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A B S T R A C T

A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image anal-
ysis. However, assembling such large annotations is very challenging, especially for histopathological images
with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To
alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled
data to generate informative representations and generalizes well to various downstream tasks even with
limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive
learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the
two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances
with similar visual concepts, which increases the diversity of positives and then results in more informative
representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating
a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is
pretrained on massively unlabeled histopathological images that could serve as a collaborative local–global
feature extractor to learn universal feature representations more suitable for tasks in the histopathology image
domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks
(patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and
colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-
based visual representations not only achieve state-of-the-art performance in each dataset, but are also more
robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised
methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.
1. Introduction

Benefiting from a massive amount of labeled data, deep learning
has achieved remarkable success in the field of medical image analysis,
even outperforming humans (Yu et al., 2018; Liu et al., 2020; Zhang
et al., 2019). However, manual annotation is an expensive and time-
consuming task, which leads to limited elaborate annotations available
in the medical image community. For histopathological whole-slide im-
ages (WSIs), such curated annotations are even more scarce due to their
unique challenges (e.g., gigapixel image size, enormous heterogeneity,
multiple cancer types, and wide staining variations). WSIs could cover
complex biologically relevant structures ranging from cellular-level
(e.g., subcellular vesicle and nuclear granule) to tissue-level (e.g., en-
dothelia, epithelia, muscle, vessel, and gland) (Rashid et al., 2022;
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Javed et al., 2020). The gigapixel image size of WSIs creates an ex-
tremely large search space for labeling and the heterogeneous tissue
distribution within WSI makes it difficult to localize target lesion
regions that usually constitute a small portion of the entire WSI. More-
over, the multiple cancer types lead to variant tissue styles that further
increase the annotation challenge, and the wide staining variations
further increase color divergence. Thus, there is an urgent requirement
to develop an effective feature extractor from unlabeled histopatho-
logical images to alleviate the burden of heavy annotation, which has
the potential to promote the development of digital pathology and aid
pathologists for fast and precise diagnoses.

To reduce the annotation dependency of histopathological im-
ages, transfer learning from large-scale labeled natural images (e.g.,
vailable online 30 July 2022
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ImageNet (Russakovsky et al., 2015)) may be an alternative approach,
which has been proven to be an effective training strategy that can
improve classification, regression and segmentation performance with
limited annotations (Mormont et al., 2020; Talo, 2019; Srinidhi et al.,
2021; Lu et al., 2021). However, domain differences between natural
images and histopathological images are tremendous, ranging from
low-level texture features and high-level semantic features. For exam-
ple, objects and faces are very different from cells and tissues, resulting
in limited performance gains. A preferable approach to tackle this
domain discrepancy is to pretrain or train from scratch on domain-
relevant data, which is limited by the annotation-lacking problem
mentioned earlier. To address this, self-supervised pretraining without
the requirement of manual labels is a possible option, which learns the
visual representation based on supervised signals generated by the data
itself.

The tremendous successes of self-supervised learning (SSL) tech-
niques in the computer vision community have promoted the develop-
ment of SSL in histopathological image analysis. There have been some
published works that apply SSL techniques to boost the performance
of classification, regression, and segmentation of histopathological im-
ages (Koohbanani et al., 2021; Srinidhi et al., 2022; Sahasrabudhe
et al., 2020; Yang et al., 2021; Patil et al., 2021; Li et al., 2021a;
Xie et al., 2020; Li et al., 2021b; Ciga et al., 2022; Huang et al.,
2021; Abbet et al., 2020; Li et al., 2021c). These approaches pro-
cess histopathological images by simply applying existing contrastive
learning (CL)-based SSL frameworks (e.g., SimCLR and MoCo) or tailor-
ing some histopathology-oriented SSL tasks on a convolutional neural
network (CNN)-specific backbone. These studies confirm the impor-
tance of SSL in the field of histopathology. However, there are still
three aspects that could be further improved. First, the contrastive
pairs defined in CL are extremely biased for histopathological im-
ages. CL assigns two augmented views from the same instance as one
positive pair, which limits the variability and diversity of positive
samples. When applied to histopathological images, a large number of
semantically correlated pairs will be misidentified as negative samples,
such as patches with similar cells/tissues within/across WSIs. Thus, a
histopathology-oriented CL approach should be considered to improve
the quality of positive views. Second, only CNN structures are applied.
CNN has a good capacity to learn low-level texture content features (lo-
cal features), which is a crucial determinant in classification tasks. The
learning of global context features is often limited by the receptive field
of CNN. The cropped histopathological image patches are usually large
enough to capture both cell-level structures (e.g., cellular microenviron-
ment) and tissue-level contexts (e.g., tumor microenvironment). Thus,
both local and global features are beneficial for pathological image
analysis and should be extracted. Third, the data currently used for SSL
training are relatively homogeneous and their number is rather limited.
Even though Ciga et al. (2022) claimed that 58 datasets had been
utilized in their SSL pretraining process, the final amount of patches
was around 400 thousand. The small amount of training data makes it
difficult to cover the diversity of histopathological images, especially
for pre-training using unlabeled data. In summary, there is a lack of a
universal SSL algorithm for feature extraction based on large-scale and
diverse datasets in the histopathology field.

To address the above-mentioned limitations, we develop a new SSL
method to better capture histopathology-oriented features by construct-
ing a semantically-relevant contrastive learning (SRCL) framework and
a hybrid CNN-transformer backbone. Motivated by the presence of
a large amount of similar cell or tissue patches, our proposed SRCL
framework aims to find more semantically matched positives for each
instance in the latent space. In traditional CL, the visual diversity
of positives depends heavily on the design of data augmentation al-
gorithms. Our SRCL improves this by selecting more similar posi-
tives from different instances, which introduces more visual diversity
than traditional positive samples, resulting in more informative seman-
2

tic representations. Our hybrid backbone (called CTransPath) captures
both local fine structure and global context for histopathological im-
age analysis, which also guarantees more stability in the Transformer
training process. CNN extracts local features by convolutional com-
putation and Transformer captures global dependencies through the
interaction among CNN-generated tokens. The combination of CNN
and Transformer networks further facilitates the construction of our
powerful and universal feature extractor. In our self-supervised pre-
training procedure, the used database is the largest publicly available
in the histopathology scenario, comprising the cancer genome atlas
(TCGA1) and pathology AI platform (PAIP2) datasets and including
around 15 million patches cropped from over 30 thousand WSIs (ap-
proximately 87T). Both TCGA and PAIP cover multiple organs and
cancer types (over 25 anatomic sites and 32 cancer subtypes in total),
which ensures sample diversity and helps train a universal feature
extractor. In addition, to validate the effectiveness of our SSL al-
gorithm, we fully evaluate our pretrained model on five different
downstream tasks, including patch retrieval, supervised patch classi-
fication, weakly-supervised WSI classification, mitosis detection, and
colorectal adenocarcinoma gland segmentation.

Our main contributions are summarized below:

• To the best of our knowledge, this is the first Transformer-based
unsupervised feature extractor carried out on the largest public
histopathological image datasets.

• We propose an SRCL approach, which introduces instance vari-
ations by selecting more correct and diverse positive samples,
helping more informative feature representations.

• We construct a hybrid architecture (CTransPath) for histopatho-
logical image classification. It replaces the patch partition of
Swin Transformer with a simple CNN, which enables more stable
network training and also helps build a powerful feature extractor
with fine local structure and global context.

• Benefiting from the above design, our model shows state-of-the-
art performance in five different downstream tasks (covering
nine public histopathological datasets), which also shows a more
robust and transferable performance than other SSL methods and
ImageNet pretraining (either supervised or self-supervised). The
proposed CTransPath could serve as a general-purpose feature
extractor for various histopathological applications. Our code
and pretrained model have been released online to facilitate
reproductive research.

