patch context through a GNN to construct 

 graph-level features, which is then processed by an MLP to 

lassify the TRoI s. We experiment with Patch- GNN at three scales, 

.e ., 10 ×, 20 ×, and 40 ×, denoted herein as Patch −GNN (10 ×),

atch −GNN (20 ×), and Patch −GNN (40 ×). At each magnification, 

e extract patches of size 128 × 128 to construct a TRoI -specific 

atch-graph. We employ the network architecture and training 

trategy proposed by Aygunes et al. (2020) . 

• CG-GNN is provided as a standalone CG -based learning base- 

ine, to compare with our proposed hierarchical learning. CG −
NN uses PNA layers, an LSTM -based jumping knowledge, sum 

eadout, and a two-layer MLP classifier. We follow the CG repre- 

entation strategy as described in Section 4.2.1 . 

• TG-GNN is provided as a standalone TG -based learning base- 

ine, to compare with our proposed hierarchical learning. TG −
NN uses the same architecture as the CG − GNN , with the node 

eatures directly initialized by H TG instead of Eq. (7) . 

• CONCAT-GNN is provided to evaluate the impact of hier- 

rchical graph representation and learning. CONCAT − GNN uti- 

izes standalone CG and TG representations, respectively, as in- 

ut to standalone CG − GNN and TG − GNN to produce h CG and 

 TG graph-level embeddings. The TRoI level embedding is con- 

tructed by concatenating the graph-level embeddings, i.e ., h CONCAT 

 CONCAT ( h CG , h TG ) . Finally, a two-layer MLP classifies h CONCAT 

nto a cancer subtype. 

.2. Implementation 

Graph representations: CG representations ( Section 4.2.1 ) use, 

) patches of size 72 × 72, and ii) a CNN of ResNet-34 or ResNet-50 

o initialize the node features. TG representations ( Section 4.2.2 ) 

se, i) patches of size 144 × 144, and ii) a CNN of ResNet-34 or 

esNet-50 to initialize the node features. 

Graph architecture and learning: CG − GNN , TG − GNN , 

ONCAT − GNN , and HACT -Net all share the same options and hy- 

erparameters below 

• # PNA layers in GNN : [3, 4, 5] 
• # MLP layers in a PNA layer: 2 
• # channels in a PNA -layer MLP : 64 
• Graph-level embedding dimension: 128 
• # MLP layers in output classifier: 2 
• # channels in output MLP classifier: 128 
• Training parameters: Adam optimizer ( Kingma and Ba 2015 ) 

with a learning rate of 10 −3 , batch size of 16, and a categori-

cal cross-entropy objective. 

Evaluation metrics: Considering the imbalanced number of 

RoI s per class in train, validation, and test sets (see Table 1 ), we

valuate the classification performance using weighted F1-score, an 

verage weighted by the number of true instances for each class. 

he best weighted F1-scores on the validation set is used as the 

odel selection criteria during the training of each method. To 

resent any sensitivity to initialization, we report the mean and 
9 
tandard deviation of each model on the test set by training them 

hree times using random weight initialization. Further, we present 

recision, recall, and confusion matrices to indicate the distribution 

f class predictions. 

Computational resources: All the experiments were conducted 

sing PyTorch ( Paszke et al., 2019 ) and Deep Graph Library 

DGL) ( Wang et al., 2019 ), on NVIDIA Tesla P100 GPUs and POWER8 

rocessors. 

.3. Ablation studies 

We conduct ablation to evaluate the impact of three major 

omponents of our methodology on TRoI classification perfor- 

ance, i.e ., i) node feature initialization, ii) GNN layer type, and 

ii) jumping knowledge technique. Each component is analyzed 

ndividually, while fixing the others. Ablations are performed on 

RACS for classifying the TRoI s into 7-classes. 

.3.1. Impact of node feature initialization 

The performance of GNN s eminently rely on the initial node 

eatures ( Kipf and Welling 2017 ). In our context, we analyze the 

mpact of initial morphological features of the nodes with the fol- 

owing three feature initialization schemes: 

• No morphological features: The nodes of an entity-graph are 

nitialized with only the spatial features. Experiments with this 

etting demonstrate the impact of standalone graph topology on 

he classification performance. 

