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Education

Introduction to Translational Bioinformatics Collection
Russ B. Altman*

Department of Genetics, Stanford University, Stanford, California, United States of America

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

How should we define translational

bioinformatics? I had to answer this

question unambiguously in March 2008

when I was asked to deliver a review of

‘‘recent progress in translational bioinfor-

matics’’ at the American Medical Infor-

matics Association’s Summit on Transla-

tional Bioinformatics. The lecture

required me to define papers in the field,

and then highlight exciting progress that

occurred over the previous ,12 months. I

have repeated this for the last few years,

and the most difficult part of the exercise is

limiting my review only to those papers

that are within the field.

I have never worried much about

definitions within informatics fields; they

tend to overlap, merge and evolve.

‘‘Informatics’’ seems clear: the study of

how to represent, store, search, retrieve

and analyze information. The adjectives in

front of ‘‘informatics’’ vary but also tend to

make sense: medical informatics concerns

medical information, bioinformatics con-

cerns basic biological information, clinical

informatics focuses on the clinical delivery

part of medical informatics, biomedical

informatics merges bioinformatics and

medical informatics, imaging informatics

focuses on…images, and so on. So what

does this adjective ‘‘translational’’ denote?

Translational medical research has

emerged as an important theme in the

last decade. Starting with top-down lead-

ership from the National Institutes of

Health and its former Director, Dr. Elias

Zerhouni, and moving through academic

medical centers, research institutes and

industrial research and development ef-

forts, there has been interest in more

effectively moving the discoveries and

innovations in the laboratory to the

bedside, leading to improved diagnosis,

prognosis, and treatment. Translational

research encompasses many activities in-

cluding the creation of medical devices,

molecular diagnostics, small molecule

therapeutics, biological therapeutics, vac-

cines, and others. One of the main targets

of translation, however, is revolutionary

explosion of knowledge in molecular

biology, genetics, and genomics. Some

believe that the tremendous progress in

discovery over the last 50+ years since

elucidation of the double helix structure

has not translated (there’s that word!) into

much practical health benefit. While the

accuracy of this claim can be debated,

there can be no debate that our ability to

measure (1) DNA sequence (including

entire genomes!), (2) RNA sequence and

expression, (3) protein sequence, structure,

expression and modification, and (4) small

molecule metabolite structure, presence,

and quantity has advanced rapidly and

enables us to imagine fantastic new

technologies in pursuit of human health.

There are many barriers to translating

our molecular understanding into technol-

ogies that impact patients. These include

understanding health market size and

forces, the regulatory milieu, how to

harden the technology for routine use,

and how to navigate an increasingly

complex intellectual property landscape.

But before those activities can begin, we

must overcome an even more fundamental

barrier: connecting the stuff of molecular

biology to the clinical world. Molecular

and cellular biology studies genes, DNA,

RNA messengers, microRNAs, proteins,

signaling molecules and their cascades,

metabolites, cellular communication pro-

cesses and cellular organization. These

data are freely available in valuable

resources such as Genbank (http://www.

ncbi.nlm.nih.gov/genbank/), Gene Ex-

pression Omnibus (http://www.ncbi.nlm.

nih.gov/geo/), Protein Data Bank (http://

www.wwpdb.org/), KEGG (http://www.

genome.jp/kegg/), MetaCyc (http://

metacyc.org/), Reactome (http://www.

reactome.org), and many other resources.

The clinical world studies diseases, signs,

symptoms, drugs, patients, clinical labora-

tory measurements, and clinical images.

The emergence of clinical and health

information technologies has begun to

make these clinical data available for

research through biobanks, electronic

medical records, FDA resources about

drug labels and adverse events, and claims

data. Therefore, a major challenge for

translational medicine is to connect the

molecular/cellular world with the clinical

world. The published literature, available

in PubMED (http://www.ncbi.nlm.nih.

gov/pubmed), does this, as does the

Unified Medical Language System

(UMLS) that provides a lingua franca

(http://www.nlm.nih.gov/research/umls/

). However, it falls to translational bioin-

formatics to engineer the tools that link

molecular/cellular entities and clinical

entities. Thus, I define ‘‘translational

bioinformatics’’ research as the develop-

ment and application of informatics meth-

ods that connect molecular entities to

clinical entities.

In this collection, Dr. Kann and col-

leagues have assembled a wonderful group

of authors to introduce the key threads of

translational bioinformatics to those new

to the field. The collection first provides

concepts in the field, and then introduces

some of the key methods for informatics

discovery and applications. Just by exam-

ining the table of contents on the collec-

tion page (http://www.ploscollections.

org/translationalbioinformatics), it is clear

that many exciting and emerging health

topics are squarely within the scope of

translational bioinformatics: cancer, phar-

macogenomics, medical genetics, small

molecule drugs, and diseases of protein

malfunction. There is an unmistakable
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flavor of personalized medicine here as

well (genome association studies, mining

genetic markers, personal genomic data

analysis, data mining of electronic rec-

ords): our molecular and clinical data

resources are now allowing us to consider

individual variations, and not simply

population averages. I congratulate the

editors and authors on creating an impor-

tant collection of articles, and welcome the

reader to an exciting field whose challeng-

es and promise are unbounded.
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Education

Chapter 1: Biomedical Knowledge Integration
Philip R. O. Payne*

The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America

Abstract: The modern biomedical
research and healthcare delivery do-
mains have seen an unparalleled
increase in the rate of innovation
and novel technologies over the past
several decades. Catalyzed by para-
digm-shifting public and private pro-
grams focusing upon the formation
and delivery of genomic and person-
alized medicine, the need for high-
throughput and integrative ap-
proaches to the collection, manage-
ment, and analysis of heterogeneous
data sets has become imperative. This
need is particularly pressing in the
translational bioinformatics domain,
where many fundamental research
questions require the integration of
large scale, multi-dimensional clinical
phenotype and bio-molecular data
sets. Modern biomedical informatics
theory and practice has demonstrat-
ed the distinct benefits associated
with the use of knowledge-based
systems in such contexts. A knowl-
edge-based system can be defined as
an intelligent agent that employs a
computationally tractable knowledge
base or repository in order to reason
upon data in a targeted domain and
reproduce expert performance rela-
tive to such reasoning operations.
The ultimate goal of the design and
use of such agents is to increase the
reproducibility, scalability, and acces-
sibility of complex reasoning tasks.
Examples of the application of knowl-
edge-based systems in biomedicine
span a broad spectrum, from the
execution of clinical decision support,
to epidemiologic surveillance of pub-
lic data sets for the purposes of
detecting emerging infectious diseas-
es, to the discovery of novel hypoth-
eses in large-scale research data sets.
In this chapter, we will review the
basic theoretical frameworks that
define core knowledge types and
reasoning operations with particular
emphasis on the applicability of such
conceptual models within the bio-
medical domain, and then go on to
introduce a number of prototypical
data integration requirements and
patterns relevant to the conduct of
translational bioinformatics that can
be addressed via the design and use
of knowledge-based systems.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

The modern biomedical research do-

main has experienced a fundamental shift

towards integrative and translational

methodologies and frameworks over the

past several years. A common thread

throughout the translational sciences are

needs related to the collection, manage-

ment, integration, analysis and dissemina-

tion of large-scale, heterogeneous biomed-

ical data sets. However, well-established

and broadly adopted theoretical and

practical frameworks intended to address

such needs are still largely developmental

[1–3]. Instead, the development and

execution of multi-disciplinary, transla-

tional science programs is significantly

limited by the propagation of ‘‘silos’’ of

both data and knowledge, and a paucity of

reproducible and rigorously validated

methods that may be used to support the

satisfaction of motivating and integrative

translational bioinformatics use cases, such

as those focusing on the identification of

expression motifs spanning bio-molecules

and clinical phenotypes.

In order to provide sufficient context

and scope to our ensuing discussion, we

will define translational science and re-

search per the conventions provided by

the National Institutes of Health (NIH) as

follows:

‘‘Translational research includes

two areas of translation. One is the process

of applying discoveries generated during

research in the laboratory, and in preclin-

ical studies, to the development of trials and

studies in humans. The second area of

translation concerns research aimed at

enhancing the adoption of best practices in

the community. Cost-effectiveness of pre-

vention and treatment strategies is also an

important part of translational science.’’

[4]

Several recent publications have defined

a translational research cycle, which

involves the translational of knowledge

and evidence from ‘‘the bench’’ (e.g.,

laboratory-based discoveries) to ‘‘the bed-

side’’ (e.g., clinical or public health inter-

ventions informed by basic science and

clinical research), and reciprocally from

‘‘the bedside’’ back to ‘‘the bench’’ (e.g.,

basic science studies informed by observa-

tions from the point-of-care) [5]. Within

this translational cycle, Sung and col-

leagues [5] have defined two critical

blockages that exist between basic science

discovery and the design of prospective

clinical studies, and subsequently between

the knowledge generated during clinical

studies and the provision of such evidence-

based care in the clinical or public health

settings. These are known as the T1 and

T2 blocks, respectively. Much of the work

conducted under the auspices of the NIH

Roadmap initiative and more recently as

part of the Clinical and Translational

Science Award (CTSA) program is specif-

ically focused on identifying approaches or

policies that can mitigate these T1 and T2

blockages, and thus increase the speed and

efficiency by which new biomedical knowl-

edge can be realized in terms of improved

health and patient outcomes.

The positive outcomes afforded by the

close coupling of biomedical informatics
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with the translational sciences have been

described frequently in the published

literature [3,5–7]. Broadly, the critical

areas to be addressed by such informatics

approaches relative to translational re-

search activities and programs can be

classified as belonging to one or more of

the following categories:

The management of multi-dimen-
sional and heterogeneous data sets:
The modern healthcare and life sciences

ecosystem is becoming increasingly data

centric as a result of the adoption and

availability of high-throughput data sourc-

es, such as electronic health records

(EHRs), research data management sys-

tems (e.g., CTMS, LIMS, Electronic Data

Capture tools), and a wide variety of bio-

molecular scale instrumentation platforms.

As a result of this evolution, the size and

complexity of data sets that must be

managed and analyzed are growing at an

extremely rapid rate [1,2,6,8,9]. At the

same time, the data management practices

currently used in most research settings

are both labor intensive and rely upon

technologies that have not be designed to

handle such multi-dimensional data [9–

11]. As a result, there are significant

demands from the translational science

community for the creation and delivery of

information management platforms capa-

ble of adapting to and supporting hetero-

geneous workflows and data sources

[2,3,12,13]. This need is particularly

important when such research endeavors

focus on the identification of linkages

between bio-molecular and phenotypic

data in order to inform novel systems-level

approaches to understanding disease states.

Relative to the specific topic area of

knowledge representation and utilization in

the translational sciences, the ability to

address the preceding requirements is large-

ly predicated on the ability to ensure that

semantics of such data are well understood

[10,14,15]. This is a scenario often referred

to as semantic interoperability, and requires

the use of informatics-based approaches to

map among various data representations, as

well as the application of such mappings to

support integrative data integration and

analysis operations [10,15].

The application of knowledge-
based systems and intelligent agents
to enable high-throughput hypothe-
sis generation and testing: Modern

approaches to hypothesis discovery and

testing primarily are based on the intuition

of the individual investigator or his/her

team to identify a question that is of

interest relative to their specific scientific

aims, and then carry out hypothesis testing

operations to validate or refine that

question relative to a targeted data set

[6,16]. This approach is feasible when

working with data sets comprised of

hundreds of variables, but does not scale

to projects involving data sets with mag-

nitudes on the order of thousands or even

millions of variables [10,14]. An emerging

and increasingly viable solution to this

challenge is the use of domain knowledge

to generate hypotheses relative to the

content of such data sets. This type of

domain knowledge can be derived from

many different sources, such as public

databases, terminologies, ontologies, and

published literature [14]. It is important to

note, however, that methods and technol-

ogies that can allow researchers to access

and extract domain knowledge from such

sources, and apply resulting knowledge

extracts to generate and test hypotheses

are largely developmental at the current

time [10,14].

The facilitation of data-analytic
pipelines in in-silico research pro-
grams: The ability to execute in-silico

research programs, wherein hypotheses are

designed, tested, and validated in existing

data sets using computational methods, is

highly reliant on the use of data-analytic

‘‘pipelining’’ tools. Such pipelines are ideally

able to support data extraction, integration,

and analysis workflows spanning multiple

sources, while capturing intermediate data

analysis steps and products, and generating

actionable output types [17,18]. Such pipe-

lines provide a number of benefits, includ-

ing: 1) they support the design and execution

of data analysis plans that would not be

tractable or feasible using manual methods;

and 2) they provide for the capture meta-

data describing the steps and intermediate

products generated during such data anal-

yses. In the case of the latter benefit, the

ability to capture systematic meta-data is

critical to ensuring that such in-silico research

paradigms generate reproducible and high

quality results [17,18]. There are a number

of promising technology platforms capable

of supporting such data-analytic ‘‘pipelin-

ing’’, such as the caGrid middleware [18]. It

is of note, however, that widespread use of

such pipeline tools is not robust, largely due

to barriers to adoption related to data

ownership/security and socio-technical fac-

tors [13,19].

The dissemination of data, infor-
mation, and knowledge generated
during the course of translational
science research programs: It is

widely held that the time period required

to translate a basic science discovery into

clinical research, and ultimately evidence-

based practice or public health interven-

tion can exceed 15 years [2,5,7,20]. A

number of studies have identified the lack

of effective tools for supporting the ex-

change of data, information, and knowl-

edge between the basic sciences, clinical

research, clinical practice, and public

health practice as one of the major

contributors to effective and timely trans-

lation of novel biological discoveries into

health benefits [2]. A number of informat-

ics-based approaches have been developed

to overcome such translational impedi-

ments, such as web-based collaboration

platforms, knowledge representation and

delivery standards, public data registries

and repositories [3,7,9,21]. Unfortunately,

the systematic and regular use of such

tools and methods is generally very

poor in the translational sciences, again

as was the prior case, due to a combina-

tion of governance and socio-technical

barriers.

At a high level, all of the aforemen-

tioned challenges and opportunities corre-

spond to an overarching set of problem

statements, as follows:

N Translational bioinformatics is defined

by the presence of complex, heteroge-

neous, multi-dimensional data sets;

N The scope of available biomedical

knowledge collections that may be

applied to assist in the integration

What to Learn in This Chapter

N Understand basic knowledge types and structures that can be applied to
biomedical and translational science;

N Gain familiarity with the knowledge engineering cycle, tools and methods that
may be used throughout that cycle, and the resulting classes of knowledge
products generated via such processes;

N An understanding of the basic methods and techniques that can be used to
employ knowledge products in order to integrate and reason upon
heterogeneous and multi-dimensional data sets; and

N Become conversant in the open research questions/areas related to the ability
to develop and apply knowledge collections in the translational bioinformatics
domain.
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and analysis of such data is growing at

a rapid pace;

N The ability to apply such knowledge

collections to translational bioinfor-

matics analyses requires an under-

standing of the sources of such knowl-

edge, and methods of applying them to

reasoning applications; and

N The application of knowledge collec-

tions to support integrative analyses in

the translational science domain intro-

duces multiple areas of complexity that

must be understood in order to enable

the optimal selection and use of such

resources and methods, as well as the

interpretation of results generated via

such applications.

2. Key Definitions

In the remainder of this chapter, we will

introduce a set of definitions, frameworks,

and methods that serve to support the

foundational knowledge integration re-

quirements incumbent to the efficient

and effective conduct of translational

studies. In order to provide a common

understanding of key terms and concepts

that will be used in the ensuing discussion,

we will define here a number of those

entities, using the broad context of Knowl-

edge Engineering (KE) as a basis for such

assertions. The KE process (Figure 1)

incorporates multiple steps:

1. Acquisition of knowledge (KA)

2. Representation of that knowledge (KR)

in a computable form

3. Implementation or refinement of

knowledge-based agents or applications

using the knowledge collection gener-

ated in the preceding stages

4. Verification and validation of the

output of those knowledge-based

agents or applications against one or

more reference standards.

In the context of the final phase of the

KE cycle, comparative reference standards

can include expert performance measures,

requirements acquired before designing

the knowledge-based system, or require-

ments that were realized upon implemen-

tation of the knowledge-based system. In

this regard, verification is the process of

ensuring that the knowledge-based system

meets the initial requirements of the

potential end-user community. In com-

parison, validation is the process of

ensuring that the knowledge-based system

meets the realized requirements of the

end-user community once a knowledge-

based system has been implemented [22].

Furthermore, within the overall KE pro-

cess, KA can be defined as the sub-process

involving the extraction of knowledge

from existent sources (e.g., experts, litera-

ture, databases, etc.) for the purpose of

representing that knowledge in a comput-

able format [23–28].

The KE process is intended to target

three potential types of knowledge, as

defined below:

N Conceptual knowledge is defined

in the education literature as a combi-

nation of atomic units of information

and the meaningful relationships be-

tween those units. The education

literature also describes two other

types of knowledge, labeled as proce-

dural and strategic;

N Procedural knowledge is a process-

oriented understanding of a given

problem domain [29–32];

N Strategic knowledge is knowledge

that is used to operationalize concep-

tual knowledge into procedural knowl-

edge [31].

The preceding definitions are derived

from empirical research on learning and

problem-solving in complex scientific and

quantitative domains such as mathematics

and engineering [30,32]. The cognitive

science literature provides a similar differ-

entiation of knowledge types, making the

distinction between procedural and de-

Figure 1. Key components of the KE process.
doi:10.1371/journal.pcbi.1002826.g001
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clarative knowledge. Declarative knowl-

edge is synonymous with conceptual

knowledge as defined above [33].

Conceptual knowledge collections are

perhaps the most commonly used knowl-

edge types in biomedicine. Such knowledge

and its representation span a spectrum that

includes ontologies, controlled terminolo-

gies, semantic networks and database sche-

mas. A reoccurring focus throughout dis-

cussions of conceptual knowledge collections

in the biomedical informatics domain is the

process of representing conceptual knowl-

edge in a computable form. In contrast, the

process of eliciting knowledge has received

less attention and reports on rigorous and

reproducible methods that may be used in

this area are rare. It is also important to note

that in the biomedical informatics domain

conceptual knowledge collections rarely

exist in isolation. Instead, they usually occur

within structures that contain multiple types

of knowledge. For example, a knowledge-

base used in a modern clinical decision

support system might include: (1) a knowl-

edge collection containing potential findings,

diagnoses, and the relationships between

them (conceptual knowledge), (2) a knowledge

collection containing guidelines or algo-

rithms used to logically traverse the previous

knowledge structure (procedural knowledge),

and (3) a knowledge structure containing

application logic used to apply or operatio-

nalize the preceding knowledge collections

(strategic knowledge). Only when these three

types of knowledge are combined, it is

possible to realize a functional decision

support system [34].

3. Underlying Theoretical
Frameworks

The theories that support the ability to

acquire, represent, and verify or validate

conceptual knowledge come from multiple

domains. In the following sub-section,

several of those domains will be discussed,

including:

N Computational science

N Psychology and cognitive science

N Semiotics

N Linguistics

3.1 Computational Foundations of
Knowledge Engineering

A critical theory that supports the ability

to acquire and represent knowledge in a

computable format is the physical symbol

hypothesis. First proposed by Newell and

Simon in 1981 [35], and expanded upon

by Compton and Jansen in 1989 [24], the

physical symbol hypothesis postulates that

knowledge consists of both symbols of

reality, and relationships between those

symbols. The hypothesis further argues

that intelligence is defined by the ability to

appropriately and logically manipulate

both symbols and relationships. A critical

component of this the theory is the

definition of what constitutes a ‘‘physical

symbol system’’, which Newell and Simon

describe as:

‘‘…a set of entities, called symbols, which

are physical patterns that can occur as

components of another type of entity called

an expression (or symbol structure). Thus,

a symbol structure is composed of a number

of instances (or tokens) of symbols related

in some physical way (such as one token

being next to another). At any instant of

time the system will contain a collection of

these symbol structures.’’ [36]

This preceding definition is very similar

to that of conceptual knowledge introduced

earlier in this chapter, which leads to the

observation that the computational repre-

sentation of conceptual knowledge collec-

tions should be well supported by compu-

tational theory. However, as described

earlier, there is not a large body of research

on reproducible methods for eliciting

such symbol systems. Consequently, the

elicitation of the symbols and relationships

that constitute a ‘‘physical symbol system’’,

or conceptual knowledge collection, re-

mains a significant challenge. This chal-

lenge, in turn, is an impediment to the

widespread use of conceptual knowledge-

based systems.

3.2 Psychological and Cognitive
Basis for Knowledge Engineering

At the core of the currently accepted

psychological basis for KE is expertise

transfer, which is the theory that humans

transfer their expertise to computational

systems so that those systems are able to

replicate expert human performance.

One theory that helps explain the

process of expertise transfer is Kelly’s

Personal Construct Theory (PCT). This

theory defines humans as ‘‘anticipatory

systems’’, where individuals create tem-

plates, or constructs that allow them to

recognize situations or patterns in the

‘‘information world’’ surrounding them.

These templates are then used to antici-

pate the outcome of a potential action

given knowledge of similar previous expe-

riences [37]. Kelly views all people as

‘‘personal scientists’’ who make sense of

the world around them through the use of

a hypothetico-deductive reasoning system.

It has been argued within the KE

literature that the constructs used by

experts can be used as the basis for

designing or populating conceptual knowl-

edge collections [26]. The details of PCT

help to explain how experts create and use

such constructs. Specifically, Kelly’s fun-

damental postulate is that ‘‘a person’s

processes are psychologically channelized by the

way in which he anticipated events.’’ This is

complemented by the theory’s first corol-

lary, which is summarized by his statement

that:

‘‘Man looks at his world through transparent

templates which he creates and then attempts

to fit over the realities of which the world is

composed… Constructs are used for predic-

tions of things to come… The construct is a

basis for making a distinction… not a class of

objects, or an abstraction of a class, but a

dichotomous reference axis.’’

Building upon these basic concepts,

Kelly goes on to state in his Dichotomy

Corollary that ‘‘a person’s construction system is

composed of a finite number of dichotomous

constructs.’’ Finally, the parallel nature of

personal constructs and conceptual knowl-

edge is illustrated in Kelly’s Organization

Corollary, which states, ‘‘each person charac-

teristically evolves, for his convenience of antici-

pating events, a construction system embracing

ordinal relationships between constructs’’ [26,37].

Thus, in an effort to bring together

these core pieces of PCT, it can be argued

that personal constructs are essentially

templates applied to the creation of

knowledge classification schemas used in

reasoning. If such constructs are elicited

from experts, atomic units of information

can be defined, and the Organization

Corollary can be applied to generate

networks of ordinal relationships between

those units. Collectively, these arguments

serve to satisfy and reinforce the earlier

definition of conceptual knowledge, and

provide insight into the expert knowledge

structures that can be targeted when

eliciting conceptual knowledge.

There are also a number of cognitive

science theories that have been applied to

inform KE methods. Though usually very

similar to the preceding psychological

theories, cognitive science theories specif-

ically describe KE within a broader

context where humans are anticipatory

systems who engage in frequent transfers

of expertise. The cognitive science litera-

ture identifies expertise transfer pathways

as an existent medium for the elicitation of

knowledge from domain experts. This

conceptual model of expertise transfer is
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often illustrated using the Hawkins

model for expert-client knowledge transfer

[38].

It is also important to note that at a high

level, cognitive science theories focus upon

the differentiation among knowledge types.

As described earlier, cognitive scientists

make a primary differentiation between

procedural knowledge and declarative

knowledge [31]. While cognitive science

theory does not necessarily link declarative

and procedural knowledge, an implicit

relationship is provided by defining proce-

dural knowledge as consisting of three

orders, or levels. For each level, the

complexity of declarative knowledge in-

volved in problem solving increases com-

mensurately with the complexity of proce-

dural knowledge being used [28,31,39].

A key difference between the theories

provided by the cognitive science and

psychology domains is that the cognitive

science literature emphasizes the impor-

tance of placing KA studies within appro-

priate context in order to account for the

distributed nature of human cognition

[25,40–46]. In contrast, the psychology

literature is less concerned with placing

KE studies in context.

3.3 Semiotic Basis for Knowledge
Engineering

Though more frequently associated

with the domains of computer science,

psychology and cognitive science, there

are a few instances where semiotic theory

has been cited as a theoretical basis for

KE. Semiotics can be broadly defined as

‘‘the study of signs, both individually and grouped

in sign systems, and includes the study of how

meaning is transmitted and understood’’ [47]. As

a discipline, much of its initial theoretical

basis is derived from the domain of

linguistics, and thus, has been traditionally

focused on written language. However, the

scope of contemporary semiotics literature

has expanded to incorporate the analysis

of meaning in visual presentation systems,

knowledge representation models and

multiple communication mediums. The

basic premise of the semiotic theory of

‘‘meaning’’ is frequently presented in a

schematic format using the Ogden-Rich-

ards semiotic triad, as shown in Figure 2

[48].

A core component of semiotic triad is

the hypothesis that there exist three

representational formats for knowledge,

specifically:

N Symbol: representational artifact of a

unit of knowledge (e.g., text or icons).

N Referent: actual unit of knowledge,

which is largely a conceptual construct.

N Thought or Reference: unit of

knowledge as actually understood by

the individual or system utilizing or

acting upon that knowledge.

In addition, three primary relationships

are hypothesized to exist, linking the three

preceding representational formats:

N ‘‘Stands-for’’ imputed relation:

relationship between the symbolic

representation of the knowledge and

the actual unit of knowledge

N ‘‘Refers-to’’ causal relation: rela-

tionship between the actual unit of

knowledge, and the unit of knowledge

as understood by the individual or

system utilizing or acting upon that

knowledge

N ‘‘Symbolizes’’ causal relation:

relationship between the unit of knowl-

edge as understood by the individual

or system utilizing or acting upon that

knowledge, and the symbolic repre-

sentation of the knowledge

Figure 2. Ogden-Richards semiotic triad, illustrating the relationships between the three major semiotic-derived types of
‘‘meaning’’.
doi:10.1371/journal.pcbi.1002826.g002
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N The strength of these relationships is

usually evaluated using heuristic meth-

ods or criteria [48].

3.4 Linguistic Basis for Knowledge
Engineering

The preceding theories have focused

almost exclusively on knowledge that may

be elicited from domain experts. In

contrast, domain knowledge can also be

extracted through the analysis of existing

sources, such as collections of narrative

text or databases. Sub-language analysis

is a commonly described approach to the

elicitation of conceptual knowledge from

collections of text (e.g., narrative notes,

published literature, etc.). The theoretical

basis for sub-language analysis, known as

sub-language theory was first described

by Zellig Harris in his work concerning

the nature of language usage within

highly specialized domains [49]. A key

argument of his sub-language theory is

that language usage in such highly

specialized domains is characterized by

regular and reproducible structural fea-

tures and grammars [49,50]. At an

application level, these features and

grammars can be discovered through

the application of manual or automated

pattern recognition processes to large

corpora of language for a specific domain.

Once such patterns have been discovered,

templates may be created that describe

instances in which concepts and relation-

ships between those concepts are defined.

These templates can then be utilized to

extract knowledge from sources of lan-

guage, such as text [51]. The process of

applying sub-language analysis to existing

knowledge sources has been empirically

validated in numerous areas, including

the biomedical domain [50,51]. Within

the biomedical domain, sub-language

analysis techniques have been extended

beyond conventional textual language to

also include sub-languages that consist of

graphical symbols [52].

4. Knowledge Acquisition Tools
and Methods

While a comprehensive review of tools

and methods that may be used to facilitate

the knowledge acquisition (KA) is beyond

the scope of this chapter, in the following

section, we will briefly summarize example

cases of such techniques in order to

provide a general overview of this impor-

tant area of informatics research, develop-

ment, and applications.

As was introduced in the preceding

section, KA can be defined as the sub-process

involving the extraction of knowledge

from existent sources (e.g., experts, liter-

ature, databases, etc.) for the purpose of

representing that knowledge in a comput-

able format [23–28]. This definition also

includes the verification or validation of

knowledge-based systems that use the

resultant knowledge collections [27]. Be-

yond this basic definition of KA and its

relationships to KE, there are two critical

characteristics of contemporary ap-

proaches to KA that should be noted, as

follows:

N By convention within the biomedical

informatics domain, KA usually refers

to the process of eliciting knowledge

specifically for use in ‘‘knowledge-

bases’’ (KBs) that are integral to expert

systems or intelligent agents (e.g.,

clinical decision support systems).

However, a review of the literature

concerned with KA beyond this do-

main shows a broad variety of appli-

cation areas for KA, such as the

construction of shared database mod-

els, ontologies and human-computer

interaction models [23,53–57].

N Verification and validation methods

are often applied to knowledge-based

systems only during the final stage of

the KE process. However, such tech-

niques are most effective when em-

ployed iteratively throughout the en-

tire KE process. As such, they also

become necessary components of the

KA sub-process.

Given the particular emphasis of this

chapter on the use of conceptual knowledge

collections for the purpose of complex

integrative analysis tasks, it is important to

understand that the KA methods and tools

available to support the generation of

conceptual knowledge collections can be

broadly divided into three complementary

classes:

N Knowledge unit elicitation: tech-

niques for the elicitation of atomic

units of information or knowledge

N Knowledge relationship elicita-
tion: techniques for the elicitation of

relationships between atomic units of

information or knowledge

N Combined elicitation: techniques

that elicit both atomic units of infor-

mation or knowledge, and the rela-

tionships that exist between them

There are a variety of commonly used

methods that target one or more above

these KA classes, as summarized below:

4.1 Informal and Structured
Interviewing

Interviews conducted either individually

or in groups can provide investigators with

insights into the knowledge used by

domain experts. Furthermore, they can

be performed either informally (e.g.,

conversational exchange between the in-

terviewer and subjects) or formally (e.g.,

structured using a pre-defined series of

questions). The advantages of utilizing

such interviewing techniques are that they

require a minimal level of resources, can

be performed in a relatively short time

frame, and can yield a significant amount

of qualitative knowledge. More detailed

descriptions of interviewing techniques are

provided in the methodological reviews

provided by Boy [58], Morgan [59], and

Wood [60].

4.2 Observational Studies
Ethnographic evaluations, or observa-

tional studies are usually conducted in

context, with minimal researcher involve-

ment in the workflow or situation under

consideration. These observational meth-

ods generally focus on the evaluation of

expert performance, and the implicit

knowledge used by those experts. Exam-

ples of observational studies have been

described in many domains, ranging from

air traffic control systems to complex

healthcare workflows [61,62]. One of the

primary benefits of such observational

methods is that they are designed to

minimize potential biases (e.g., Hawthorne

effect [63]), while simultaneously allowing

for the collection of information in con-

text. Additional detail concerning specific

observational and ethnographic field study

methods can be found in the reviews

provided by John [62] and Rahat [64].

4.3 Categorical Sorting
There are a number of categorical, or

card sorting techniques, including Q-sorts,

hierarchical sorts, all-in-one sorts and

repeated single criterion sorts [65]. All of

these techniques involve one or more

subjects sorting of a group of artifacts

(e.g., text, pictures, physical objects, etc.)

according to criteria either generated by

the sorter or provided by the researcher.

The objective of such methods is to

determine the reproducibility and stability

of the groups created by the sorters. In all

of these cases, sorters may also be asked to

assign names to the groups they create.