This work is an extended version of our previous conference pa-
per (Wang et al., 2021b). We have made three major modifications
to further improve the universality and robustness of our proposed
SSL-based feature extractor for histopathological image analysis. First,
based on the unique characteristics of histopathological images, we
improve the traditional CL paradigm by considering more diverse pos-
itive pairs, including augmented views from the current instance and
semantically relevant instances selected from an independent memory
bank. Second, we change our previous backbone using a more powerful
Transformer framework (Swin Transformer), which enhances multi-
scale feature learning while maintaining a small number of parameters.
Third, we use all image patches instead of 100 randomly selected
patches from each WSI in our previous version. More pretraining data
could provide more sample diversity and help train a robust feature
extractor. In addition, to validate the effectiveness of our proposed
histopathology-oriented feature extractor, we reconstruct five types
of downstream experiments (across nine datasets), including patch
retrieval, patch classification, weakly-supervised WSI classification, mi-
tosis detection, and colorectal adenocarcinoma gland segmentation.
These experiments contain a thorough ablation study, comparisons
to state-of-the-art SSL methods, comparisons to other best-performing
methods evaluated on these test data, and interpretability analysis to
visualize the learned feature representations.

1 https://portal.gdc.cancer.gov/
2 http://www.wisepaip.org/paip/
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Fig. 1. An overview of our proposed SRCL approach for histopathological image applications. It is an improved framework based on MoCo v3 (Chen et al., 2021). The negative
samples are stored in each mini-batch and the positives are from two paths: (i) two data augmentations of the current input image and (ii) top 𝑆 semantically-relevant images
identified by comparing the current input feature with samples in the memory bank. Based on the above design, a semantically-relevant contrastive loss is proposed to guide the
network training.
2. Related works

This section reviews the literature about self-supervised learning
(SSL) in the computer vision and histopathological image fields, respec-
tively.

2.1. Self-supervised learning

SSL can be regarded as a form of unsupervised learning due to the
absence of manual annotation, which aims to construct a rich visual
representation using the supervision formulated by the data itself. The
learned representation could be further used to improve performance in
various downstream tasks. SSL approaches have presented remarkable
success in the field of computer vision, which can be divided into two
categories: handcrafted-pretext-based and CL-based schemes.

The pretext tasks (auxiliary prediction tasks) are designed to make
full use of the information contained in the image pixels. By solving
the pretext task, the network can extract general visual representations.
These pretext tasks can be summarized in three categories: (i) global
image prediction for rotation angles (Gidaris et al., 2018) or image
coloring (Zhang et al., 2016), (ii) small patch prediction, such as jigsaw
puzzle solving (Noroozi and Favaro, 2016), and (iii) image context pre-
diction, such as predicting the relative position of sub-regions within an
image (Doersch et al., 2015). However, these pretext tasks encourage
models to learn covariant feature representations rather than invariant
ones (Misra and Maaten, 2020), which leads to limited generalization
ability.

More recently, CL-based SSL has emerged as a promising alternative
method, which has shown excellent performance (even better than
the supervised method) on natural image scenes (Chen et al., 2020;
He et al., 2020). CL extracts augmentation-invariant and instance-
discriminating features by pulling similar (positive) samples and re-
pelling dissimilar (negative) ones. The positive pair is defined as two
random data augmentations from the same image, while negative pairs
are data augmentations from different images in the current batch or
memory bank. It is clear that the definitions of positive and negative
samples are potentially wrong since instances in different pairs may
contain highly relevant semantics. To alleviate this problem, some
recent studies have dedicated a better selection of positive and negative
samples. For example, to better select positives, one nearest neighbor
3

in the space or feature level is alternatively adopted as a positive
sample (Yèche et al., 2021; Pantazis et al., 2021; Dwibedi et al., 2021).
To better select negatives, SwAV used online clustering to divide the
feature space into several distinctive prototypes (Caron et al., 2020).

2.2. Self-supervised learning in digital pathology

With the rapid development of the SSL technique, it has some
applications in digital pathology image analysis, which can also be
categorized into pretext-based, CL-based methods, and their combi-
nations. These pretext tasks are designed according to the charac-
teristics of histopathological images, including magnification predic-
tion (Koohbanani et al., 2021; Srinidhi et al., 2022; Sahasrabudhe
et al., 2020), hematoxylin channel prediction (Srinidhi et al., 2022),
cross-stain prediction (Yang et al., 2021), color reconstruction (Patil
et al., 2021; Li et al., 2021a), and neighborhood image related trans-
formations, such as scale-wise triplet learning and count ranking (Xie
et al., 2020). Although these pretext tasks take into account the unique
characteristics of histopathological images, the pretrained model will
focus on features involved in a specific task. As a result, these pretext-
based approaches have difficulty in obtaining universal features in the
histopathological images, reducing their generalization power. These
CL-based methods directly apply current frameworks (e.g., SimCLR and
MoCo) to the histopathological images without considering histopathol-
ogy characteristics (Li et al., 2021b; Ciga et al., 2022; Huang et al.,
2021). To involve histopathology-specific knowledge, some hybrid
methods are proposed to combine the advantage of instance discrimina-
tion in CL and histopathology-oriented pretext tasks. Yang et al. (2021)
utilized a two-stage SSL training method that incorporates a cross-
stain prediction and a CL pretraining. However, it only considers color
variances in histopathological images and its two-stage SSL training
requires more computational resources. To mine more accurate positive
samples, Abbet et al. (2020) and Li et al. (2021c) further considered
spatial and semantic proximity. There may be conflicting positives or
negatives to confuse the networking training. For instance, spatially
neighbored samples may not be adjacent in the feature space, such as
the boundary between normal and cancerous tissues. Moreover, these
mentioned studies also lack extensive evaluation on large and diverse
datasets.
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Fig. 2. The structure of our hybrid CNN-transformer backbone (CTransPath). (A). The backbone network employs the Swin Transformer framework (Liu et al., 2021), where the
patch partition is replaced by a CNN structure. The CNN part is designed with three sequential convolutional layers of kernel sizes 3 × 3, 3 × 3, and 1 × 1. Similar to the popular
ResNet structure, Swin Transformer is designed to generate hierarchical feature representation using four sequential stages. At each stage, several repeating Swin Transformer
blocks are connected. (B). Illustration of a Swin transformer block, which contains a window-based multi-head self-attention (W-MSA) layer and a shift-window-based multi-head
self-attention (SW-MSA) layer.
3. Methods

This section presents an overview of our proposed SSL algorithm
based on a semantically-relevant contrastive learning (SRCL) and a
hybrid backbone (CTransPath), which is shown in Fig. 1. As shown in
Fig. 1, the current input patch and its two data augmentations can be
regarded as three different views of an input, which are first encoded
into corresponding feature vectors using three network branches. Un-
like conventional CL (e.g., MoCo v3 (Chen et al., 2021)) which has a
pair of positives from the same instance, our positive samples cover an
augmented view of the current input instance and additional pseudo-
positives selected from a very large memory bank, which guarantees
the diversity of positives and thus the more discriminative feature
representations. In the pseudo-positive mining process, given a query
vector from the current input, 𝑆 semantically relevant patches are
retrieved from the memory bank based on the cosine similarity metric,
which are then adopted as additional pseudo-positives for the SRCL
calculation. It is noted that the memory bank is independent from
the current mini-batch since the memory bank only contains samples
from previous mini-batches. In the proposed framework, the hybrid
backbone adopts the Swin Transformer for its multi-scale feature ex-
traction capacity, whereas the patch partitioning part is replaced with
a CNN-based nonlinear mapper to improve the stability of network
training and facilitate better local feature extraction. The integration
of CNN and Swin Transformer enables better local and global feature
extraction.

3.1. Problem formulation

Let 𝐷𝑢 = {𝐱𝑢𝑖 }
𝑁
𝑖=1 denote the unlabeled dataset used for SSL pre-

training, where 𝐱𝑖 ∈ Rℎ×𝑤×3 is a small patch cropped from WSI and 𝑁
represents the total number of images (patches). The purpose of SSL
is to generate pseudo labels based on the data itself to drive network
training. The CL-based SSL has exhibited competitive performance,
which is thus adopted as our main framework. The CL-based SSL
method performs two data augmentations on two network branches for
each sample, generating 𝐷𝑞 = {𝐱𝑞𝑖 }

𝑁
𝑖=1 and 𝐷𝑘 = {𝐱𝑘𝑗 }

𝑁
𝑗=1, respectively.

Then, the two data augmentations from the same input are regarded
as positive pairs 𝐷𝑝𝑜𝑠 = {𝐱𝑞𝑖 , 𝐱

𝑘
𝑗 }[[𝑖=𝑗]] while data augmentations from

different images are used to form negative pairs 𝐷𝑛𝑒𝑔 = {𝐱𝑞𝑖 , 𝐱
𝑘
𝑗 }[[𝑖≠𝑗]].