• Hand-crafted morphological features: The entity-graph 

odes are initialized with hand-crafted morphological features as 

uggested by Zhou et al. (2019) , i.e ., i) texture features : difference of

verage foreground to background; standard deviation, skewness, 

nd mean entropy of intensities; dissimilarity, homogeneity, en- 

rgy, and angular second moment from Gray-Level Co-occurrence 

atrix; and ii) shape features : eccentricity, area, maximum and 

inimum axis lengths, perimeter, solidity, and orientation. Note 

hat, the hand-crafted features for CG and TG are computed, re- 

pectively, from the segmented instances of nuclei and tissue re- 

ions. 

• CNN morphological features: The morphological features of 

he entity-graph nodes are initialized with CNN features (ResNet- 

4 pre-trained on ImageNet) extracted from patches around the 

entroids of the nuclei and tissue regions. 

Experimental results in Table 2 indicate that the standalone 

G topology is more discriminative for cancer subtyping than TG 

opology. The combination of CG and TG topologies further im- 

roves discriminative ability. The best performance achieved with 

he HACT topology confirms the strength of hierarchical represen- 

ations. Further, including morphological features significantly im- 

roves the classification. The superiority of graphs with CNN -based 
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Table 3 

Ablation: Impact of GNN layer. Mean and standard de- 

viation of 7-class weighted F1-scores. Results expressed 

in % . 

Weighed F1 

CG- GNN : GIN 55.70 ±0.51 

CG- GNN : PNA 55.94 ±1.01 

TG- GNN : GIN 55.33 ±1.36 

TG- GNN : PNA 56.62 ±1.35 

CONCAT- GNN : GIN 56.20 ±2.12 

CONCAT- GNN : PNA 57.01 ±2.27 

HACT -Net: GIN 59.73 ±1.20 

HACT -Net: PNA 61.53 ±0.87 

Table 4 

Ablation: Impact of GNN jumping knowledge 

technique. Mean and standard deviation of 7- 

class weighted F1-scores. Results expressed in % . 

Weighed F1 

CG- GNN : No aggregator 55.53 ±0.75 

CG- GNN : Concatenation 55.82 ±0.97 

CG- GNN : LSTM 55.94 ±1.01 

TG- GNN : No aggregator 55.30 ±0.81 

TG- GNN : Concatenation 56.07 ±0.80 

TG- GNN : LSTM 56.62 ±1.35 

CONCAT- GNN : No aggregator 57.67 ±4.66 

CONCAT- GNN : Concatenation 56.28 ±2.75 

CONCAT- GNN : LSTM 57.01 ±2.27 

HACT -Net: No aggregator 49.16 ±1.15 

HACT -Net: Concatenation 59.78 ±1.59 

HACT -Net: LSTM 61.53 ±0.87 
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orphological features indicate the richness of morphological in- 

ormation acquired by CNN s, compared to hand-crafted measures. 

.3.2. Impact of GNN layer type 

We investigate the impact of two state-of-the-art GNN layers, 

.e ., GIN and PNA ( Fig. 1 ), on the classification performance. The 

xperiments use CNN -based node feature initialization and LSTM - 

ased jumping knowledge. Results in Table 3 demonstrate that 

NN s with PNA layers outperform GNN s with GIN layers, for all 

he four GNN constructions. 

.3.3. Impact of jumping knowledge technique 

To investigate the impact of jumping knowledge, we experi- 

ent with three settings: no jumping knowledge, CONCAT -based, 

nd LSTM -based. LSTM -based technique follows Eq. (6) . Based on 

his, CONCAT -based technique replaces the LSTM operation with 

he concatenation operation. The experiments use CNN -based node 

eature initialization and PNA layers. Results in Table 4 demon- 

trate a generally positive impact of the jumping knowledge tech- 

ique. Compared to CONCAT , the LSTM -based technique learns bet- 

er dependencies between GNN layers, thus generates better graph 

mbeddings. 

.3.4. Ablation summary 

The ablation experiments conclude the following choice of com- 

onents for designing our methodology, i) CNN -based initialization 

f node-level morphological features, ii) use of PNA layers, and 

ii) an LSTM -based jumping knowledge technique. 

.4. Classification results on BRACS dataset 

We evaluate our proposed methods, comparatively with CNN 

nd GNN baselines. To analyze the performance for different clin- 

cal applications and histopathological needs, we evaluate and re- 

ort the results separately in the following three settings: 
10 
• Setting 1: 7-class classification: Here, we classify the TRoI s 

nto 7-classes, i.e ., Normal, Benign, UDH, ADH, FEA, DCIS, and In- 

asive, for the differentiation of a large spectrum of breast cancer 

ubtypes. Table 5 tabulates the classification performance of the 

ompared methods. 