Categorical sorting methods are ideally

suited for the discovery of relationships

between atomic units of information or

knowledge. In contrast, such methods are
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less effective for determining the atomic

units of information or knowledge. How-

ever, when sorters are asked to provide

names for their groups, this data may help

to define domain-specific units of knowl-

edge or information. Further details con-

cerning the conduct and analysis of

categorical sorting studies can be found

in the review provided by Rugg and

McGeorge [65].

4.4 Repertory Grid Analysis
Repertory grid analysis is a method

based on the previously introduced Per-

sonal Construct Theory (PCT). Repertory

grid analysis involves the construction of a

non-symmetric matrix, where each row

represents a construct that corresponds to

a distinction of interest, and each column

represents an element (e.g., unit of infor-

mation or knowledge) under consider-

ation. For each element in the grid, the

expert completing the grid provides a

numeric score using a prescribed scale

(defined by a left and right pole) for each

distinction, indicating the strength of

relatedness between the given element-

distinction pair. In many instances, the

description of the distinction being used in

each row of the matrix is stated differently

in the left and right poles, providing a

frame of reference for the prescribed

scoring scale. Greater detail on the

techniques used to conduct repertory grid

studies can be found in the review

provided by Gaines et al. [26].

4.5 Formal Concept Analysis
Formal concept analysis (FCA) has often

been described for the purposes of devel-

oping and merging ontologies [66,67].

FCA focuses on the discovery of ‘‘natural

clusters’’ of entities and entity-attribute

pairings [66], where attributes are similar

to the distinctions used in repertory grids.

Much like categorical sorting, FCA is

almost exclusively used for eliciting the

relationships between units of information

or knowledge. The conduct of FCA studies

involves two phases: (1) elicitation of

‘‘formal contexts’’ from subjects, and (2)

visualization and exploration of resulting

‘‘concept lattices’’. It is of interest to note

that the ‘‘concept lattices’’ used in FCA

are in many ways analogous to Sowa’s

Conceptual Graphs [68], which are com-

prised of both concepts and labeled

relationships. The use of Conceptual

Graphs has been described in the context

of KR [68–70], as well as a number of

biomedical KE instances [48,71–73].

Recent literature has described the use

of FCA in multi-dimensional ‘‘formal

contexts’’ (i.e., instances where relational

structures between conceptual entities

cannot be expressed as a single many-

valued ‘‘formal context’’). One approach

to the utilization of multi-dimensional

‘‘formal contexts’’ is the agreement con-

text model proposed by Cole and Becker

[67], which uses logic-based decomposi-

tion to partition and aggregate n-ary

relations. This algorithmic approach has

been implemented in a freely available

application named ‘‘Tupleware’’ [74].

Additionally, ‘‘formal contexts’’ may be

defined from existing data sources, such as

databases. These ‘‘formal contexts’’ are

discovered using data mining techniques

that incorporate FCA algorithms, such as

the open-source TOSCANA or CHIAN-

TI tools. Such algorithmic FCA methods

are representative examples of a sub-

domain known as Conceptual Knowledge

Discovery and Data Analysis (CKDD)

[75]. Additional details concerning FCA

techniques can be found in the reviews

provided by Cimiano et al. [66], Hereth et

al. [75], and Priss [76].

4.6 Protocol and Discourse Analysis
The techniques of protocol and dis-

course analysis are very closely related.

Both techniques are concerned with the

elicitation of knowledge from individuals

while they are engaged in problem-solving

or reasoning tasks. Such analyses may be

performed to determine the unit of

information or knowledge, and relation-

ships between those units of information

or knowledge, used by individuals per-

forming tasks in the domain under study.

During protocol analysis studies, subjects

are requested to ‘‘think out loud’’ (i.e.,

vocalize internal reasoning and thought

processes) while performing a task. Their

vocalizations and actions are recorded

for later analysis. The recordings are then

codified at varying levels of granularity to

allow for thematic or statistical analysis

[77,78]. Similarly, discourse analysis is a

technique by which an individual’s in-

tended meaning within a body of text or

some other form of narrative discourse

(e.g., transcripts of a ‘‘think out loud’’

protocol analysis study) is ascertained by

atomizing that text or narrative into

discrete units of thought. These ‘‘thought

units’’ are then subject to analyses of

both the context in which they appear,

and the quantification and description of

the relationships between those units

[79,80]. Specific methodological ap-

proaches to the conduct of protocol and

discourse analysis studies can be found in

the reviews provided by Alvarez [79] and

Polson et al. [78].

4.7 Sub-Language Analysis
Sub-language analysis is a technique for

discovering units of information or knowl-

edge, and the relationships between them

within existing knowledge sources, includ-

ing published literature or corpora of

narrative text. The process of sub-lan-

guage analysis is based on the sub-

language theory initially proposed by

Zellig Harris [49]. The process by which

concepts and relationships are discovered

using sub-language analysis is a two-stage

approach. In the first stage, large corpora

of domain-specific text are analyzed either

manually or using automated pattern

recognition techniques, in an attempt to

define a number of critical characteristics,

which according to Friedman et al. [50]

include:

N Semantic categorization of terms used

within the sub-language

N Co-occurrence patterns or constraints,

and paraphrastic patterns present

within the sub-language

N Context-specific omissions of informa-

tion within the sub-language

N Intermingling of sub-language and

general language patterns

N Usage of terminologies and controlled

vocabularies (i.e., limited, reoccurring

vocabularies) within the sub-language

Once these characteristics have been

defined, templates or sets of rules may be

established. In the second phase, the

templates or rules resulting from the prior

step are applied to narrative text in order

to discover units of information or knowl-

edge, and the relationships between those

units. This is usually enabled by a natural

language processing engine or other sim-

ilar intelligent agent [81–85].

4.8 Laddering
Laddering techniques involve the crea-

tion of tree structures that hierarchically

organize domain-specific units of informa-

tion or knowledge. Laddering is another

example of a technique that can be used to

determine both units of information or

knowledge and the relationships between

those units. In conventional laddering

techniques, a researcher and subject

collaboratively create and refine a tree

structure that defines hierarchical relation-

ships and units of information or knowl-

edge [86]. Laddering has also been

reported upon in the context of structuring

relationships between domain-specific pro-

cesses (e.g., procedural knowledge). There-

fore, laddering may also be suited for

discovering strategic knowledge in the
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form of relationships between conceptual

and procedural knowledge. Additional

information concerning the conduct of

laddering studies can be found in the

review provided by Corbdridge et al. [86].

4.9 Group Techniques
Several group techniques for multi-

subject KA studies have been reported,

including brainstorming, nominal group

studies, Delphi studies, consensus decision-

making and computer-aided group ses-

sions. All of these techniques focus on the

elicitation of consensus-based knowledge.

It has been argued that consensus-based

knowledge is superior to the knowledge

elicited from a single expert [27]. Howev-

er, conducting multi-subject KA studies

can be difficult due to the need to recruit

appropriate experts who are willing to

participate, or issues with scheduling

mutually agreeable times and locations

for such groups to meet. Furthermore, it is

possible in multi-subject KA studies for a

forceful or coercive minority of experts or

a single expert to exert disproportionate

influence on the contents of a knowledge

collection [25,27,59,87]. Additional detail

concerning group techniques can be found

in reviews provided by Gaines [26], Liou

[27], Morgan [59], Roth [88], and Wood

[60].

5. Integrating Knowledge in the
Translational Science Domain

Building upon the core concepts intro-

duced in Section 1–4, in the remainder of

this chapter we will synthesize the require-

ments, challenges, theories, and frame-

works discussed in the preceding sections,

in order to propose a set of methodological

approaches to the data, information, and

knowledge integration requirements in-

cumbent to complex translational science

projects. We believe that it is necessary to

design and execute informatics efforts in

such context in a manner that incorporates

tasks and activities related to: 1) the

identification of major categories of infor-

mation to be collected, managed and

disseminated during the course of a project;

2) the determination of the ultimate data

and knowledge dissemination requirements

of project-related stake-holders; and 3) the

systematic modeling and semantic annota-

tion of the data and knowledge resources

that will be used to address items (1) and (2).

Based upon prior surveys of the state of

biomedical informatics relative to the

clinical and translational science domains

[3,89], a framework that is informative to

preceding design and execution pattern

can be formulated. Central to this frame-

work are five critical information or

knowledge types involved in the conduct

of translational science projects, as are

briefly summarized in Table 1.

The preceding framework of informa-

tion and knowledge types ultimately in-

forms a conceptual model for knowledge

integration in the translational sciences.

Table 1. Overview of information and knowledge types incumbent to the translational sciences.

Information or Knowledge Type Description Examples Sources or Types

Individual and/or Population Phenotype This information type involves data elements
and metadata that describe characteristics at the
individual or population levels that relate to the
physiologic and behavioral manifestation of
healthy and disease states.

N Demographics
N Clinical exam findings
N Qualitative characteristics
N Laboratory testing results

Individual and/or Population Bio-markers This information type involves data elements and
metadata that describe characteristics at the
individual or population levels that relate to the
bio-molecular manifestation of healthy and
disease states.

N Genomic, proteomic and metabolomic expression profiles
N Novel bio-molecular assays capable of measuring bio-
molecular structure and function

Domain Knowledge This knowledge type is comprised of community-
accepted, or otherwise verified and validated [17]
sources of biomedical knowledge relevant to a
domain of interest. Collectively, these types of
domain knowledge may be used to support
multiple operations, including: 1) hypothesis
development; 2) hypothesis testing; 3) comparative
analyses; or 4) augmentation of experimental data
sets with statistical or semantic annotations [15,17,125].

N Literature databases
N Public or private databases containing experimental
results or reference standards
N Ontologies
N Terminologies

Biological Models and Technologies This knowledge type typically consists of: 1)
empirically validated system or sub-system level
models that serve to define the mechanisms by
which bio-molecular and phenotypic processes
and their markers/indicators interact as a network
[6,20,124,126]; and 2) novel technologies that
enable the analysis of integrative data sets in
light of such models. By their nature these tools
include algorithmic or embedded knowledge
sources [124,126].

N Algorithms
N Quantitative Models
N Analytical ‘‘Pipelines’’
N Publications

Translational Biomedical Knowledge Translational biomedical knowledge represents a
sub-type of general biomedical knowledge that is
concerned with a systems-level synthesis (i.e.,
incorporate quantitative, qualitative, and semantic
annotations) of pathophysiologic or biophysical
processes or functions of interest (e.g.,
pharmacokinetics, pharmacodynamics, bionutrition,
etc.), and the markers or other indicators that can
be used to instrument and evaluate such models.

N Publications
N Guidelines
N Integrative Data Sets
N Conceptual Knowledge Collections

doi:10.1371/journal.pcbi.1002826.t001
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The role of Biomedical Informatics and

KE in this framework is to address the four

major information management challeng-

es enumerated earlier relative to the ability

to generate Translational Biomedical
Knowledge, namely: 1) the collection

and management of high throughput,

multi-dimensional data; 2) the generation

and testing of hypotheses relative to such

integrative data sets; 3) the provision

data analytic ‘‘pipelines’’; and 4) the

dissemination of knowledge collections

resulting from research activities.

5.1 Design Pattern for Translational
Science Knowledge Integration

Informed by the conceptual framework

introduced in the preceding section and

illustrated in Figure 3, we will now

summarize the design and execution

pattern used to address such knowledge

integration requirements. This design pat-

tern can be broadly divided into four major

phases that collectively define a cyclical and

iterative process (which we will refer to as a

translational research cycle,). For each

phase of the pattern, practitioners must

consider both the required inputs and

anticipated outputs, and their interrelation-

ships between and across phases.

Figure 3. Practical model for the design and execution of translational informatics projects, illustrating major phases and
exemplary input or output resources and data sets.
doi:10.1371/journal.pcbi.1002826.g003
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Phase 1 - Stakeholder engagement
and knowledge acquisition: During

this initial phase, key stakeholders who will

be involved in the collection, manage-

ment, analysis, and dissemination of proj-

ect-specific data and knowledge are iden-

tified and engaged in both formal and

informal knowledge acquisition, with the

ultimate goal of defining the essential

workflows, processes, and data sources

(including their semantics). Such knowl-

edge acquisition usually requires the use of

ethnographic, cognitive science, workflow

modeling, and formal knowledge acquisi-

tion techniques [14]. The results of such

activities can be formalized using a

thematic narratives [90–92] and workflow

or process artifacts [92–94]. In some

instances, it may be necessary to engage

domain-specific subject matter experts

(SMEs) who are not involved in a given

project in order to augment available

SMEs, or to validate the findings generat-

ed during such activities [14,92].

Phase 2 - Data identification and
modeling: Informed by the artifacts

generated in Phase 1, in this phase, we

focus upon the identification of specific,

pertinent data sources relative to project

aims, and the subsequent creation of

models that encapsulate the physical and

semantic representations of that data.

Once pertinent data sources have been

identified, we must then model their

contents in an implementation-agnostic

manner, an approach that is most fre-

quently implemented using model-driven

architecture techniques [95–99]. The re-

sults of such MDA processes are common-

ly recorded using the Unified Modeling

Language (UML) [16,100–102]. During

the modeling process, it is also necessary to

identify and record semantic or domain-

specific annotation of targeted data struc-

tures, using locally relevant conceptual

knowledge collections (such as terminolo-

gies and ontologies), in order to enable

deeper, semantic reasoning concerning

such data and information [16,103,104].

Phase 3 - Integration and aggre-
gation: A common approach to the

integration of heterogeneous and multi-

dimensional data is the use of technology-

agnostic domain or data models (per

Phases 1–2), incorporating semantic anno-

tations, in order to execute data federation

operations [105] or to transform that data

and load it into an integrative repository,

such as a data warehouse [106–108].

Once the mechanisms needed to integrate

such disparate data sources are imple-

mented, it is then possible to aggregate the

data for the purposes of hypothesis

discovery and testing – a process that is

sometimes referred to as creating a data

‘‘mashup’’ [109–115]. Data ‘‘mashups’’

are often created using a variety of readily

available reasoners, such as those associ-

ated with the semantic web [109–115],

which directly employ both the data

models and semantic annotations created

in the prior phases of the Translational

Informatics Cycle, and enable a knowl-

edge-anchored approach to such opera-

tions.

Phase 4 - Analysis and dissemina-
tion: In this phase of the Translational

Informatics Cycle, the integrated/aggre-

gated data and knowledge created in the

preceding phases is subject to analysis. In

most if not all cases, these analyses make

use of domain or task specific applications

and algorithms, such as those implement-

ed in a broad number of biological data

analysis packages, statistical analysis appli-

cations, and data mining tools, and

intelligent agents. These types of analytical

tools are used to address questions per-

taining to one or more of the following

four basic query or data interrogation

patterns: 1) to generate hypotheses con-

cerning relationships or patterns that serve

to link variables of interest in a data set

[116]; 2) to evaluate the validity hypoth-

eses and the strength of their related data

motifs, often using empirically-validated

statistical tests [117,118]; 3) to visualize

complex data sets in order to facilitate

human-based pattern recognition [119–

121]; and 4) to infer and/or verify and

validate quantitative models that formalize

phenomena of interest identified via the

preceding query patterns [122,123].

6. Open Research Questions
and Future Direction

As can be ascertained from the preced-

ing review of the theoretical and practice

bases for the integration of data and

knowledge in the translational science

domain, such techniques and frameworks

have significant potential to positively

impact the speed, efficacy, and impact of

such research programs, and to enable

novel scientific paradigms that would not

otherwise be tractable. However, there are

a number of open and ongoing research

and development questions being ad-

dressed by the biomedical informatics

community relative to such approaches

that should be noted:

Dimensionality and granularity:
the majority of knowledge integration

techniques being designed, evaluated,

and applied relative to the context of the

translational science domain target low-

order levels of dimensionality (e.g., the

integration of data and knowledge corre-

sponding to a single type, per the defini-

tions set forth in Table 1). However, many

translational science problem spaces re-

quire reasoning across knowledge-types

and data granularities (e.g., multidimen-

sional data and knowledge collections).

The ability to integrate and reason upon

data in a knowledge-anchored manner

that addresses such multi-dimensional

context remains an open area of research.

Many efforts to address this gap in

knowledge and practice rely upon the

creation of semantically typed ‘‘vertical’’

linkages spanning multiple integrative

knowledge networks, as is illustrated in

Figure 4.

Scalability: Similar to the challenge of

dimensionality and granularity, the issue

of scalability of knowledge integration

methods also remains an open area of

research and development. Specifically, a

large number of available knowledge

integration techniques rely upon semi-

automated or human-mediated methods

or activities, which significantly curtail the

scalability of such approaches to large-

scale problems. Much of the research

targeting this gap in knowledge and

practice has focused on the use of artificial

intelligence and semantic-reasoning tech-

nologies to enable the extraction, disam-

biguation, and application of conceptual

knowledge collections.

Reasoning and visualization: Once

knowledge and data have been aggregated

and made available for hypothesis discov-

ery and testing, the ability to reason upon

and visualize such ‘‘mashups’’ is highly

desirable. Current efforts to provide reus-

able methods of doing so, such as the tools

and technologies provided by the semantic

web community, as well as visualization

techniques being explored by the comput-

er science and human-computer interac-

tion communities, hold significant promise

in addressing such needs, but are still

largely developmental.

Applications of knowledge-based
systems for in-silico science para-
digms: As has been discussed throughout

this collection, a fundamental challenge in

Translational Bioinformatics is the ability

to both ask and answer the full spectrum of

questions possible given a large-scale and

multi-dimensional data set. This challenge

is particularly pressing at the confluence of

high-throughput bio-molecular measure-

ment methods and the translation of the

findings generated by such approaches to

clinical research or practice. Broadly

speaking, overcoming this challenge re-

quires a paradigm that can be described as

in-silico science, in which informatics
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methods are applied to generate and test

integrative hypotheses in a high-through-

put manner. Such techniques require the

development and use of novel KA and KR

methods and structures, as well as the

design and verification/validation of

knowledge-based systems targeting the

aforementioned intersection point. There

are several exemplary instances of investi-

gational tools and projects targeting this

space, including RiboWeb, BioCyc, and a

number of initiatives concerned with the

modeling and analysis of complex biolog-

ical systems [6,113,114,120,124]. In addi-

tion, there are a number of large-scale

conceptual knowledge collections focusing

on this particular area that can be

explored as part of the repositories main-

tained and curated by the National Center

for Biomedical Ontologies (NCBO). How-

ever, broadly accepted methodological

approaches and knowledge collections

related to this area generally remain

developmental.

7. Summary

As was stated at the outset of this

chapter, our goals were to review the

basic theoretical frameworks that define

core knowledge types and reasoning

operations with particular emphasis on

the applicability of such conceptual

models within the biomedical domain,

and to introduce a number of prototyp-

ical data integration requirements and

patterns relevant to the conduct of

translational bioinformatics that can be

addressed via the design and use of

knowledge-based systems. In doing so,

we have provided:

N Definitions of the basic knowledge
types and structures that can be

applied to biomedical and translational

research;

N An overview of the knowledge en-
gineering cycle, and the products

generated during that cycles;

N Summaries of basic methods, tech-
niques, and design patterns that
can be used to employ knowl-
edge products in order to integrate

and reason upon heterogeneous and

multi-dimensional data sets; and

N An introduction to the open re-
search questions and areas re-
lated to the ability to apply
knowledge collections and knowl-

edge-anchored reasoning processes

across multiple networks or knowledge

collections.

Given that the translational bioinfor-

matics is defined by the presence of

complex, heterogeneous, multi-dimension-

al data sets, and in light of the growing

volume of biomedical knowledge collec-

tions, the ability to apply such knowledge

collections to biomedical data sets requires

an understanding of the sources of such

knowledge, and methods of applying them

to reasoning applications. Ultimately,

Figure 4. Conceptual model for the generation of multi-network complexes of markers spanning a spectrum of granularity from
bio-molecules to clinical phenotypes.
doi:10.1371/journal.pcbi.1002826.g004
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these approaches introduce both signifi-

cant opportunities to advance the state of

translational science, while simultaneously

adding areas of complexity to the design of

translational bioinformatics studies, in-

cluding the methods needed to reason in

an integrative manner across multiple

networks or knowledge constructs. As

such, these theories, methods, and frame-

works offer significant benefits as well as a

number of exciting and ongoing areas of

biomedical informatics research and de-

velopment.

8. Exercises

Instructions: Read the following mo-

tivating use case and then perform the

tasks described in each question. The

objective of this exercise is to demonstrate

how available and open-access knowledge

discovery and reasoning tools can be used

to satisfy the information needs incumbent

to biomedical knowledge integration needs

commonly encountered in the clinical and

translational research environment.

Use Case: The ability to identify potentially

actionable phenotype-to-biomarker relationships is

of critical importance in the translational science

domain. In the specific context of integrative cancer

research, it is regularly the case that structural and

functional relationships between genes, gene

products, and clinical phenotypes are used to

design and evaluate diagnostic and therapeutic

approaches to targeted disease states. Large

volumes of domain specific conceptual knowledge

related to such hypothesis generation processes can

be found in publically available literature corpora

and ontologies.

1) Task One: Select a specific cancer

and perform a search for a collection

of recent literature available with full

free text via PubMed Central (the

resulting corpora should contain 5

manuscripts published within the

last three years, selected based upon

their publication dates beginning

with the most recent articles/manu-

scripts). Download the free text for

each such article.

2) Task Two: For each full text article

in the corpora established during

Task One, semantically annotate

genes, gene products, and clinical

phenotype characteristics as found in

the Abstract, Introduction, and Con-

clusion (or equivalent) sections using

applicable Gene Ontology (GO)

concepts, using the NCBO anno-

tator found at: http://bioportal.

bioontology.org/annotator)

3) Task Three: Identify the top 10

most frequently occurring Gene

Ontology (GO) concepts found in

your annotations, per Task Two.

For each such concept, perform a

search of PubMed Central for

articles in which both the appropri-

ate terms describing the cancer

selected in Task One as well as

these concepts co-occur. For the top

5 (most recent) articles retrieved via

each search, retrieve the associate

abstract for subsequent analysis

4) Task Four: Using the NCBO Ontol-

ogy Recommender (http://bioportal.

bioontology.org/recommender), analyze

each of the abstracts retrieved in Task

Three to determine the optimal ontology

for annotating those abstracts, noting the

top ‘‘recommended’’ ontology for each

such textual resource.

5) Task Five: For each abstract

identified in Step Three, again using

the NCBO annotator (found at:

http://bioportal.bioontology.org/

annotator), annotate those abstracts

using the recommended ontologies

identified in Step Four (selecting

only those ontologies that are also

reflects in the NLM’s UMLS). Then,

for the top 2–3 phenotypic (e.g.,

clinically relevant) concepts identi-

fied via that annotation process, use

the UMLS UTS (https://uts.nlm.

nih.gov/) in order to identify poten-

tial phenotype-genotype pathways

linking such phenotypic concepts

and the genes or gene products

identified in Task Two. Please note

that performing this task will require

exploring multiple relationship

types reflected in the UMLS me-

tathesaurus (documentation con-

cerning how to do perform such a

search can be found here: http://

www.ncbi.nlm.nih.gov/books/

NBK9684/).

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)
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Abstract: Modern experimental
strategies often generate genome-
scale measurements of human tis-
sues or cell lines in various physi-
ological states. Investigators often
use these datasets individually to
help elucidate molecular mecha-
nisms of human diseases. Here we
discuss approaches that effectively
weight and integrate hundreds of
heterogeneous datasets to gene-
gene networks that focus on a
specific process or disease. Diverse
and systematic genome-scale mea-
surements provide such approach-
es both a great deal of power and a
number of challenges. We discuss
some such challenges as well as
methods to address them. We also
raise important considerations for
the assessment and evaluation of
such approaches. When carefully
applied, these integrative data-driv-
en methods can make novel high-
quality predictions that can trans-
form our understanding of the
molecular-basis of human disease.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Researchers are using genome-scale

experimental methods (i.e. approaches

that assay hundreds or thousands of genes

at a time) to probe the molecular mech-

anisms of normal biological processes and

disease states across systems from cell

culture to human tissue samples. Data of

this scale can provide a great deal of

information about the process or disease of

interest, the tissue of origin, and the

metabolic state of the organism, among

other factors. To understand biological

processes on a systems level one must

combine data from measurements across

different molecular levels (e.g. proteomic,

metabolomic, and genomic measure-

ments) while incorporating data from

diverse experiments within each individual

level. An effective integrative analysis will

take advantage of these data to develop a

systems level understanding of diseases or

tissues.

Human genome-scale experimental data

include microarrays [1,2,3], genome-wide

association studies [4,5], and RNA interfer-

ence screens [6,7] among many other

experimental designs [8]. These experi-

ments range from those targeted towards

tissue specificity [9] to those targeted

towards specific diseases such as cancer

[10]. The NCBI Gene Expression Omnibus

(GEO) [11], a database of microarrays

alone, contains over 700 human datasets

collected under diverse experimental con-

ditions encompassing more than 8000

individual arrays. The human PeptideAtlas

[12], a similar resource for proteomics

experiments, currently contains almost 6.7

million MS/MS spectra representing al-

most 84,000 non-singleton peptides across

220 samples. In addition to these high

throughput experiments, there are databas-

es of biochemical pathways [13], gene

function [14], pharmacogenomics [15],

and protein-protein interactions [16,17,18].

Integrating heterogeneous genome-scale

experiments and databases is a challenging

task. Beyond the straightforward concern of

experimental noise in each individual data-

set, integrative approaches also face partic-

ular challenges inherent to the process of

unifying heterogeneous data types. Specifi-

cally we are concerned with biological and

computational sources of heterogeneity.

Biological heterogeneity among experiments

emerges from the measurement of many

different processes or the unique probing of

biological systems. The source of biological

material (e.g. whether experiments measure

cells in culture or biopsied tissues) can also

lead to systematic biological heterogeneity.

Computational heterogeneity (e.g. some

datasets have discrete value measurements

while others are continuous) comes from the

diversity of experimental platforms used to

assay biological processes. Integrative ap-

proaches that bring together diverse data

types and experiments must address the

challenge of effectively combining these data

for inference.

There are many strategies for combin-

ing these diverse and heterogeneous data.

These include ridge regression [19,20],

Bayesian inference [21,22,23,24,25], ex-

pectation maximization [26], and support

vector machines [27]. This chapter focuses

on the strategy of Bayesian integration,

which is capable of both predicting the

probability of an interaction between gene

pairs and providing information on the

contribution of each experiment to that

prediction. Bayesian integration allows for

datasets to be combined based on the

strength of evidence from individual data-

sets, which can be either learned from the

data [28] or expert annotated [29]. Intui-

tively the Bayesian strategy works by

evaluating the accuracy and coverage of

each individual dataset and the relevance of

each source of data to the disease or tissue of

interest and using this information to weight

each dataset’s impact on resulting predic-

tions. Here we discuss Bayesian methods

that infer genome-scale functional relation-

ship networks from high throughput exper-

imental data by building on exiting gold

standards. We discuss how these methods

work, how to develop high quality gold

standards, and how to evaluate networks of

predicted functional relationships.
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2. Combining Diverse Data
Using Bayesian Inference

Bayesian inference is a powerful tool

that can be used to make predictions based

on experimental evidence. If we want to

calculate the probability that a gene of

unknown function is involved in a disease,

we can begin by developing a list of genes

known to be involved in the disease

(positive examples) and a list of genes not

involved in the disease (negative exam-

ples). These positive and negative exam-

ples are termed a ‘‘gold standard’’ in the

field of machine learning. Figure 1 shows,

under three conditions, how the measure-

ments for positive genes and negative

genes are distributed in datasets measuring

three hypothetical conditions. From this,

we can observe that genes having a higher

(more to the right) score in Condition A

and a lower (more to the left) score in

Condition C appear to be involved in the

disease.

Bayesian inference allows us to use these

distributions to quantify the probability that

a gene is involved in disease given these

data. Table 1 shows experimental results

from Condition A where the median has

been used to divide the continuous values

into discrete bins.

From this contingency table we can

calculate the probability that a gene i is

involved in disease, P Dið Þ, given the

experimental results for gene i, Ei. Math-

ematically this can be written as P Di DEið Þ.
Bayes’ theorem states that

P Di DEið Þ~ P Ei DDið ÞP Dið Þ
P Eið Þ

:

The probability that a gene is involved

in disease ignoring any evidence, P Dið Þ, is

known as the prior probability. We can

conservatively estimate this as, for in-

stance, the proportion of positive examples

to the proportion of total genes. If the

organism of interest has 20,000 genes, this

would be

P Dið Þ~
Positive Examples

Genes in Organism
~

200

20,000
~0:01:

This is likely to be too conservative as it

assumes that there are no unknown genes

that are involved in the disease of interest.

In practice, however, as evidence accu-

mulates the impact of the prior probability

on individual predictions is diminished.

With knowledge of the state of gene i in

Condition A we can calculate P Ei DDið Þ. In

this example, assume that the measurement

for gene i is above the median. This

probability of observing the experimental

result for gene i given that a gene is involved

in disease can be calculated as

P EijDið Þ~
Positive Examples Above Median

Positive Examples
~

150

200
~0:75:

The final component of this formula is

the probability of observing the experi-

mental result that was observed for gene i,

P Eið Þ. This value is the proportion of

genes from the standard measured above

the median to the total number of genes in

the standard,

P Eið Þ~
Above Median

Total in Standard
~

211

422
~0:5:

It is important to note that, if the prior is

adjusted from the proportion observed in

the data, P Eið Þ must also be adjusted to

present the probability of the evidence

under the new prior. With these compo-

nents we can calculate the probability of

disease given the experimental evidence

for gene i as

P Di DEið Þ~ P Ei DDið ÞP Dið Þ
P Eið Þ

~
0:75|0:01

0:5
~0:015:

This probability is still small in large

part due to our conservative prior, but by

assuming that experimental results from

different datasets are independent, we

can perform this same calculation for

gene i in experimental condition B using

this probability as the prior, and the

calculation for condition C using the

probability from condition B as the prior.

This procedure exploits Bayes’ theorem

to bring together diverse evidence sources

through the common framework of

probabilities.

3. Defining a Functional
Relationship Gold Standard

Going beyond gene lists to networks of

genes requires a different type of gold

standard. While the inference approach

described in Section 2 can be used to

implicate genes in a disease or process, the

specific roles of those genes remain

unclear. In the strategy from Section 2,

positive and negative genes make up the

What to Learn in This Chapter

N What a functional relationship network represents.

N The fundamentals of Bayesian inference for genomic data integration.

N How to build a network of functional relationships between genes using
examples of functionally related genes and diverse experimental data.

N How computational scientists study disease using data driven approaches, such
as integrated networks of protein-protein functional relationships.

N Strategies to assess predictions from a functional relationship network

Figure 1. Potential distributions of experimental results obtained for datasets collected under three different conditions. The dotted
line indicates the distribution of negative examples and the solid line indicates the distribution of positive examples. In condition A the positive
examples more often occur to the right of the negative examples, in condition B both sets overlap, and in condition C the positive examples occur
more often to the left of the negative examples.
doi:10.1371/journal.pcbi.1002816.g001
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gold standard. By building a gold standard

of positive and negative relationships, it

becomes possible to predict whether or not

a pair of genes interacts.