Two shared backbone neural networks (𝑓 (⋅) and 𝑓 ′(⋅)) on two separate
4

branches are employed to extract feature representations from the
augmented samples. The contrastive loss is designed to pull together
positive representations and push away negative ones.

3.2. Semantically-relevant contrastive learning

Self-supervised pretraining aims to learn a transferable represen-
tation of raw data without requiring manual supervision. Traditional
CL-based SSL approaches construct supervised signals by regarding two
augmented views from the same image as a positive pair and those
from different images as negative pairs (Chen et al., 2020; He et al.,
2020). For histopathological images, there are a large number of similar
patches (i.e., patches with similar cellular and tissue compositions) both
within and across WSIs, which are defined as semantically relevant
samples. Thus, the positive pairs should be counted more instead of
fixed one pair in the traditional CL setting. Motivated by this ob-
servation, we aim to modify the traditional CL strategy by selecting
more semantically relevant positive pairs using cosine similarity metric.
These positive pairs no longer come from the same instance, which
greatly increases the diversity of positive samples.

As illustrated in Fig. 1, there are three parallel paths: online, target,
and shared target branches for encoding three different views of the
input. These branches all use the proposed CTransPath architecture as
the backbone model. Similar to MoCo (He et al., 2020), there is a
memory bank that is constructed by enqueueing the features from the
target branch during training, which is updated at the end of each
iteration. We train the online branch with parameter 𝜽 and update
the target branch with parameter 𝝃 by 𝝃 ← 𝑚𝝃 + (1 − 𝑚)𝜽. The target
and the shared target branches share the same network structure and
parameters 𝝃, which are represented using the same color as shown in
Fig. 1.

Three different views of an input sample are passed into the three
branches, respectively, including two augmented versions of the input
and the original non-altered input itself. As shown in Fig. 1, similar to
MoCo v3 (Chen et al., 2021), the feature vector obtained in the online
branch serves as an anchor, which is used to pull positives closer and
push negatives away during the CL computation. The feature vector
computed in the target branch is used to refresh the memory bank as
training proceeds. The feature vector generated in the shared target
branch acts as a query to retrieve semantically-similar samples from the
memory bank. Note that the roles of the online and target branches can
be interchangeable. Using the original view as a query to select more

positive samples helps generate cross-view variations and guarantees
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more reliability and stability compared with only considering two
augmented views in the online and target branches (Caron et al., 2020;
Wang et al., 2021a).

Given a random histopathological image patch 𝐱, it generates two
ugmentations (𝐱1 and 𝐱2). When 𝐱1 and 𝐱2 respectively pass through

our CTransPath (formulated as 𝑓 (⋅)) in the online and target networks,
corresponding feature representations as generated 𝐲1 = 𝑓 𝜃(𝐱1), 𝐲̂2 =
𝜉 (𝐱2). Then, a linear projection head 𝑔(⋅) is adopted to transform

hese representations into another latent space, i.e., 𝐳1 = 𝑔𝜃(𝐲1) in
nline network, and 𝐳̂2 = 𝑔𝜉 (𝐲̂2) in target network. Symmetrically, the
wapped prediction separately feeds 𝐱1 and 𝐱2 into the target and online
etworks, obtaining 𝐲2 = 𝑓 𝜃(𝐱2), 𝐲̂1 = 𝑓 𝜉 (𝐱1), 𝐳2 = 𝑔𝜃(𝐲2), 𝐳̂1 = 𝑔𝜉 (𝐲̂1).

For contrastive learning, we choose the feature vector in the online
ranch as an anchor 𝐳 as shown in Fig. 1, which is used to construct pos-
tive and negative pairs. In conventional CL method, 𝐳 has one positive
ample 𝐳̂2. To obtain more positive samples, we aim to find samples that
re visually similar to 𝐳. For this purpose, cosine similarities 𝐷 between
and each feature vector 𝐜𝑖 (𝑖 = 1,… , 𝑄) stored in the memory bank
ith a length of 𝑄 are calculated
(

𝐳, 𝐜𝑖
)

=
𝐳 ⋅ 𝐜𝑖

‖𝐳‖‖𝐜𝑖‖
, 𝑖 = 1,… , 𝑄. (1)

hen, the obtained 𝐷
(

𝐳, 𝐜𝑖
)

is sorted in descending order. The top
samples with the highest cosine similarity are taken as the new

ositives for anchor 𝐳. Then, combining the original positive sample 𝐳̂2
n conventional CL, the total number of positive pairs for the anchor 𝐳
ecomes 𝑆+1. Our final semantically-relevant contrastive loss 𝐿𝑆𝑅𝐶𝐿
s optimized by maximizing the similarity between all 𝑆+1 positive
amples:

2(𝐳, 𝐳+, 𝐳−) = − log
∑𝑆+1

𝑖=1 exp
(

𝐳+𝑖 ⋅ 𝐳∕𝜏
)

∑𝑆+1
𝑖=1 exp

(

𝐳+𝑖 ⋅ 𝐳∕𝜏
)

+
∑𝑁

𝑗=1 exp
(

𝐳−𝑗 ⋅ 𝐳∕𝜏
) (2)

𝑆𝑅𝐶𝐿 = 1
2
2(𝐳1, 𝐳̂2, 𝐳−) +

1
2
2(𝐳̂2, 𝐳1, 𝐳−) (3)

here 𝐳 represents an anchor sample (e.g., 𝐳1 in the online branch as
hown in Fig. 1). 𝐳+ and 𝐳− denote the positive and negative features
f the anchor feature. 𝑆+1 and 𝑁 represent the number of positive and
egative pairs, respectively.

.3. Backbone construction

The proposed hybrid network backbone CTransPath fully utilizes the
ocal feature mining ability of CNN and the global interaction ability
f Transformer, which is shown in Fig. 2. Previous studies (Xiao et al.,
021; Chen et al., 2021) have indicated that the Transformer archi-
ecture is much harder to optimize compared with CNNs, mainly due
o the patch projection implemented through large-kernel large-stride
onvolution operations. To alleviate this problem and as motivated by
iao et al. (Xiao et al., 2021) and Liu et al. (Liu et al., 2021), we adopt

he Swin Transformer as the backbone model to take advantage of its
bility of multi-scale feature extraction and computation efficiency, but
eplace the patch partition part with a CNN module to help mining local
eatures and ensure more stable training. The CNN module is designed
ith three consecutive convolutional layers with kernel sizes of 3 × 3,
× 3, and 1 × 1. In our backbone model, an input image 𝒙 ∈ R𝐻×𝑊 ×3

is first passed through the CNN to generate a local feature map 𝐹 with
he size of 𝐻

4 × 𝑊
4 × 𝐶, which is then taken as the input to the Swin

ransformer network. The Swin Transformer network computes self-
ttentions for local windows instead of on the whole input image as
erformed by the traditional Transformer method. We assume that the
ocal window size is 𝑀 × 𝑀 . The feature map 𝑭 can be divided into
𝐻
4𝑀 × 𝑊

4𝑀 non-overlapping windows. We use 𝑰 ∈ R𝑀×𝑀×𝐶 to represent
the feature map of each local window, which is then used to calculate
window-based self-attention (W-SA) as follows:

Linear projection ∶ 𝑸 ← 𝑾 𝑞𝑰 ,𝑲 ← 𝑾 𝑘𝑰 ,𝑽 ← 𝑾 𝑣𝑰

W-SA ∶ 𝑭 = Sof tmax
(

𝑸𝑲⊤∕
√

𝑑 + 𝑩
)

𝑽
(4)
5

𝑊 −𝑆𝐴
where the input 𝑰 is linearly projected into three subspaces with
weights 𝑾 𝑞 , 𝑾 𝑘, and 𝑾 𝑣 to obtain 𝑸, 𝑲 , and 𝑽 . In the self-attention
computation process, the interaction between 𝑲 and 𝑸 is computed by
the dot product. Then, the weight is scaled and projected into space 𝑽
o obtain a W-SA based feature embedding 𝑭𝑊 −𝑆𝐴. The self-attention

operation is performed multiple times in parallel and these results
are concatenated to form the multi-head window-based self-attention
features 𝑭𝑊 −𝑀𝑆𝐴.