Among single-scale CNN s, CNN (10 ×) performs the best, indicat- 

ng the importance of global context information for TRoI classifi- 

ation. Multi-scale CNN s using both global and local context out- 

erform single-scale CNN s. Such benefit from context is significant 

or ADH, FEA, and DCIS categories, which all require both local 

nd global context for the diagnosis. Multi-scale CNN s also out- 

erform CGC-Net and Patch- GNN s. Interestingly, at each magnifi- 

ation, Patch- GNN outperforms single-scale CNN , which affirms the 

mportance of relational and topological information incorporated 

n the graphs. 

Comparing our proposed GNN solutions, we observe that CG −
NN significantly outperforms CGC-Net, indicating the superior- 

ty of CNN -based node feature initialization over handcrafted fea- 

ures, and the significance of GNN s with expressive PNA layers 

ver Adaptive GraphSage in CGC-Net. We notice that CG − GNN 

nd TG − GNN provide comparable performance overall. However, 

hey outperform each other for Normal, Benign, UDH, ADH, and 

EA categories, displaying the importance of complementary infor- 

ation captured by standalone TG and CG representations. Fur- 

her, both HACT -Net and CONCAT − GNN provide overall supe- 

ior performance compared to all CNN and GNN baselines. HACT - 

et significantly outperforms CONCAT − GNN showing the signifi- 

ance of hierarchical modeling and learning. CONCAT − GNN pro- 

uces overall comparable or superior performance to CG − GNN 

nd TG − GNN , although for individual classes, CONCAT − GNN is 

arely better than the two, suggesting that it may be using com- 

lementary information from CG and TG . Such complementary in- 

ormation is indeed best utilized by HACT -Net, with high per-class 

nd overall classification performance. Though HACT -Net achieves 

he third best result for the UDH category, it uses the complemen- 

arity of CG and TG to provide better classification than TG − GNN . 

oreover, the misclassified UDH samples are predominantly cate- 

orized as Benign due to the expected ambiguity between Benign 

nd UDH classes. All the proposed GNN s often outperform all CNN 

aselines, establishing the potential of entity-based analysis. 

Fig. 7 presents per-class precision and recall for CG − GNN , 

G − GNN , CONCAT − GNN , and HACT -Net. HACT -Net produces 

he highest precision values for most of the classes. The recall 

anking between CG − GNN and TG − GNN varies across classes, 

hereas HACT -Net consistently yields good recall values. Further, 

tandard deviation of class-wise precision and recall values are 

he lowest for HACT -Net, for most classes. Fig. 8 presets row- 

ormalized aggregated 7-class confusion matrix across three runs 

or HACT -Net. It indicates ambiguities between i) Normal and Be- 

ign, ii) UDH and ADH, and iii) ADH and DCIS. Notably, these pair- 

ise classes bear high pathological ambiguity and are diagnosti- 

ally very challenging. 

• Setting 2: 4-class classification: This setting categorizes TRoI s 

nto 4-classes as per cancer risk: Normal, Non-cancerous (Benign 

 UDH), Precancerous (ADH + FEA), and Cancerous (DCIS + Inva- 

ive). Classification performance of CNN and GNN baselines, and 

ACT -Net are presented in Table 6 . Single scale CNN s exhibit the 

ame behavior as in the 7-class setting. However, combining mul- 

iple magnifications in multi-scale CNN s does not improve the 

lassification over the single-scales. Among the baselines, CGC-Net 

nd Patch- GNN s perform comparable or inferior to the CNN s, with 

 low-magnification CNN (10 ×) outperforming the others. Simi- 

arly to the 7-class setting, our proposed methods are superior to 

he baselines. HACT -Net produces the best overall performance, 

ith the best classification performance for Normal, Precancer- 

us, and Cancerous categories. To highlight, HACT -Net achieves 
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Table 5 

Mean and standard deviation of per-class F1-scores and weighted F1-scores for 7-class classification setting. Results are expressed in % . The best result is in bold and the 

second best is underlined . 