As with all machine learning strategies,

the gold standard determines what type of

relationship can be discovered. Here we

will describe the process of building a gold

standard of functional relationships, but a

different standard of only physical or only

metabolic interactions could be used to

develop a network with those types of

connections. Here we define two genes as

having a functional relationship if they

work together to carry out a biological

process (e.g. a KEGG pathway) that can be

assayed by definitive experimental follow-

up. This definition allows us to capture

diverse types of relationships, while discov-

ering relationships suitable for biological

follow-up. The Gene Ontology’s biological

process ontology provides annotations of

genes to process, but includes both very

broad and very narrow processes. Two

examples of broad terms would be ‘‘bio-

logical regulation’’ and ‘‘response to stim-

ulus.’’ Two examples of narrow terms

would be ‘‘positive regulation of cell growth

involved in cardiac muscle cell develop-

ment’’ and ‘‘cell-matrix adhesion involved

in tangential migration using cell-cell

interactions.’’ The broad terms are not

specific enough to provide a meaningful

gold standard, while the narrow terms have

too few annotations to provide sufficient

examples of known relationships.

To address this shortcoming, Myers et al.

[30] used a panel of experts to select terms

from the biological process ontology that

were appropriate for confirmation or refu-

tation through laboratory experiments such

as ‘‘response to DNA damage stimulus’’ and

‘‘aldehyde metabolism.’’ These terms can

be downloaded and used to build a positive

functional relationship standard. Gene pairs

where both pairs share one of these terms

can be considered to have a functional

relationship. Gene pairs which do not share

an annotation are of unknown status. For

Bayesian inference we must also have a

negative standard. One potential way to

develop a negative standard would be to

randomly select pairs of genes. This assumes

that most pairs of genes do not interact.

It is possible to add additional high

quality experimentally annotated relation-

ships to these standards from other

databases. Databases like KEGG [13],

Reactome [31], and HPRD [32] have

previously been used to identify additional

functional relationships [33]. The positive

and negative relationships from the stan-

dard determine the type of relationship

that will be predicted by the Bayesian

integration. Here we use functional rela-

tionships, but a gold standard built strictly

from physical protein-protein interactions

will infer only physical interactions rela-

tionships between genes.

4. Building a Network of
Functionally Related Genes

Given a gold standard of gene-gene

relationships, the probability that two genes

of unknown status have a relationship can

be calculated from diverse data using

Bayesian inference. The process is similar

to the integration process described for

single-gene prediction, but there are differ-

ences. For each dataset, appropriate scores

for each gene pair must be calculated.

Furthermore, these scores should not re-

quire any manual intervention or adjust-

ment that would make an analysis of

hundreds or thousands of datasets time

consuming. For datasets that are naturally

made up of pair-wise scores such as yeast two-

hybrid assays, this task is straightforward.

For datasets made up of individual

gene measurements, such as microarray

experiments, a useful measure must be

found.

One measure that can provide pair-wise

scores across arrays is correlation. Corre-

lation quantifies the amount that two

genes vary together and can be a useful

indicator of functional relationships. Com-

paring correlation across datasets in a

regular manner is difficult however, be-

cause datasets may display more or less

correlation based on both true biology

(e.g. under some conditions more genes

vary together) or experimental error (e.g.

systematic biases due to hybridization

conditions) and the variance of gene-wise

correlations would vary based on these

dataset dependent effects. Fisher’s z-trans-

form provides a means to convert these

correlation coefficients (r) to z-scores by

calculating z as

z~
1

2
ln

1zr

1{r
:

These z-scores provide a familiar frame-

work to work with correlation and allow

correlation measures between genes to be

compared across datasets. It is then

possible to categorize genes pairs as

negatively correlated, uncorrelated, or

positively correlated based on whether

their z-score is less than, approximately

equal to, or greater than zero.

These pairs can then be used as

evidence in an integration. In the single

Table 1. A contingency table for the experimental results for Condition A.

Below Median Above Median Total

Positive Examples 50 150 200

Negative Examples 161 61 222

Total 211 211 422

Genes are discretized into values above or below the median. The numbers of positive and negative examples come from the gold standard. These values can be used
to predict the probability that a gene with unknown status is involved in the disease.
doi:10.1371/journal.pcbi.1002816.t001

Figure 2. An example of querying HEFalMp for the role of APOE across all biological
processes (http://hefalmp.princeton.edu/).
doi:10.1371/journal.pcbi.1002816.g002
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gene situation, we were interested in

P Di DEið Þ, or the probability of gene i
causing disease given its evidence. Here we

are interested in the probability of a

functional relationship between genes i

and j, P FRi,j

� �
, given some pair-wise

evidence (e.g. correlation), Ei,j . As in the

single gene situation, this can be calculated

with

P FRi,j DEi,j

� �
~

P Ei,j DFRi,j

� �
P FRi,j

� �

P Ei,j

� � :

Like before, a contingency table is used.

The difference in this situation is that the

table is based on pair-wise gene measures

instead of measurements for individual

genes. This process, when used to calcu-

late pair-wise probabilities of functional

relationships for all of the genes in the

genome of interest, results in a functional

relationship network for the organism of

interest.

Huttenhower et al. [33] performed

Bayesian integration and prediction using

human gold standards and datasets. This

tool allows users to query the network and

also displays what datasets contribute to the

relationships predicted from the integrated

approach. As an example we can query

HEFalMp to find out how the APOE

protein relates to all genes across all

biological processes as shown in Figure 2.

The result is shown in Figure 3. The red

links indicate that there is a high probability

of a functional relationship between the two

genes and green links indicate a low

probability. Black links indicate a probabil-

ity of approximately 0.5.

The probability of a functional relation-

ship between any pair of genes is calculat-

ed as described previously. As such, this

probability is dependent on evidence from

each individual dataset. By clicking on a

link, the contributions for each dataset

towards that gene pair are provided as

shown in Figure 4 for APOE and PLTP.

This figure indicates the value of including

high quality databases such as BioGRID

as input data. While the microarray

datasets are informative, in this case the

three highest weighted datasets were non-

microarray data sources.

These functional relationships can then

be used to connect genes to diseases

through guilt by association approaches.

Guilt by association approaches work by

finding genes or diseases that are highly

connected to query genes. How exactly

this is done depends on the underlying

network, the size and type of the query

sets, whether or not the task must be done

in real time. An example approach would

be to consider as positives only relation-

ships with a probability from the inference

stage of greater than 0.9. A Fisher’s exact

test p-value [34] can then be calculated

using the counts of genes connected to the

query, the number of genes connected to

the query and annotated to the disease of

interest, as well as the total number of

genes in the network and the number of

those genes annotated to the disease [34].

The approach used by the HEFalMp

online tool is more complicated because

the network-specific calculations must be

done in real time for the web interface.

Figure 5 shows diseases significantly asso-

ciated with the APOE protein through the

HEFalMp online tool, while the procedure

used to generate the results for Figure 6

flips the analysis and shows genes signifi-

cantly associated with Alzheimer disease

based on their connectedness to genes

annotated to this disease in OMIM [35].

5. Evaluating Functional
Relationship Networks

After performing a Bayesian integra-

tion it is appropriate to assess the quality

of the inference approach. One straight-

forward way to evaluate the network

would be measure the concordance of

the gold standard and predictions from

the network. This is easily done by

ordering gene pairs by their probabilities

in the network from highest to lowest. For

each gene pair in the gold standard, the

true positive rate (TPR) to that point can

be calculated as

TPR~
Positive Pairs Thus Far

Total Positives in Standard
:

The false positive rate (FPR) can be

calculated with the same values for negative

pairs. These values can then be plotted with

FPR on the horizontal axis and TPR on the

vertical access. This provides one type of

receiver-operator characteristic (ROC)

curve which can be used to assess the quality

of predictions from the network. The area

under this curve (AUC) summarizes to a

single number the quality of predictions.

Unfortunately this approach to evalua-

tion uses the same evaluation standard as

the gold standard used for learning and

therefore it tests the ability of the inference

approach to match the gold standard, and

not its ability to make new predictions.

One way to avoid this circularity is to hold

a group of genes out of the gold standard

during the integration process. Connec-

tions between these held out genes can

then be used after the networks are

generated to assess the quality of predic-

tions from the network (in this case the

concordance between the predictions and

Figure 3. The result of querying HEFalMp for the role of APOE across all biological
processes. Red links indicate that there is a high probability of a functional relationship between
the two genes.
doi:10.1371/journal.pcbi.1002816.g003
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the known relationship status of the held

out genes are used). While the holdout

approach is effective for large gold stan-

dards, when gold standards are small this

can result in too few known relationships

for assessment of the network. This

assessment problem can be alleviated at

the cost of computation time by using a

cross-validation approach. With cross-val-

idation, the gene sets are divided up into

groups. Like the hold-out approach, all

but one group is used to train the network

Figure 4. The highest and lowest contributing datasets for the pair of APOE and PLTP are shown (http://hefalmp.princeton.edu/
gene/one_specific_gene/18543?argument = 21697&context = 0). These contributions are based on how well the bin containing the queried
gene pair separated known positive functional relationships from known negative functional relationships.
doi:10.1371/journal.pcbi.1002816.g004

Figure 5. The diseases that are significantly connected to APOE through the guilt by association strategy used in HEFalMp.
Alzheimer disease and Macular degeneration are both annotated to the disease in OMIM as noted by the gold bars to the left of the disease (http://
hefalmp.princeton.edu/gene/diseases?context = 0&name = APOE). The other diseases are implicated by APOE’s functional relationships to genes
annotated to that disease in OMIM.
doi:10.1371/journal.pcbi.1002816.g005
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while the evaluation is performed on the

left out group. In contrast to the hold-out

approach, the process of training and

evaluation is performed iteratively with

each group of genes being evaluated, but

like the hold-out approach, only the

predictions generated on held out genes

are used for evaluation.

When standards are incomplete, exist-

ing literature can also be used for

evaluation. This can be incorporated in a

number of ways. One way is to use a blind

literature evaluation. Pairs predicted with

high probability or genes highly connected

to members of the standard can be

selected for follow-up. These are com-

bined with randomly selected genes to

create a gene list for evaluation. Literature

evidence for genes on this list can be

assessed, and a comparison can be per-

formed for genes selected from the net-

work and genes selected randomly. If the

proportion of literature based positives of

genes or pairs selected from the network is

substantially higher than those selected

randomly, this provides evidence that the

network recapitulates true biology.

Fundamentally the goal of this data

driven functional genomics strategy is to

create a network of predictions useful for

designing biological experiments [36]. If

these predictions lead to a higher success

rate in molecular biology experiments, an

integrative analysis can dramatically lower

the cost per discovery. Hibbs et al. [37]

used a data driven approach to direct

experimental biology and found that

computational predictions could be exper-

imentally validated at a substantially

higher rate than randomly selected genes.

Furthermore, those genes that were found

by computational methods were more

likely to exhibit a subtle phenotype than

the genes already known to be involved.

This study provides evidence that compu-

tational predictions combined with exper-

imental science can lower the cost of

experimental discoveries while finding

subtle phenotypes that high throughput

experimental designs may miss.

6. Summary

Data driven functional genomics strate-

gies combine methods from statistics and

computer science to integrate diverse

experimental data for the purpose of

making novel biological predictions. By

bringing diverse data together, these meth-

ods are capable of discovering patterns of

biological relevance not well characterized

in individual studies [38]. Furthermore,

because these methods rely on existing

data, they can be used to efficiently direct

definitive low throughput experimental

studies in a cost effective manner [37,39].

Integrative data driven approaches are

often compared to publicly available

databases of knowledge or experiments

or to the statistical analysis of results from

Figure 6. The genes that are most significantly connected to Alzheimer disease genes using the HEFalMp network and OMIM
disease gene annotations (http://hefalmp.princeton.edu/disease/all_genes/55?context = 0). The gold bars to the left of APP and APOE
indicate that both genes were annotated Alzheimer disease according to OMIM.
doi:10.1371/journal.pcbi.1002816.g006

Figure 7. The functional relationship network discovered by a data driven integration
for the YFG gene in YFO.
doi:10.1371/journal.pcbi.1002816.g007
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individual high throughput experiments, but

they are distinct from both of these. Data-

bases generated by literature curation are by

their nature not well suited to the discovery of

new knowledge and databases of experimen-

tal results require researchers to know a priori

which datasets are relevant to the biological

question of interest. Integrative data driven

approaches combine high throughput exper-

iments and databases of diverse types and in

so doing can make predictions beyond those

discovered using single data sources.

The flexibility of the data driven approach

also gives rise to its greatest challenge. This

strategy relies upon gold standards that are a

representation of high quality current knowl-

edge. When these standards are of high

quality and appropriate to the biological

question of interest, the resulting answers are

likely to be useful. If the standards are of

lower quality, the utility of the predictions

will be lessened. In many cases the gold

standard quality is the critical determinant of

success for these algorithms. With careful

use, these methods can generate predictions

capable of efficiently directing experimental

biology [37,40].

7. Exercises

1. All proteins connected to the protein

Your Favorite Gene (YFG) in the

functional relationship network of Your

Favorite Organism (YFO) are shown in

Figure 7. Three of them are known to

be associated with Your Favorite

Disease (YFD). These genes are

YFDG1, YFDG2, and YFDG3. YFD

has six genes annotated to it among the

100 genes present in YFO. Using a

Fisher’s exact test to evaluate guilt by

association, is YFG significantly associ-

ated with YFD (av0:05)?

2. Does the gene expression dataset

described by the contingency table in

Table 2 provide any information about

whether or not the genes YFG and

MFG are likely to have a functional

relationship if they are uncorrelated in

this dataset? What if they are negative-

ly correlated?

3. Using the contingency tables from

Tables 2 and 3 and the knowledge that

20% of gene-pairs in the organism of

interest have a functional relationship,

what is the probability that genes YFG

and MFG have a functional relationship

if they are positively correlated in the

experiment that Table 2 is derived from

and physically interacting in the data-

base from which Table 3 is derived?

4. What is the major difference between

databases and integrative data driven

approaches?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)

Glossary

N Functional Relationship: The type of interaction that two genes have if they
participate in the same biological process.

N Gold Standard: A set of genes or gene-pairs with a known status (positive or
negative) in the tissue, process, disease, or phenotype of interest.

N Hypergeometric/Fisher’s Exact Test: A test of independence appropriate for
categorical count data when the number of items in each cell is small.

Further Reading

N Kanehisa M, Bork P (2003) Bioinformatics in the post-sequence era. Nat Genet
33 Suppl: 305–310.

Table 2. A contingency table for gene-pairs based on correlation in a gene expression dataset.

Negatively Correlated Uncorrelated Positively Correlated

Known Positive Relationships 20 30 50

Known Negative Relationships 400 300 200

doi:10.1371/journal.pcbi.1002816.t002

Table 3. A contingency table for gene-pairs based on a database of physical interactions.

Not Physically Interacting Physically Interacting

Known Positive Relationships 10 90

Known Negative Relationships 900 100

doi:10.1371/journal.pcbi.1002816.t003
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Abstract: ‘‘Big’’ molecules such as
proteins and genes still continue to
capture the imagination of most
biologists, biochemists and bioin-
formaticians. ‘‘Small’’ molecules, on
the other hand, are the molecules
that most biologists, biochemists
and bioinformaticians prefer to
ignore. However, it is becoming
increasingly apparent that small
molecules such as amino acids,
lipids and sugars play a far more
important role in all aspects of
disease etiology and disease treat-
ment than we realized. This partic-
ular chapter focuses on an emerg-
ing field of bioinformatics called
‘‘chemical bioinformatics’’ – a disci-
pline that has evolved to help
address the blended chemical and
molecular biological needs of tox-
icogenomics, pharmacogenomics,
metabolomics and systems biolo-
gy. In the following pages we will
cover several topics related to
chemical bioinformatics. First, a
brief overview of some of the most
important or useful chemical bioin-
formatic resources will be given.
Second, a more detailed overview
will be given on those particular
resources that allow researchers to
connect small molecules to diseas-
es. This section will focus on
describing a number of recently
developed databases or knowl-
edgebases that explicitly relate
small molecules – either as the
treatment, symptom or cause – to
disease. Finally a short discussion
will be provided on newly emerg-
ing software tools that exploit
these databases as a means to
discover new biomarkers or even
new treatments for disease.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

For most of the past 100 years, the fields

of toxicology, pharmacology and clinical

biochemistry have focused on identifying

the chemicals that cause (toxins), cure

(drugs) or characterize (biomarkers) most

human diseases. Historically, this kind of

work has been reliant on the slow, careful

and sometime tedious approaches of

classical analytical chemistry and classical

biochemistry. Nevertheless, it has led to

important discoveries and enormous ad-

vances in our understanding of the actions

of chemicals on genes, proteins and cells.

With the recent emergence of high

throughput ‘‘omics’’ technologies, our

ability to detect, identify, and characterize

small molecules along with their large

molecule targets has been radically

changed [1,2]. Now it is possible to

perform as many sequencing experiments,

mass spectrometry (MS) experiments or

compound identifications in a single day as

used to be done in a single year. As a

result, traditional fields such as toxicology,

pharmacology and biochemistry have

been transformed into totally new fields

called toxicogenomics, pharmacogenomics

and metabolomics. This transformation

has changed not only the fundamentals of

these disciplines, but also the fundamentals

of their data. Rather than trying to

manage a few samples, a few sequences

or a few compounds in a paper notebook

or on an Excel spreadsheet, researchers

are confronted with the task of handling

hundreds of samples, thousands of com-

pounds, thousands of spectra and thou-

sands of genes or protein sequences. This

has led to the development of novel

computational tools and entirely new

bioinformatic disciplines to facilitate the

handling of this data. This particular

chapter focuses on an emerging field of

bioinformatics called ‘‘chemical bioinfor-

matics’’ – a discipline that has evolved to

help address the blended chemical and

molecular biological needs of toxicoge-

nomics, pharmacogenomics, metabolo-

mics and systems biology.

Chemical bioinformatics combines the

sequence-centric tools of bioinformatics

with the chemo-centric tools of ‘‘chemin-

formatics’’. The term cheminformatics,

which is an abbreviated form of ‘‘chemical

informatics’’, was first coined by Frank

Brown nearly 15 years ago [3]. Cheminfor-

matics (as it is known in North America) or

chemoinformatics (as it is known in Europe

and the rest of the world) is actually a close

cousin to bioinformatics. Just as bioinfor-

matics is a field of information technology

concerned with using computers to analyze

molecular biological data, cheminformatics

is a field of information technology that uses

computers to facilitate the collection, stor-

age, analysis and manipulation of large

quantities of chemical data.

However, there are some distinct ‘‘cul-

tural’’ differences between bioinformatics

and cheminformatics. For instance, che-

minformatics software is mostly designed

for use by chemists, while bioinformatics

software is designed for use by molecular

biologists. Consequently there is often a

terminology gap that makes it difficult for

biologists to use cheminformatic software

and chemists to use bioinformatics soft-

ware. Likewise, most cheminformatic soft-

ware is structure-based or picture-driven

while most bioinformatic software is se-

quence-based or text-driven. As a result,

different search and query interfaces have

evolved that are quite specific to either

cheminformatic or bioinformatic software.
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Further compounding this culture gap is

the fact that most cheminformatics soft-

ware and chemical compound databases

were developed without the expectation

that this information would ever be

biologically or medically relevant. Like-

wise, most bioinformatics software and

bioinformatic databases were developed

without the intention of using this data to

facilitate small molecule biomarker identi-

fication or small molecule drug discovery.

Consequently most biological sequence

data is not linked in any meaningful way

to drug or disease information – and vice

versa. However, thanks to the emergence

of new fields such as pharmacogenomics,

toxicogenomics, systems biology and me-

tabolomics, there is now a growing desire

to bring bioinformatics and cheminfor-

matics closer together. This has spawned

the new field of chemical bioinformatics.

In this chapter we will cover several topics

related to chemical bioinformatics. First, a

brief overview of some of the most important

chemical bioinformatic resources will be

given. This will include a discussion of some

of the major databases and classes of

databases. Second, a more detailed overview

will be given on those particular resources

that allow researchers to connect small

molecules to diseases. This section will focus

on describing a number of recently devel-

oped databases or knowledgebases that

explicitly relate small molecules – either as

the treatment, symptom or cause – to

disease. Finally a short discussion will be

provided on newly emerging software tools

that exploit these databases as a means to

discover new biomarkers or even new

treatments for disease.

2. Databases for Chemical
Bioinformatics

Electronic databases lie at the heart of

almost any subdiscipline of bioinformatics

– and chemical bioinformatics is no

exception. Indeed, without databases there

is essentially no foundational knowledge to

the discipline, and consequently, no com-

pelling reason to write software. Programs

such as BLAST [4] would be useless

without GenBank [5], likewise, PSIPRED

[6] couldn’t exist without the Protein

Databank [7] and Gene Set Enrichment

Analysis – GSEA [8] would be impossible

without the GEO and KEGG databases

[9,10]. Given their importance, it is

perhaps worthwhile to briefly review the

different types of chemical-bioinformatic

databases that are available and discuss

some of their particular strengths and

limitations.

Currently there are four major classes of

chemical-bioinformatic databases. These

include: 1) small molecule (or metabolic)

pathway databases; 2) metabolite or me-

tabolomic databases; 3) drug databases;

and 4) toxin or toxic substance databases.

In an ideal world each of these database

classes could/should be useful for relating

small molecules to human diseases or

disease treatments. For instance, metabolic

pathway databases would be expected to

be most useful for understanding the ‘‘big-

picture’’ relationship between small mole-

cules and disease – either with regard to

those small molecule compounds causing

disease (i.e. toxins), indicating disease (i.e.

biomarkers) or being used in the treatment

of disease (i.e. drugs). On the other hand,

metabolite or metabolomic databases

would be expected to be most useful for

associating small molecule biomarkers

with specific diseases, such as inborn errors

of metabolism or a variety of chronic or

infectious diseases characterized by me-

tabolite imbalances. Drug databases would

obviously be most relevant for identifying

small molecules with disease treatments,

although they could also be used to

identify small molecule drugs causing

adverse drug reactions. Finally toxin or

toxic compound databases would be

expected to be most useful for identifying

the compounds causing diseases or causing

symptoms associated with certain poison-

ing or environmental exposure incidents.

This could include acute poisonings or

more long-term, environmentally influ-

enced conditions such as cancer, allergies

or birth defects.

However, as detailed below, not all of

the available chemical-bioinformatic data-

bases are particularly suited for these kinds

of disease-associated queries. This likely

reflects the relatively nascent stage of this

field (it’s less than five years old) and the

fact that disease-related information is

much more difficult to gather and codify

than either chemical structure or gene

sequence information. Certainly all of

today’s existing chemical-bioinformatic

databases contain information about dif-

ferent classes of chemicals (metabolites,

drugs or poisons) and most contain some

limited information about the correspond-

ing protein and/or genetic targets. How-

ever, only a very small number of these

databases actually include information on

the diseases or physiological effects that

may be caused, cured or characterized by

these chemicals.

2.1 Metabolic Pathway Databases
Among the four major classes of chem-

ical-bioinformatic databases that are avail-

able, metabolic pathway databases are

perhaps the best known and most widely

used. They include a number of popular

web-based resources such as the Kyoto

Encyclopedia of Genes and Genomes – also

known as KEGG [10], the ‘‘Cyc’’ databas-

es [11,12], the Reactome database [13],

WikiPathways [14], the Small Molecule

Pathway Databases or SMPDB [15] and

the Medical Biochemistry Page [http://

themedicalbiochemistrypage.org/]. Sever-

al commercial pathway databases also exist

such as TransPath (from BioBase Inc.),

PathArt (from Jubilant Biosys Inc.), Meta-

Base (from GeneGo Inc.) and Ingenuity

Pathways Analysis (Ingenuity Systems Inc.),

many of which provide nicely illustrated

metabolic pathway diagrams. Most of these

pathway databases were designed to facil-

itate the exploration of metabolism and

metabolites across many different species.

This broad, multi-organism perspective has

been critical to enhancing our basic

understanding of metabolism and our

appreciation of biological diversity. Meta-

bolic pathway databases also serve as the

backbone to facilitate many practical ap-

plications in biology including comparative

genomics and targeted genome annotation.

Table 1 lists the names, web addresses and

general features for these and other useful

pathway databases.

Those metabolic pathway databases

that strive for very broad organism

coverage, such as KEGG and Reactome,

tend to use pathway diagrams that are

very generic and highly schematic, while

What to Learn in This Chapter

N The meaning of chemical bioinformatics

N Strengths and limitations of existing chemical bioinformatic databases

N Using databases to learn about the cause and treatment of diseases

N The Small Molecule Pathway Database (SMPDB)

N The Human Metabolome Database (HMDB)

N DrugBank

N The Toxin and Toxin-Target Database (T3DB)

N PolySearch and Metabolite Set Enrichment Analysis
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those that are organism-specific (i.e. hu-

man-only), such as SMPDB and the

Medical Biochemistry Page, tend to use

diagrams that are very specific and much

richer in detail, colour and content. Most

pathway databases support interactive

image mapping with hyperlinked informa-

tion content that allows users to view

chemical information (if a compound is

clicked) or brief summaries of genes and/

or proteins (if a protein is clicked). Almost

all of the databases support some kind of

limited text search and a few, such as

Reactome, SMPDB and the ‘‘Cyc’’ data-

bases, support the mapping of gene,

protein and/or metabolite expression data

onto pathway diagrams. As might be

expected, the major focus of most of

today’s small molecule pathway databases

is on basic metabolism. As a result, only

one of these databases (SMPD) actually

includes any pathways associated with

drug action or disease.

2.2 Metabolomic Databases
The second major class of chemical-

bioinformatic databases are metabolomic

or metabolite databases. These databases

tend to have a major focus on chemicals

and chemical descriptors with a lesser (or

even absent) focus on biological data.

They are primarily used for metabolite

identification – especially in metabolomic

studies. Some databases are almost exclu-

sively chemical in nature, containing

primarily information on the chemical

name(s), synonyms, InChI (International

Chemical Identifier) identifier, structure,

and molecular weight. These include Lipid

Maps [16], a comprehensive database of

biological lipids; ChEBI [17], a database

of biologically interesting compounds;

PubChem [18], a collection of most

known organic chemicals with links to

PubMed articles and more than 500,000

bioassays; ChemSpider [19], a chemical

databases that is similar in size to Pub-

Chem; KNApSAcK [20], a database of

plant phytochemicals and METLIN [21],

a database of known and presumptive

human metabolites. All of these databases

support a variety of text search options

and a few (such as PubChem, ChemSpi-

der, LipidMaps and ChEBI) support

structure and structure similarity searches.

In addition to these biochemical databas-

es, there are a number of smaller databas-

es that contain spectral (NMR or MS) data

of small molecule metabolites. These

include the BioMagResBank or BMRB

[22] which contains experimental NMR

spectra of mammalian metabolites, Mass-

Bank [23] which contains MS spectra of a

variety of metabolites, drugs and toxic

compounds, MMCD [24] which contains

experimental and predicted NMR spectra

of Arabadopsis metabolites, and the Golm

Metabolome database [25] which contains

MS spectra of different plant metabolites.

These spectral databases are frequently

used to facilitate compound identification

via spectral comparison. More recently, a

much more comprehensive kind of meta-

bolomic database has emerged which

attempts to combine chemical data, spec-

tral data, protein target data, biomarker

data and disease data into a single

resource. Perhaps the best example of this

is the Human Metabolome Database

(HMDB). The HMDB is a database

containing comprehensive data on most

of the known or measurable endogenous

metabolites in humans [26]. Table 2

presents a summary of the names, web

addresses and general features for the

major metabolite/metabolomic databases.

2.3 Pharmaceutical Product
Databases

The third major class of chemical

bioinformatic databases are the drug or

pharmaceutical product databases. In

particular, two types of electronic drug

databases have started to emerge over the

past five years: 1) clinically oriented drug

databases and 2) chemically oriented drug

databases. Examples of some of the better-

known clinically oriented drug databases

include DailyMed [27] and RxList [28].

These resources typically offer very de-

tailed clinical information (i.e. their for-

mulation, metabolism and indications)

about selected drugs derived from their

FDA labels. As a result, these kinds of

databases are targeted more towards

pharmacists, physicians or consumers.

Examples of chemically or genetically

oriented drug databases include the TTD

[29], PharmGKB [30] and SuperTarget

[31]. TTD (which stands for Therapeutic

Target Database) contains information on

5028 drugs (both approved and experi-

mental) with 1894 identified targets and

links to 560 different diseases or indica-

tions. PharmGKB (which stands for Phar-

macogenomics Knowldege Base) has in-

formation on 1587 approved drugs (with

descriptions and indications), including

pharmacogenomic data on 287 drugs.

SuperTarget contains information on

more than 2500 target proteins, which

are annotated with about 7300 literature-

mined relations to 1500 different drugs.

All three of these databases provide

synoptic data (5–10 data fields per entry)

about the nomenclature, structure and/or

physical properties of small molecule drugs

and, in the case of SuperTarget and TTD,

their drug targets. Both TTD and Super-

Target support text, sequence and chem-

ical structure searches, while PharmGKB

provides mechanistic, pharmacodynamic

and pharmacokinetic pathway informa-

tion for 68 different drugs or drug classes.

As a general rule, chemically oriented

drug databases tend to appeal to medicinal

chemists, biochemists and molecular biol-

ogists. In addition to these somewhat

specialized databases, a much more com-

prehensive ‘‘hybrid’’ database, known as

DrugBank [32] has recently been devel-

oped. Drugbank combines the clinical/

disease information of the clinically ori-

ented drug databases with the biochemi-

cal/chemical information of the chemical-

ly oriented drug databases. As a result, a

typical DrugBank entry contains 80–100

different data fields, instead of 5–10 as

seen with the other kinds of databases.

Like TTD and SuperTarget, DrugBank

supports very extensive text, sequence and

chemical structure searches. It also pro-

vides detailed pathway information on the

mechanism of action for .200 different

drugs or drug classes. Table 3 provides a

short summary of the names, descriptions

and website addresses of the more popular

drug or pharmaceutical product databas-

es.

2.4 Toxic Substance Databases
The final class of chemical-bioinfor-

matic databases we will discuss are the

toxic substance databases. These include

the Animal Toxin Database (ATDB),

SuperToxic [33], ACToR [34], the Com-

parative Toxicogenomics Database [35]

and T3DB [36]. Table 4 presents a

summary of the names, web addresses

and general features for these databases.

The Animal Toxin Database (ATDB),

with .3800 peptide toxins, provides data

on the sequence of many peptide/protein

toxins from venomous insects and animals

as well as information on the channel

targets to which these toxins bind. Both

ACToR (which stands for the Aggregated

Computational Toxicology Resource) and

SuperToxic provide bioassy data and

chemical structure information for a very

large number of industrial or pharmaceu-

tically interesting chemicals (.60,000 for

SuperToxic, .500,000 for AcTOR). The

Comparative Toxicogenomics Database

(CTD), with .5000 chemicals, provides

literature-derived information on chemi-

cal-gene interactions. This includes micro-

array information on genes that are up/

down-regulated upon contact or exposure

to these chemicals. T3DB (which stands

for the Toxin, Toxin-Target Database)

provides very extensive structural, physio-
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logical, mechanistic, medical and bio-

chemical information on about 3100

commonly encountered (i.e. household or

environmental) toxins and poisons.