The regular partition-based W-SA considers all pixels of the local
window. Thus, it cannot capture context information across local
windows. Swin Transformer overcomes this problem by adding another
shift window operation to obtain shift-window-based self-attention
(SW-SA), which displaces the original local window partitions by
(⌊𝑀

2 ⌋, ⌊𝑀
2 ⌋) pixels and then recomputes another set of window-based

attentions (Liu et al., 2021). In particular, a Swin Transformer block
with two layers can be calculated as follows.

𝐳̂𝑙 = W−MSA
(

LN
(

𝐳𝑙−1
))

+ 𝐳𝑙−1

𝐳𝑙 = MLP
(

LN
(

𝐳̂𝑙
))

+ 𝐳̂𝑙

̂ 𝑙+1 = SW−MSA
(

LN
(

𝐳𝑙
))

+ 𝐳𝑙

𝐳𝑙+1 = MLP
(

LN
(

𝐳̂𝑙+1
))

+ 𝐳̂𝑙+1

(5)

hese are the two layers of a Swin Transformer block, which calculate
-MSA and SW-MSA, respectively. In the first layer, the output 𝐳𝑙−1

f the (𝑙 − 1)th layer is adopted as the input to the 𝑙th layer, which
asses through the layer normalization (LN) layer, and then the W-SA
peration of (4) is performed. After that, the window-based attention
eight is imposed on the input feature embedding 𝐳𝑙−1 by residual con-
ection to form the intermediate features 𝐳̂𝑙. Next, an LN, a multilayer
erceptron (MLP), and a residual connection is performed sequentially
o obtain the output features 𝐳𝑙 of the 𝑙th layer. In the second layer, the
tructure of SW-MSA is similar to that of the W-MSA layer, except that
he contexts in each window are different.

. Experimental results and discussions

This section first introduces the datasets utilized and detailed ex-
erimental setups for SSL pretraining and downstream experiments.
ext, we describe in detail the evaluation metrics used for the down-

tream tasks. Finally, we conduct five types of downstream experiments
o validate the universal applicability of the proposed SSL feature
earning method, including patch retrieval, patch classification, weakly-
upervised WSI classification, mitosis detection, and colorectal ade-
ocarcinoma gland segmentation. These experiments include ablation
tudy, comparisons with state-of-the-art methods on these downstream
atasets, and comparisons with different network pretraining methods
e.g., both supervised and self-supervised ImageNet-based pretraining,
nd several other SSL methods).

.1. Datasets

We collected the largest histopathological image data as publicly
vailable for our self-supervised pretraining, containing around 15
illion unlabeled patches cropped from WSIs in TCGA and PAIP. After

he pretraining process, we evaluate its feature learning ability on
ive types of downstream tasks covering nine datasets: patch retrieval
on UniToPatho and TissueNet), patch classification (on NCT-CRC-HE
nd Colorectal cancer), weakly-supervised WSI classification (on Came-
yon16, TCGA-NSCLC, and TCGA-RCC), mitosis detection (on MIDOG),
nd colorectal adenocarcinoma gland segmentation (on CRAG). All
hese datasets are introduced below.
TCGA. TCGA3 is a public large-scale multi-modal dataset, which

ontains genome, epigenome, transcriptome, and image data. This work

3 https://portal.gdc.cancer.gov/

https://portal.gdc.cancer.gov/
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only considers the image data (frozen and formalin-fixed paraffin-
embedded (FFPE) slides), which includes a total of 30,072 WSIs cov-
ering over 25 anatomic sites and over 32 cancer subtypes. For each
WSI, a primary diagnosis is provided for the entire WSI but no detailed
annotations. 309 WSIs are removed due to the lack of magnification
information. In total, we collect 29,763 WSIs at 20× from 10,953 pa-
tients. After excluding regions without tissues, we crop these WSIs into
non-overlapping patches with the size of 1, 024 × 1, 024 pixels. Finally,
we generate a TCGA pretraining dataset with 14,325,848 unlabeled
histopathological patches.

PAIP. PAIP4 (Kim et al., 2021) provides 2457 WSIs collected from
three centers (Seoul National University Hospital, Seoul National Uni-
versity Bundang Hospital, and SMG-SNU Boramae Medical Center),
which cover six cancer types, including 571 WSIs from liver, 400 WSIs
from renal, 900 WSIs from colorectal, 400 WSIs from prostatic, 166
WSIs from pancreatic, and 20 WSIs from cholangio cancers. Although
region-of-interest (ROI) annotations are provided in this dataset, we
do not use any labeling information for SSL pretraining. Following the
similar image extraction strategy as the TCGA dataset, we produce a
PAIP pretraining dataset with 1,254,414 unlabeled histopathological
patches.

UniToPatho. UniToPatho5 (Barbano et al., 2021) is a well-
annotated patch-level dataset released for colorectal polyp classifica-
tion: normal tissue (NORM), hyperplastic polyp (HP), tubular adenoma
(TA), and tubulo-villous adenoma (TVA). This dataset contains 8,699
patches (1, 812×1, 812 pixels) cropped from 292 WSIs (20×) for the four
type tissue classification task.

TissueNet. TissueNet6 is released in the TissueNet: Detect Lesions in
Cervical Biopsies challenge, which aims to classify epithelial lesions of
the uterine cervix into four classes: benign (class 0), low malignant
potential lesion (class 1), high malignant potential lesion (class 2),
and invasive cancer (class 3). As presented in this challenge, TissueNet
contains 1,016 WSIs and 5,926 locally labeled patches (300 × 300
micrometers) within these WSIs. The size of 300 × 300 micrometers is
equivalent to approximately 1,200 × 1,200 pixels. Only these patches
are used for the patch retrieval experiments.

NCT-CRC-HE. NCT-CRC-HE7 is provided to identify nine tissues,
including eight colorectal cancer tissues and one normal tissue (Kather
et al.). The training set contains a total of 100,000 images (extracted
from 86 WSIs) with a size of 224 × 224 pixels. An independent set of
7,180 images are used for testing.

Colorectal cancer (CRC). CRC8 (Kather et al., 2016) is proposed for
colorectal classification task. It is composed of 5,000 patches with the
size of 150 × 150 pixels (74 × 74 microns) and covers eight different
tissue types (625 patches for each type), including epithelium, simple
stroma, complex stroma, lymphoid follicles, debris, mucosal glands,
adipose and background ROIs with no tissue.

Camelyon16. Camelyon169 is released in the Camelyon16 chal-
lenge (Bejnordi et al., 2017) for two types of breast cancer classifica-
tion: benign tissue and metastatic breast cancer, which contains a total
of 399 WSIs at 40× (270 WSIs for training and 129 WSIs for testing).
Although this dataset provides exhaustive pixel-level annotations, we
only utilize global WSI-level annotations for the weakly-supervised
classification task.

TCGA-NSCLC. TCGA-NSCLC is collected from the TCGA dataset for
two types of lung cancer classification: lung squamous cell carcinoma
(TCGA-LUSC) and lung adenocarcinoma (TCGA-LUAD), which consists

4 http://wisepaip.org/paip
5 https://ieee-dataport.org/open-access/unitopatho
6 https://www.drivendata.org/competitions/67/competition-cervical-

iopsy/page/254/
7 https://zenodo.org/record/1214456#.YVrmANpBwRk
8 https://zenodo.org/record/53169#.YRfeKYgzbmE
9

6

https://camelyon16.grand-challenge.org/
of a total of 993 FFPE WSIs (507 WSIs with LUAD and 486 WSIs with
LUSC).

TCGA-RCC. TCGA-RCC is a subset of TCGA for the classification
f three subtypes of kidney tumor: kidney chromophobe renal cell
arcinoma (TCGA-KICH), kidney renal clear cell carcinoma (TCGA-
IRC), and kidney renal papillary cell carcinoma (TCGA-KIRP). There
re a total of 884 FFPE WSIs, including 111 KICH WSIs, 489 KIRC WSIs,
nd 284 KIRP WSIs.
MIDOG. MIDOG10 is released in the MICCAI MIDOG 2021 challenge

or the mitosis detection (Aubreville et al., 2022). The publicly avail-
ble training set contains 150 WSIs with a size of 8,000 × 8,000 pixels,
hich are cropped into 79,399 patches (6,699 with mitosis) with a size
f 256 × 256 pixels. In our experiments, these 150 WSIs are divided into
raining, validation, and test sets with a ratio of 7:1:2.
CRAG. CRAG11 is proposed for colorectal adenocarcinoma gland

CRAG) segmentation, which contains 213 images with a size of around
,512 × 1,516 pixels (Awan et al., 2017; Graham et al., 2019). Follow-
ng official settings (Graham et al., 2019), these images are randomly
plit into 173 training images and 40 testing images. Then, 20% of these
raining images are picked out for parameter validation.