Method Normal Benign UDH ADH FEA DCIS Invasive Weighted F1 

CNN CNN (10 ×) 48.67 ±1.71 44.33 ±1.89 45.00 ±4.97 24.00 ±2.83 47.00 ±4.32 53.33 ±2.62 86.67 ±2.64 50.85 ±2.64 

CNN (20 ×) 42.00 ±2.16 42.33 ±3.09 39.33 ±2.05 22.67 ±2.49 47.67 ±1.25 50.33 ±3.09 77.00 ±1.41 46.85 ±2.19 

CNN (40 ×) 32.33 ±4.64 39.00 ±0.82 23.67 ±1.70 18.00 ±0.82 37.67 ±2.87 47.33 ±2.05 70.67 ±0.47 39.41 ±1.89 

Multi-scale CNN (10 × +20 ×) 48.33 ±2.05 45.67 ±0.47 41.67 ±4.99 32.33 ±0.94 46.33 ±1.41 59.33 ±2.05 85.67 ±1.89 52.27 ±1.93 

Multi-scale CNN (10 × +20 × +40 ×) 50.33 ±0.94 44.33 ±1.25 41.33 ±2.49 31.67 ±3.30 51.67 ±3.09 57.33 ±0.94 86.00 ±1.41 52.83 ±1.92 

GNN CGG-Net 30.83 ±5.33 31.63 ±4.66 17.33 ±3.38 24.50 ±5.24 58.97 ±3.56 49.36 ±3.41 75.30 ±3.20 43.63 ±0.51 

Patch- GNN (10 ×) 52.53 ±3.27 47.57 ±2.25 23.67 ±4.65 30.66 ±1.79 60.73 ±5.35 58.76 ±1.15 81.63 ±2.17 52.10 ±0.61 

Patch- GNN (20 ×) 43.86 ±4.23 43.37 ±3.21 19.47 ±2.31 25.73 ±2.87 55.57 ±2.08 52.86 ±1.85 79.20 ±1.04 47.10 ±0.70 

Patch- GNN (40 ×) 41.70 ±3.06 32.93 ±1.04 25.07 ±3.74 25.63 ±2.01 49.47 ±3.46 48.60 ±4.23 71.57 ±5.15 43.23 ±0.57 

Ours CG- GNN 58.77 ±6.82 40.87 ±3.05 46.82 ±1.95 39.99 ±3.56 63.75 ±10.48 53.81 ±3.89 81.06 ±3.33 55.94 ±1.01 

TG- GNN 63.59 ±4.88 47.73 ±2.87 39.41 ±4.70 28.51 ±4.29 72.15 ±1.35 54.57 ±2.23 82.21 ±3.99 56.62 ±1.35 

CONCAT- GNN 60.97 ±4.54 43.06 ±2.26 41.96 ±4.67 26.10 ±3.73 71.29 ±2.09 60.83 ±3.71 85.42 ±2.70 57.01 ±2.27 

HACT -Net (Proposed) 61.56 ±2.15 47.49 ±2.94 43.60 ±1.86 40.42 ±2.55 74.22 ±1.41 66.44 ±2.57 88.40 ±0.19 61.53 ±0.87 

Fig. 7. Mean and standard deviation of per-class precision and recall for 7-class classification with HACT -Net. (Figure is best viewed in color). 

Table 6 

Mean and standard deviation of per-class F1-scores and weighted F1-scores for 4-class classification setting. Results are expressed in % . The best result is in bold and the 

second best is underlined . 

Method Normal Non-cancerous Precancerous Cancerous Weighted F1 

CNN CNN (10 ×) 54.33 ±3.68 56.00 ±0.82 56.33 ±1.25 83.67 ±0.94 64.36 ±1.37 

CNN (20 ×) 45.33 ±4.64 55.33 ±0.47 52.33 ±1.89 81.67 ±2.05 61.18 ±1.93 

CNN (40 ×) 42.00 ±4.89 51.00 ±0.82 47.67 ±4.11 77.67 ±2.05 56.99 ±2.72 

Multi-scale CNN (10 × +20 ×) 51.67 ±5.79 55.33 ±1.25 52.67 ±2.87 80.67 ±1.89 61.82 ±2.53 

Multi-scale CNN (10 × +20 × +40 ×) 51.33 ±3.27 56.33 ±2.05 57.00 ±1.64 81.33 ±3.68 63.52 ±2.59 