Each of these databases addresses the

needs of certain communities such as

animal physiologists (ATDB), toxicoge-

nomics or toxicology specialists (CTD

and T3DB), environmental or industrial

regulators (ACToR) or medicinal chemists

interested in toxicity prediction (Super-

Toxic). However, with the exception of

T3DB, most of these online toxin or toxic

compound databases are relatively lightly

annotated, with fewer than a dozen data

fields per compound and essentially no

physiological, disease or disease symptom

information.

Clearly not all of the chemical-bioinfor-

matic databases we have described in this

section are suitable for deriving information

about small molecules and disease. Likewise,

many of the databases mentioned above are

not exactly suitable for translational bioin-

formatic questions or for applications relat-

ing to medicine, medical biochemistry or

clinical research. However, there is at least

one database in each of the four major

chemical-bioinformatic database classes that

does generally meet these criteria. In

particular: 1) SMPDB is a pathway database

that explicitly relates small molecules to

disease and disease treatment; 2) HMDB is

a metabolomic database that associates

metabolites to disease biomarkers or disease

diagnosis; 3) DrugBank is a drug database

that links drugs and drug targets to

symptoms, diseases and disease treatments

and 4) T3DB is a toxic substance database

that associates toxins and their biological

targets with symptoms, conditions, diseases

and disease treatments. A more detailed

description of each of these databases is

provided below.

3. SMPDB – A Pathway
Database for Drugs and Disease

As noted earlier, SMPDB is a pathway

database specifically designed to facilitate

clinical ‘‘omics’’ studies, with a specific

emphasis on clinical biochemistry and

clinical pharmacology. Currently SMPD

consists of more than 450 highly detailed,

hand-drawn pathways describing small

molecule metabolism or small molecule

processes that are specific to humans.

These pathways can be placed into four

different categories: 1) metabolic pathways;

2) small molecule disease pathways; 3) small

molecule drug pathways and 4) small

molecule signaling pathways. An example

of a typical SMPDB pathway (Phenylke-

tonuria) is shown in Figure 1. As seen in this

figure, all SMPDB pathways explicitly

include the chemical structure of the major

chemicals in each pathway. In addition, the

cellular locations (membrane, cytoplasm,

mitochondrion, nucleus, peroxisome, etc.)

of all metabolites and the enzymes involved

in their processing are explicitly illustrated.

Likewise the quaternary structures (if

known) and cofactors associated with each

of the pathway proteins are also shown. If

some of the metabolic processes occur

primarily in one organ or in the intestinal

microflora, this information is also illustrat-

ed. The inclusion of explicit chemical,

cellular and physiological information is

one of the more unique and useful features

of SMPDB. SMPDB is also unique in its

inclusion of significant numbers of meta-

bolic disease pathways (.100) and drug

pathways (.200) not found in any other

pathway database. Likewise, unlike other

pathway databases, SMPDB supports a

number of unique database querying and

viewing features. These include simplified

database browsing, the generation of pro-

tein/metabolite lists for each pathway, text

querying, chemical structure querying and

sequence querying, as well as large-scale

pathway mapping via protein, gene or

chemical compound lists.

The SMPDB interface is largely mod-

eled after the interface used for DrugBank

[32], T3DB [36] and the HMDB [26],

with a navigation panel for Browsing,

Searching and Downloading the database.

Table 1. Alphabetical List of Popular Metabolic Pathway Databases.

Database Name URL or Web Address Comments

HumanCyc (Encylopedia of Human Metabolic Pathways) http://humancyc.org/ -MetaCyc adopted to human metabolism
-No disease or drug pathways

KEGG (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.jp/kegg/ -Best known and among the most complete
metabolic pathway databases
-Covers many organisms
-A Few disease and drug pathways

The Medical Biochemistry Page http://themedicalbiochemistrypage.org/ -Simple metabolic pathway diagrams with
extensive explanations
-A few drug and disease pathways

MetaCyc (Encyclopedia of Metabolic Pathways) http://metacyc.org/ -Similar to KEGG in coverage, but different
emphasis
-Well referenced
-No disease or drug pathways

Reactome (A Curated Knowledgebase of Pathways) http://www.reactome.org/ -Pathway database with more advanced query
features
-Not as complete as KEGG or MetaCyc

Roche Applied Sciences Biochemical Pathways Chart http://www.expasy.org/cgi-bin/search-biochem-index -The old metabolism standard (on line)
-Describes most human metabolism

Small Molecule Pathway Database (SMPDB) http://www.smpdb.ca/ -Pathway database with disease, drug and
metabolic pathways for humans
-Extensive search, analysis and visualization
tools

Wikipathways http://www.wikipathways.org -Community annotated pathway database for
19 model organisms
-Contains 175 human pathways
-Few drug or disease pathways

doi:10.1371/journal.pcbi.1002805.t001
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Below the navigation panel is a simple text

query box that supports general text

queries of the entire textual content of

the database. Mousing over the Browse

button allows users to choose between two

browsing options, SMP-BROWSE and

SMP-TOC. SMP-TOC is a scrollable

hyperlinked table of contents that lists all

pathways by name and category. SMP-

BROWSE is a more comprehensive

browsing tool that provides a tabular

synopsis of SMPDB’s content with thumb-

nail images of the pathway diagrams,

textual descriptions of the pathways, as

well as lists of the corresponding chemical

components and enzyme/protein compo-

nents. This browse view allows users to

scroll through the database, select different

pathway categories or re-sort its contents.

Clicking on a given thumbnail image or

the SMPDB pathway button brings up a

full-screen image for the corresponding

pathway. Once ‘‘opened’’ the pathway

image may be expanded by clicking on the

Zoom button located at the top and

bottom of the image. An image legend

link is also available beside the Zoom

button.

At the top of each pathway image is a

pathway synopsis contained in a yellow

Table 2. Alphabetical List of Metabolomic, Chemical or Spectral Databases.

Database Name URL or Web Address Comments

BioMagResBank (BMRB – Metabolimics) http://www.bmrb.wisc.edu/metabolomics/ -Emphasis on NMR data, no biological or biochemical
data
-Specific to plants (Arabadopsis)

Chemicals Entities of Biological Interest (ChEBI) http://www.ebi.ac.uk/chebi/ -Covers metabolites and drugs of biological interest
-Focus on ontology and nomenclature not biology

ChemSpider http://www.chemspider.com/ -Meta-database containing chemical data from 100+
other databases
-20+ million compounds
-Good search utilities

Golm Metabolome Database http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html -Emphasis on MS or GC-MS data only
-No biological data
-Few data fields
-Specific to plants

Human Metabolome Database http://www.hmdb.ca -Largest and most completely annotated
metabolomic database
-Specific to humans only

KNApSAcK http://kanaya.naist.jp/KNApSAcK/ -A phytochemical database containing data for
50,000 compounds

LipidMaps http://www.lipidmaps.org/ -Contains 22,500 different lipids found in plants &
animals
-Nomenclature standard

METLIN Metabolite Database http://metlin.scripps.edu/ -Human specific metabolite database
-Name, structure, ID only

PubChem http://pubchem.ncbi.nlm.nih.gov/ -Database containing 27 million unique chemicals
with links to Bioassays and PubMed abstracts

doi:10.1371/journal.pcbi.1002805.t002

Table 3. Alphabetical List of Pharmaceutical Compound or Drug Databases.

Database Name URL or Web Address Comments

DailyMed http://dailymed.nlm.nih.gov/ -A drug database containing FDA label (package inserts)
for most approved drugs

DrugBank http://www.drugbank.ca/ -Comprehensive database of 1480 drugs with 1700 drug
targets
-Contains chemical, biological & clinical data
-Extensive search utilities

PharmGKB http://www.pharmgkb.org/ -Data on 1587 approved drugs including
pharmacogenomic data on 287 drugs.
-Provides mechanistic, pathway information for 68
different drugs

SuperTarget http://bioinf-tomcat.charite.de/supertarget/ -Searchable database of drugs and drug targets
-Includes 2500 target proteins, which are annotated with
about 7300 literature-mined relations to 1500 different
drugs.

TTD (Therapeutic Target Database) http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp -Contains data on 1894 drug targets for 5126 drugs
-Limited chemical data
-No clinical or pharmacological data

doi:10.1371/journal.pcbi.1002805.t003
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box while at the bottom of each image is a

list of references. On the right of each

pathway image is a grey-green Highlight/

Analyzer tool with a list of the key

metabolites/drugs and enzymes/proteins

found in the pathway. Checking on

selected items when in the SMP-Highlight

mode will cause the corresponding metab-

olite or protein in the pathway image to be

highlighted with a red box. Entering

concentration or relative expression values

(arbitrary units) beside compound or

protein names, when in the SMP-Analyzer

mode, will cause the corresponding me-

tabolites or proteins to be highlighted with

differing shades of green or red to illustrate

increased or decreased concentrations. As

with most pathway databases, all of the

chemical structures and proteins/enzymes

illustrated in SMPDB’s diagrams are

hyperlinked to other on-line databases or

tables. Specifically, all metabolites, drugs

or proteins shown in the SMP-BROWSE

tables or in a pathway diagram are linked

to HMDB, DrugBank or UniProt [37]

respectively. Therefore, clicking on a

chemical or protein image will open a

new browser window with the correspond-

ing DrugCard, MetaboCard or UniProt

table being displayed.

The most powerful search option in

SMPDB is SMP-MAP, which offers both

multi-identifier searches as well as ‘‘Omic’’

(transcriptomic, proteomic or metabolo-

mic) mapping. In contrast to SMP-

BROWSE, which is used for data brows-

ing and single entity highlighting, SMP-

MAP can be used for multi-entity high-

lighting and mapping. In particular SMP-

MAP allows users to enter lists of chemical

names, gene names, protein names, Uni-

Prot IDs, GenBank IDs, Agilent IDs or

Affymetrix IDs (with or without concen-

tration data) and to have a table generated

of pathways containing those components.

The resulting table, like the SMP-

BROWSE table, displays a thumbnail

image of the matching pathways along

with the list of matching components

(metabolites, drugs, proteins, etc.). The

table is ordered by the number of matches

and a significance score (calculated via a

hypergeometric function), with the path-

way having the most matches being placed

at the top. Clicking on the thumbnail

image or the SMPDB pathway button

brings up a full-screen image for the

corresponding pathway with all the

matching components (metabolites, drugs,

proteins, etc.) highlighted in red. Concen-

tration data can be displayed using a red-

to-yellow gradient by entering concentra-

tion data in a text box located beside the

map image.

SMPDB’s Search menu also offers users

a choice of searching the database by

chemical structure (ChemQuery), text

(TextQuery) or sequence (SeqSearch).

The ChemQuery option allows users to

draw (using MarvinSketch applet) or write

(using a SMILES string) a chemical

compound and to search SMPDB for

drugs and metabolites similar or identical

to the query compound. The TextQuery

button supports a more sophisticated text

search (partial word matches, data field

selection, Boolean text searches, case

sensitive, misspellings, etc.) of the text

portion of SMPDB, including the accom-

panying pathway explanations and refer-

ence sections. The SeqSearch button

allows users to conduct BLASTP (protein)

sequence searches of the protein sequences

contained in SMPDB. SeqSearch supports

both single and multiple sequence BLAST

queries.

To summarize, SMPDB allows users to

interactively explore, through detailed

pathway diagrams, the linkage between

metabolites, genes or proteins and meta-

bolic diseases. It also allows users to

investigate the connection between drugs

and their protein or gene targets through

comprehensive illustrations of their mech-

anism of action. Because of its detailed

depictions of both disease and drug

pathways and its extensive use of visuali-

zation and query tools, SMPDB can

potentially support a variety of transla-

tional bionformatic/cheminformatic ques-

tions. For example, through SMPDB it is

possible for users to: 1) identify a metabolic

disease or medical condition given a list of

metabolites (via SMP-MAP); 2) use exper-

imental gene expression data to identify

which diseases, conditions or pathways are

most affected by a given drug, dietary or

chemical treatment (via SMP-MAP); 3)

use metabolomic or metabolite expression

data to help understand or rationalize

specific metabolic diseases, conditions or

biomarkers (through SMP-MAP); 4) de-

termine the similarity of a newly found/

synthesized compound to an existing drug

(via the ChemQuery search); 5) determine

the possible mechanism of action or

protein targets for a newly found/synthe-

sized compound (via the ChemQuery

search); 6) ascertain whether a certain

protein found in bacteria, fungi or viruses

Table 4. Alphabetical Listing of Toxic Compound Databases.

Database Name URL or Web Address Comments

ACToR (Aggregated Computation Toxicology
Resource)

http://actor.epa.gov/actor/faces/ACToRHome.jsp -Contains aggregated data on 2,500,000 environmental
chemicals
-Searchable by chemical name and structure
-Data includes chemical structure, physico-chemical
values, in vitro assay data and in vivo toxicology data.

ATDB (Animal Toxin Database) http://protchem.hunnu.edu.cn/toxin/index.jsp -Database with .3800 peptide toxins
-Provides sequence data on peptide/protein toxins
from venomous insects and animals

CTD (Comparative Toxicogenomic Database) http://ctd.mdibl.org/ -Data on .5000 chemicals with literature-derived
information on chemical-gene interactions

SuperToxic http://bioinformatics.charite.de/supertoxic/ -Contains data on 60,000 toxic compounds and some
target data
-Provides chemical and toxicity information
-Can predict the toxicity of query compounds

T3DB (Toxin, Toxin-Target Database) http://www.t3db.org/ -Searchable database of 3100 common toxins and 1400
target proteins
-Provides extensive structural, physiological,
mechanistic, medical and biochemical information

doi:10.1371/journal.pcbi.1002805.t004
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could be a drug target (via the SeqSearch

query); 7) ascertain whether a newly

identified human protein, such as an

isoform or paralogue, may be a drug

target or a disease indicator (through the

SeqSearch query); or 8) use the pathway

visualization and mapping tools to explain

or teach others about metabolic diseases,

basic metabolism or drug action.

Figure 1. A pathway diagram for Phenylketonuria as taken from SMPDB (http://www.smpdb.ca).
doi:10.1371/journal.pcbi.1002805.g001
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4. HMDB – A Resource for
Biomarker Discovery and
Disease Diagnosis

The Human Metabolome Database

(HMDB) is the by-product of the Human

Metabolome Project – a 3-year (2005–

2008), $7.5 million dollar project that was

aimed at collating, identifying and anno-

tating all the endogenous metabolites in

the human body [38]. The HMDB is

actually the largest and most comprehen-

sive, organism-specific metabolomic data-

base assembled to date. It contains spec-

troscopic, quantitative, analytic and

molecular-scale information about human

metabolites, their associated enzymes or

transporters, their abundance and their

disease-related properties. The HMDB

currently contains more than 8000 human

metabolite entries that are linked to more

than 45,000 different synonyms. These

metabolites are further connected to 3360

distinct enzymes, which in turn, are linked

to nearly 100 metabolic pathways and

more than 150 disease pathways. More

than 1000 metabolites have disease-asso-

ciated information, including both normal

and abnormal metabolite concentration

values. These diagnostic metabolites or

metabolite signatures are linked to more

than 500 different diseases (genetic and

acquired). The HMDB also contains

experimental metabolite concentration da-

ta for ‘‘normal’’ plasma, urine, CSF and/

or other biofluids for more than 5000

compounds. More than 900 compounds

are also linked to experimentally acquired

‘‘reference’’ 1H and 13C NMR and MS/

MS spectra. The entire database, includ-

ing text, sequence, structure and image

data occupies nearly 30 Gigabytes of data

– most of which can be freely downloaded.

The HMDB is a fully searchable

database with many built-in tools for

viewing, sorting and extracting

metabolites, biofluid concentrations, en-

zymes, genes, NMR or MS spectra and

disease information. As with any web-

enabled database, the HMDB supports

standard text queries (through the text

search box located near the top of each

page). It also offers extensive support for

higher-level database search and selection

functions through a navigation bar (locat-

ed at the top of each page). The navigation

bar has six pull-down menu tabs

(‘‘Home’’, ‘‘Browse’’, ‘‘Search’’, ‘‘About’’,

‘‘Download’’ and ‘‘Contact Us’’). The

‘‘Browse’’ tab allows users to select from

six browsing options including ‘‘HMDB

Browse’’, ‘‘Disease Browse’’, ‘‘Path-

Browse’’, ‘‘Biofluid Browse’’, ‘‘HML

Browse’’ and ‘‘ClassBrowse’’. ‘‘HMDB

Browse’’ allows users to search through

the HMDB compound by compound

through a series of hyperlinked, synoptic

summary tables. These metabolite tables

can be rapidly browsed, sorted or refor-

matted in a manner similar to the way

PubMed abstracts may be viewed. Click-

ing on the MetaboCard button found in

the leftmost column of any given HMDB

summary table opens a webpage describ-

ing the compound of interest in much

greater detail. Each MetaboCard entry

contains more than 100 data fields with

half of the information being devoted to

chemical or physico-chemical data and the

other half devoted to biological or bio-

medical data. These data fields include a

comprehensive compound description,

names and synonyms, structural informa-

tion, physico-chemical data, reference

NMR and MS spectra, biofluid concen-

trations (normal and abnormal), disease

associations, pathway information, en-

zyme data, gene sequence data, protein

sequence data, SNP and mutation data as

well as extensive links to images, references

and other public databases such as KEGG

[10], BioCyc [12], PubChem [18], ChEBI

[17], PubMed, PDB [7], SwissProt/Uni-

Prot [37], GenBank [5], and OMIM [39].

Outside of ‘‘HMDB Browse’’, there are

five other browsing options that allow

users to explore or navigate the database.

‘‘Disease Browse’’ allows users to view

known metabolic disorders (as well as

other diseases) and the metabolites that

are typically associated with these condi-

tions. It also allows users to enter lists of

metabolites and to identify which diseases

are characterized by perturbations to these

metabolite levels. ‘‘PathBrowse’’ allows

users to browse through the custom-drawn

HMDB pathway images. Each pathway is

named and each image is zoomable and

extensively hyperlinked. Users may also

search PathBrowse using lists of com-

pounds (obtained from a metabolomic

experiment) and view hyperlinked tables

that display all of the pathways that are

potentially affected. ‘‘Biofluid Browse’’

allows users to browse metabolite entries

based on their concentrations and the

biofluids in which they are found. Users

may select entries by biofluid type and sort

the table by compound name, HMDB ID,

concentration, disease, age, or gender.

‘‘HML Browse’’ allows users to browse

or search through the Human Metabo-

lome Library (HML). The HML is a

library of ,1000 reference metabolites

stored in 280uC freezers at the Human

Metabolome Project Centre in Edmonton,

Canada. ‘‘ClassBrowse’’, is designed to

allow users to view compounds according

to their chemical class designation. Each

displayed compound name is hyperlinked

to an HMDB MetaboCard. Users may

search for compounds (via a text box) or

select to view certain compound classes

using a pull-down menu located at the top

of the ClassBrowse page.

In addition to the data browsing and

sorting features already described, the

HMDB also offers a chemical structure

search utility, a local BLAST search [4]

that supports both single and multiple

sequence queries, a Boolean text search

based on KinoSearch (http://www.

rectangular.com/kinosearch/), a chemical

structure search utility based on ChemAx-

on’s MarvinView, a relational data extrac-

tion tool, an MS spectral matching tool

and an NMR spectral search tool (for

identifying compounds via MS or NMR

data from other metabolomic studies).

These can all be accessed via the database

navigation bar located at the top of every

HMDB page.

HMDB’s simple text search supports

text matching, text match rankings, mis-

spellings (offering suggestions for incor-

rectly spelled words) and highlights text

where the word is found. In addition to

this simple text search, HMDB’s TextQu-

ery function uses the same KinoSearch

engine, but also supports more sophisti-

cated text querying functions (Boolean

logic, multi-word matching and parenthet-

ical groupings) as well as data-field-specific

queries such as finding the query word

only in the ‘‘Compound Source’’ field.

The HMDB’s structure similarity search

tool (ChemQuery) is the equivalent to

BLAST for chemical structures. Users

may sketch (through MarvinView’s chem-

ical sketching applet) or paste a SMILES

string (40) of a query compound into the

ChemQuery window. Submitting the que-

ry launches a structure similarity search

tool that looks for common substructures

from the query compound that match the

HMDB’s metabolite database. High scor-

ing hits are presented in a tabular format

with hyperlinks to the corresponding

MetaboCards (which in turn links to the

protein target). The ChemQuery tool

allows users to quickly determine whether

their compound of interest is a known

metabolite or chemically related to a

known metabolite. In addition to these

structure similarity searches, the Chem-

Query utility also supports compound

searches on the basis of chemical formula

and molecular weight ranges.

HMDB’s BLAST search (SeqSearch)

allows users to search through the HMDB

via sequence similarity as opposed to

chemical similarity. A given gene or

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002805



protein sequence may be searched against

the HMDB’s sequence database of meta-

bolically important enzymes and trans-

porters by pasting the FASTA formatted

sequence (or sequences) into the Seq-

Search query box and pressing the ‘‘sub-

mit’’ button. A significant hit reveals,

through the associated MetaboCard hy-

perlink, the name(s) or chemical struc-

ture(s) of metabolites that may act on that

query protein. With SeqSearch metabo-

lite-protein interactions from model or-

ganisms (chimp, rat, mouse, dog, cat, etc.)

may be mapped to these organisms via the

human data in the HMDB.

The HMDB’s data extraction utility

(Data Extractor) employs a simple rela-

tional database system that allows users to

select one or more data fields and to

search for ranges, occurrences or partial

occurrences of words or numbers. The

Data Extractor uses clickable web forms so

that users may intuitively construct SQL-

like queries. The data extraction tool

allows users to easily construct complex

queries as ‘‘find all diseases where the

concentration of homogentisic acid in

urine is greater than 1 mM’’.

The NMR and MS search utilities allow

users to upload spectra (for the MS search)

or peak lists (for the NMR search) and to

search for matching compounds from the

HMDB’s collection of MS and NMR

spectra. In particular, the HMDB contains

more than 2000 experimentally collected
1H and 13C NMR spectra for 900 pure

compounds (most collected in water at

pH 7.0). It also contains approximately

3800 predicted 1H and 13C NMR spectra

for 1900 other compounds for which

authentic samples could not be acquired.

The HMDB’s mass spectra library con-

tains 2400 MS/MS (Triple-Quad) spectra

collected at 3 different collision energies

for more than 800 pure compounds. The

HMDB’s spectral search utilities allow

both pure compounds and mixtures of

compounds to be identified from their MS

or NMR spectra via peak matching

algorithms. Compounds may also be

identified or searched for by entering their

chemical formula or their mass (either

their exact mass or a mass range). Figure 2

provides a screenshot montage illustrating

the types of viewing and searching options

available in HMDB.

To summarize the HMDB allows users

to link endogenous metabolites (both their

identity and their concentration) to a

variety of disease conditions, including

metabolic disorders, genetic diseases,

chronic (age-related) disorders and a

variety of infectious diseases. It also

provides links between metabolites and

their targets – both through descriptions of

the compounds and their known biological

roles and through the identification of

known pathways or catalyzing enzymes. In

addition, the HMDB also supports the

direct identification of potential diagnostic

biomarkers based on their mass, mass

spectra or NMR spectra. Because of this

linkage, the HMDB can potentially sup-

port a variety of translational bionformatic

or cheminformatic queries. For example,

through the HMDB it is possible for users

to: 1) identify a novel biomarker for a

given condition or disease given an NMR

or GC/MS or MS/MS spectrum of the

purified compound (via the MS/NMR

search tools); 2) identify metabolites from a

biofluid mixture that has been analyzed by

NMR, GC/MS or MS/MS (via the MS/

NMR search tools); 3) identify a disease or

condition given a list of metabolites (via

Disease Browse); 4) identify a pathway or

process that has been altered/perturbed

given a list of metabolites obtained from a

metabolomic experiment (via Path-

Browse); 5) determine normal and abnor-

mal concentration ranges for metabolites

in different biofluids (via Biofluid Browse);

6) obtain authentic standards of unique

metabolites to confirm the diagnosis of a

certain disease (via HML Browse); 7)

determine the similarity of a newly

found/synthesized compound to an exist-

ing metabolite (via the structure similarity

search); 8) determine the possible mecha-

nism of action or protein targets for a

newly discovered/synthesized metabolite

or metabolite analogue (via the structure

similarity search); 9) diagnose or deter-

mine the cause of illnesses thought to be

brought on by metabolite changes

(through the text search); 10) extract

detailed information on metabolites, met-

abolic diseases or metabolic pathways (via

the data extractor); 11) extract information

on common metabolite classes (via the

data extractor or ClassBrowse); 12) ascer-

tain whether a certain protein or protein

homologue may also be involved in a

metabolic process or pathway (via the

sequence search).

5. DrugBank – A Resource for
Drug Discovery and Disease
Treatment

As previously noted, DrugBank [32] is

essentially a hybrid clinically AND chem-

ically oriented drug database that links

sequence, structure and mechanistic data

about drug molecules with sequence,

structure and mechanistic data about their

drug targets. DrugBank was one of the first

electronic databases to provide the explicit

linkage between drugs and drug targets

and this particular feature made Drug-

Bank particularly popular. Another im-

portant innovation in this database was

the presentation of drug and drug target

data in synoptic DrugCards (in anology to

library cards or study flash-cards). This

concept (which is now used in many other

chemical-bioinformatic databases) helped

make DrugBank particularly easy to view

and navigate. Currently DrugBank con-

tains detailed information on 1480 FDA-

approved drugs corresponding to 28,447

brand names and synonyms. This collec-

tion includes 1281 synthetic small mole-

cule drugs, 128 biotech (mostly peptide or

protein) drugs and 71 nutraceutical drugs

or supplements. DrugBank also contains

information on the 1669 different targets

(protein, lipid or DNA molecules) and

metabolizing enzymes with which these

drugs interact. Additionally the database

maintains data on 187 illicit drugs (i.e.

those legally banned or selectively banned

in most developed nations) and 64 with-

drawn drugs (those removed from the

market due to safety concerns). Chemical,

pharmaceutical and biological information

about these classes of drugs is extremely

important, not only in understanding their

adverse reactions, but also in being able to

predict whether a new drug entity may

have unexpected chemical or functional

similarities to a dangerous or highly

addictive drug.

As with the HMDB, the DrugBank

website contains many built-in tools and a

variety of customized features for viewing,

sorting, querying and extracting drug or

drug target data. These include a number

of higher-level database searching func-

tions such as a local BLAST [4] sequence

search (SeqSearch) that supports both

single and multiple protein sequence

queries (for drug target searching), a

boolean text search (TextSearch) for

sophisticated text searching and querying,

a chemical structure search utility (Chem-

Query) for structure matching and struc-

ture-based querying as well as a relational

data extraction tool (Data Extractor) for

performing complex queries.

The BLAST search (SeqSearch) is

particularly useful for drug discovery

applications as it can potentially allow

users to quickly and simply identify drug

leads from newly sequenced pathogens.

Specifically, a new sequence, a group of

sequences or even an entire proteome can

be searched against DrugBank’s database

of known drug target sequences by pasting

the FASTA formatted sequence (or se-

quences) into the SeqSearch query box

and pressing the ‘‘submit’’ button. A
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significant hit can reveal the name(s) or

chemical structure(s) of potential drug

leads that may act on that query protein

(or proteome). The structure similarity

search tool (ChemQuery) can be used in

a similar manner to SeqSearch. For

instance, users may sketch a chemical

structure or paste a SMILES string [40]

of a possible drug lead or a drug that

appears to be causing an adverse reaction

into the ChemQuery window. After sub-

mitting the query, the database launches a

structure similarity search that looks for

common substructures from the query

compound that match DrugBank’s data-

base of known drug or drug-like com-

pounds. High scoring hits are presented in

a tabular format with hyperlinks to the

corresponding DrugCards. The ChemQu-

ery tool allows users to quickly determine

whether their compound of interest acts

on the desired protein target or whether

the compound of interest may unexpect-

edly interact with unintended protein

targets.

In addition to these search features,

DrugBank also provides a number of

general browsing tools for exploring the

database as well as several specialized

browsing tools such as PharmaBrowse

and GenoBrowse for more specific tasks.

For instance, PharmaBrowse is designed to

address the needs of pharmacists, physi-

cians and medicinal chemists who tend to

think of drugs in clusters of indications or

drug classes. This particular browsing tool

provides navigation hyperlinks to more

than 70 drug classes, which in turn list the

FDA-approved drugs associated with the

drugs. Each drug name is then linked to its

respective DrugCard. GenoBrowse, on the

other hand, is specifically designed to

address the needs of geneticists or those

specialists interested in specific Drug-SNP

relationships. This browsing tool provides

navigation hyperlinks to more than 60

different drugs, which in turn list the target

genes, SNPs and the physiological effects

associated with these drugs.

In addition to its general utility as a

general drug encyclopedia, DrugBank also

contains several tables, data fields or data

types that are particularly useful for

pharmacogenomic or pharmacogenetic

studies. These include synoptic descrip-

tions of a given drug’s Pharmacology as

well as its Mechanism of Action, Contra-

indications, Toxicity, Phase I Metaboliz-

ing Enzymes (name, protein sequence and

SNPs), and associated Drug Targets

(names, protein sequence, DNA sequence,

chromosome location, locus number and

SNPs). The information contained in

DrugBank’s Pharmacology, Mechanism

of Action, Contraindications and Toxicity

fields often includes details about any

known adverse reactions. This may in-

clude descriptions of known phase I or

phase II enzyme interactions, alternate

metabolic routes or the existence of

secondary drug targets. Secondary drug

targets represent proteins (or other mac-

romolecules) that are different than the

primary target for which the drug was

initially designed or targeted towards.

Some drugs may have five or more targets,

of which only one might be relevant to

treating the disease. DrugBank uses a

relatively liberal interpretation of drug

targets in order to help identify these

secondary drug targets. In particular, for

DrugBank a drug target is defined as any

macromolecule identified in the literature

that binds, transports or transforms a drug.

The binding or transformation of a drug

by a secondary drug target or an ‘‘off-

target’’ protein is one of the most common

causes for unwanted side effects or adverse

drug reactions (ADRs) [41]. By providing

a fairly comprehensive listing of secondary

drug targets (along with their SNP infor-

mation and other genetic data), DrugBank

is potentially able to provide additional

insight into the underlying causes of a

patient’s response to a given drug.

DrugBank also provides detailed se-

quence and SNP data on known drug

metabolizing enzymes and known drug

targets. In particular DrugBank contains

detailed summary tables about each of the

SNPs for each of the drug targets or drug

metabolizing enzymes that have been

characterized by various SNP typing

efforts, such as the SNP Consortium [42]

and HapMap [43]. Currently DrugBank

contains information on 26,292 coding

(exon) SNPs and 73,328 non-coding

(intron) SNPs derived from known drug

targets. It also has data on 1188 coding

SNPs and 8931 non-coding SNPs from

known drug metabolizing enzymes. By

clicking on the ‘‘Show SNPs’’ hyperlink

listed beside either the metabolizing en-

zymes or the drug target SNP field, the

SNP summary table can be viewed. These

tables include: 1) the reference SNP ID

(with a hyperlink to dbSNP); 2) the allele

variants; 3) the validation status; 4) the

chromosome location and reference base

position; 5) the functional class (synony-

mous, non-synonymous, untranslated, in-

tron, exon); 6) mRNA and protein acces-

sion links (if applicable); 7) the reading

frame (if applicable); 8) the amino acid

change (if existent); 9) the allele frequency

as measured in African, European and

Asian populations (if available) and 10) the

sequence of the gene fragment with the

SNP highlighted in a red box.