.2. Experimental setups

In the pretraining stage, we use our proposed SRCL-based frame-
ork to train the CTransPath model with a mini-batch of 1,024.
istopathology-oriented data augmentation strategies are adopted

Tellez et al., 2019), including random cropping, Gaussian blur, and
ue and saturation shifting in the HSV color space. Following MoCo
3 (Chen et al., 2021), 𝜏 in the contrastive loss is set as 0.2. AdamW
Loshchilov and Hutter, 2018) is adopted as the optimizer with an
nitial learning rate of 0.00015. The learning rate is updated using a
osine decay schedule with a long warmup of 40 epochs. The number
f new positive pairs 𝑆 is set as four and the number of epochs for
raditional CL training (a short warmup) is set as five, which will be
xplained in the following ablation experiments. Our method is imple-
ented using the PyTorch package and the SRCL model pretraining

akes around 250 h to converge using 48 Nvidia V100 GPUs. It is noted
hat the number of iterations is set to 100 epochs to ensure convergence
or the pre-training of both our SRCL model and all other SSL models
ompared. After self-supervised pretraining, the pretrained backbones
an be fine-tuned or used directly for various downstream tasks.

The downstream experiments are divided into five main categories:
atch retrieval, patch classification, WSI classification, mitosis detec-
ion, and colorectal adenocarcinoma gland segmentation. (1) The patch
etrieval does not require any further fine-tuning, which can be re-
arded as an inference procedure. (2) The patch classification is evalu-
ted using standard linear probing, which is implemented by training a
upervised linear classifier (a fully connected layer) on top of the frozen
TransPath. To train the linear classifier, Adam is used as the optimizer
ith a batch size of 96. The initial learning rate is set as 0.0003. The
ata augmentations include random horizontal, vertical, and 90-degree
lipping, and random scaling. (3) For the WSI classification task, the
retrained CTransPath model is also frozen. Then, following CLAM (Lu
t al., 2021), we adopt Adam as the optimizer with an initial learning
ate of 0.0002 and a weight decay of 0.00001. The mini-batch size is set
o 1 (WSI/bag). (4) The mitosis detection task is solved using the Faster
CNN method (Ren et al., 2015) with our pretrained CTransPath as the
ncoder. The batch size is set to 64 and Adam is employed as optimizer
ith an initial learning rate of 0.0003. The learning rate reduces by a

actor of 10 at the 10th and 20th epochs. It takes around a total of 30
raining epochs to converge. The utilized data augmentation strategies
nclude random cropping, random horizontal/vertical flipping, random

10 https://midog2021.grand-challenge.org/
11 https://warwick.ac.uk/fac/sci/dcs/research/tia/data/mildnet

http://wisepaip.org/paip
https://ieee-dataport.org/open-access/unitopatho
https://www.drivendata.org/competitions/67/competition-cervical-biopsy/page/254/
https://www.drivendata.org/competitions/67/competition-cervical-biopsy/page/254/
https://zenodo.org/record/1214456#.YVrmANpBwRk
https://zenodo.org/record/53169#.YRfeKYgzbmE
https://camelyon16.grand-challenge.org/
https://midog2021.grand-challenge.org/
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/mildnet
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Table 1
Ablation study. Sup. denotes the supervised pretraining process. ImageTrans and HistoTrans denote ImageNet-pretrained Swin Transformer and
histopathology-pretrained Swin Transformer, respectively. HistoTrans+CNN means our CTransPath backbone. SN denotes spatial-neighbor-based
contrastive learning method.
Methods TissueNet UniToPatho

ACC@1 ACC@3 ACC@5 mMV@5 ACC@1 ACC@3 ACC@5 mMV@5

ImageTrans (Sup.) 0.5324 0.7892 0.8799 0.5035 0.5334 0.7899 0.8708 0.5463
ImageTrans (SSL) 0.5618 0.8171 0.9047 0.5565 0.5749 0.8103 0.8803 0.5799
HistoTrans+CL 0.6051 0.8395 0.9220 0.5910 0.5935 0.8194 0.8891 0.6011
HistoTrans+CNN+CL 0.6239 0.8405 0.9109 0.6247 0.6183 0.8234 0.8837 0.6294
HistoTrans+CNN+SN 0.6304 0.8488 0.9158 0.6363 0.6201 0.8305 0.8928 0.6332
HistoTrans+CNN+SRCL (ours) 0.6505 0.8606 0.9261 0.6617 0.6329 0.8370 0.8966 0.6417
𝑚
w
a

Table 2
Effect of different values of 𝑆 for the number of pseudo-positives on the patch retrieval
accuracy.

𝑆 = 0 𝑆 = 1 𝑆 = 2 𝑆 = 4 𝑆 = 6 𝑆 = 8

TissueNet ACC@1 0.6239 0.6333 0.6409 0.6505 0.6498 0.6417
mMV@5 0.6247 0.6338 0.6527 0.6617 0.6610 0.6537

UniToPatho ACC@1 0.6183 0.6194 0.6211 0.6329 0.6271 0.6223
mMV@5 0.6294 0.6340 0.6370 0.6417 0.6370 0.6311

Table 3
Effect of different number of epochs for warmup on the patch retrieval accuracy.

Epoch 0 2 5 10

TissueNet ACC@1 0.6304 0.6417 0.6505 0.6493
mMV@5 0.6358 0.6525 0.6617 0.6606

UniToPatho ACC@1 0.6209 0.6286 0.6329 0.6309
mMV@5 0.6332 0.6363 0.6417 0.6407

scaling, and random color jitter. Focal loss is used as the objective
function. (5) The colorectal adenocarcinoma gland segmentation task
is implemented using the U-Net framework (Ronneberger et al., 2015)
with our pretrained CTransPath as the encoder. The training loss is

combination of Dice and cross-entropy losses. The other parameter
ettings are kept the same as that for the mitosis detection task.

.3. Evaluation metrics

Image classification, retrieval, detection, and segmentation experi-
ents are conducted to evaluate the effectiveness of our SSL-pretrained

eature extractor. For the classification task, accuracy (ACC), area
nder the curve (AUC) score, and F1 score are used for performance
valuation. For image retrieval, querying an image will return a series
f similar images. Based on these returns, 𝐴𝐶𝐶@𝑘 (top-𝑘 accuracy) and
𝑀𝑉@𝑘 (majority vote at the top 𝑘 search returns) are calculated as

evaluation metrics. For a query image, 𝐴𝐶𝐶@𝑘 will be 1 if any one
of the top-𝑘 returns has the same label as the query image, otherwise
it will be 0. Compared to 𝐴𝐶𝐶@𝑘, 𝑚𝑀𝑉@𝑘 is a stricter metric since
𝑚𝑀𝑉@𝑘 will be 1 only if the majority of these retrieved images have
the same label as the query image. For the detection and segmentation
tasks, F1 and Dice scores are respectively used following the convention
of the original works (Aubreville et al., 2022; Graham et al., 2019).

4.4. Results of patch retrieval

This subsection conducts patch retrieval to validate the robustness
and transferability of our pretrained histopathology-oriented features.
The patch retrieval process contains two steps: i) feature extraction
for searching database and ii) similarity measurement across these
features. The first step can be implemented by passing every sample of
the searching database to the pretrained model to generate the sample
features. In the second step, the feature of a query image is compared
with all features in the searching database based on the leave-one-
patient-out validation strategy. These retrieved images can be sorted
7

in descending order of similarity scores to calculate the 𝐴𝐶𝐶@𝑘 and
𝑚𝑀𝑉@𝑘 metrics. From the above introduction, it can be seen that the
patch retrieval results can directly reflect the feature learning ability
of our CTransPath method. Two patch-level datasets (TissueNet and
UniToPatho) with subtype annotations are employed for the image
retrieval experiment, which aims to retrieve images with the same
cancer subtypes. In the patch retrieval experiments, we first conduct
an ablation study to validate the effectiveness of key components in
the design of backbone and CL strategy as shown in Table 1, Table 2,
and Table 3. Then, we compare our proposed SRCL method with other
SSL baselines as shown in Table 4.