GNN CGG-Net 34.53 ±2.93 47.23 ±3.72 62.90 ±2.81 82.20 ±1.04 59.87 ±2.30 

Patch- GNN (10 ×) 53.13 ±4.40 46.23 ±2.45 63.96 ±3.82 77.43 ±3.22 61.93 ±2.51 

Patch- GNN (20 ×) 53.46 ±1.81 47.16 ±2.81 63.20 ±3.78 74.90 ±3.36 61.26 ±2.90 

Patch- GNN (40 ×) 40.90 ±2.75 38.67 ±2.76 56.77 ±3.91 72.20 ±2.61 54.60 ±1.90 

Ours CG- GNN 52.95 ±12.11 56.55 ±3.70 61.53 ±3.03 84.47 ±0.87 66.10 ±2.58 

TG- GNN 52.96 ±6.81 56.52 ±2.85 64.36 ±1.05 82.21 ±0.78 66.24 ±1.11 

CONCAT- GNN 54.54 ±1.64 56.63 ±1.68 62.58 ±1.45 81.80 ±0.77 65.83 ±0.04 

HACT -Net (Proposed) 66.08 ±3.69 55.28 ±1.74 66.21 ±0.87 84.91 ±0.79 69.04 ±0.46 
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66% F1-score for the diagnostically challenging Precancerous 

ategory. 

• Setting 3: Binary classifications: In this setting, we repli- 

ate the typical decision process of a pathologist for breast can- 

er subtyping which follows a diagnostic decision tree as pre- 

ented in Fig. 9 . It is inspired by the classification scheme pre- 

ented by Mercan et al. (2018) . Note that such individual binary 

ecisions are less constrained compared to multi-class classifica- 

ion, thus allows for better discrimination between a selected pair 

f classes. The binary classifiers can assist pathologists in cate- 

orizing ambiguous cases at different bifurcations of the decision 

ree. Table 7 presents the results for six individual binary classifica- 

ions, at the bifurcations in the decision tree. Results are consistent 

ith the 7-class and 4-class classification settings, with HACT -Net 

onsistently outperforming all baselines and providing the best ag- 

regated score. 
11 
.4.1. Domain expert comparison on BRACS dataset 

To further benchmark our proposed methodology as well as to 

ssess the quality of the introduced BRACS dataset, we acquired 

nnotations of the BRACS test set from additional independent 

athologists. For such comparison with domain experts, we follow 

he evaluation protocol in Elmore et al. (2015) . We recruited three 

oard-certified pathologists (other than the original three pathol- 

gists who provided the initial annotations, namely our ground 

ruth labels), from three different medical centers, to further en- 

ure independence: 

• National Cancer Institute- IRCCS-Fondazione Pascale, Naples, 

Italy; 
• Lausanne University Hospital, CHUV, Lausanne, Switzerland; 

and 

• Aurigen, Centre de Pathologie, Lausanne, Switzerland. These ex- 

perts are specialized in breast pathology and have been in prac- 
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Table 7 

Mean and standard deviation of weighted F1-scores for binary classification setting. Further, the aggregated mean and standard deviation for the six binary tasks are 

reported. Results are expressed in % . The best result is in bold and the second best is underlined . 

Method I vs N + B+U vs N vs B vs A + F vs A vs Aggregated 

N + B+A+U+F+D A + F+D B + U U D F 

CNN CNN (10 ×) 95.66 ±0.48 81.24 ±0.42 69.83 ±0.38 76.12 ±1.13 73.44 ±2.56 77.59 ±1.73 78.90 ±1.38 

CNN (20 ×) 92.39 ±0.37 80.84 ±0.36 66.52 ±2.14 74.75 ±1.51 67.87 ±1.82 71.78 ±2.53 75.69 ±1.68 

CNN (40 ×) 90.74 ±0.59 79.92 ±1.66 62.36 ±2.14 68.13 ±4.30 64.86 ±2.98 66.91 ±1.68 72.15 ±2.51 

Multi-scale CNN (10 × +20 ×) 94.31 ±1.26 80.89 ±1.31 67.99 ±1.86 75.58 ±2.06 72.07 ±1.85 76.91 ±2.22 77.96 ±1.80 

Multi-scale CNN (10 × +20 × +40 ×) 95.12 ±1.15 82.21 ±0.34 70.87 ±2.07 72.89 ±2.26 72.08 ±3.17 75.47 ±3.69 78.11 ±2.40 

GNN CGG-Net 91.60 ±2.09 79.73 ±1.53 63.67 ±3.12 62.37 ±3.00 81.56 ±1.56 73.80 ±5.41 75.46 ±3.09 