The purpose of these SNP tables is to

allow one to go directly from a drug of

interest to a list of potential SNPs that may

contribute to the reaction or response seen

in a given patient or in a given population.

In particular, these SNP lists may serve as

hypothesis generators that allow SNP or

gene characterization studies to be some-

what more focused or targeted. By com-

paring the experimentally obtained SNP

results to those listed in DrugBank for that

drug (and its drug targets) it may be

possible to ascertain which polymorphism

for which drug target or drug metabolizing

enzyme may be contributing to an unusual

drug response. Obviously these database-

derived SNP suggestions may require

additional experimental validation to

prove their causal association.

Drugbank also includes two tables that

provide much more explicit information

on the relationship between drug respons-

es/reactions and gene variant or SNP

data. The two tables, which are accessible

from the GenoBrowse submenu located

on DrugBank’s Browse menu bar, are

called SNP-FX (short for SNP-associated

effects) and SNP-ADR (short for SNP-

associated adverse drug reactions). SNP-

FX contains data on the drug, the

interacting protein(s), the ‘‘causal’’ SNPs

or genetic variants for that gene/protein,

the therapeutic response or effects caused

by the SNP-drug interaction (improved or

diminished response, changed dosing re-

quirements, etc.) and the associated refer-

ences describing these effects in more

detail. SNP-ADR follows a similar format

to SNP-FX but the clinical responses are

restricted only to adverse drug reactions

(ADR). SNP-FX contains literature-de-

rived data on the therapeutic effects or

therapeutic responses for more than 70

drug-polymorphism combinations, while

SNP-ADR contains data on adverse

reactions compiled from more than 50

drug-polymorphsim pairings. All of the

data in these tables is hyperlinked to drug

entries from DrugBank, protein data from

SwissProt, SNP data from dbSNP and

bibliographic data from PubMed. A screen

shot of the SNP-ADR table is shown in

Figure 3. As can be seen from the figure,

these tables provide consolidated, detailed

and easily accessed information that clear-

ly identifies those SNPs that are known to

affect a given drug’s efficacy, toxicity or

metabolism.

To summarize, DrugBank allows users

to link drugs to a variety of disease

conditions or health indications. It also

provides links between drugs and their
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Figure 2. A screenshot montage illustrating the types of viewing and searching options available in HMDB (http://www.hmdb.ca).
doi:10.1371/journal.pcbi.1002805.g002
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targets – both through descriptions of the

mechanism of action and through the

identification of known protein (or gene)

targets. Because of this kind of extensive

data linkage, DrugBank can potentially

support a number of translational bionfor-

matic or cheminformatic questions. For

example, through DrugBank it is possible

for users to: 1) determine the similarity of a

newly found/synthesized compound to an

existing drug (via the structure similarity

search); 2) determine the possible mecha-

nism of action or protein targets for a

newly found/synthesized compound (via

the structure similarity search); 3) diagnose

or determine the cause of illnesses thought

to be brought on by adverse drug reactions

(through the text search or SNPADR/

SNPFX); 4) treat or find references to the

treatment of illnesses based on symptoms

or disease diagnosis (via the text search); 5)

extract information on common drug

targets (via the data extractor or the

sequence search); 6) extract information

on common drug classes or structures (via

the data extractor or the structure search);

7) ascertain whether a certain protein

found in bacteria, fungi or viruses could

be a drug target (via the sequence search);

or 8) ascertain whether a newly identified

human protein, such as an isoform or

paralogue, may be a drug target (through

the sequence search).

6. T3DB – A Resource linking
Small Molecules to Disease &
Toxicity

A toxic substance is a small molecule,

peptide, or protein that is capable of

causing injury, disease, genetic mutations,

birth defects or death. Toxins, both

natural and man-made, represent an

important class of poisonous compounds

that are ubiquitous in nature, in homes,

and in the workplace. Common toxins

include pollutants, pesticides, preserva-

tives, drugs, venoms, food toxins, cosmetic

toxins, dyes, and cleaning compounds.

Because toxic compounds are essentially

disease-causing agents, it has long been

recognized that there is a need to associate

toxic compound data with molecular

toxicology and clinical symptomology.

While this has been done in a variety of

toxicology textbooks and medical refer-

ence manuals, it has only recently been

done using electronic databases and the

tools associated with bioinformatics and

cheminformatics.

T3DB [36] is currently the only chem-

ical-bioinformatic database that provides

in-depth, molecular-scale information

about toxins, their associated targets, their

toxicology, their toxic effects and their

potential treatments. T3DB currently con-

tains over 3000 toxic substance entries

corresponding to more than 34,000 differ-

ent synonyms. These toxins are further

connected to some 1450 protein targets

through almost 35,500 toxin and toxin-

target associations. These associations are

supported by more than 5400 references.

The entire database, including text, se-

quence, structure and image data, occu-

pies nearly 16 Gigabytes of data – most of

which can be freely downloaded.

As with HMDB and DrugBank, the

T3DB is designed to be a fully searchable

web resource with many built-in tools and

features for viewing, sorting and extracting

toxin and toxin-target annotation, includ-

ing structures and gene and protein

sequences. A screenshot montage illustrat-

ing the types of viewing and searching

options available is shown in Figure 4. As

with HMDB and DrugBank, the T3DB

supports standard text queries through the

text search box located on the home page.

It also offers general database browsing

using the ‘‘Browse’’ button located in the

T3DB navigation bar. To facilitate brows-

ing, the T3DB is divided into synoptic

summary tables which, in turn, are linked

to more detailed ‘‘ToxCards’’- in analogy

to the DrugCard concept found in Drug-

Bank [32] or the MetaboCard in HMDB

[26]. All of the T3DB’s summary tables

can be rapidly browsed, sorted or refor-

matted in a manner similar to the way

PubMed abstracts may be viewed. Click-

ing on the ToxCard button, found in the

leftmost column of any given T3DB

summary table, opens a webpage describ-

ing the toxin of interest in much greater

detail. Each ToxCard entry contains over

80 data fields, with ,50 data fields

devoted to chemical and toxicological/

medical data and ,30 data fields (each)

devoted to describing the toxin target(s).

A ToxCard begins with various identi-

fiers and descriptors (names, synonyms,

compound description, structure image,

related database links and ID numbers),

followed by additional structure and

physico-chemical property information.

The remainder of data on the toxin is

devoted to providing detailed toxicity and

toxicological data, including route of

delivery, mechanism of action, medical

information, and toxicity measurements.

All of a toxin’s targets are also listed within

the ToxCard. Each of these targets are

described by some 30 data fields that

include both chemical and biological

(sequence, molecular weight, gene ontolo-

gy terms, etc.) information, as well as

details on their role in the mechanism of

action of the toxin. In addition to

providing comprehensive numeric, se-

quence and textual data, each ToxCard

also contains hyperlinks to other databas-

es, abstracts, digital images and interactive

applets for viewing the molecular struc-

tures of each toxic substance.

A key feature that distinguishes the

T3DB from other on-line toxin or toxi-

cology resources is its extensive support for

higher-level database search and selection

functions. In addition to the data viewing

and sorting features already mentioned,

the T3DB also offers a local BLAST

search that supports both single and

multiple sequence queries, a boolean text

search based on KinoSearch, a chemical

structure search utility based on ChemAx-

on’s MarvinView, and a relational data

extraction tool similar to that found in

DrugBank and the HMDB [26,32]. These

can all be accessed via the database

navigation bar located at the top of every

T3DB page.

T3DB’s simple text search box (located

at the top of most T3DB pages) supports

text matching, text match rankings, mis-

spellings and highlights text where the

word is found. In addition to this simple

text search, T3DB’s TextQuery function

supports more sophisticated text querying

functions including ‘‘and’’ and ‘‘or’’ que-

ries, multi-word matching and parenthet-

ical groupings as well as data-field-specific

queries such as finding the query word

only in the ‘‘Compound Source’’ field.

Additional details and examples are pro-

vided on the T3DB’s TextQuery page.

T3DB’s sequence searching utility (Seq-

Search) allows users to search through

T3DB’s collection of 1450 known (human)

toxin targets. This service potentially

allows users to identify both orthologous

and paralogous targets for known toxins or

toxin targets. It also facilitates the identi-

fication of potential toxin targets from

other animal species. With SeqSearch,

gene or protein sequences may be

searched against the T3DB’s sequence

database of identified toxin-target se-

quences by pasting the FASTA formatted

sequence (or sequences) into the Seq-

Search query box and pressing the ‘‘sub-

mit’’ button.

T3DB’s structure similarity search tool

(ChemQuery) can be used in a similar

manner as its SeqSearch tool. Users may

sketch a chemical structure (through

ChemAxon’s freely available chemical

sketching applet) or paste a SMILES string

of a query compound into the ChemQu-

ery window. Submitting the query launch-

es a structure similarity search that looks

for common substructures from the query
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compound that matches the T3DB’s

database of known toxic compounds.

Users can also select the type of search

(exact or Tanimoto score) to be per-

formed. High scoring hits are presented

in a tabular format with hyperlinks to the

corresponding ToxCards (which, in turn,

links to the targets). The ChemQuery tool

allows users to quickly determine whether

their compound of interest is a known

toxin or chemically related to a known

toxin and which target(s) it may act upon.

In addition to these structure similarity

searches, the ChemQuery utility also

supports compound searches on the basis

of SMILES strings (under the SMILES

tab) and molecular weight ranges (under

the Molecular Weight tab).

The T3DB’s data extraction utility

(Data Extractor) employs a simple rela-

tional database system that allows users to

select one or more data fields and to

search for ranges, occurrences or partial

occurrences of words, strings, or numbers.

The data extractor uses clickable web

forms so that users may intuitively con-

struct SQL-like queries. Using a few

mouse clicks, it is relatively simple to

construct complex queries (‘‘find all toxins

that target acetylcholinesterase and are

pesticides’’) or to build a series of highly

customized tables. The output from these

queries is provided in HTML format with

hyperlinks to all associated ToxCards.

To summarize, T3DB allows users to

link toxic substances to a variety of disease

conditions, including acute toxicity, long-

term toxicity, birth defects, cancer, other

illnesses. It also provides links between

toxic substances and their targets – both

through descriptions of the mechanism of

action and through the identification of

Figure 3. A screen shot of DrugBank’s SNP-ADR table. This displays the information on the adverse drug reactions (ADRs) and associated SNP
(single nucleotide polymorphisms) with certain drugs and drug targets (http://www.drugbank.ca).
doi:10.1371/journal.pcbi.1002805.g003
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known protein (or gene) targets. Because

of this kind of extensive data linkage,

T3DB can potentially support a variety of

bioinformatic or cheminformatic queries.

For example, through T3DB it is possible

for users to: 1) determine the similarity of a

newly found/synthesized compound to an

existing toxin (via the structure similarity

search); 2) determine the possible mecha-

nism of action or protein targets for a

newly found/synthesized compound (via

the structure similarity search); 3) diagnose

or determine the cause of illnesses thought

to be brought on by exposure to a given

toxin (through the text search); 4) treat or

find references to the treatment of illnesses

brought on by exposure to a given toxin

(via the text search); 5) extract information

on common toxin targets (via the data

extractor); 6) extract information on com-

mon toxin classes (via the data extractor);

7) ascertain whether a certain protein or

protein homologue may also be a toxin

target (via the sequence search); or 8)

ascertain whether a newly identified pep-

tide or protein may be a toxin (through the

sequence search).

7. Software for Interpreting
Small Molecule and Disease
Data

With the recent emergence of chemical-

bioinformatic databases having a solid

translational (i.e. biomedical) functionality,

the way has been cleared for the develop-

ment of software tools that exploit these

databases. This is a natural process in both

bioinformatics and cheminformatics as

databases always appear before any soft-

ware applications are typically developed.

Given that the field of chemical bioinfor-

matics is still quite young and the number

of databases with disease and small

molecule information is still relatively

small, it is not surprising to find that the

number of software tools developed to

exploit these databases is still quite small.

Here we will briefly describe two recently

developed software tools – PolySearch and

MSEA – that exploit the data in SMPDB,

HMDB and DrugBank to perform a

number of useful applications.

7.1 Text Mining with PolySearch
PolySearch [44] is a freely available,

web-based text-mining tool that allows

users to search through large numbers of

PubMed abstracts to make large-scale

linkages or associations. Examples of

large-scale associations are: ‘‘Find all genes

associated with breast cancer’’ or ‘‘Find all

diseases treatable by tamoxifen’’. In order

to conduct the first query using PubMed,

one would have to have a list of all known

human genes and perform 25,000+ que-

ries with each gene name and the words

‘‘breast cancer’’. To conduct the second

query, it would be necessary to have a list

of all known diseases (more than 5000 are

known) and perform 5000+ queries with

the word ‘‘tamoxifen’’ included in each

query. Obviously this would take a person

a very long time. However, using a

computer to perform these repeated que-

ries would be much less tedious and much

faster. PolySearch is designed to rapidly

perform these types of expansive queries

by exploiting the PubMed application

programming interface (API) and a special

collection of dictionaries and thesauruses

compiled from various bioinformatic and

chemical-bioinformatic databases. In par-

ticular, the typical query supported by

PolySearch is ‘‘Given X, find all Y’s’’

where X or Y can be diseases, tissues, cell

compartments, gene/protein names,

SNPs, mutations, drugs and metabolites.

The disease names and synonyms in

PolySearch are derived from medical

dictionaries and MeSH (medical subject

headings), gene and protein names/syno-

nyms are derived from UniProt, drug

names/synonyms are derived from Drug-

Bank while metabolites and metabolite

synonyms are derived from the HMDB.

Obviously, without these small molecule

dictionaries or thesauruses, many of Poly-

Search’s queries could not be performed.

PolySearch also exploits a variety of

techniques in text mining and information

retrieval to identify, highlight and rank

informative abstracts, paragraphs or sentenc-

es. A central premise to PolySearch’s search

strategy is the assumption that the greater the

frequency with which an X and Y association

occurs within a collection of abstracts, the

more significant the association is likely to be.

For instance, if COX2 is mentioned in

PubMed as being associated with colon

cancer 510 times but thioredoxin is associated

with colon cancer only once, then one is

more likely to have more confidence in the

COX2-colon cancer association. Frequency

alone is not always the best way to rate a

paper or a website for its relevancy. There-

fore, in addition to counting the frequency of

apparent associations, PolySearch employs a

specially developed text-ranking scheme to

score the most relevant sentences and

abstracts that associate both the query and

match terms with each other.

In summary, PolySearch is able to

exploit the name and synonym sets from

a number of small-molecule and disease

databases (HMDB, DrugBank, MeSH,

OMIM) thereby allowing users to perform

a range of text mining queries on the

PubMed abstract database. In particular,

PolySearch allows users to find newly

described or previously unknown (to the

user, at least) associations between: 1)

drugs and disease; 2) metabolites and

disease; 3) genes/proteins and disease; 4)

drugs and drug targets; 5) metabolites and

metabolizing enzymes; 6) SNPs and dis-

ease and 7) mutations and disease. In

addition, through its other query fields or

query options, PolySearch is able to

perform a large number (.50) of other

text queries that may be relevant to a

variety of applications in translational

bioinformatics.

7.2 Metabolite Set Enrichment
Analysis

The Metabolite Set Enrichment Analy-

sis (MSEA) server [45] is a web-based tool

designed to help researchers identify and

interpret patterns of human or mammali-

an metabolite concentration changes in a

biologically meaningful context. It is based

on the concepts originally developed for

gene expression or microarray analysis

called Gene Set Enrichment Analysis or

GSEA [8]. The central idea behind GSEA

is to directly investigate the enrichment of

pre-defined groups of functionally related

genes (or gene sets) instead of individual

genes. This group-based approach does

not require pre-selection of genes with an

arbitrary threshold. Instead, functionally

related genes are evaluated together as

gene sets, allowing additional biological

information to be incorporated into the

analysis process. Key to the development

of GSEA has been the compilation of

libraries or databases of gene expression

changes that are associated with specific

conditions, pathways, diseases or pertur-

bations. Therefore in order to develop

MSEA, it was necessary to extract a large

body of metabolite expression changes (i.e.

chemical profiles) and metabolic pathway

information from a variety of databases.

Fortunately, the existence of SMPDB and

HMDB made the compilation of this

metabolite expression library relatively

easy. By downloading the freely available

data in HMDB and SMPDB, the authors

of MSEA were able to construct a

collection of five metabolite set libraries

containing ,1,000 biologically meaning-

ful groups of metabolites. In MSEA, a

group of metabolites are considered to

constitute a metabolite set if they are

known to be: a) involved in the same

biological processes (i.e., metabolic path-

ways, signaling pathways); b) changed

significantly under the same pathological

conditions (i.e., various metabolic diseas-

es); and c) present in the same locations
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Figure 4. A screenshot montage illustrating the types of viewing and searching options available in T3DB (http://www.t3db.org).
doi:10.1371/journal.pcbi.1002805.g004

PLOS Computational Biology | www.ploscompbiol.org 15 December 2012 | Volume 8 | Issue 12 | e1002805



such as organs, tissues or cellular organ-

elles. The resulting metabolite sets were

organized into three categories: pathway-

associated, disease-associated, and location

based. MSEA’s pathway-associated me-

tabolite library contains 84 entries based

on the 84 human metabolic pathways

found in SMPDB. MSEA’s disease-associ-

ated metabolite sets were mainly collected

from information in the HMDB, the

Metabolic Information Center (MIC),

and SMPDB. Using these resources, a

total of 851 physiologically informative

metabolite sets were created. These dis-

ease-associated metabolite sets were fur-

ther divided into three sub-categories

based on the biofluids in which they were

measured: 398 metabolite sets in blood,

335 in urine, and 118 in cerebral-spinal

fluid (CSF). MSEA’s location-based library

contains 57 metabolite sets based on the

‘‘Cellular Location’’ and ‘‘Tissue Loca-

tion’’ listed in the HMDB.

While the exact statistical or enrichment

analysis methods used in MSEA are well

beyond the scope of this chapter, suffice it

to say that MSEA essentially allows one to

take lists of metabolites and to identify

which pathways, diseases or medical

conditions are most likely to be associated

with that metabolite set. It is also possible

to do the same kind of operation with a list

of metabolites and their absolute (or

relative) concentrations. While disease/

metabolite associations can be made

through HMDB and SMPDB, these

primitive search tools do not have the

same statistical rigor that characterizes a

full-fledged enrichment analysis. Further-

more, the MSEA pathway and disease

data set is somewhat larger than what is

found in the HMDB or SMPDB. This

means that MSEA will be far more likely

to find a useful (and statistically significant)

pathway or disease than what could be

done with HMDB or SMPDB.

Overall, MSEA is an example of an

analytical software tool that exploits

chemical-bioinformatic data to perform

robust statistical analyses of metabolomic

or clinical chemistry data. Given their

close similarity, it is reasonable to expect

MSEA could eventually be integrated with

GSEA, thereby allowing a comprehensive

analysis of both gene and metabolite

expression changes on a single integrated

program or website. No doubt this kind of

integrated ‘‘omic’’ analysis tool is not far

away from being developed.

8. Summary

With today’s focus on genes and

proteins as the ‘‘primary’’ causes or

biomarkers of disease, the relationship

between small molecules and human

disease is often overlooked. However it is

important to remember that more than

95% of all diagnostic clinical assays are

designed to detect small molecules (i.e.

blood glucose, serum creatinine, amino

acid analysis, etc.). Likewise nearly 90% of

all known drugs are small molecules, 50%

of all drugs are derived from pre-existing

metabolites and 30% of identified genetic

disorders involve diseases of small mole-

cule metabolism. Clearly, small molecules

are important and given the rapid growth

in metabolomics, pharmacogenomics and

systems biology, it is likely that their role in

disease diagnosis and disease treatment

will continue to grow. Given these exciting

growth prospects and given the impor-

tance of small molecules in medicine and

translational research, scientists are now

realizing that there is a critical need to link

information about small molecules to their

corresponding ‘‘big molecule’’ targets.

This has led to the emergence of a new

field of bioinformatics – called chemical

bioinformatics.

This chapter has covered several topics

related to chemical bioinformatics and the

role that chemical bioinformatics can play

in identifying the chemicals that cause

(toxins), cure (drugs) or characterize

(biomarkers) many human diseases. The

first part of the chapter gave a brief

overview of some of the most important

or widely used chemical bioinformatic

resources along with a more detailed

discussion of some of the major classes

of chemical-bioinformatic databases. In

particular four major database classes

were described: 1) small molecule (or

metabolic) pathway databases; 2) metab-

olite or metabolomic databases; 3) drug

databases; and 4) toxin or toxic substance

databases. Examples of each of these

databases were given and many of their

strengths and limitations were discussed.

While most of these chemical-bioinfor-

matic databases provide links between

small molecules and their large molecule

targets, relatively few provide linkages to

clinical, physiological or disease informa-

tion.

The second part of this chapter focused

on describing a number of recently

developed databases that explicitly relate

small molecules to disease. This included

detailed descriptions of four databases: 1)

the Small Molecule Pathway Database

(SMPDB); 2) the Human Metabolome

Database (HMDB); 3) DrugBank and 4)

the Toxin, Toxin-Target Database

(T3DB). SMPDB is a graphically oriented

pathway database that contains ,450

metabolic pathways, disease pathways

and drug pathways. The HMDB is a

comprehensive metabolomic database that

is primarily oriented to answering ques-

tions in clinical metabolomic and clinical

biochemistry. DrugBank is a comprehen-

sive drug database containing detailed

information about drugs, drug targets

and clinical pharmacology. The T3DB is

a toxicology database containing detailed

information about toxins, toxin targets and

their corresponding toxicological informa-

tion. Each of these databases was de-

scribed in terms of its content, general

design and query/search functions. Addi-

tionally, explicit examples of various

translational or disease-related applica-

tions were provided for each database.

The final part of this chapter provided a

short discussion of some of the newly

emerging software tools that exploit these

databases, including PolySearch and

MSEA (Metabolite Set Enrichment Anal-

ysis). PolySearch is a text-mining tool that

exploits the synonym data found in these

small molecule databases to allow expan-

sive PubMed queries to be performed.

MSEA is a metabolomic analysis tool that

exploits the pathway and disease informa-

tion found in SMPDB and HMDB to

perform pathway and disease identifica-

tion from raw metabolomic data.

Further Reading

N Villas-Boas SG, Nielson J, Smedsgaard J, Hansen MAE, Roessner-Tunali U, editors
(2007) Metabolome analysis: an introduction. New York: John Wiley & Sons.

N Wishart DS (2008) DrugBank and its relevance to pharmacogenomics.
Pharmacogenomics 9: 1155–1162.

N Krawetz S, editor (2009) Bioinformatics for systems biology. Totowa: Humana
Press.

N Wishart DS (2008) Applications of metabolomics in drug discovery and
development. Drugs R D 9: 307–322.

N Baxevanis A (2003) Current protocols in bioinformatics. New York: John Wiley &
Sons – see Chapter 14.
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While the sub-discipline of chemical

bioinformatics is still quite young, and the

number of tools for translational applications

is still relatively small, it should be clear that

what is now out there has considerable

potential for a wide range of clinical,

biomedical, pharmaceutical and toxicological

applications. Certainly as more tools are

developed and as more databases evolve, it is

likely that chemical bioinformatics will soon

be able to establish itself as one of the most

medically useful sub-disciplines in the entire

field of bioinformatics.

9. Exercises

1) A compound with a molecular weight

of 136.053 daltons has been isolated from

the urine of a 3 month-old baby with

unusually light coloring of the skin,

eczema (an itchy skin rash), and a musty

body odor. What compound is it and what

disease might this baby have?

2) Your natural product chemist neighbor

has just isolated a compound from the

Tanzanian periwinkle – a rare plant species

found only in the highlands of Eastern

Tanzania. Locals use the plant as a treatment

for a variety of blood disorders. The structure

of the compound is given by the following

SMILES string: COC1 = CC = C2C( = C

C1 = O)C(CCC1 = CC(OC) = C(OC)C(OC)

= C21)NC(CO)

What compound is this similar to, what

diseases could it be used to treat and what

proteins might it bind?

3) A viral protein with the following

sequence has been isolated from a number

of dead and dying African Green Monkeys

that were housed at a local zoo.

PQVTLYQRPLVTIRVGGQLKEALIDTGADD

TVLENMNLPGRWKPKMIGAIAGFIKVKQYDQI

TVEICGHKGIGTILVGPTPVNIIGRNLLTLIG

CTLNF

The illness seems to be spreading to

other monkey colonies in the zoo. What

drugs could be used to treat the sick

monkeys and to prevent the spread of the

disease?

4) A farmer who has just finished

harvesting his barley field has come into

the clinic complaining of skin irritation,

burning and itching, a rash and a series of

skin blisters. He also has eye pain,

conjunctivitis, burning sensations about

the eyes, and blurred vision. Other

symptoms have included nausea, vomiting

and fatigue. Suspecting that he may have

been exposed to some toxin or pesticide a

chemical analysis has been performed of

his blood, urine and lacrimal (tear) fluid.

MS analysis of all three fluids has

identified an unusual compound with a

molecular weight of 296.126 daltons.

What compound might this be?

5) What kind of drugs can be used to

treat breast cancer? Describe your search

strategy and your rationale for this search

strategy.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOC)

Glossary

Cheminformatics – a field of information technology that uses computers to
facilitate the collection, storage, analysis and manipulation of large quantities of
chemical data.

DrugBank – A database containing chemical and biological data on drugs and
drug targets.

GSEA – Gene Set Enrichment Analysis. GSEA is a statistically based bioinformatic
method designed to directly investigate the enrichment of pre-defined groups of
functionally related genes (or gene sets) from gene expression data.

HMDB – The Human Metabolome Database. A database containing chemical and
biological data on human metabolites aimed at clinical metabolomic studies.

MS – Mass Spectrometry. An analytical method that measures molecular weight
of compounds based on their mass to charge ratio. Mass spectrometry is one of
the standard methods to determine the molecular formula of new compounds
and to confirm the identity of synthesized chemicals or natural products.

Metabolome – the collection of all small molecule metabolites found in a given
cell, tissue, organ or organism.

Metabolomics - a branch of ‘‘omics’’ research that is primarily concerned with the
high-throughput identification and quantification of small molecule (,1500 Da)
metabolites in the metabolome.

MSEA – Metabolite Set Enrichment Analysis. MSEA is a statistically based
bioinformatic method designed to directly investigate the enrichment of pre-
defined groups of functionally related metabolites (or metabolite sets) from
metabolomic data.

NMR – Nuclear Magnetic Resonance Spectroscopy. An analytical method that
measures nuclear magnetism under very high magnetic fields. NMR is the
standard method used by chemists today to identify and characterize small
molecules.

Pharmacogenomics – A newly emerging field of pharmacology that integrates
genotyping and gene expression data with classical pharmacological and adverse
drug reaction studies.

SMPDB – The Small Molecule Pathway Database. A database containing pathway
diagrams and interactive viewing tools for small molecules involved in
metabolism, drug action and disease.

T3DB – The Toxin, Toxin-Target Database. A database with chemical and
biological data on common toxins, poisons, household chemicals, pollutants and
other harmful substances.

Toxicogenomics – A newly emerging field of toxicology that integrates
genotyping and gene expression data with classical toxicological and toxicity
studies.
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Abstract: Proteins do not function
in isolation; it is their interactions
with one another and also with
other molecules (e.g. DNA, RNA)
that mediate metabolic and signal-
ing pathways, cellular processes,
and organismal systems. Due to
their central role in biological
function, protein interactions also
control the mechanisms leading to
healthy and diseased states in
organisms. Diseases are often
caused by mutations affecting the
binding interface or leading to
biochemically dysfunctional alloste-
ric changes in proteins. Therefore,
protein interaction networks can
elucidate the molecular basis of
disease, which in turn can inform
methods for prevention, diagnosis,
and treatment. In this chapter, we
will describe the computational
approaches to predict and map
networks of protein interactions
and briefly review the experimental
methods to detect protein interac-
tions. We will describe the applica-
tion of protein interaction networks
as a translational approach to the
study of human disease and eval-
uate the challenges faced by these
approaches.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Early biological experiments revealed

proteins as the main agents of biological

function. As such, proteins ultimately

determine the phenotype of all organ-

isms. Since the advent of molecular

biology we have learned that proteins

do not function in isolation; instead, it is

their interactions with one another and

also with other molecules (e.g. DNA,

RNA) that mediate metabolic and signal-

ing pathways, cellular processes, and

organismal systems.

The concept of ‘‘protein interaction’’ is

generally used to describe the physical

contact between proteins and their interact-

ing partners. Proteins associate physically to

create macromolecular structures of various

complexities and heterogeneities. Proteins

interact in pairs to form dimers (e.g. reverse

transcriptase), multi-protein complexes (e.g.

the proteasome for molecular degradation),

or long chains (e.g. actin filaments in muscle

fibers). The subunits creating the various

complexes can be identical or heteroge-

neous (e.g. homodimers vs. heterodimers)

and the duration of the interaction can be

transient (e.g. proteins involved in signal

transduction) or permanent (e.g. some

ribosomal proteins). However, protein in-

teractions do not always have to be physical

[1]. The term ‘‘protein interaction’’ is also

used to describe metabolic or genetic

correlations, and even co-localizations.

Metabolic interactions describe proteins

involved in the same pathway (e.g. the

Krebs cycle proteins), while genetically

identified associations identify co-expressed

or co-regulated proteins (e.g. enzymes

regulating the glycolytic pathway). As the

name implies, protein interactions by co-

localization list proteins found in the same

cellular compartment.

Whether the association is physical or

functional, protein-protein interaction

(PPI) data can be used in a larger scale

to map networks of interactions [2,3]. In

PPI network graphs, the nodes represent

the proteins and the lines connecting them

represent the interactions between them

(Figure 1). Protein interaction networks

are useful resources in the abstraction of

basic science knowledge and in the

development of biomedical applications.

By studying protein interaction networks

we can learn about the evolution of

individual proteins and about the different

systems in which they are involved.

Likewise, interaction maps obtained from

one species can be used, with some

limitations, to predict interaction networks

in other species. Protein interaction net-

works can also suggest functions for

previously uncharacterized proteins by

uncovering their role in pathways or

protein complexes [4]. Due to their central

role in biological function, protein inter-

actions also control the mechanisms lead-

ing to healthy and diseased states in

organisms. Diseases are often caused by

mutations affecting the binding interface

or leading to biochemically dysfunctional

allosteric changes in proteins. Therefore,

protein interaction networks can elucidate

the molecular basis of disease, which in

turn can inform methods for prevention,

diagnosis, and treatment [5,6].