4.4.1. Ablation study
Our ablation study first investigates the effects of three key com-

ponents of our SSL algorithm: in-domain SSL pretraining strategy,
hybrid CNN and Transformer encoder, and semantically-relevant CL
algorithm, the results of which are summarized in Table 1. Then,
the effects of different 𝑆 values and different numbers of epochs for
traditional CL training (a short warmup) are shown in Table 2 and
Table 3, respectively. In Table 1, ImageTrans and HistoTrans denote
ImageNet-pretrained Swin Transformer and Histopathology-pretrained
Swin Transformer, respectively. HistoTrans+CNN means using the pro-
posed CTransPath as the backbone. ImageNet-pretrained weights of
Swin Transformer are obtained directly from previous studies (Liu
et al., 2021; Xie et al., 2021).

Benefit of in-domain SSL pretraining: As shown in the first three
rows of Table 1, with traditional CL loss and Swin Transformer back-
bone, replacing the ImageNet training data with large-scale histopathol-
ogy datasets brings an improvement of about +4% in terms of both
𝐴𝐶𝐶@1 and 𝑚𝑀𝑉@5 when tested on the TissueNet data. This indi-
cates that the self-supervised histopathology-oriented feature extractor
could significantly boost the retrieval performance compared with
the self-supervised ImageNet-pretrained feature extractor. It can also
be seen from Table 1 that the self-supervised ImageNet pretraining
provides higher accuracy than the supervised ImageNet pretraining for
this histopathology image retrieval task, which is consistent with results
obtained by previous studies (Hosseinzadeh Taher et al., 2021, 2022).

Benefit of hybrid CNN and Transformer encoder: To allevi-
ate the weak local feature extraction problem of Transformer, we
replace the patch partition of Transformer using a CNN module, which
yields consistent performance gains in all four metrics on both datasets
(e.g., +2% for 𝐴𝐶𝐶@1 and +3% for 𝑚𝑀𝑉@5 on TissueNet).

Benefit of semantically-relevant positives: To alleviate biased
definition of positive and negative samples in traditional CL, we modify
the contrastive loss by mining more positives in a large memory bank.
Our memory bank is only used for searching several similar samples
as positives, which differs from the previous methods (e.g., MoCo (He
et al., 2020)) that regard all samples in the memory bank as neg-
atives. We implement this by adding an SRCL loss function, which
achieves an obvious performance improvement compared to the tra-
ditional contrastive loss (e.g., +3% and +4% in terms of 𝐴𝐶𝐶@1 and
𝑀𝑉@5 on the TissueNet). Furthermore, we also compare our SRCL
ith previous spatial-neighbor-based contrastive learning strategy that
dopts any two spatially adjacent patches as positives (Abbet et al.,
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Table 4
Results of patch retrieval and comparison with other state-of-the-art SSL frameworks. Note that the implementation of all other SSL methods is based on their publicly available
code but the backbone model and the training data are switched to be the same as ours.

Methods TissueNet UniToPatho

ACC@1 ACC@3 ACC@5 mMV@5 ACC@1 ACC@3 ACC@5 mMV@5

SimCLR (Chen et al., 2020) 0.6019 0.8297 0.9036 0.6021 0.6070 0.8149 0.8819 0.6170
MoBY (Xie et al., 2021) 0.6131 0.8360 0.9077 0.6077 0.6110 0.8197 0.8873 0.6173
DINO (Caron et al., 2021) 0.6169 0.8481 0.9183 0.6183 0.6149 0.8224 0.8909 0.6222
MoCo v3 (Chen et al., 2021) 0.6239 0.8405 0.9109 0.6247 0.6183 0.8234 0.8837 0.6294
SRCL (ours) 0.6505 0.8606 0.9261 0.6617 0.6329 0.8370 0.8966 0.6417
Table 5
Linear evaluation results on NCT-CRC-HE dataset with different sizes of training data. ImageTrans (Sup.) and ImageTrans (SSL) refer to models pre-trained using the ImageNet
data in a supervised and self-supervised manner, respectively. All other compared SSL frameworks are pretrained using our training data. A supervised baseline using 100% of the
training data achieves an F1 score of 0.9295 and an ACC of 0.9458.

Methods Backbone Percentage of training data

0.5% 1% 10% 50% 100%

F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC

ImageTrans (Sup.) Swin 0.4770 0.5703 0.5584 0.6157 0.7780 0.8139 0.8206 0.8585 0.8323 0.8705
ImageTrans (SSL) Transformer 0.6997 0.7348 0.7816 0.8213 0.8715 0.9035 0.8867 0.9171 0.8903 0.9216

SimCLR

ResNet50

0.8062 0.8503 0.8331 0.8649 0.8613 0.9195 0.8971 0.9269 0.9025 0.9315
BYOL 0.8234 0.8636 0.8649 0.8965 0.8876 0.9245 0.9050 0.9324 0.9144 0.9413
SimSiam 0.8348 0.8730 0.8660 0.9054 0.8903 0.9286 0.9085 0.9387 0.9144 0.9457
MoCo v2 0.8435 0.8875 0.8702 0.9130 0.9050 0.9362 0.9156 0.9467 0.9213 0.9514

SimCLR

CTransPath

0.8204 0.8581 0.8439 0.8716 0.8740 0.9297 0.9043 0.9316 0.9081 0.9349
MoBY 0.8317 0.8699 0.8578 0.8965 0.8919 0.9357 0.9144 0.9442 0.9156 0.9465
DINO 0.8355 0.8799 0.8671 0.9128 0.8915 0.9369 0.9135 0.9438 0.9198 0.9502
MoCo v3 0.8682 0.8978 0.8739 0.9228 0.9046 0.9415 0.9208 0.9516 0.9254 0.9548
SRCL (ours) 0.8988 0.9266 0.9334 0.9539 0.9420 0.9635 0.9474 0.9648 0.9482 0.9652
a
p
T

2020), which can be seen in the last two rows of Table 1. To conduct
a fair comparison, we adopt four adjacent patches as new positives
similar to our SRCL. As seen in Table 1, treating spatial neighbors as
positives offers higher accuracy than treating these augmented views
from the same instance as positives, but less effective than treating
semantically-related patches as positives. The reason may be that neigh-
boring patches represent only local similarity within WSIs, while our
method can find globally similar patches across WSIs and guarantees
more sample diversity.

Effect of different 𝑆 values: We also conduct an ablation ex-
periment on the TissueNet and UniToPatho datasets to explore the
influence of different 𝑆 values on the patch retrieval task, the results of
which are shown in Table 2. Although the performance of our method
is relatively stable for 𝑆 values varying from 2 to 8, it is seen that
𝑆 = 4 is the optimal setting and larger 𝑆 shows slightly degraded
performance. The reason can be explained from two aspects. First,
these selected potential positives are pseudo-positives since the patches
have no labels. Second, the sizes of both the memory bank and mini-
batch are fixed, which are two independent containers for the positive
mining and contrastive loss calculation, respectively. Thus, a very large
𝑆 may introduce some hard or false positives, posing a challenge for
discriminative feature learning.

Effect of different numbers of epochs for warmup: Intuitively,
the results of SRCL-based positive sample selection may be unreliable
in the early training stage because the feature is not well learned
yet. Thus, we employ traditional CL loss (e.g., loss in MoCo v3 (Chen
et al., 2021) to warm up the model training in the first several epochs.
Therefore, this ablation experiment is conducted to investigate how
many epochs are suitable for this warmup strategy. The detailed results
are shown in Table 3. It is seen that a small number of epochs can
bring a better performance gain compared with the situation without
warmup. We empirically set the number of epochs for warmup as five.

4.4.2. Comparison with other SSL methods
We compare our SRCL approach with other SSL strategies in Ta-

ble 4, including SimCLR (Chen et al., 2020), MoBY (Xie et al., 2021),
8

DINO (Caron et al., 2021), and MoCo v3 (Chen et al., 2021). In
their official implementations, all the methods use Transformer as the
backbone except SimCLR. SimCLR constructs two symmetrical branches
with shared weights to perform CL. MoCo v3 maintains a similar struc-
ture as SimCLR but differs in the momentum encoder. DINO maintains
a similar teacher–student structure as MoCo but uses a cross-entropy
loss to directly predict the output of the teacher network, which avoids
model collapsing through centering and sharpening of the teacher
branch. MoBY inherits two asymmetric encoders as BYOL (Grill et al.,
2020), while retaining the memory bank used in MoCo to store negative
samples for the calculation of contrastive loss. Since here we aim to
compare the performance differences caused by different SSL strategies,
we directly use the published code of these methods to conduct SSL
pre-training but switch the backbone model and the training data to be
the same as our SRCL method.