Patch- GNN (10 ×) 95.80 ±0.43 76.53 ±0.32 72.57 ±1.10 72.87 ±3.07 77.17 ±0.85 78.26 ±2.60 78.87 ±1.75 

Patch- GNN (20 ×) 93.70 ±0.36 76.63 ±1.40 70.10 ±1.90 69.77 ±3.13 74.10 ±0.10 81.03 ±1.85 77.55 ±1.78 

Patch- GNN (40 ×) 92.40 ±0.95 74.43 ±0.64 71.10 ±1.74 67.40 ±2.46 72.97 ±0.66 76.40 ±1.95 75.78 ±1.56 

Ours CG- GNN (Ours) 94.52 ±0.43 83.79 ±0.31 75.71 ±1.68 73.15 ±3.32 77.48 ±1.68 84.33 ±0.54 81.50 ±1.70 

TG- GNN 96.00 ±0.56 80.38 ±0.80 69.51 ±3.12 76.12 ±0.99 80.67 ±0.22 84.18 ±3.56 81.14 ±2.02 

CONCAT- GNN 95.91 ±0.56 83.21 ±0.68 71.84 ±1.46 75.67 ±1.81 80.14 ±2.60 88.88 ±3.86 82.61 ±2.15 

HACT -Net (Proposed) 96.32 ±0.64 83.63 ±0.73 76.84 ±0.68 77.66 ±0.37 81.11 ±0.72 89.35 ±0.26 84.15 ±0.60 

Fig. 8. Mean and standard deviation of row-normalized 7-class confusion matrix 

for HACT -Net. 

Fig. 9. Decision tree used by pathologists for breast cancer diagnosis. The 7-class 

classification is simplified to a series of binary decision tasks, through which the 

diagnosis becomes more and more specific until the leaves, i.e ., the 7 diagnostic 

decision classes, are reached. 
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tice for over twenty years. The pathologists independently and 

remotely annotated BRACS test set TRoI s, without having access 

to respective WSIs. This protocol ensures equal field-of-view for 

all the pathologists as well as our methodology. 

The independent pathologists’ annotations are compared to the 

round truth, with the results shown in Table 8 . We present per- 

lass F1-scores, overall weighted F1-score, and overall weighted ac- 

uracy for each pathologist. We also include the aggregated statis- 

ics of the three pathologists for benchmarking HACT -Net with do- 

ain experts. Table 8 indicates that HACT -Net outperforms the do- 
12 
ain experts in distinguishing TRoI s of diagnostically challenging 

lasses, i.e ., atypia and hyperplasia, while yielding comparable per- 

ormance for the normal and cancerous categories. Per-class stan- 

ard deviations of pathologists’ statistics show the expected high 

nter-observer variability in breast cancer diagnosis. Compared to 

he pathologists, HACT -Net yields a superior weighted accuracy 

nd weighted F1 given the ground truth diagnoses for the 7-class 

lassification. 

To benchmark the BRACS dataset with respect to the dataset 

y Elmore et al. (2015) , we compare the aggregated pathol- 

gist statistics on both datasets for the same set of classes, 

.e ., Benign without atypia (Normal + Benign + UDH), Atypia 

ADH + FEA), DCIS, and Invasive. Note that the dataset by 

lmore et al. (2015) consists of 240 breast biopsy slides, 

hile BRACS consists of 626 TRoI images. For the dataset 

y Elmore et al. (2015) , class-wise concordance rates (class- 

eighted average accuracy of 115 pathologists to a three-expert 

onsensus) are 87%, 48%, 84%, and 96%, respectively for the four 

forementioned classes. For BRACS, the similar class-wise concor- 

ance rates are 87%, 50%, 72%, and 90%, respectively. The class-wise 

oncordance rates exhibit a similar trend in both datasets. Differ- 

nces can be attributed to differing fields-of-view, i.e ., TRoI vs. WSI, 

ccessible to the pathologist during annotation. 

Table 9 presents the inter-observer concordance rates for the 

RACS test set. We notice significant differences in the concor- 

ance rates between pathologists 2 vs.3 and pathologist 1 vs. the 

ther two. This can be reasoned to differing histopathology prac- 

ices across different regions. 