The study of human disease experi-

enced extensive advancements once the

biomedical characterization of proteins

shifted to studies taking into account a

protein’s network at different functional

levels (i.e. in pair-wise interactions, in

complexes, in pathways, and in whole

genomes). For instance, consider how our

understanding of Huntington’s disease

(HD) has evolved from the early Mende-

lian single-gene studies to the latest HD-

specific network-based analyses. HD is an

autosomal dominant neurodegenerative

disease with features recognized by Hun-

tington in 1872 [7], and whose specific

patterns of inheritance were documented

in 1908 [8]. After almost a century of

genetics studies, the culprit gene in HD

was identified; in 1993, we learned that

HD was caused by the repeat expansion of

a CAG trinucleotide in the Huntingtin (Htt)

gene [9]. This expansion causes aggrega-
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tion of the mutant Htt in insoluble neuronal

inclusion bodies, which consequently leads

to neuronal degeneration. Yet, even when

the key disease-causing protein in HD had

been identified, the mechanism for Htt

aggregation remained unknown. In 2004,

Goehler et al. [10] mapped all the PPIs that

take place in HD and discovered that the

interaction between Htt and GIT1, a

GTPase-activating protein, mediates Htt

aggregation. Further validation ([11,12])

confirmed GTI1’s potential as a target for

therapeutic strategies against HD.

In this chapter, we will describe the main

experimental methods to identify protein

interactions and the computational ap-

proaches to map their networks and to

predict new interactions purely in silico. We

will describe the application of protein

interaction networks as a translational ap-

proach to the study of human disease and

evaluate the challenges faced by these

approaches.

2. Experimental Identification
of PPIs
2.1 Biophysical Methods

Protein interactions are identified

through different biochemical, physical,

and genetic methods (Figure 2). Historical-

ly, the main source of knowledge about

protein interactions has come from bio-

physical methods, particularly from those

based on structural information (e.g. X-ray

crystallography, NMR spectroscopy, fluorescence,

atomic force microscopy). Biophysical methods

identify interacting partners and also pro-

vide detailed information about the bio-

chemical features of the interactions (e.g.

binding mechanism, allosteric changes

involved). Yet, since they are time- and

resource-consuming, biophysical character-

izations only permit the study of a few

complexes at a time.

2.2 High-Throughput Methods
To document protein interactions at a

larger scale, automated methods have been

developed to detect interactions directly or

to deduce them through indirect approach-

es (Figure 2).
2.2.1 Direct high-throughput

methods. Yeast two-hybrid (Y2H) is one

of the most-commonly used direct high-

throughput method. The Y2H system tests

the interaction of two given proteins by

fusing each of them to a transcription-

binding domain. If the proteins interact,

the transcription complex is activated,

which transcribes a reporter gene whose

product can be detected. Since it is an in

vivo technique, the Y2H system is highly

effective at detecting transient interactions

and can be readily applied to screen large

genome-wide libraries (e.g. to map an

organisms’ full set of interactions or

interactome). But, the Y2H system is

limited by its biases toward non-specific

interactions. Likewise, Y2H cannot

identify complexes (i.e. it only reports

binary interactions) or interactions of pro-

teins initiating transcription by themselves.

Although protein interactions are usually

detected and studied in pair-wise form, in

reality they often occur in complexes and

as part of larger networks of interaction. In

vitro direct detection methods (e.g. mass

spectrometry, affinity purification) are better

suited to detect macromolecular inte-

ractions, yet, they have their own

limitations: interactions occurring in vitro

do not necessarily occur in vivo (e.g. when

proteins are compartmentalized in

different cell locations) and complexes

are often difficult to purify, which is a

required step in the protocol [13].

2.2.2 Indirect high-throughput

methods. Several high-throughput

methods deduce protein interactions by

looking at characteristics of the genes enco-

ding the putative interacting partners. For

instance, gene co-expression is based on the

assumption that the genes of interacting pro-

teins must be co-expressed to provide the

products for protein interaction. Expression

profile similarity is calculated as a correla-

tion coefficient between relative expression

levels and subsequently compared against a

background distribution for random non-

interacting proteins. Synthetic lethality, on the

other hand, introduces mutations on two

separate genes, which are viable alone but

lethal when combined, as a way to deduce

physically interacting proteins [14].

3. Computational Predictions of
PPIs

As discussed in section 2, experimental

approaches provide the means to either

empirically characterize protein interac-

tions at a small scale or to detect them at a

large scale. Still, experimental detections

only generate pair-wise interaction rela-

tionships and with incomplete coverage

(because of experimental biases toward

certain protein types and cellular localiza-

tions). Experimental identification meth-

ods also exhibit an unacceptably high

fraction of false positive interactions and

often show low agreement when generated

by different techniques [15–17]. Experi-

mental biophysical methods can comple-

ment the high-throughput detections by

providing specific interaction details; but

they are expensive, extremely laborious,

and can only be implemented for a few

complexes at a time.

Computational methods for the predic-

tion of PPIs provide a fast and inexpensive

alternative to complement experimental

efforts. Computational interaction studies

can be used to validate experimental data

and to help select potential targets for

further experimental screening [18]. More

importantly, computational methods give

us the ability to study proteins within the

context of their interaction networks at

different functional levels (i.e. at the

complex, pathway, cell, or organismal

level), thus, allowing us to convert lists of

pair-wise relationships into complete net-

work maps. Since they are based on

different principles, computational tech-

niques can also uncover functional rela-

tionships and even provide information

about interaction details (e.g. domain

interactions), which may elude some

experimental methods.

3.1 Computational Methods for PPI
Predictions

Computational interaction prediction

methods can be classified into two types:

methods predicting protein domain inter-

actions from existing empirical data about

protein-protein interactions and methods

relying entirely on theoretical information

to predict protein-protein or domain-

domain interactions (Figure 2).

3.1.1 Empirical predictions. The

computational techniques based on experi-

mental data use the relative frequency of

interacting domains [19], maximum likelihood esti-

mation of domain interaction probability [20,21],

co-expression [22], or network properties [23–27]

to predict protein and domain interactions.

The main disadvantage of empirical com-

putations is that, by relying on an existing

protein network to infer new nodes, they

propagate the inaccuracies of the experi-

mental methods.

3.1.2 Theoretical predictions.

Theoretical techniques to predict PPIs

What to Learn in This Chapter

N Experimental and computational methods to detect protein interactions

N Protein networks and disease

N Studying the genetic and molecular basis of disease

N Using protein interactions to understand disease
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Figure 1. A PPI network of the proteins encoded by radiation-sensitive genes in mouse, rat, and human, reproduced from [89].
Yellow nodes represent the proteins and blue lines show the interactions between them. The radiation-related genes were text-mined from PubMed
and the protein interaction information was obtained from HPRD.
doi:10.1371/journal.pcbi.1002819.g001
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incorporate a variety of biological

considerations; they take advantage of

the fact that interacting proteins coevolve

to preserve their function (e.g. mirrortree,

phylogenetic profiling [28–35]), occur in the

same organisms (e.g. [36,37]), conserve

gene order (e.g. gene neighbors method

[38,39]) or are fused in some organisms

(e.g. the Rosetta Stone method [40,41]).

3.2 Theoretical Predictions of PPIs
Based on Coevolution

Below, we will expand on two methods

generating theoretical PPI predictions

through coevolutionary signal detection

either at the residue or at the full-sequence

level.

3.2.1 Coevolution at the residue

level. Pairs of residues within the same

protein can coevolve because of three-

dimensional proximity or shared function

[42]. The intramolecular correlations of

interacting protein partners can be used to

predict intermolecular coevolution.

Residue-based coevolution methods

measure the set of correlated pair

mutations in each protein. A pair of

proteins is assumed to interact if they

show enrichment of the same correlated

mutations [42].

3.2.2 Coevolution at the full-

sequence level. Methods detecting

coevolution at the full-sequence level are

based on the idea that changes in one

protein are compensated by correlated

changes in its interacting partner to

preserve the interaction [29,30,42–45].

Therefore, as interacting proteins

coevolve, they tend to have phylogenetic

trees with topologies that are more similar

than expected by chance [46]. The

coevolution of interacting proteins was

first qualitatively observed for polypeptide

growth factors, neurotransmitters, and

immune system proteins with their

respective receptors [47]. Several

methodologies have been developed to

measure coevolution at the full-sequence

level, and among them, the mirrortree

method is one of the most intuitive and

accurate options. As shown in Figure 3,

mirrortree measures coevolution for a

given pair of proteins by i) identifying the

orthologs of both proteins in common

species, ii) creating a multiple sequence

alignment (MSA) of each protein and its

orthologs, iii) from the MSAs, building

distance matrices, and iv) calculating the

correlation coefficient between the

distance matrices. The mirrortree

correlation coefficient is used for

measuring tree similarity, thereby,

allowing the evaluation of whether the

proteins in question coevolved [28–

35].

The mirrortree method has been suc-

cessfully implemented to confirm experi-

mental interactions in E. coli [4], S.

cerevisiae [48], and H. sapiens [49]. But,

the degree of similarity between the

phylogenetic trees is strongly affected by

the sequence divergence driven by the

underlying speciation process [4,50].

Therefore, two proteins may have similar

phylogenetic trees due only to common

speciation events, but they may not

necessarily be interacting partners. By

subtracting the signal from speciation

events Pazos et al. [4] and Sato et al.

[50] showed improvements for the per-

formance of the mirrortree method. One

approach creates a ‘‘speciation’’ vector

from the distance matrices derived from

Figure 2. A diagram of the different experimental and computational methods to characterize, detect, and predict PPIs.
doi:10.1371/journal.pcbi.1002819.g002
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the ribosomal 16S sequences (for prokary-

otes and 18S for eukaryotes), while the

other uses the average distance of all

proteins in a pair of organisms. Both

methods subtract the speciation vector

from the original distance matrix con-

structed for the given protein pair.

In principle, to characterize protein

interactions at a systems level, all pro-

tein-protein and domain-domain interac-

tions in a given organism must be

catalogued. The mirrortree method is a

suitable option to complement experimen-

tal detections because it is inexpensive and

fast. Moreover, mirrortree only requires

the proteins’ sequences as input and thus

can be used to analyze proteins for which

no other information is available. Since

mirrortree predictions are based on differ-

ent principles than any other computa-

tional or experimental techniques, they

can also uncover functional relationships

eluding other methods. Still, the imple-

mentation of the mirrortree approach is

under several limitations. One limitation

of the mirrortree method is the minimum

number of orthologs it requires. Selecting

orthologs in large families with many

paralogs is also a considerable challenge

for mirrortree [49]. In addition, coevolu-

tion does not necessarily take place

uniformly across the sequence; different

sites may coevolve at different rates based

on functional constraints. Thus, coevolu-

tion signals vary when measured across the

entire sequence vs. at the domain level

[51].

4. Protein Networks and
Disease

4.1 Studying the Genetic Basis of
Disease

The majority of our current knowledge

about the etiology of various diseases

comes from approaches aiming to uncover

their genetic basis. In the near future, the

ability to generate individual genome data

using next generation sequencing methods

promises to change the field of transla-

tional bioinformatics even more.

Since the inception of Mendelian ge-

netics in the 1900’s, great effort has gone

into cataloguing the genes associated with

individual diseases. A gene can be isolated

based on its position in the chromosome

by a process known as positional cloning

[52]. A few examples of human disease-

related genes identified by positional

cloning include the genes associated with

cystic fibrosis [53], HD [9], and breast

cancer susceptibility [54,55]. Even in

simple Mendelian diseases, however, the

correlation between the mutations in the

patient’s genome and the symptoms is not

often clear [56]. Several reasons have been

suggested for this apparent lack of corre-

lation between genotype and phenotype,

including pleiotropy, influence of other

genes, and environmental factors.

Pleiotropy occurs when a single gene

produces multiple phenotypes. Pleiotropy

complicates disease elucidation because a

mutation on a pleiotropic gene may have

an effect on some, all, or none of its traits.

Therefore, mutations in a single gene may

cause multiple syndromes or only cause

disease in some of the biological processes

the gene mediates. Establishing which geno-

types are responsible for the perturbed

phenotype of interest is not straightforward.

Genes can influence one another in several

ways; genes can interact synergistically,

(as in epistasis), or they can modify one

another (e.g. the expression of one gene

might affect the expression of another).

Cystic fibrosis and Becker muscular

dystrophy, previously considered classical

examples of Mendelian patterns of inher-

itance, are now believed to be caused by

a mutation of one gene which is modified

by other genes [57,58]. Thus, even simple

Mendelian diseases can lead to complex

genotype-phenotype associations [59].

Environmental factors (e.g. diet, infection

by bacteria) are also major determinants of

disease phenotype expression often acting

in combination with other genotype-phe-

notype association confounders (i.e. plei-

otropy and gene modifiers). In fact, most

common diseases such as cancer, meta-

bolic, psychiatric and cardio-vascular dis-

orders (e.g. diabetes, schizophrenia and

hypertension) are believed to be caused by

several genes (multigenic) and are affected

by several environmental factors [60].

4.2 Studying the Molecular Basis of
Disease

Much can be learned from document-

ing the genes associated with a particular

Figure 3. A schema of the mirrortree method for predicting interacting proteins. The orthologs of two proteins (A and B from the same species)
are used to construct two multiple sequence alignments (MSAs). Distance matrices, which implicitly represent evolutionary trees, are constructed from the
MSAs. Each matrix square represents the tree distance between two orthologs and dark colors represent closeness. The two distance matrices are
compared using linear correlation. A high correlation between the distance matrices suggests interaction between proteins A and B.
doi:10.1371/journal.pcbi.1002819.g003
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disease (e.g. identifying risk factors that

might be used for diagnostic purposes).

Yet, to understand the biological details of

pathogenesis and disease progression and

to subsequently develop methods for

prevention, treatment and even diagnosis,

it is necessary to identify the molecules and

the mechanisms triggering, participating,

and controlling the perturbed biological

process. Deciphering the molecular mech-

anisms leading to diseased states is an even

bigger challenge than elucidating the

genetic basis of complex diseases [61].

Even when the genetic basis of a disease is

well understood, not much is known about

the molecular details leading to the

disorders.

4.2.1 The role of protein

interactions in disease. Protein

interactions provide a vast source of

molecular information; their interactions

(with one another, DNA, RNA, or small

molecules) are involved in metabolic,

signaling, immune, and gene-regulatory

networks. Since protein interactions

mediate the healthy states in all

biological processes, it follows that they

should be the key targets of the molecular-

based studies of biological diseased states.

Disease-causing mutations affecting

protein interactions can lead to

disruptions in protein-DNA interactions,

protein misfolds, new undesired

interactions, or can enable pathogen-host

protein interactions.

Protein-DNA interaction disruptions are most

clearly illustrated by the p53 tumor

suppressor protein and its role in cancer.

Mutations on p53’s DNA-binding domain

destroy its ability to bind to its target DNA

sequences, thus preventing transcriptional

activation of several anti-cancer mecha-

nisms it mediates (e.g. apoptosis, genetic

stability, and inhibition of angiogenesis).

Protein misfolding can result in disruptions

of protein-protein interactions, as occurs

in the Von Hippel-Lindau syndrome

(VHL)—VHL is a rare condition in which

hemangioblastomas are formed in the

cerebellum, spinal cord, kidney, and

retina. A mutation from Tyrosine to

Histidine at residue 98 on the binding site

disrupts binding of the VHL protein to the

hypoxia-inducible factor (HIF) protein. As

a result, the VHL protein no longer

degrades the HIF protein, which leads to

the expression of angiogenic growth fac-

tors and local proliferation of blood vessels

[62,63].

New undesired protein interactions are the

main causes of several diseases, including

Huntington’s disease (see introduction),

cystic fibrosis, and Alzheimer’s disease.

New interactions alter homeostasis since

they can lead to the loss of vital cellular

functions (due to misfolding and aggrega-

tion) and can cause cytotoxicity [11].

Pathogen-host protein interactions also play a

key role in bacterial and viral infections by

facilitating the hijacking of the host’s

metabolism for microbial need. The inter-

action between the Human papillomavirus

(HPV) and its host provides one of the

most striking examples of the centrality of

protein interactions in infectious diseases.

HPV infection occurs in a large fraction of

the population (75–80% of Americans

[64]) by generating lesions of the anogen-

ital tract and for some it leads to cancer.

Upon infection, the HPV genome is

frequently integrated into the host ge-

nome, but only two viral genes (E6 and

E7) are retained and expressed. Remark-

ably, the interactions of only two viral

proteins with the host’s proteins are

enough to cause HPV-induced carcino-

genesis. E6 and E7 bypass the immune

system by interacting with important

negative cell regulatory proteins to target

them for degradation and thus, inactiva-

tion. These two proteins also inhibit

cellular terminal differentiation, induce

cellular transformation and immortaliza-

tion of the host cells, and direct the

proliferation of the tumorigenically-trans-

formed cells [65].

4.2.2 Using PPI networks to

understand disease. PPI networks can

help identify novel pathways to gain basic

knowledge of disease. Note that pathways

are different from PPI networks. PPI

networks map the physical or functional

interaction between protein pairs resulting

in a complex grid of connections (Figure 1).

Pathways, on the other hand, represent

genetic, metabolic, signaling, or neural

processes as a series of sequential

biochemical reactions where substrates

are changed in a linear fashion. For

instance, the glycolysis pathway maps the

conversion of glucose to pyruvate through

a linear chain of ten different steps.

Pathway analysis alone cannot uncover

the molecular basis of disease. When

performing pathway analysis to study

disease, differential expression experi-

ments are the main source of protein

candidates. However, most of the gene

expression candidates are useless to path-

way-based analysis of disease because the

majority of human genes have not been

assigned to a pathway. Protein interaction

networks can be used to identify novel

pathways. Protein interaction subnetworks

tend to group together the proteins that

interact in functional complexes and

pathways [66]. Thus, new methods are

being developed to accurately extract

interaction subnetworks to yield pathway

hypotheses that can be used to understand

different aspects of disease progression

[67,68]. See Table 1 for useful resources

incorporating pathway and PPI informa-

tion in disease elucidation.

Mapping interactomes provide the op-

portunity to identify disease pathways by

identifying key subnetworks. In 2005, Rual

et al. [69] mapped the human protein

interactome. Below are some of the

findings that have been uncovered when

combining PPI and pathway analysis since

then.

(i) Over 39,000 protein interactions

have been identified in the human

cell [70].

(ii) Disease genes are generally non-

essential and occupy peripheral

positions in the human interac-

tome [71], although, in a few

diseases like cancer, disease genes

tend to encode highly-connected

proteins (hubs) [72,73].

(iii) Disease genes tend to cluster to-

gether and co-occur in central

network locations [6].

(iv) Proteins involved in similar pheno-

types (e.g. all cancer proteins) are

highly interconnected [73].

(v) Viral networks differ significantly

from cellular networks, which rais-

es the hypothesis that other intra-

cellular pathogens might also have

distinguishing topologies [74].

(vi) Etiologically unrelated diseases of-

ten present similar symptoms be-

cause separate biological processes

often use common molecular path-

ways [75].

PPI networks can be used to explore the

differences between healthy and diseased

states. Building interaction networks for

systems under different conditions (e.g.

wild type vs. mutant, presence of environ-

mental factor vs. its absence) might be the

key to understanding the differences

between healthy and pathological states.

The work by Charlesworth et al. [76] on

the perturbation of the canonical path-

ways and networks of interactions when

humans are exposed to cigarette smoke

illustrates the potential of such approach-

es. As one might expect, this study found

that the smoking-susceptible genes were

overrepresented in pathways involved in

several aspects of cell death (cell cytotox-

icity, cell lysis), cancer (e.g. tumorigenesis),

and respiratory functions. A somewhat

more unexpected finding, however, con-

firmed that exposure to the smoke envi-

ronmental factor affected a large subnet-

PLOS Computational Biology | www.ploscompbiol.org 6 December 2012 | Volume 8 | Issue 12 | e1002819



work of proteins involved in the immune-

inflammatory response. This study gave

new insights into how smoke causes

disease: the exogenous toxicants in smoke

perturb several protein interactions in the

healthy cell state, thereby depressing the

immune system, while disrupting the

inflammation response. The study also

explained why smoking cessation has some

immediate health benefits; eliminating

smoke exposure reverses the alterations

at the transcriptomic level and restores the

majority of normal protein interactions.

Protein interaction studies play a major role in

the prediction of genotype-phenotype associations

while also identifying new disease genes.

The identification of disease-associated

interacting proteins also identifies poten-

tially interesting disease-associated gene

candidates (i.e. the genes coding for the

interacting proteins are putative disease-

causing genes). One of the best ways to

identify novel disease genes is to study the

interaction partners of known disease-

associated proteins [77]. Gandhi et al.

[78] found that mutations on the genes

of interacting proteins lead to similar

disease phenotypes, presumably because

of their functional relationship. Therefore,

protein interactions can be used to prior-

itize gene candidates in studies investigat-

ing the genetic basis of disease [79].

Others have used the properties of protein

interaction networks to differentiate dis-

ease from non-disease proteins. Based on

this approach, Xu et al. [80] devised a

classifier based on several topological

features of the human interactome to

predict genes related to disease. The

classifier was trained on a set of non-

disease and a set of disease genes (from

OMIM) and applied to a collection of over

5,000 human genes. As a result, 970

disease genes were identified, a fraction

of which were experimentally validated.

New diagnostic tools can result from genotype-

phenotype associations established through

PPIs. The genes of interacting proteins

can be studied to identify the mutation(s)

leading to the interaction disruptions seen

in healthy individuals or to the creation of

new interactions only present in the

diseased states. For example, Rossin et al.

used genome-wide association studies

(GWAS) to identify regions with variations

that predispose immune-mediated diseases

[81]. The GWAS studies provided a list of

proteins found to interact in a preferential

manner. The resulting disease single-

nucleotide polymorphisms identified by

GWAS studies such as that by Rossin et

al. can be eventually incorporated into

genotyping diagnostic tools.

Identifying disease subnetworks, and in turn

pathways that get activated in diseased states, can

provide markers to create new prognostic

tools. For instance, using a protein-net-

work-based approach, Chuang et al. [66]

identified a set of subnetwork markers that

accurately classify metastatic vs. non-

metastatic tumors in individual patients.

Metastasis is the leading cause of death in

patients with breast cancer. However, a

patient’s risk for metastasis cannot be

accurately predicted and it is currently

only estimated based on other risk factors.

When metastasis is deemed likely, breast

cancer patients are prescribed aggressive

chemotherapy, even when it might be

unnecessary. By integrating protein net-

works with cancer expression profiles, the

authors identified relevant pathways that

become activated during tumor progres-

sion, which discriminate metastasis better

than markers previously suggested by

studies using differential gene expression

alone.

Disease networks can inform drug design by

helping suggesting key nodes as potential

drug targets. Drug target identification

constitutes a good example of the potential

of integrating structural data with high-

throughput data [82]. The structural

details on binding or allosteric sites can

be used to design molecules to affect

protein function. On the other hand,

reconstruction of the different protein

networks (signaling, metabolic, regulatory,

etc.) in which the potential target is

involved can help predict the overall

impact of the disruption. If, for example,

the target is a hub (a highly connected

protein), its inhibition may affect many

activities that are essential for the proper

function of the cell and might thus be

unsuitable as a drug target. On the other

hand, less connected nodes (e.g. nodes

affecting a single disease pathway) could

constitute vulnerable points of the disease-

related network, which are better candi-

dates for drug targets. The work by

Yildirim and Goh [83] illustrates the

advantages of evaluating drugs within the

context of cellular and disease networks.

This group created a drug-target network

to map the relationships between the

protein targets of all drugs and all

disease-gene products. The topological

analysis of the human drug-target network

revealed that (i) most drugs target currently

known targets; (ii) only a small fraction of

disease genes encodes drug-target proteins;

(iii) current drugs do not target diseases

equally but only address some regions of

the human disease network; and (iv) most

drugs are palliative—they treat the symp-

toms not the cause of the disease, which

largely reflects our lack of knowledge

regarding the molecular basis of diseases

such that for many pathologies we can only

treat the symptoms but not cure them.

5. Summary—Trends in the
Translational Characterization
of Human Disease

We are still quite far from understand-

ing the etiology of most diseases. Further

advances on relevant experimental tech-

nology (e.g. genetic linkage, protein inter-

action prediction), along with integrative

computational tools to organize, visualize,

and test hypotheses should provide a step

forward in that direction. More than ten

years after the completion of the human

genome project, it is clear that our

approach to human disease elucidation

needs to change. The $3-billion human

‘‘book of life’’ and the $138-million effort

to catalog the common gene variants

relevant to disease have so far failed to

deliver the wealth of biological knowledge

of human diseases and the subsequent

Table 1. Pathway databases with disease information.

Resource Featured organisms Disease information Website

KEGG Yeast, mouse, human Comprehensive http://www.genome.jp/kegg/disease/

REACTOME Human+20 other species Sparse http://reactome.org/

SMPDB Human Small molecules’ Metabolic disease pathways http://www.smpdb.ca

PharmGKB Human Gene-drug-disease relationships http://www.pharmgkb.org/index.jsp

NetPath Human 10 immune and 10 cancer pathways http://www.netpath.org/index.html

doi:10.1371/journal.pcbi.1002819.t001
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personalization of medicine the scientific

community expected [84].

To date, biomedical research of the

etiology of disease has largely focused on

identifying disease-associated genes. But,

the molecular mechanisms of pathogenesis

are extremely complex; gene-products

interact in different pathways and multiple

genes and environmental factors can affect

their expression and activity. Likewise, the

same proteins may participate in different

pathways and mutations on their genes

may or may not affect some or all of the

biological processes they mediate. Thus,

gene-disease associations cannot be

straightforwardly deduced and their use-

fulness alone (in the absence of a molec-

ular context) in elucidating the biology of

healthy phenotype disruptions is question-

able. Evidence is accumulating to suggest

that in the majority of cases illnesses are

traceable to a large number of genes

affecting a network or pathway. The

effects on healthy phenotype disruption

may vary from one individual to another

based on the person’s gene variants and on

how disruptive the alterations might be to

the network [85].

To achieve a comprehensive genotype-

phenotype understanding of disease, trans-

lational research should be conducted

within a framework integrating methodol-

ogies for uncovering the genetics with

those investigating the molecular mecha-

nisms of pathogenesis. In fact, the studies

yielding the most biological insight into

disease to which we alluded in this chapter

were those which implemented a com-

bined genotype-phenotype approach;

those studies identified the disease-suscep-

tible genes and investigated their network

of interactions and affected pathways. As a

result, the combined approaches managed

to explain known clinical observations

while also suggesting new mechanisms of

pathology.

PPI analysis provides an effective means

to investigate biological processes at the

molecular level. Yet, any conclusions

obtained based on PPI methods must be

validated since these methods are subject

to limitations inherent to the nature of

data collection and availability. First, one

must be aware that the roles of protein

interactions are context-specific (tissue,

disease stage, and response). Thus, two

proteins observed to interact in vitro might

not interact in vivo if they are localized in

different cell compartments. Even when in

common cell compartments, protein abun-

dance or presence of additional interactors

might affect whether the interaction oc-

curs at all. Second, most of the PPI

methodologies use a simplistic ‘static’ view

of proteins and their networks. In reality,

proteins are continuously being synthe-

sized and degraded. The kinetics of

processes and network dynamics need to

be considered to achieve a complete

understanding of how the disruptions of

protein interactions lead to disease. Third,

human PPIs are often predicted based on

homology and from studies investigating

disease in other organisms. The same

mechanisms of interaction might or might

not exist in the organism of interest or

their regulation and phenotypic effects

might be different. Ideally, since network

and structural approaches are comple-

mentary, the combination of network

studies with a more detailed structural

analysis has the potential to enhance the

study of disease mechanisms and rational

drug design.

Currently, in the PPI field, a large

number of studies focus on the topological

characterization of organisms’ interac-

tomes. Those studies have yielded valuable

information regarding general trends of

molecular organization and their differ-

ences across genomes. To gain a deeper

understanding of individual diseases, how-

ever, the trend needs to move from global

characterizations to disease-specific inter-

actomes. Phenotype-specific interaction

network analyses should help identify

subnetworks mapping to pathways that

can be targeted therapeutically and point

to key molecules essential to the biological

function under study. Since disease infer-

ences are as good as the modeled PPI

networks, the ontologies used by PPI

resources need to be expanded to better

describe disease phenotypes, cytological

changes, and molecular mechanisms.

6. Exercises

Objective: To investigate Epstein-
Barr Virus (EBV) pathogenesis us-
ing protein-protein interactions

EBV is a member of the herpesvirus

family and one of the most common

human viruses. According to the CDC,

in the United States around 95% of adults

have been infected by EBV. Upon infec-

tion in adults, EBV replicates in epithelial

cells and establishes latency in B lympho-

cytes, eventually causing infectious mono-

nucleosis 35%–50% of the time and

sometimes cancer [86]. In the next four

sections, your goal will be to study the

interactions among EBV proteins and

between the virus and its host (using the

EBV-EBV and EBV-human interactomes

respectively) as a means to investigate how

EBV leads to disease at the molecular

level.

Datasets:

The following datasets were adapted

with permission from [87]

N Dataset S1: EBV interactome

N Dataset S2: EBV-Human interactome

Software requirements:

Download and install Cytoscape

(http://www.cytoscape.org, [88]) locally.

Note:

The instructions below correspond to

Cytoscape v. 2.8.0; but, should be appli-

cable to future releases.

I. Visualize the EBV interactome
using Cytoscape

A. Import Dataset S1 into cytos-
cape

N Select File -.Import -.Network (Multi-

ple File Types)

N Click the ‘‘Select’’ button to browse to

Dataset S1’s location

N Click ‘‘Import’’

B. Change the network layout

N Click on View-.Hide data panel

N Click the 1:1 magnifying glass icon to

zoom out to display all elements of

the current network’’

N Select Layout-.Cytoscape Layouts-

.Force-directed (unweighted) Layout

C. Format the nodes and edges

N Select View-.Open Vizmapper

N Choose the ‘‘Default’’ Current Visual Style

N Click on the pair of connected nodes icon in

the ‘‘Defaults’’ box

N Scroll down on the resulting dialog to

change the following default visual

properties:

NODE__SIZE = 20

NODE_FONT_SIZE = 20

N O D E _ L A B E L _ P O S I -

TION = (Node Anchor Points)

SOUTH

N Note: Feel free to click and drag any

nodes with labels that overlap to

increase visual clarity.

D. Print the EBV interactome

N Select File-.Export-.Current Net-

work View as Graphics

Answer the following questions:

i. How many nodes and edges are

featured in this network?
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ii. How many self interactions does the

network have?

iii. How many pairs are not connected

to the largest connected component?

iv. Define the following topological pa-

rameters and explain how they might

be used to characterize a protein-

protein interaction network: node

degree (or average number of neigh-

bors), network heterogeneity, aver-

age clustering coefficient distribu-

tion, network centrality.

II. Characterize the EBV-Human
interactome

Import Dataset S2 into cytoscape to

create a map of the EBV-Human inter-

actome. Format and output the network

according to steps A through D in part I.

Answer the following questions:

i. How many unique proteins were

found to interact in each organism?

ii. How many interactions are mapped?

iii. How many human proteins are

targeted by multiple (i.e. how many

individual human proteins interact

with .1) EBV proteins?

iv. How does identifying the multi-

targeted human proteins help you

understand the pathogenicity of the

virus? —Hint: Speculate about the

role of the multi-targeted human

proteins in the virus life cycle.

v. How might you test the predictions

you formulated above?

III. Characterize the topological
properties of the human proteins
that are targeted by EBV

Use the topological information pro-

vided for you in Table 2 to investigate

whether the EBV-targeted Human Pro-

teins (ET-HPs) differ from the average

human protein.