As shown in Table 4, our method achieves the best retrieval per-
formance. SimCLR with our CTransPath backbone produces the lowest
performance. The reason may be that it lacks a momentum encoder,
which has been demonstrated as a key factor for performance improve-
ment in SSL training (Tao et al., 2021). Compared with SimCLR, MoBY
and DINO provide similar performance gains, which may be due to
the fact that both methods have a similar asymmetric structure like
BYOL (Grill et al., 2020). However, MoBY is slightly lower than DINO,
which may be due to the memory bank used for negative sample storage
in MoBY. It has been demonstrated that a memory bank may cause
diminishing gain if the batch is sufficiently large (Chen et al., 2021).
MoCo v3 keeps the momentum encoder but abandons the memory
bank, which produces the best performance only second to ours as
shown in Table 4. For instance, it exceeds SimCLR by about +2%
on the TissueNet and +1% on the UniToPatho in terms of 𝐴𝐶𝐶@1
nd 𝑚𝑀𝑉@5. Compared against MoCo v3, our method offers an im-
rovement of around +3% for 𝐴𝐶𝐶@1 and +4% for 𝑚𝑀𝑉@5 on the
issueNet dataset and +1.5% of 𝐴𝐶𝐶@1 and +1% of 𝑚𝑀𝑉@5 on Uni-

toPatho dataset. This performance improvement is mainly attributed to
our semantic-relevance strategy.

4.5. Results of patch classification

Our SSL pretrained feature extractor can serve as a universal rep-

resentation learning method for histopathological images. To further
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Fig. 3. Visualization (t-SNE) of the classification performance of all images in the CRC dataset based on the features generated from KimiaNet (left) and SRCL-pretrained CTransPath
(right).
)

Table 6
Results of downstream classification tasks performed on CRC dataset (SVM classification

Methods ACC

Combined texture descriptors (Kather et al., 2016) 87.40
Ensemble of DNNs (Ghosh et al., 2021) 92.83
Fine-tuned VGG-19 (Faust et al., 2018) 93.58
KimiaNet (Riasatian et al., 2021) 96.80
Ensemble of CNNs (Nanni et al., 2021) 97.60
Ours 98.20

verify the generalizability of the features, this subsection studies down-
stream classification tasks on two publicly available datasets: NCT-
CRC-HE and CRC. On the NCT-CRC-HE dataset (Table 5), following
the common linear evaluation protocol (Chen et al., 2020), we con-
duct experiments on training data of different sizes to investigate
the classification performance under limited labeling settings. Also,
we compare the performance of our method with state-of-the-art SSL
methods. On the CRC dataset (Table 6), to conduct a fair comparison
with KimiaNet (Riasatian et al., 2021), an SVM-evaluation is conducted
to compare the results of different methods.

In Table 5, linear evaluation is performed by freezing the pre-
trained CTransPath backbone and training a fully connected layer
for classification. We explore the performance variation of our SSL-
pretrained features on different proportions of downstream training
data, especially with limited annotations. For data splitting, we keep
the same test data as the official setup, but randomly select 0.5%,
1%, 10%, 50%, and 100% of training data for comparison. We com-
pare the performance produced by our SRCL-based histopathology-
specific pretraining with that of supervised ImageNet-pretraining, self-
supervised ImageNet-pretraining, and histopathology-specific pretrain-
ing by other SSL frameworks (CNN-based and Transformer-based back-
bones). These CNN-based SSL frameworks include SimCLR (Chen et al.,
2020), BYOL (Grill et al., 2020), SimSiam (Chen and He, 2021), and
MoCo v2 (Chen et al., 2020) and Transformer-based SSL frameworks in-
clude SimCLR (Chen et al., 2020), MoBY (Xie et al., 2021), DINO (Caron
et al., 2021), and MoCo v3 (Chen et al., 2021). ImageTrans (Sup.)
and ImageTrans (SSL) adopt the Swin Transformer as the backbone,
which are consistent with those in Table 1. It is noted that these three
kinds of backbones have a similar computational complexity (Liu et al.,
2021). As shown in Table 5, it can be seen that our SRCL-pretrained
model achieves consistently higher performance compared to all other
methods. Specifically, our method exceeds the fully supervised baseline
(backbone training with ImageNet initialization and 100% labeled
data) with only 1% of the labeled data. Moreover, our performance
gains are even more significant when the labeled training data is
limited. For instance, when the annotation rate of the training data
increases from 0.5% to 100%, the performance gap between our SRCL-
pretrained model and SSL-based ImageNet-pretrained one reduces from
20% to 6% in terms of F1 score. Furthermore, to conduct a direct
9

Table 7
Results of weakly-supervised classification on three public datasets.

CAMELYON16 TCGA-NSCLC TCGA-RCC

ACC AUC ACC AUC ACC AUC

Kernel ATT (Rymarczyk et al., 2021) 0.773 0.804 0.841 0.921 0.856 0.945
C2C (Sharma et al., 2021) 0.809 0.841 0.849 0.921 0.909 0.972
MIL-RNN (Campanella et al., 2019) 0.819 0.856 0.856 0.931 0.914 0.974
AbMIL (Ilse et al., 2018) 0.820 0.857 0.838 0.920 0.902 0.980
CLAM-MB (Lu et al., 2021) 0.835 0.854 0.863 0.938 0.925 0.988
CLAM-SB (Lu et al., 2021) 0.837 0.873 0.859 0.938 0.921 0.987
TransMIL (Shao et al., 2021) 0.884 0.931 0.884 0.960 0.947 0.988
DSMIL (Li et al., 2021b) 0.899 0.917 0.929 0.958 – –
CLAM-SB + Ours 0.922 0.942 0.912 0.973 0.967 0.991

comparison with our previous TransPath method (Wang et al., 2021b),
we freeze the pretrained TransPath model to perform the classification
on the NCT-CRC-HE dataset with 100% training data. It produces an
F1 score of 0.9008 and an ACC of 0.9405, which are inferior to the
current method. These results demonstrate that the features learned
by our extended version (SRCL-pretrained CTransPath) have better
discriminative power.

In Table 6, we freeze our backbone and train an SVM to perform
the classification task. To perform a fair comparison with KimiaNet (Ri-
asatian et al., 2021), we run a 10-fold cross-validation to evaluate the
classification performance. The results of these state-of-the-art methods
are copied from their respective publications. As shown in Table 6,
our method achieves the highest performance, which exceeds the pre-
vious best-reported method (model ensemble) by +0.6%. Specifically,
KimiaNet is similar to us in that it applies a histopathology-oriented
feature extractor pretrained on the TCGA using weak annotations. Our
SRCL-pretrained CTransPath exceeds KimiaNet by 1.4% in terms of
ACC. Also, a t-SNE visualization is conducted to visually compare the
discriminative power between features generated by KimiaNet and our
SRCL-pretrained CTransPath. As shown in Fig. 3, it is seen that our
method can better push away inter-class samples and pull together
intra-class ones, which proves the strong feature discrimination ability
of our method and demonstrates that our SSL-based feature embedding
transfers better to downstream classification tasks.