.4.2. Computational time analysis 

We report computation time for processing a tumor RoI of 

ize 10 0 0 × 10 0 0 pixels on a single-core POWER8 processor com- 

ined with an NVIDIA P100 GPU. Stain normalization with the Ma- 

enko method takes 0.8 seconds (CPU-only), CG generation 2.51 

econds, and TG generation 4.14 seconds. Thus, the overall com- 

utational time for transforming the RoI into HACT representation 

s 7.92 seconds. The superpixel extraction step can be further op- 

imized by using fast GPU implementations, e.g ., as proposed by 

ampani et al. (2018) . Provided the HACT representation, HACT -Net 

enders near real-time inference by requiring 34.11 milliseconds. 

dditional run-time analysis is presented by Jaume et al. (2021a) . 

.5. Classification results on BACH dataset 

We evaluate the methods on the public BACH dataset. Con- 

idering its smaller training set of 400 images, we employ dif- 

erent image augmentation techniques for training HACT -Net. To 

his end, we employ rotation, mirroring, and color augmentations 
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Table 8 

Comparison between HACT -Net and domain expert pathologists for 7-class breast cancer subtyping on BRACS dataset. Per-class F1-scores, weighted F1-scores and accuracy 

for 7-class classification are presented. Results are expressed in % . The best results are in bold . 

Normal Benign UDH ADH FEA DCIS Invasive Weighted F1 Weighted Accuracy 

Pathologist 1 67.53 53.92 41.90 36.00 19.13 71.59 94.00 55.30 56.71 

Pathologist 2 47.83 52.94 25.00 35.37 65.22 68.00 94.00 57.07 57.99 

Pathologist 3 39.66 49.59 49.43 42.29 54.12 65.19 89.47 56.71 56.55 

Pathologist statistics 51.57 ±11.70 52.15 ±1.85 38.78 ±10.22 37.89 ±3.12 46.16 ±19.64 68.26 ±2.62 92.49 ±2.14 56.36 ±0.76 57.08 ±0.64 

HACT -Net statistics 61.56 ±2.15 47.49 ±2.94 43.60 ±1.86 40.42 ±2.55 74.22 ±1.41 66.44 ±2.57 88.40 ±0.19 61.53 ±0.87 63.21 ±0.27 

Fig. 10. Qualitative comparison of CG − GNN , TG − GNN , and HACT -Net for 7-class classification. Predictions by the classifiers are noted below each example. Red and 

Green denote incorrect and correct classification, respectively. (a,b) TRoI s which TG − GNN misclassifies, while CG − GNN and HACT -Net classify correctly by using the 

nuclei characteristics. (c,d) TRoI s misclassified by CG − GNN , while correctly classified by TG − GNN and HACT -Net by using context information from necrotic regions. 

(e,f,g,h) TRoI s which both CG − GNN and TG − GNN misclassify, where HACT -Net classifies correctly by utilizing both cell and tissue microenvironments together. (Figure is 

best viewed in color). 

Table 9 

Concordance among three independent pathologists for annotating BRACS test 

dataset. Results are expressed in % . 

Pathologist 1 Pathologist 2 Pathologist 3 Ground truth 

Pathologist 1 - 47.60 50.96 56.71 

Pathologist 2 - - 64.38 57.99 

Pathologist 3 - - - 56.55 

Table 10 

Accuracy of 4-class breast cancer subtyping in BACH dataset. Results are expressed 

in % . 

Methods Accuracy 

Ensemble 

networks 

( Aresta et al., 2018 ; 

Aresta et al., 2019 ) 

Wang et al. (2019) 95.00 

Marami et al. (2018) 94.00 

Yang et al. (2019) 93.00 

Chennamsetty et al. (2018) 87.00 

Kwok et al. (2018) 87.00 

Brancati et al. (2018) 86.00 

Single network HACT -Net 91.00 
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n the training images before extracting HACT graph representa- 

ions. We do not use other graph augmentation techniques, such 

s random node and edge dropping, since these augmentations 

ay hamper the meaningful topological distribution of the biologi- 

al entities. The implementation strategies and hyperparameters in 

ection 6.2 are employed for training HACT -Net. Classification per- 

ormance of HACT -Net and the current state-of-the-art results on 

he BACH dataset are listed in Table 10 . Our predictions have been 
13 
valuated independently by the organizers of the BACH challenge, 

nsuring a fair comparison. HACT -Net results in comparable classi- 

cation accuracy with the state-of-the-art methods. The difference 

n the accuracies are not significant considering only 100 TRoI s in 

he test set. Notably, our methodology employs a single, unified 

etwork, where the other listed competitors employ an ensemble 

trategy with multiple networks during inference. 