Answer the following questions:

i. Based on the ‘degree’ property, what

can you deduce about the connect-

edness of ET-HPs? What does this

tell you about the kind of proteins

(i.e. what type of network compo-

nent) EBV targets?

ii. What do the number and size of the

largest components tell you about

the inter-connectedness of the ET-

HP subnetwork?

iii. Why is distance relevant to network

centrality? What is unusual about the

distance of ET-HPs to other proteins

and what can you deduce about the

importance of these proteins in the

Human-Human interactome?

iv. Based on your conclusions from

questions i–iii, explain why EBV

targets the ET-HP set over the other

human proteins and speculate on the

advantages to virus survival the

protein set might confer.

IV. Integrating knowledge from
three different interactomes

Answer the following questions:

i. The Rta protein is a transactivator

that is central to viral replication in

EBV. When Rta is co-expressed with

the LF2 protein replication attenuates

and the virus establishes latency.

Solely based on the EBV-EBV net-

work, formulate a hypothesis to

explain how LF2 may be driving

EBV to latency suggesting at least

one molecular mechanism by which

LF2 may inactivate Rta.

ii. Why is establishing latency (opposed

to promoting rapid replication of

viral particles) an effective mecha-

nism of virus infection?

iii. Assign putative functions to EBV’s

SM and EBNA3A proteins based on

the function of the human proteins

with which they interact—Hint: Lo-

cate these proteins in the EBV-

Human network. What clinical ob-

servation (see the introductory para-

graph to section 6. Exercises) might

these proteins’ subnetworks explain?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)

Dataset S1 EBV Interactome Data.

(SIF)

Dataset S2 EBV-Human Interactome

Data.

(SIF)

Figure S1 EBV Interactome Map.

(PDF)

Figure S2 EBV-Human Interactome

Map.

(PDF)

Table 2. Topological properties of human proteins for exercise III.

Average topological property ET-HP Random human protein

Degree 1562 5.960.1

Number of components 4 12.660.25

Nodes in largest component 1,112 52165

Distance to other proteins 3.260.1 4.0360.01

doi:10.1371/journal.pcbi.1002819.t002
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Abstract: Complex diseases are
caused by a combination of genetic
and environmental factors. Uncov-
ering the molecular pathways
through which genetic factors affect
a phenotype is always difficult, but
in the case of complex diseases this
is further complicated since genetic
factors in affected individuals might
be different. In recent years, systems
biology approaches and, more spe-
cifically, network based approaches
emerged as powerful tools for
studying complex diseases. These
approaches are often built on the
knowledge of physical or functional
interactions between molecules
which are usually represented as
an interaction network. An interac-
tion network not only reports the
binary relationships between indi-
vidual nodes but also encodes
hidden higher level organization of
cellular communication. Computa-
tional biologists were challenged
with the task of uncovering this
organization and utilizing it for the
understanding of disease complex-
ity, which prompted rich and di-
verse algorithmic approaches to be
proposed. We start this chapter with
a description of the general charac-
teristics of complex diseases fol-
lowed by a brief introduction to
physical and functional networks.
Next we will show how these
networks are used to leverage
genotype, gene expression, and
other types of data to identify
dysregulated pathways, infer the
relationships between genotype
and phenotype, and explain disease
heterogeneity. We group the meth-
ods by common underlying princi-
ples and first provide a high level
description of the principles fol-
lowed by more specific examples.
We hope that this chapter will give
readers an appreciation for the
wealth of algorithmic techniques
that have been developed for the
purpose of studying complex dis-
eases as well as insight into their
strengths and limitations.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Complex diseases are caused, among other

factors, by a combination of genetic

perturbations. Thus in the case of a

complex disease we do not assume that a

single genetic mutation can be pinned

down as a cause. Many diseases fall in this

category including cancer, autism, diabe-

tes, obesity, and coronary artery disease.

Even though there are other factors

involved in such diseases, this review will

focus on genetic causes.

One of the fundamental difficulties in

studying genetic causes of complex diseas-

es is that different disease cases might be

caused by different genetic perturbations.

In addition, if a disease is caused by a

combinatorial effect of many mutations,

the individual effects of each mutation

might be small and thus hard to discover.

For example, autism is considered to be

one of the most heritable complex disor-

ders, but its underlying genetic causes are

still largely unknown [1]. One of the

proposed factors that contribute to this

difficulty is the role of rare genetic

variations in the emergence of the disease

[2].

An additional difficulty in studying

complex diseases relates to disease hetero-

geneity. Specifically, in a complex disease,

disease phenotypes might vary significant-

ly among patients. The recognition of this

fact has lead, for example, to renaming

‘‘autism’’ to ‘‘autism spectrum disorders’’

(ASDs) referring in this way to a group of

conditions characterized by impairments

in reciprocal social interaction and com-

munication, and the presence of restricted

and repetitive behaviors [1]. Similar

heterogeneity is present in other complex

diseases including cancer.

Given the above challenges, how can we

approach the study of complex diseases? A

useful clue is provided by the fact that

genes, gene products, and small molecules

interact with each other to form a complex

interaction network. Thus a perturbation

in one gene can be propagated through

the interactions, and affect other genes in

the network. However, the fact that we

observe similar disease phenotypes despite

different genetic causes suggests that these

different causes are not unrelated but

rather dys-regulate the same component

of the cellular system [3]. Therefore in

studies of complex diseases researchers

increasingly focus on groups of related/

interconnected genes, referred to as mod-

ules or subnetworks.

2. Interactome

Biomoecules in a living organisim rarely

act individually. Instead, they work to-

gether in a cooperative way to provide

specific functions. A variety of intermolec-

ular interactions including protein-protein

interactions, protein-DNA interactions,

and RNA interactions are essential to

these cooperative activities. These interac-

tions can be conveniently represented as

networks (graphs) with nodes (vertices)

which denote molecules, and links (edges)

which denote interactions between them.

Depending on the type of interaction, the

corresponding edge might be directed or
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undirected. For example, a binding be-

tween two proteins is usually represented

as an undirected edge while an interaction

between a transcription factor and a gene

whose expression is regulated by the given

transcription factor is usually represented

as a directed edge where the direction goes

from the transcription factor to the gene.

Biological interaction networks have

characteristic topological properties [4].

One of the basic properties observed in

many biological networks is the scale-free

property [5]. A scale free network is

defined as a network whose node degree

distribution follows a power law. Formally,

the function P(k) indicating the fraction of

nodes interacting with k other nodes in the

network follows P(k),ak2c, where a is a

normalization constant and the degree

exponent c is usually in the range of

2,c,3. Obviously, in biological networks

the scale free property holds only approx-

imately and practically the most important

implication of this observation is the fact

that these networks are characterized by a

small number of highly connected nodes

while most nodes interact with only a few

neighbors. These highly connected nodes,

called hubs have been proposed to play

important roles in biological processes [6]

and shown to be related to the modular

structure of the physical and functional

interaction networks [7]. Therefore it

might be interesting to consider disease

related genes in the context of the

topological properties of interaction net-

works such as connectivity or modularity

[8,9]. With respect to connectivity, one

should note that known disease genes tend

to be more studied which might introduce

a bias towards higher connectivity. Impor-

tantly, independently of the source of the

non-uniformity of node degree distribu-

tion, this characteristic property of inter-

action networks needs to be kept in mind

while designing proper null models for

conclusions derived using these networks.

In the following subsections, we briefly

describe how physical and functional

interactions networks are constructed and

how they are applied to analyze complex

diseases. We then explore the modularity

of networks – a widely accepted phenom-

enon in biological networks that has

proven to be helpful in disease studies.

2.1 Physical Interaction Networks
Physical contacts between proteins are

critical in many biological functions. In fact

much of the molecular machinery respon-

sible for transcription, translation, and

degradation is made of stable protein

complexes. There are two main approaches

for detecting physical protein interactions

[10]. The first approach is to detect

physical interactions between protein pairs.

The most widely used high-throughput

technology for detecting pairwise interac-

tion is yeast two-hybrid (Y2H) method.

Alternatively, physical interactions among

groups of proteins can be detected without

explicit consideration of interacting part-

ners. For this type of approach, interaction

data is typically obtained by tandem affinity

purification coupled to mass spectrometry

(TAP-MS). A more detailed review on

experimental methods for the detection

and analysis of protein-protein interactions

can be found in [11]. It is worth noting that

networks obtained with various technolo-

gies often have different topological prop-

erties [7]. For example, in the case of the

yeast TAP-MS network, hub nodes are

enriched with essential genes (the genes

without which yeast cannot survive in

standard growth medium). In contrast,

hubs in yeast Y2H networks are enriched

with genes that are pleiotropic [12]. Finally,

experimental procedures detecting protein-

protein interactions have also been com-

plemented by various computational meth-

ods using evolutionary-based approaches,

statistical analysis, and/or machine learn-

ing techniques (for a review, see [13]).

While these physical interaction net-

works have significantly advanced our

understanding of the relationships be-

tween molecules, a concern is their level

of noise and incompleteness. Indeed,

physical interaction networks obtained by

high-throughput techniques are found to

include numerous non-functional protein-

protein interactions [14] and at the same

time many missing true interactions.

Therefore physical interactions are often

complemented with functional interac-

tions.

2.2 Functional Interaction Networks
While physical interaction networks

provide information on how proteins

interact with each other, sometimes we

may be more interested in how proteins

work together to perform a certain func-

tion. Functional networks aim to connect

genes with similar or related functions

even if they do not necessarily physically

interact. Similarly functional regulatory

networks are constructed so that the

interactions depict direct or indirect regu-

latory relationships. Consequently, several

computational methods have been pro-

posed to derive functional interaction

networks.

Since functionally related genes are

likely to show mutual dependence in their

expression patterns [15], gene expression

data has been often used to detect

functional relationships. Co-expression

networks can be constructed by computing

correlation coefficients or mutual informa-

tion between gene expression profiles of

every pair of genes in different experimen-

tal settings. To build more comprehensive

functional networks, co-expression data is

frequently combined with other types of

data such as Gene Ontology [16,17],

outcome of genetic interaction experi-

ments, and physical interactions. Such

integrated networks have been constructed

for a variety of organisms including yeast

[18], fly [19], mouse [20], and human [21].

Gene regulatory network reconstruction

algorithms such as ARACNE [22] and

SPACE [23] identify regulatory relation-

ships building on the assumption that

changes in the expression level of a

transcription factor should be mirrored in

the expression changes of the genes regu-

lated by the transcription factor (TF).

Causal relations among genes can also be

naturally modeled using Bayesian networks

which can represent conditional dependen-

cies between expression levels (for a primer

on Bayesian network analysis utilizing

expression data (see [24]); for a recent

review see [25]). Considering the temporal

aspects of gene expression profiles, dynamic
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expression, and other types of data to identify dys-regulated pathways in
diseases:
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Bayesian networks have been used to model

feedback loops as well as gene regulation

patterns [26,27]. While expression profiles

serve as primary data sources for construct-

ing functional regulatory networks, this

data is often complemented with additional

information such as experimentally derived

transcription factor binding data from

ChiP-seq experiments or computationally

identified binding motifs.

2.3 Modules and Pathways
It is widely accepted that the cellular

system is modular. Hartwell et al. defined a

functional module as an entity, composed

of many types of interacting molecules,

whose function is separable from those of

other modules [28]. While the precise

meaning of separation is left undefined,

this general description provides a good

intuition behind the concept of a module.

Traditionally, molecular pathways have

been delineated by focused studies of

particular functions such as cell growth.

Typically, these pathways contain not only

topological connectivity information but

also the roles of molecules such as whether

a given molecule is an activator or

inhibitor of the activity of another mole-

cule. However, these hand-curated path-

ways are often incomplete. In addition,

while some functions, such as cell growth

or differentaition, have been relatively well

studied, studies of other pathways are less

extensive. Therefore, given the availability

of large scale interaction networks, it is

natural to attempt to extract meaningful

functional modules from such networks.

While there is no unique way to mathe-

matically define functional modules, the

most common approach is to search for

densely connected subgraphs or clusters

[29–46]. Additionally, gene expression

information can be used alone or in

concert with protein interaction data to

obtain gene modules by grouping co-

expressed genes into one module [47–49].

It is important to keep in mind that

modules identified by analysis of high-

throughput data are noisy, containing

both false negative and false positive edges.

In addition they do not usually provide

information about the nature of an

interaction. Therefore, unlike hand curat-

ed pathways, computationally identified

network modules typically lack a mecha-

nistic explanation of pathway activities but

rather serve as groups of genes that work

together to achieve a particular function.

An important advantage of working

with modules rather than individual genes

relates to the fact that it is often easier to

predict the function of a module than the

function of a gene. In particular, while the

functions of many genes are still unknown,

the prediction of the functional role of a

module may be possible if the module

contains a sufficient number of genes of

known functions. Such enrichment analy-

sis builds on the assumption that a fraction

of genes can be assigned a functional

category such as Gene Otology (GO) term

[17]. The question of whether the number

of genes with a functional annotation in a

given gene module is higher than expected

by chance can be determined by statistical

tests such as x2 or Fisher exact test. A

variety of software tools have been devel-

oped to perform such an analysis [50].

3. Identifying Modules and
Pathways Dys-regulated in
Diseases

Since complex diseases are believed to

be caused by combinations of genetic

alterations affecting a common component

of the cellular system, module-centirc

approaches are particulalry pormissing in

thier study. How can disease associated

modules/subnetworks be identified? Com-

plementing interaction data with addition-

al data related to disease states helps in

separating subnetworks perturbed in a

disease of interest from the remainder of

the network. Both genotypic data (e.g.,

SNP, copy number alteration) and molec-

ular phenotypic data such as gene expres-

sion profiles in disease samples have been

used to aid the identification of perturbed

network modules and explain the connec-

tion between genotypic and phenotypic

data (reviewed in [51]). Basing on the

assumption that complex diseases are

caused by a set of mutations which,

although strongly vary among patients,

are likely to dys-regulate common path-

ways, such dys-regulated pathways might

be uncovered by mapping genes altered in

the diseases onto a PPI (protein-protein

interaction) network and then searching

for network modules enriched with the

altered genes. On the other hand, organ-

ismal level phenotypes such as diseases are

directly related to molecular level changes

such as gene expression. Thus an alterna-

tive group of approaches considers mod-

ules enriched with abnormally expressed

genes. Finally, molecular pathways can

also be considered as means of informa-

tion flow. For example, the activation of

the EGFR signaling pathway starts with

the activation of the EGFR receptor,

which in turn activates a number of

signaling proteins downstream which ini-

tiate several signal transduction cascades,

such the MAPK, Akt and JNK pathways

and culminate in cell proliferation. Thus

the third type of approaches focuses on

predicting molecules and modules that

mediate such information propagation.

What are the benefits of analyzing

phenotypic and genotypic differences in

diseases in the context of their molecular

interactions? First, the integrative network

based approaches can identify subnet-

works that include genes that do not

necessarily show a significantly different

state in disease versus control but still play

an important role within a module by

mediating a connection between other

disease associated genes. For example, in

their pioneering approach, Ideker et al.

[52] integrated yeast protein–protein and

protein-DNA interactions with gene ex-

pression changes in response to perturba-

tions of the yeast galactose utilization

pathway and identified Active Subnetworks

(sets of connected genes with significantly

differential expression) which included

common transcription factors showing

moderate changes in their gene expression

level but connecting other dys-regulated

genes. Second, a module based approach

increases statistical power, allowing the

identification of a perturbed module even

in the case when the perturbation of each

individual gene in the module might not

be statistically significant. For example,

many cases of genetic diseases such as

autism and schizophrenia are affected by

rare germline variations which are difficult

to distinguish from noise due to their

rarity. However, recent studies showed

that a significant portion of the altered

genes belong to a highly interconnected

protein network [53], suggesting the

network approach can better detect the

causal genes. Third, identified network

modules can provide better understanding

of the biological underpinning of the

diseases and therefore more reliable mark-

ers in disease diagnosis and treatments (see

Section 4 for more discussion).

3.1 Network Modules Enriched with
Genetic Alterations

One way in which differing genetic

variations might dys-regulate a common

pathway is when the genes containing

these alterations belong to the pathway.

This potential explanation has led to the

idea that the dys-regulated pathways

might be uncovered by mapping the genes

altered in the diseases to an interaction

network and searching for the modules

enriched with the altered genes (See

Figure 1).

Following this principle, the first step to

identify such modules is to select candidate

genes whose alterations may have caused a

disease of interest. Genes or whole geno-
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mic regions that are altered in the disease

are first identified, and the genes residing

in the altered regions are mapped to an

interaction network. Both physical and

functional interaction networks can be

used, and edges might be weighted based,

for example, on the likelihood of having

the same phenotypes or influences be-

tween genes [54–56]. Next, modules are

typically defined as subsets of genetically

altered genes that are highly interconnect-

ed or within close proximity to each other

in the interaction network together with

non-altered genes necessary to mediate

these connections. Edge weights, if given,

can be used to prioritize the modules. In

many cases, finding the best subnetwork is

computationally expensive and search

algorithms such as greedy growth heuris-

tics or more sophisticated approximation

algorithms have been proposed. Finally,

rigorous statistical tests have been applied

to evaluate the significance of selected

modules.

Examples. The idea of finding genetically

altered network modules has been utilized in

various disease studies. Analyzing ovarian

cancer TCGA data (The Cancer Genome

Atlas), HOTNET identified subnetworks in

a protein interaction network in which genes

are mutated in a significant number of

patients [54]. The identified networks in-

cludes the NOTCH signaling pathway

which is indeed known to be significantly

mutated in cancer samples [57]. The

method is based on the set cover approach

(see Set cover based approach section

below), which is found to be effective in

capturing different genetic variations across

patients. In the NETBAG (NETwork-Based

Analysis of Genetic associations) method,

developed by Gilman et al. and applied to

identify a biological subnetwork affected by

rare de novo copy number variations

(CNVs) in autism [58,59], the authors first

constructed a gene network where edges

were assigned the likelihood odd ratio for

contributing to the same genetic phenotype.

Subsequently a greedy growth algorithm

was used to find clusters in this network. In

another approach, Rossin et al. [60] consid-

ered the genomic regions found to be

associated with Rheumatoid Arthritis (RA)

and Crohn’s disease (CD) in previous

GWAS studies, and connected the genes

residing in these regions based on

interaction data to obtain network mod-

ules. It was also verified that those

identified modules exhibited significant

differences in expression level in the

disease samples.

3.2 Differentially Expressed Network
Modules

Another popular and successful ap-

proach to find disease associated modules

is to search for subnetworks that are

significantly enriched with genes whose

expression levels are changed in disease

samples. Building on the observation that

a molecular perturbation typically affects

the expression levels of genes in a whole

module rather than individual genes, these

approaches identify the modules which

exhibit different expression patterns in

disease states relative to a control. Gene

expression data has been widely utilized

for identifying dys-regulated modules and

drug targets, inferring interactions be-

tween genes, and classifying diseases.

While these approaches are based on the

common idea of finding gene modules

enriched with genes that have abnormal

expression, several different computational

techniques have been used to achieve

these tasks, which we discuss shortly

below. The methods are also illustrated

in Figure 2.

3.2.1 Scoring based

methods. Suppose that there is a

subset of genes which are differentially

expressed in disease samples and they are

closely connected to each other in an

interaction network. A subnetwork

including such genes might be a good

candidate for a disease associated network

module (Figure 2A). Implementing this

idea requires a way to score candidate

modules. Various methods have been

suggested for measuring the significance

of the differential expression of genes in a

module and their connectivity (the

distances between the genes). In addition,

different methods adopt different search

algorithms to find high scoring candidate

modules. Finally, some approaches

additionally require that all genes are

either up-regulated or down-regulated in

the same direction.

Examples. Chuang et al. defined the

activity score for a subnetwork by com-

paring gene expression profiles from two

different types of samples (metastatic or

non-metastatic in their study) [61]. More

specifically, they first computed how well

the expression of a gene discriminates

between the two patient groups and then

scored candidate subnetworks based on

aggregate discriminative power over all

genes in the subnetwork. Then they

searched for the most discriminative

networks in a greedy manner. While the

method was used for disease classification

Figure 1. Identification of network modules enriched with genetic alterations. (A) Genomic regions with alterations. (B) Genes in the
altered regions are mapped to the interaction network and modules enriched with such genes are identified.
doi:10.1371/journal.pcbi.1002820.g001
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(see Section 4), it can readily be applied to

leverage the difference between disease

and non-disease cohorts.

3.2.2 Correlation based

methods. Comparing expression

patterns between genes is a basis for

constructing a co-expression network,

extracting modules exhibiting similar

expression patterns, and further

understanding molecular changes in

diseases. Considering expression correlation

of disease cases in the context of interactions

can provide additional power in the

identification of a disease associated module

(Figure 2B). If the expression changes of two

neighboring nodes are correlated with each

other, this may suggest that the two

interacting genes have related functional

roles. With this in mind, some approaches

look at connected components which show

highly correlated and anti-correlated

expression patterns. Other approaches

search for loss and gain of correlation in

disease states to identify dys-regulated edges.

Examples. Aiming to identify regulatory

networks defining phenotypic classes of

human cell lines, Müller et al. searched for

Jointly Active Connected Subnetworks

(connected subnetworks with high average

internal expression similarity) in a human

interaction network [62] and demonstrat-

ed the power of combining network and

expression data.

IDEA (Interactome Dysregulation En-

richment Analysis) method [63] focused

on the identification of perturbed network

edges in a combined interaction network

(PPI, transitional, signaling, posttransla-

tional modifications predicted by MINDy

[64]), and searched for the edges connect-

ing genes which in a disease state show loss

or gain of expression correlation. The

utility of the method was demonstrated in

the analysis of FL lymphoma and other

cancer types. In particular, they identified

BCL2 as the gene adjacent to the largest

number of dys-regulated edges in FL

lymphoma. This analysis also identified

the SMAD1 gene, which could not be

detected by differential expression analysis

only.

To understand the mechanism of aging,

Xue et al. applied a network module

approach [65,66]. They utilized a PPI

network and overlaid expression data

obtained from various stages of aging.

Two types of edges – correlated and anti-

correlated – were selected. The subnet-

work that includes only those edges was

called the NP (negative and positive)

network, is proposed to be related to the

aging mechanism. Further modularizing

the network with hierarchical clustering of

expression patterns, they obtained a few

age related modules and found some genes

connecting different modules through PPIs

are more likely to affect aging/longevity,

which was also experimentally validated.

3.2.3. Set cover based methods. A

group of methods employ a combinatorial

approach named set cover. In a set cover,

a gene is considered to cover a disease

Figure 2. Finding differentially expressed modules. (A) Score based method selects the module with significant expression changes. (B)
Correlation based method selects edges with correlation changes. The red and blue edges are correlated and anti-correlated edges, respectively. (C)
Set cover based method selects a set of genes covering all samples. In this example, each sample has at least 2 differentially expressed genes and the
genes are connected in the network.
doi:10.1371/journal.pcbi.1002820.g002
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sample if it is dys-regulated in the sample.

For example, it can be decided if a gene is

covering a sample or not based on the fold

change of gene expression level in the

sample or using a statistical test such as z-

test. The main principle of the set cover

approach is that each disease case has

some dys-regulated (thus covering) genes

but in heterogeneous diseases, different

cases will typically have different covering

genes. Set cover approaches provide a

strategy to select a representative set of

such covering genes (Figure 2C). This is

usually done by defining some

optimization criterion and attempting to

select a set of genes which is optimal with

respect to this criterion. For example,

given a set of genes and disease samples

along with covering relationships, a subset

of genes is selected so that each sample is

covered by some minimal number of genes

while the total number of selected genes is

minimized.

Many observed organism-level pheno-

types arise in a heterogeneous way.

Diseases such as cancer are now seen as

a spectrum of related disorders that

manifest themselves in a similar fashion.

Since different samples may be covered by

different genes and those genes may be

connected in an interaction network, set

cover approaches can be useful to identify

gene modules explaining a heterogeneous

set of samples [67–69].

Examples. Aiming to detect dys-regulated

pathways in complex diseases, Ulitksy et al.

extended the set cover technique by

integrating expression data and interaction

networks [67]. Their method, named

DEGAS (de novo discovery of dys-regu-

lated pathways) searches for a smallest set

of genes forming a connected subnetwork

so that each disease sample is covered by a

certain minimal number of genes. They

applied this approach to a Parkinson’s

disease dataset. Chowdhury et al. [68],

developed an alternative network cover

based algorithm and used the identified

modules for disease classification in a

human colorectal cancer dataset.

Set Cover approaches have also been

applied to data types other than gene

expression. For example, Kim et al.

proposed a module cover approach to

identify gene modules which collectively

cover disease samples [70]. At the same

time they required that each module is

coherent, containing genes with similar

genotype-phenotype mappings (see Sec-

tion 4 for more discussion). The HotNet

Algorithm discussed in Section 3.1 also

utilized a variant of a set cover approach

to find genetically altered modules. In

their case, a gene is defined to cover a

sample if the gene is mutated in the

sample, and they looked for a fixed size

connected set of genes covering as many

samples as possible. The Dendrix (De

novo Driver Exclusivity) algorithm was

also developed to discover mutated gene

modules in cancer and, though it does not

utilize interaction data, it aims to find sets

of genes, domains, or nucleotides whose

mutations exhibit both high coverage and

high exclusivity in the disease samples

[71].

3.3 Uncovering Information
Propagation Modules

The approaches discussed thus far have

dealt with modules of genes associated

with either phenotypic or genotypic infor-

mation. While both approaches are help-

ful for predicting dys-regulated modules, a

more effective way to understand disease

mechanisms might be to combine both

genotypic (the putative causes of diseases)

and phenotypic data (their effects). Ex-

pression Quantitative trait loci (eQTL)

analysis is a useful method to find the

relationship between genotype and phe-

notype [72,73]. eQTL treats the level of

gene expression as a quantitative pheno-

type, which is assumed to be controlled by

genotypic information. Loci that putative-

ly control the expression of a given gene

are identified by determining the associa-

tions between genotype and gene expres-

sion. Given an association between a

genotypic variation in a locus and expres-

sion level of a gene, the next challenge is to

uncover the pathway(s) through which the

genetic variation leads to the expression

change. Recently, several groundbreaking

pathway elucidation methods have

emerged, as illustrated in Figure 3 and

described below.

3.3.1 Distance based methods. A

simple approach to identify a possible

pathway from a genetically altered gene

(putative cause) to the gene with correlated

expression change (target gene) is to test if

there is a path in an interaction network

connecting the putative causal gene to its

target gene. The shortest path connecting

a causal gene and its target is often used to

explain their causal relationship

(Figure 3A). The intermediate nodes on

such a shortest path are likely members of

an affected pathway/module. Several

variations of the shortest path approach

have been used in extracting disease

associated network modules [74–76]. For

example, Carter et al. searched for the

shortest directionally consistent paths in

molecular interaction networks connecting

Figure 3. Finding information propagation modules. (A) Shortest path approach to uncover information propagation. The shortest paths from
a target gene (with hexagon shape) to each of three candidate genes are shown. The closest gene is identified as the most probable disease causing
gene. (B) Flow based approach. The gene receiving the most significant amount of flow is identified as the disease gene. The information flow
methods often follow Kirchhoff’s current law (the amount of incoming information equals the amount of outgoing information).
doi:10.1371/journal.pcbi.1002820.g003
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seed genes to their targets. The targets

were inferred by linear decomposition of

gene expression data [76].

When multiple target genes exist, the

well-known graph-theoretical concept of a

Steiner tree is often used in place of a set of

shortest paths. Given a set of nodes to be

connected, a Steiner tree is an acyclic

subgraph (a tree) connecting all these

nodes while using the minimum number

of edges. In a Steiner tree, the individual

path from the putative causal gene (the

root of the tree) to each of the target genes

does not need to be the shortest, but the

size (i.e., the number of edges) of the whole

tree is minimized. The Steiner tree

approach has been used to find new

functional associations for proteins [77].

Tuncbag et al. extended the approach to

the Steiner forest problem (allowing mul-

tiple trees), applying it to proteomic data

from glioblastoma multiforme (GBM). In

their study, each tree was rooted in a

different cell surface receptor and repre-

sented independent signaling pathways

originated from this receptor [78].

Distance based methods, such as the

shortest path approach or the Steiner tree

method, have several shortcomings. In

particular, they ignore the fact that a pair

of genes may have multiple paths con-

necting them in a network. In addition

they use network topology without consid-

ering additional data (e.g. gene expression)

and assume that the shortest pathways are

the most informative or most likely used

paths, which may not always be the case.

3.3.2 Flow-based methods. In the

information flow approach, genotypic

variations are considered the source of

perturbation, while genes with phenotypic

changes are considered the targets of a

perturbation pathway. Instead of finding

single paths connecting source and targets,

flow-based methods compute the fraction

of flow going through each intermediate

node/edge. Fraction of flow indicates the

probability of using the given path in

information propagation (Figure 3B). In

the case of current flow approach, the

network is modeled to mimic the behavior

of current in an electronic circuit, where

each edge has an associated resistance.

The current flow network provides an

efficient framework equivalent to a

random walk, which is also often used

for modeling information flow in

biological networks (see discussion below).

An important advantage of network flow

approaches their ability to incorporate

additional data (such as gene expression,

confidence level of interactions, and

functional associations of genes) to the

probabilistic network models. By

incorporating such additional data,

network flow approaches can more

confidently suggest information

propagation pathways.

The information flow of biological

networks has been used to predict protein

functions, to prioritize candidate disease

genes, and to find network centralities

[7,79–88]. The flow-based approach is

particularly useful for augmenting network

information for eQTL analysis. Specifical-

ly, it can be used to pinpoint likely causal

genes in genomic eQTL regions and to

uncover genes involved in the propagation

of information signals from such causal

genes to their target genes.

There are several mathematical formu-

lations that can be used to capture

information propagation. In addition to

the aforementioned current flow, other

approaches include random walk and

network flow. While mathematically dif-

ferent, many information propagation

methods share a number of similar

assumptions such as flow conservation

(Kirchhoff’s law). In the random walk

method, a number of random walkers

repeatedly start from a node. The likeli-

hood of associating a gene in the network

to a disease is estimated by the number of

random walkers arriving at the gene. Gene

expression correlation provides one way to

compute the weight of a gene in the

network which, in turn, provides the

transition probability of the random walk-

er. The network flow methods are closely

related to the current flow approach.

Unlike current flow, however, the network

flow model resembles water-finding paths

through pipes. Capacities are associated

with pipes (edges) providing constraints on

how much flow can go through each pipe.

Examples. Tu et al. [79] used the random

walk approach to infer causal genes and

underlying causal paths over a molecular

interaction network for yeast knock-out

experimental data. Current flow is an

equivalent form of random walk that can

be used in a more computationally

efficient way [89]. Using this knowledge,

Suthram et al. [80] developed the eQED

method, which integrates eQTL analysis

with molecular interaction information

modeled as a current flow network.