4.6. Results of weakly-supervised WSI classification

To further verify the discriminative capacity of our proposed self-
supervised representation learning, we conduct a weakly-supervised
classification experiment on three WSI-level datasets: CAMELYON16,
TCGA-NSCLC, and TCGA-RCC. Meanwhile, we compare the weakly-
supervised classification results based on SRCL-pretrained features with
current state-of-the-art methods, which are detailed in Table 7. The
weakly-supervised classification problem at the WSI level is defined
as giving only global annotations (slide level) without details of in-
ternal regions. The current weakly-supervised algorithms developed
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Fig. 4. Interpretability and visualization for some good cases. Subfigures (a)–(c) show the original WSIs overlaid with the automatically computed attention heatmaps. Warmer
colors of the attention map indicate higher estimated probabilities of being tumorous tissue. (a) CLAM-SB (ImageNet pretraining in a supervised manner) (Lu et al., 2021). (b)
DSMIL (histopathology pretraining in a self-supervised manner) (Li et al., 2021b). (c) Our SRCL method. (d) Ground truth. In (d), these green lines represent the ground truth of
the cancer metastasis, while dark rectangles indicate local ROIs highlighting the boundaries between metastatic and normal tissues, as shown in (e). These four WSIs come from
the CAMELYON16 test dataset.
for WSI classification can be divided into two steps: (i) feature ex-
traction for patches cropped from WSIs and (ii) feature aggregation
for these patch features. These feature extraction methods include
ImageNet-pretraining, end-to-end training, and SSL-pretraining. These
aggregation algorithms contain attention-based pooling and RNN-based
(or Transformer-based) feature fusion. In our weakly-supervised clas-
sification method, the feature extractor adopts our SRCL-pretrained
CTransPath, while the feature aggregator directly utilizes that of CLAM-
SB (attention-based pooling) (Lu et al., 2021). In our implementation,
the data split process is kept consistent with the proposer of the
CAMELYON16 dataset (Bejnordi et al., 2017). For TCGA-NSCLC and
TCGA-RCC datasets, we use 5-fold cross-validation to organize the
experiment. It is noted that the results of TransMIL and DSMIL are
copied directly from their publications and the remaining methods are
implemented using their released codes.

As shown in Table 7, our weakly-supervised classification results
consistently outperform all other methods. Especially on the CAME-
LYON16 dataset, our algorithm obtains an ACC of 0.922 and an AUC of
0.942, which has an improvement of around +9% and +7% compared
to the CLAM-SB method. A similar phenomenon can be seen on the
TCGA-NSCLC and TCGA-RCC datasets. The results further validate
the powerful feature learning of our SRCL-pretrained CTransPath. By
comparing with the previously best-performing DSMIL on the CAME-
LYON16 dataset, our results achieve an improvement of around +3%
in both ACC and AUC. However, on the TCGA-NSCLC dataset, our
10
ACC metric is slightly lower than that of DSMIL. The reason may be
that our results are averaged over multiple folds, while DSMIL was
tested only once. DSMIL is similar to ours in that it also uses an
SSL approach on histopathological images to extract features and a
similar aggregation scheme based on attention pooling. Therefore, our
results can also indirectly indicate that our feature extractor is better
than that of DSMIL. Another obvious phenomenon is that the results
tested on CAMELYON16 generally have lower accuracy than those
tested on TCGA-NSCLC and TCGA-RCC, which is caused by the different
percentage of tumor regions in each slide (e.g., < 10% in CAMELYON16
and > 80% in TCGA-NSCLC and TCGA-RCC).

We also conduct interpretability and visualization analysis to ex-
plain the mechanism behind the weakly-supervised classification. Fig. 4
and Fig. 5 show some examples of good and bad cases, respectively.
WSIs from the CAMELYON16 test set are adopted for demonstration
due to the availability of detailed region annotations (Fig. 4(d) and
Fig. 5(d)). It is noted that these annotations are only used for visual
comparison of different results. The visualization results compare the
attention heatmaps (Lu et al., 2021) corresponding to the weakly
supervised classification with different model pretraining, including the
proposed SRCL method (Fig. 4(c) and Fig. 5(c)), ImageNet pretraining
(Fig. 4(a) and Fig. 5(a)), and previous state-of-the-art DSMIL method
(Fig. 4(b) and Fig. 5(b)). To be consistent with the previous experi-
ments, the supervised ImageNet pretraining adopts Swin Transformer

as the feature extractor. Both our method and the supervised ImageNet
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Fig. 5. Interpretability and visualization for some bad cases. Subfigures (a)–(c) show the original WSIs overlaid with the automatically computed attention heatmaps. Warmer
colors of the attention map indicate higher estimated probabilities of being tumorous tissue. (a) CLAM-SB (ImageNet pretraining in a supervised manner) (Lu et al., 2021). (b)
DSMIL (histopathology pretraining in a self-supervised manner) (Li et al., 2021b). (c) Our SRCL method. (d) Ground truth. In (d), these green lines represent the ground truth of
the cancer metastasis, while dark rectangles indicate local ROIs highlighting the boundaries between metastatic and normal tissues, as shown in (e). These three WSIs come from
the CAMELYON16 test dataset.
pretraining one utilize the same feature aggregating scheme as the
CLAM-SB method. The DSMIL is implemented based on their released
code and network weights (Li et al., 2021b). As shown in Fig. 4(a-c) and
Fig. 5(a-c), these attention-based heatmaps are generated according to
the importance of each sub-region in the classification procedure. As
shown in Fig. 4, our weakly-supervised classification method produces
very accurately localized tumor heatmaps, which matches the ground
truth very well. Especially for these tiny cancerous regions as shown
in the last two rows, our method can still correctly capture the lesion
regions, which is very challenging even for experienced pathologists.
However, our method may fail to detect some hard cases with small
or isolated tumor micrometastasis as shown in Fig. 5. These hard cases
can also be easily missed by pathologists if only observing the H&E
stained slides but without the assistance of extra immunohistochemical
staining (Bejnordi et al., 2017; Weaver, 2010). In summary, the visu-
alized results further demonstrate that our features have the potential
to delineate tumor boundaries in combination with weakly-supervised
aggregation methods, even with only WSI-level annotations.

4.7. Results of downstream detection and segmentation tasks

To further verify the generalizability of our feature extractor (SRCL-
pretrained CTransPath), we construct two experiments for mitosis de-
tection and colorectal adenocarcinoma gland segmentation by full net-
work fine-tuning, as shown in Table 8. Faster RCNN (Ren et al., 2015)
and U-Net (Ronneberger et al., 2015) are employed as the detection
and segmentation frameworks, respectively. In the current implementa-
tion, their encoders are initialized by the pretrained CTransPath model
and decoders are initialized randomly. And then, the detection and
segmentation networks are retrained based on full supervision. Our
method is also compared with ImageNet-pretrained Swin Transformer
in both a fully supervised manner and a self-supervised setting, and
histopathology-pretrained CTransPath using different SSL strategies. As
11
Table 8
Results of downstream mitosis detection and colorectal adenocarcinoma gland segmen-
tation tasks via full network fine-tuning. The ImageTrans adopts Swin Transformer as
the encoder and the four compared SSL frameworks employ our CTransPath as the
encoder.

Model Mitosis detection (F1) CRAG segmentation (Dice)

ImageTrans (Sup.) 0.6842 0.8743
ImageTrans (SSL) 0.6958 0.8824

SimCLR 0.7078 0.8962
MoBY 0.7110 0.9010
DINO 0.7083 0.8996
MoCo v3 0.7204 0.9050
Ours 0.7332 0.9156

shown in Table 8, our method outperforms previous best-performing
SSL strategies by around +1% in both tasks. Also, by comparing against
ImageNet-based network pretraining (out-of-domain data), our method
demonstrates that the in-domain pretraining has the ability to learn
better feature representations.

5. Conclusion

We propose a customized SSL architecture for various histopatho-
logical image analysis, which contains a hybrid CNN-transformer back-
bone (CTransPath) and a semantically-relevant contrastive learning
(SRCL) strategy. Our CTransPath makes use of both local and global
receptive fields to extract discriminative and rich features. Motivated
by the biased assumption in traditional CL, our SRCL aims to select
more semantically relevant positives to increase the sample diversity
in the instance discrimination process. In addition to data augmen-
tations from the same instance, our positive samples also contain
augmented data from semantically similar samples in the feature space,
aiming to extract features with better discriminative capacity. Our
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SRCL pretrained CTransPath on large-scale histopathological images
has the potential to benefit various downstream tasks by transfer
learning or direct feature extraction. Experimental evaluations in five
different downstream tasks, covering nine public datasets, demonstrate
the effectiveness of our pretraining model. As demonstrated in the
experiments of patch retrieval, patch classification, mitosis detection,
and colorectal adenocarcinoma gland segmentation, our SRCL strat-
egy can remarkably improve the performance compared to other SSL
methods. In a limited annotation setting, our method can exceed the
performance of a supervised baseline (with 100% training data and Im-
ageNet initialization) using only 1% of the training data. Moreover, our
five downstream applications also indicate that our SRCL-pretrained
feature learning (unsupervised) outperforms ImageNet-pretrained one
(supervised/self-supervised) by a large margin. These results validate
that our proposed feature extractor has the potential to be a universal
model for various histopathological image applications. In the future,
more attempts can be made to reduce the computational complexity
and memory consumption during SSL pretraining to achieve similar
results.
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