.6. Qualitative analysis 

Qualitative assessment of a few TRoI s from the BRACS dataset 

sing HACT -Net, CG − GNN , and TG − GNN is presented in 

ig. 10 . In Fig. 11 , we use GraphGradCAM ( Pope et al., 2019 ;

aume et al., 2021b ), a post-hoc gradient based feature attribu- 

ion technique, to highlight the nuclei and tissue-region nodes 

n CG and TG , respectively, which HACT -Net focuses on while 

lassifying the TRoI s. Given the DCIS examples in Figs. 11 (a-c&g-i), 

ACT -Net is seen to focus on the diagnostically relevant tumorous 

pithelium and necrotic regions in TG , while ignoring the less 

mportant stroma and lumen, cf. Figs. 11 (b,h). Further, within the 

elevant tissue regions, HACT -Net focuses on a subset of tumorous 

pithelial nuclei in CG , as shown in Figs. 11 (c,i). Interestingly, we 

bserve in Figs. 11 (h,i) that HACT -Net uses complementary infor- 

ation from the necrotic region captured by TG , but not by CG . 

imilar observations of HACT -Net considering the diagnostically 

elevant regions can be made for FEA and Benign examples shown 

n Figs 11 (d-f&j-l). Noticeably, such feature attribution analysis of 

NN s localizes and highlights the focus of deep networks in the 

iven entity-paradigm, which is both more interpretable and more 
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Fig. 11. Feature attribution (FA) maps of HACT -Net on TG and CG for four sample TRoI s for 7-class classification: Sample TRoI s of (a,g) DCIS, (d) FEA, and (j) Benign classes, 

with their corresponding feature attribution maps on (b,h,e,k) TG and (c,i,f,l) CG . (Figure is best viewed in color). 

Fig. 12. (a) A DCIS sample including tissue-tear and blur artifacts. (b) Detected 

superpixels. (c) Detected nuclei. The classifications by CG − GNN , TG − GNN and 

HACT -Net are indicated, where Red and Green denote incorrect and correct classifi- 

cation. 
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xplainable compared to feature attribution strategies in a pixel- 

aradigm ( Jaume et al., 2020, 2021b ). Interestingly, we also analyze 

he impact of tissue or slide preparation artifacts on the model 

erformance. In Fig. 12 , we present a DCIS image with tissue-tear 

nd blur artifacts. We observe that the detected superpixels do 

ot aptly depict the tissue in the blur region, and consequently 

he TG − GNN using standalone TG misclassifies it. However, the 

uclei detection is less impacted by the artifact, which allows 

he CG to appropriately encode the cell microenvironment and 

orrectly classify the sample. To highlight, HACT -Net utilizing the 

omplementary information from both CG and TG compensates 

or the issue in TG , and correctly identifies the subtype. 

. Conclusion 

Pixel-based processing of pathology images suffers from the 

ontext-resolution trade-off, and misses the notion of biological 

ntity and tissue composition. In this work, we propose an entity- 

ased tissue representation and learning to address these issues. 

o that end, our two specific contributions are: (i) a hierarchi- 

al entity-graph representation of a tissue image by incorporating 

ultisets of pathologically intuitive biological entities, and (ii) a 

ierarchical graph neural network for sequentially processing the 

ntity-graph representation for mapping tissue compositions to 

issue subtypes. Further, we introduce BReAst Cancer Subtyping 

BRACS), a large cohort of breast tumor regions-of-interest, an- 

otated with breast cancer subtypes. BRACS encompasses seven 

reast cancer subtypes to present a realistic breast cancer diagno- 
14 
is scenario. Using BRACS as well as a public breast cancer sub- 

yping dataset BACH, we demonstrate herein the superior per- 

ormance of our proposed methodology for classifying breast tu- 

or regions-of-interest into cancer subtypes. Under various exper- 

mental settings, our methodology is shown to outperform state- 

f-the-art pixel-based and entity-graph based classification ap- 

roaches. Furthermore, we benchmark our methodology on the 

RACS dataset by comparing it to three independent pathologists. 

otably, our method achieves better performance for per-cancer 

ubtype and overall aggregated classification. Although we have 

valuated our method for breast cancer classification, the technol- 

gy is easily extendable to other tissue types and diseases. Notably, 

he proposed hierarchical graph methodology can also be adapted 

o other image modalities, such as natural images, multiplexed 

mages, hyperspectral images, satellite images, and other medical 

maging domains, by utilizing domain and task-specific entities. 
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