Kim et al. further extended the eQED

idea to identify causal genes and dys-

regulated pathways and applied it to

Glioma sample analysis [69,90].One of

the challenges of eQTL analysis is a

massive multiple testing problem, for

which various multiple testing correction

methods have been proposed. Without

such corrections, eQTL analysis typically

finds multiple associated regions for each

target gene, many of which are simply by

chance. However, simply applying a more

stringent p-value cutoff for multiple testing

corrections often eliminates many true

causal regions. Moreover, each region

may contain dozens of candidate causal

genes. Current flow analysis can be

applied to complement eQTL analysis

and help to identify the genes whose

alterations are most likely to cause abnor-

mal expression for the target gene. Using

copy number variations and gene expres-

sion profiles of the same set of cancer

patients, Kim et al. first identified chromo-

somal regions where copy number varia-

tions correlated with gene expression

changes. Subsequently, they used the

current flow algorithm to identify potential

causal genes in the associated regions. By

selecting genes receiving significant

amounts of current in the network, Kim

et al. identified putative causal genes in

Glioblastoma and uncovered commonly

dys-regulated pathways, including insulin

receptor signaling pathways and RAS

signaling. The identified pathways fea-

tured several hub nodes, such as EGFR,

that were known to be important players

in Glioma or more generally in cancer.

Compared to simple genome-wide associ-

ation studies, which only identify putative

associations between causal loci and target

genes, the current flow based method

provides increased power to predict causal

disease genes and to uncover dys-regulated

pathways.

A variant of the network flow approach,

the minimum cost network flow, was used

to model the response to increased expres-

sion of alpha-synucleain, a protein impli-

cated in several neurodegenerative disor-

ders, including Parkinson’s disease [81]. In

addition to the edge capacities, the min

cost network flow approach associates

weights with edges representing the cost

of sending flow through an edge. These

weights were computed based on the

probability of the two genes interacting

in a response pathway, while capacities

were calculated using the transcript levels

of target genes.

4. Applications of Network
Modules – Disease Diagnosis
and Treatment

Can network modules help facilitate a

more personalized approach for disease

diagnosis and treatment? Traditional ap-

proaches of clinical disease classification

have been based on pathological analysis

of patients and existing knowledge of

diseases. However, traditional diagnostic

approaches are prone to errors. Alterna-
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tively, knowledge about dys-regulated

pathways can be used to subtype diseases

and to develop relevant treatments for

individual disease subgroups. For example,

network modules have been used to

predict patient survival, metastasis, drug

responses for various types of cancer

[61,68,91–94].

4.1 Disease Classification
A supervised approach to disease

classification starts with a set of samples

with a known partition into disease

subtypes (e.g., metastatic or not) and

attempts to identify a classifying principle

using specific molecular features. The

general strategy for supervised disease

classification is to search for subnetworks,

also called subnetwork markers, whose

activities best discriminate the two disease

subtypes. As in the case of single-gene

disease markers, a network marker will

distinguish some but not all disease cases

and multiple subnetworks might be nec-

essary. Among selected candidate network

markers, the best markers are selected

based on a set of training samples. Some

methods take an unsupervised approach,

where subclasses and their features are

discovered without using a known train-

ing set.

Examples. Chuang et al. showed how dys-

regulated network modules (described in

Section 3.2) provide more robust and

accurate predictions than those by single

gene based classifications when applied to

breast cancer metastasis analysis [61].

Chuang et al.’s work provided the proof

of principle for using network modules in

disease classification. A number of subse-

quent extensions and improvements to

Chuang et al.’s work were suggested. For

example, Lee et al. incorporated curated

pathways, and searched for a subset of

genes with discriminative features for the

disease phenotype [94]. More recently,

Dao et al. developed alternative network

based approaches for classification of

cancer subtypes by identifying densely

connected subnetwork and randomized

algorithms [92,93]. Other techniques for

best marker identification, such as set

cover and bottom-up enumeration tech-

niques, were also proposed [68,91].

Kim et al. identified gene modules using

a module cover approach to capture

disease heterogeneity in brain cancer

samples from Rembrandt and Ovarian

Cancer samples from TCGA [70]. Next,

Kim et al. superimposed the selected

modules onto the results from an inde-

pendently proposed classification scheme

[57]. As a result, Kim et al. uncovered

which disease classes are characterized by

which combinations of modules.

4.2 Disease Similarity
Network modules can also be used to

explain disease similarity. Overlaps of

dys-regulated network modules explain

why some complex diseases share sim-

ilar phenotypic traits. Suthram et al.

used a variant of PathBlast [95] to

identify dense subnetworks. Analysis of

disease similarity was achieved by com-

paring expression patterns of various

diseases in the modules [96]. Several

dys-regulated modules were found to be

common to many diseases, which ex-

plains why some drugs can treat many

different diseases.

4.3 Response to Treatment
Modules may help determine whether

a given patient will respond to a partic-

ular drug, which is valuable for treatment

design. In addition, understanding molec-

ular differences between responders and

non-responders is likely to help develop-

ment of alternative treatments. For ex-

ample, Chu and Chen used a network

approach to discover apoptosis drug

targets [97]. Chu and Chen constructed

a PPI network for apoptosis in normal

cells and applied a nonlinear stochastic

model to remove false positive interac-

tions using microarray data. Comparing

the resulting subnetworks helped to shed

some light on the mechanisms leading to

apoptosis and to identify potential drug

targets.

5. Summary

Network biology provides powerful

tools for the study of complex diseases.

Network-based approaches leverage the

idea that complex diseases can be better

understood from the perspective of dys-

regulated modules than at the individual

gene level. Modularity is a widely

accepted concept in molecular networks

and module-based approaches provide a

number of advantages including robust-

ness in the identification of dys-regulated

pathways and improved disease classifi-

cation.

In addition, network based formulations

allow using a wealth of methods already

developed in graph theory, such as

shortest paths, network flow, and Steiner

trees. Network-based methods have sever-

al limitations including the lack of mech-

anistic explanations. Despite the limita-

tions, network analysis has been applied

successfully in many disease studies, sug-

gesting testable hypotheses.

6. Exercises

1. Construct coexpression networks fol-

lowing the steps below [98].

a. Download the three expression data-

sets from the following page: http://

www.geneticsofgeneexpression.org/

network/download

b. Compute 3 population-specific corre-

lations for each pair of 4238 genes

with the expression data. (Hint: There

are 8,978,203 pairs of genes.)

c. For gene pairs which have similar

correlations in the 3 datasets, calculate

the weighted average correlation,

weighted by the number of individuals

in each population. Hint: In the

Supplemental Table 1 published with

[98] (http://genome.cshlp.org/content/

suppl/2009/10/02/gr.097600.109.

DC1/nayak_supplemental_material.

pdf), you can find the list of gene

pairs whose correlations differ signif-

icantly among the 3 datasets.

d. Construct the correlation network by

connecting gene pairs whose weighted

average correlations are greater than

a pre-defined threshold (e.g., 0.5).

e. Compute specific parameters describ-

ing the network topology. (Hint: You

can use the NetworkAnalyzer Cytos-

cape plugin http://med.bioinf.mpi-

inf.mpg.de/netanalyzer/)

f. For different correlation thresholds,

compare the networks in terms of

topological properties.

2. Suppose that in a co-expression net-

work two genes are identified to have

correlated expression patterns. Provide

at least two possible biological expla-

nations of this correlation.

3. Some variants of information flow

approaches that identify pathways of

information flow from a mutated gene

to a target gene with correlated ex-

pression require that the last but one

node gene on such a pathway (the node

preceding the target gene) to be a

transcription factor. What is a justifi-

cation for such requirement? What can

be advantages and disadvantages of

such a design?

4. Consider a set cover approach to find a

representative set of genes dys-regulat-

ed in a given set of cancer patients. The

algorithm finds the smallest number of

genes so that each disease case is

covered at least k times. How does

the number of selected genes depend

on k? If you suspect that data for 5%
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patients might be incorrect, how would

you modify the optimization problem?

5. A Steiner tree connecting a set of nodes

does not need to be unique. In the

graph shown in Figure 4, find two

different Steiner trees connecting genes

C, T1, T2, T3, and T4.

6. In the graph shown in Figure 4, find

the shortest paths connecting C with

each of T1, T2, T3, and T4. Do the

edges used by these paths correspond

to a Steiner tree? Explain why or why

not.

Answers to the exercises are provided in

Text S1.

Supporting Information

Text S1 Answers to Exercises.

(PDF)
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Abstract: Differences between in-
dividual human genomes, or be-
tween human and cancer genomes,
range in scale from single nucleotide
variants (SNVs) through intermediate
and large-scale duplications, dele-
tions, and rearrangements of geno-
mic segments. The latter class, called
structural variants (SVs), have re-
ceived considerable attention in the
past several years as they are a
previously under appreciated source
of variation in human genomes.
Much of this recent attention is the
result of the availability of higher-
resolution technologies for measur-
ing these variants, including both
microarray-based techniques, and
more recently, high-throughput
DNA sequencing. We describe the
genomic technologies and computa-
tional techniques currently used to
measure SVs, focusing on applica-
tions in human and cancer genomics.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

The decade since the assembly of the

human genome has witnessed dramatic

advances in understanding the genetic

differences that distinguish individual hu-

mans and that are responsible for specific

traits. Genome-wide association studies

(GWAS) in humans have identified com-

mon germline, or inherited, DNA variants

that are associated with various common

human diseases, including diabetes, heart

disease, etc. At the same time, cancer

genome sequencing studies have cataloged

numerous somatic mutations that arise

during the lifetime of an individual and

that drive cancer progression. These

successes are ushering in the era of

personalized medicine, where treatment

for a disease is tailored to the genetic

characteristics of the individual.

Despite this progress, significant hurdles

remain in achieving a comprehensive

understanding of the genetic basis of

human traits and disease. The germline

variants discovered by GWAS thus far

explain only a small fraction of the

heritability of many traits, and this ‘‘miss-

ing heritability’’ gap [1] is a major

bottleneck for future GWAS. The somatic

mutations measured in cancer genomes

are very heterogeneous, with relatively few

mutations that are shared by large num-

bers of cancer patients, even those with the

same (sub)type of cancer. This mutational

heterogeneity complicates efforts to distin-

guish functional mutations that drive

cancer development from random passen-

ger mutations [2].

Comprehensive studies of the genetic

basis of disease require the measurement

of all variants that distinguish individual

genomes. Until recently, GWAS focused

on the measurement of single nucleotide

polymorphisms (SNPs), or single nucleo-

tide differences between individual ge-

nomes. In the past few years, it has

become clear that germline variants occu-

py a continuum of scales ranging from

SNPs to larger structural variants (SVs) –

duplications, deletions, inversions, and

translocations of large (w100 nucleotides)

blocks of DNA sequence. Moreover, until

recently GWAS focused attention on

common SNPs, those whose frequency in

the population was at least 5%. This

restriction was part of the ‘‘common

disease, common variant’’ hypothesis

which posits that an appreciable fraction

of susceptibility to common diseases results

from germline variants that are common

in the population. However, this restric-

tion was also dictated by technological

limitations, as it was not cost effective to

measure all genetic variants in the large

number of individual genomes that are

necessary to perform a GWAS.

In the past five years, next-generation

DNA sequencing technologies became

commercially available from companies

such as 454, Illumina, Life Technologies,

and Complete Genomics. These and other

sequencing technologies continue to ad-

vance at a breathtaking pace, and conse-

quently the cost of DNA sequencing has

declined by several orders of magnitude in

the past decade. These technologies pro-

vide an unprecedented opportunity to

measure all variants; germline and somat-

ic; SNPs and SVs, in both normal and

cancer genomes.

In this chapter, we discuss the applica-

tion of these sequencing technologies in

medical genomics, and specifically on the

characterization of structural variation.

2. Germline and Somatic
Structural Variation

Structural variants are important con-

tributors to genome variation and consid-

eration of these variants is necessary for

disease association and cancer genetics

studies. In this section, we briefly review

current knowledge about structural varia-

tion in human and cancer genomes.

2.1 Germline Structural Variation
Characterizing the DNA sequence dif-

ferences that distinguish individuals is a

major challenge in human genetics. Until

a few years ago, the primary focus was to

identify single nucleotide polymorphisms

(SNPs), and projects such as HapMap [3]

provide catalogs of common SNPs in

several human populations. Recent
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whole-genome sequencing and microar-

ray measurements have shown that struc-

tural variation, including duplications,

deletions, and inversions of large blocks

of DNA sequence, is common in the

human genome [4]. SVs include both

copy number variants – duplications and

deletions – that change the number of

copies of a segment of the genome, and

balanced rearrangements – such as inver-

sions and translocations – that do not

alter the copy number of the genome.

The Database of Genomic Variants [5]

currently (winter 2011) lists apprroxi-

mately 66 thousand copy number variants

and approximately 900 inversion variants

in the human genome, and this number

continues to increase. Some of these

entries are multiple reports of the same

variant due to problems in merging SV

predictions across different platforms/

technologies (see Section 5 below). Nev-

ertheless, SVs are extensive in human

populations.

Germline SVs account for a greater

share of the total nucleotide differences

between two individual human genomes

than SNPs [6]. Copy number variants

alone account for approximately 18% of

genetic variation in gene expression,

having little overlap with variation associ-

ated to SNPs [7], and can affect the

expression of genes up to 300 kb away

from the variant [8]. Both common and

rare SVs have recently been linked to

several human diseases including autism

[9] and schizophrenia [10]. In addition to

SVs that cause disease, SVs segregating in

a population perturb patterns of linkage

disequilibrium and haplotype structure

[11]. Thus, it is essential to catalog SVs

in order to understand their consequences

for human population genetics. Incorrect

identification of SVs in samples can lead to

spurious genetic associations resulting

from the undetected SVs, erroneous

merging of distinct variants in different

samples, and failure to recognize hetero-

zygosity at a locus.

Finally, structural variants are also

present in model organisms such as mouse

and fruit fly. Identifying these variants is

important for animal models of human

diseases.

2.2 Somatic Structural Variation and
Cancer

Cancer is a disease driven by somatic

mutations that accumulate during the

lifetime of an individual. The inheritance

of mutations by daughter cells during

mitosis and selection for advantageous

mutations make cancer a ‘‘microevolu-

tionary process’’ [12,13] within a popula-

tion of cells. Decades of cytogenetic studies

have shown that somatic structural vari-

ants are a feature of many cancer

genomes. These early studies, particularly

in leukemias and lymphoma, identified a

number of recurrent chromosomal rear-

rangements that are present in many

patients with the same type of cancer.

For example, a significant fraction of

patients with chronic myelogenous leuke-

mia (CML) exhibit a translocation be-

tween chromosomes 9 and 22. The break-

points of this translocation lie in two genes,

BCR and ABL, and the translocation

results in the BCR-ABL fusion gene that

is directly implicated in the development

of this cancer. In addition to fusion genes,

somatic SVs can also lead to altered

expression of oncogenes and tumor sup-

pressor genes due to both genetic and

epigenetic mechanisms [14]. For example,

in Burkitt’s lymphoma, a translocation

activates the MYC oncogene by fusing it

with a strong promoter.

In solid tumors, the situation is more

complicated. Many solid tumors have

genomes that are extensively rearranged

compared to the normal healthy genome

from which they were derived [14]. These

highly rearranged genomes are thought to

be a product of genome instability result-

ing from mutations in the DNA repair

machinery. This complex organization of

cancer genomes obscures functional driver

SVs in a background of passenger muta-

tions. However, with the availability of

higher-resolution genomics technologies,

recurrent fusion genes are also being

found in solid tumors, such as prostate

[15] and lung cancers [16]. These results

suggest that additional events remain to be

discovered [17]. Next-generation DNA

sequencing technologies provide the op-

portunity to reconstruct the organization

of cancer genomes at single nucleotide

resolution [18,19]. Projects including The

Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov) and International

Cancer Genome Consortium (ICGC) are

using these technologies to measure so-

matic mutations in thousands of cancer

genomes [20].

2.3 Mechanisms of Structural
Variation

As additional genetic and somatic

structural variants are characterized, there

is increasing opportunity to characterize

the mechanisms that produce these vari-

ants. A distinguishing feature of the

different mechanisms is the amount of

sequence similarity, or homology, at the

breakpoints of the structural variant. One

extreme is little or no sequence similarity.

These variants are thought to result from

random (or near random) double-stranded

breaks in DNA. These breaks might occur

due to exposure to external DNA damag-

ing agents. For example, ultraviolet radi-

ation or various chemotherapy drugs

produce double-stranded breaks. Aberrant

repair of these breaks result in structural

variants. This mechanism is termed non-

homologous end-joining (NHEJ) [21,22].

The opposite extreme is high sequence

similarity at the breakpoints. This mech-

anism is termed non-allelic homologous

recombination (NAHR). This mechanism

is similar to the normal biological process

of homologous recombination that occurs

during meiosis and exchanges DNA be-

tween two homologous chromosomes. But

as the name states, NAHR is a rearrange-

ment that occurs between homologous

sequences that are not the same allele on

homologous chromosomes. Rather

NAHR occurs between repetitive sequenc-

es on the genome (Figure 1) [23–25]. The

human genome contains numerous repet-

itive sequences ranging from Alu elements

of 300 bp to segmental duplications, also

called low copy repeats, of tens to

hundreds of kbp [26]. Thus, there are

numerous substrates for NAHR in the

human genome, and not surprisingly

numerous reported structural variants that

result from NAHR. For example, the 1000

Genomes Project, a large NIH project to

survey all classes of variation – SNPs

through SV – in 1000 human genomes

recently reported that approximately 23%

of deletions were a result of NAHR [27].

Importantly, due to technical limitations in

discovering NAHR-mediated SVs (see

What to Learn in This Chapter

N Current knowledge about the prevalence of structural variation in human and
cancer genomes.

N Strategies for using microarray and high-throughput DNA sequencing
technologies to measure structural variation.

N Computational techniques to detect structural variants from DNA sequencing
data.
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below), this percentage may be an under-

estimate.

There are other mechanisms for the

formation of SVs. The division between

homology mediated and non-homologous

mechanisms may not be so strict. NHEJ

events sometimes have some degree of

microhomology (e.g. 2–25 bp of similarity)

at their breakpoints. Other mechanisms

such as fork stalling and template switch-

ing (FoSTeS) have also been proposed.

Some of these are reviewed in [28].

Finally, the relative contribution of each

of these mechanisms in generating germ-

line SVs versus somatic SVs remains an

active area of investigation, with conflict-

ing reports about the importance of

repetitive sequences in somatic structural

variants found in cancer genomes

[21,22,24,25,29].

3. Technologies for
Measurement of Structural
Variation

Structural variants vary widely in size

and complexity, ranging from insertions/

deletions of hundreds of nucleotides to

large scale chromosomal rearrangements.

Large structural variants can be visualized

directly on chromosomes, through cytoge-

netic techniques such as chromosome

painting, spectral karyotyping (SKY), or

fluorescent in situ hybridization (FISH). In

fact, Sturtevant and Dobzhansky studied

inversion polymorphisms in Drosophila in

the 1920’s – well before the modern

genomics era. However, SVs that are too

small to be directly observed on chromo-

somes are generally more difficult to detect

and to characterize than single nucleotide

polymorphisms (SNPs). Much of the

recent excitement surrounding structural

variation stems from improvements in

genomics technologies that allow more

complete measurements of SVs of all

types. These include microarrays and

more recently next-generation DNA se-

quencing technologies. In this section, we

briefly describe these technologies.

3.1 Microarrays
The first genome-wide surveys of SVs in

the human genome in 2004 utilized

microarray-based techniques such as array

comparative genomic hybridization

(aCGH). In aCGH, differentially fluores-

cently labeled DNA from an individual, or

test, genome and a reference genome are

hybridized to an array of genomic probes

derived from the reference genome. Mea-

surements of test:reference fluorescence

ratio, called the copy number ratio, at

each probe identifies locations of the test

genome that are present in higher or lower

copy in the reference genome. Microar-

rays containing hundreds of thousands of

probes are available, and thus one obtains

copy number ratios at hundreds of thou-

sands of locations. Since individual copy

number ratios are subject to various types

of experimental error, computational tech-

niques are needed to analyze aCGH data.

For further details about aCGH and

aCGH analysis, see [30].

aCGH is equally applicable for mea-

surement of germline SVs in normal

genomes and somatic SVs in cancer

genomes. In fact, aCGH was originally

developed for cancer genomics applica-

tions. aCGH is now very affordable

making it possible to detect copy number

variants in large numbers of genomes at

reasonable cost. However, aCGH has two

important limitations. First, because

aCGH measures only differences in the

number of copies of a genomic region

between a test and reference genome,

aCGH detects only copy number variants.

Thus, aCGH is blind to copy-neutral, or

balanced, variants such as inversions, or

reciprocal translocations. Moreover,

aCGH requires that the genomic probes

from the reference genome lie in non-

repetitive regions, making it difficult to

detect SVs with breakpoints in repetitive

regions, such as NAHR events or the

insertion/deletion of repetitive sequences.

3.2 Next-generation DNA
Sequencing Technologies

DNA sequencing technology has ad-

vanced dramatically in recent years, and

several ‘‘next-generation’’ DNA sequenc-

ing technologies from companies such as

Illumina, ABI, and 454 have significantly

lowered the cost of sequencing DNA.

However, these technologies, and the

Sanger sequencing technique they are

replacing, are severely limited in the

length of a DNA molecule that can be

sequenced. Present sequencing technolo-

gies produce short sequences of DNA,

called reads, that range from 25–1000

nucleotides, or base pairs (bp), with the

upper end of this range requiring technol-

ogies (e.g. Sanger and 454) that are

considerably more expensive. Much of

the recent excitement in DNA sequencing

has been in short read DNA sequencers

(e.g.llumina Genome Analyzer, Life Tech-

nologies SOLiD and Ion Torrent) that

yield reads of only 25–150 nucleotides.

These reads are much shorter than the

one to two hundred million bp of a typical

human chromosome. However, the large

Figure 1. An inversion resulting from non-allelic homologous recombination (NAHR) between two nearly identical segmental
duplications (blue boxes) with opposite orientations (arrows). The inversion flips the orientation of the subsequence, or block, B in one
genome relative to the other genome.
doi:10.1371/journal.pcbi.1002821.g001
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number of reads that are produced

(hundreds of millions), results in a cost

per nucleotide that is several orders of

magnitude lower than Sanger sequencing.

Many DNA sequencing technologies

employ a paired end, or mate pair,

sequencing protocol to increase the effec-

tive read length. In this protocol two reads

are generated from opposite ends of a

longer DNA fragment, or insert. With

earlier Sanger sequencing protocols, the

sizes of these DNA fragments were

dictated by the cloning vector that was

used. Fragment, or insert, sizes of 2 kb–

150 kb could be obtained by cloning into

bacterial plasmids or bacterial artificial

chromosomes (BACs). With next-genera-

tion technologies, a variety of techniques

have been employed to generate paired

reads. At present, the most efficient and

effective techniques produce paired reads

from fragments of only a few hundred bp,

although fragments of 2–3 kb are avail-

able. Thus, next-generation sequencing

technologies have both limited read

lengths and limited insert sizes compared

to Sanger sequencing.

There are two approaches to detecting

SVs from next-generation DNA sequenc-

ing data (Figure 2). The first is de novo

assembly. In this approach, sophisticated

algorithms are used to reconstruct the

genome sequence from overlaps between

reads. The assembled genome sequence is

then compared to the reference genome,

or the assembled genomes of other

individuals, to identify all types of variants.

If the genome sequence is successfully

assembled, this approach is the best for

characterization of SVs. Unfortunately,

assembling a human genome de novo –

i.e. with no prior information – of

sufficient quality for structural variation

studies remains difficult with limited read

lengths. Currently, human genome assem-

blies are highly fragmented, consisting of

tens-hundreds of thousands of contigs,

intermediate sized sequences of thousands

to tens of thousands of nucleotides.

Moreover, the associations between some

structural variants and repetitive sequenc-

es implies that assemblies of finished (not

draft quality) are necessary for comprehen-

sive coverage of structural variation.

Improving de novo assembly is a very active

research area (see [31]), but human

genome assemblies of high enough quality

for SV studies remain out of reach for

inexpensive short-read technologies.

The second approach to detect SVs in

next-generation DNA sequencing data is a

‘‘resequencing’’ approach that leverages

the extensive finishing efforts undertaken

in the Human Genome Project. In a

resequencing approach, one finds differ-

ences between an individual genome and a

closely related reference genome whose

sequence is known by aligning reads from

the individual genome to the reference

genome. Differences (variants) between

the genomes correspond to differences

between the aligned reads and the refer-

ence sequence. In the next section, we

describe how to predict SVs using a

resequencing approach.

3.3 New DNA Sequencing
Technologies

Many of the challenges in reliable

measurement of SVs described above are

related to limitations in sequencing tech-

Figure 2. Two major approaches to detect structural variants in an individual genome from next-generation sequencing data are de
novo assembly and resequencing. In de novo assembly, the individual genome sequence is constructed by examining overlaps between reads. In
resequencing approaches, reads from the individual genome are aligned to a closely related reference genome. Examination of the resulting
alignments reveals differences between the individual genome and the reference genome.
doi:10.1371/journal.pcbi.1002821.g002
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nologies. In particular, SVs with break-

points in highly-repetitive sequences are

beyond the abilities of current technolo-

gies. New ‘‘third-generation’’ and single-

molecule technologies promise additional

advantages for structural variation discov-

ery. These advantages include longer read

lengths, easier sample preparation, lower

input DNA requirements, and higher

throughput. For example, Pacific Biosci-

ences recently released their Single-Mole-

cule Real Time (SMRT) sequencing, a

technology that measures in real time the

incorporation of nucleotides by a single

DNA polymerase molecule immobilized in

a nanopore [32].

One application of this technology is

strobe sequencing. A strobe read, or strobe,

consists of multiple subreads from a single

contiguous molecule of DNA. These sub-

reads are separated by a number of ‘‘dark’’

nucleotides (called advances), whose iden-

tity is unknown (Figure 3). Thus far,

Pacific Biosciences has demonstrated

strobes of lengths up to 20 kb with 2–4

subreads each of 50–400 bp. Additional

improvements are expected as technology

matures. Strobes generalize the concept of

paired reads by including more than two

reads from a single DNA fragment.

Strobes provide long-range sequence in-

formation with low input DNA require-

ments, a feature missing from current

sequencing technologies. This additional

information is useful for detection and de

novo assembly of complex SV that lie in

highly repetitive regions, or contain mul-

tiple breakpoints in a small region. How-

ever, the advantages of strobes are reduced

by higher single-nucleotide error rates.

Thus, realizing the advantages of strobes

requires new algorithms that exploit infor-

mation from multiple, spaced subreads to

overcome high single-nucleotide error

rates [33].

Sequencing technologies continues its

rapid development. Improvements in the

chemistry, imaging, and manufacture of

existing technologies are increasing their

read lengths, insert lengths, and through-

put. Additional sequencing technologies

are under active development. Nanopore-

based technologies that directly read the

nucleotides of long molecules of DNA hold

promise for a dramatic shift in DNA

sequencing where extremely long reads

(tens of kb) are generated, making both de

novo assembly and variant detection by

resequencing straightforward problems.

4. Resequencing Strategies for
Structural Variation

A resequencing strategy predicts SVs by

alignments of sequence reads to the

reference genome. There are two main

steps in any resequencing strategy: (1)

alignments of reads; (2) prediction of SVs

from alignments. Resequencing approach-

es are straightforward in principle, but in

practice sensitive and specific detection of

structural variation in human genomes is

notoriously difficult [34,35]. While some

types of SVs are easy to detect with next-

generation sequencing technologies, other

complex SVs are refractory to detection.

This is due to both technological limita-

tions and biological features of SVs. DNA

sequencing technologies produce reads

with sequencing errors, have limited read

lengths and insert sizes, and have other

sampling biases (e.g. in GC-rich regions).

Biologically, human SVs are: (i) enriched

for repetitive sequences near their break-

points [23]; (ii) may overlap, have multiple

states or complex architectures; and (iii)

recurrent (but not identical) variants may

exist at the same locus [36,37]. These

properties mean that the alignment of

reads to the reference genome and the

prediction of SVs from these alignments is

not always an easy task. Algorithms are

required to make highly sensitive and specific

predictions of SVs.

In this section we review the main issues

in predicting SVs using a resequencing

approach. We begin with read alignment.

Then we describe the three major ap-

proaches that are used to identify struc-

tural variants from aligned reads: (i) split

reads; (ii) depth of coverage analysis; and

(iii) paired-end mapping.

4.1 Read Alignment
Alignment of reads to a reference

genome is a special case of sequence

alignment, one of the most researched

problems in bioinformatics. However, the

specialized task of aligning millions-billions

of individual short reads led to the

development of new software programs

tailored to this task, such as Maq, BWA,

Bowtie/Bowtie2, BFAST, mrsFAST, etc.

[38–43]. A key decision in read alignment

for SV detection is whether to consider

only reads with a single, best alignment to

the reference genome, or to also include

reads with multiple high-quality align-

ments. Some read alignment programs

will output only a single alignment for

each read, in some cases choosing an

alignment randomly if there are multiple

alignments of equal score. If one uses only

reads with a unique alignment, then there

is limited power to detect SVs whose

breakpoints lie in repetitive regions, such

as SVs resulting from NAHR. On the

other hand, if one allows reads whose

alignment is ambiguous, then the problem

of SV prediction requires an algorithm to

distinguish among the multiple possible

alignments for each read. Many SV

prediction algorithms analyze only unique

alignments, although several recent algo-

rithms use ambiguous alignments. A few of

these are noted below.

4.2 Split Reads
A direct approach to detect structural

variants from aligned reads is to identify

reads whose alignments to the reference

genome are in two parts. These so called

split reads contain the breakpoint of the

structural variant (Figure 4). To reduce

false positive predictions of structural

variants, one requires the presence of

multiple split reads sharing the same

breakpoint. Because the two parts of a

split read align independently to the

reference genome, these alignments must

be long enough to be aligned uniquely (or

with little ambiguity) to the reference.

Thus, split read analysis is a feasible

strategy only when the reads are suffi-

ciently long. For example, if one has a

36 bp read containing the breakpoint of

an SV at its midpoint, one must align the

two 18 bp halves of the read to the

reference genome. Finding unique align-

ments of an 18 bp sequence is often not

possible. There are no reports of successful

prediction of structural variants from split

Figure 3. A strobe with 3 subreads.
doi:10.1371/journal.pcbi.1002821.g003
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reads alone using next generation DNA

sequencing reads less that 50 bp in length.

Instead, split read methods have been

proposed that use paired reads, and

require that one read in the pair has a

full length alignment to the reference. This

alignment of the read from one end of the

fragment is used to anchor the search for

alignments of the other split read of the

fragment [44–46].

4.3 Depth of Coverage
Depth of coverage (also called read

depth) analysis detects differences in the

number of reads that align to intervals in

the reference genome. Assuming that reads

are sampled uniformly from the genome

sequence, the number of reads that contain

a given nucleotide of the reference is, on

average, c~
NL

G
, where N is the number of

reads, L is the length of each read, and G is

the length of the genome. This is the

Lander-Waterman model, and the param-

eter c, called the coverage, is a key

parameter in a sequencing experience.

For example, recent cancer sequencing

projects with Illumina technology have

used ‘‘30X coverage’’ which means that

the number of reads and length of reads are

chosen such that c~30.

Now, if the individual genome con-

tained a deletion of a segment of the

human reference genome, the coverage of

this segment would be reduced by half – if

the deletion was heterozygous – or re-

duced to zero – if the deletion was

homozygous (Figure 4). Similarly, if an

interval of the reference genome was

duplicated, or amplified, in the individual

genome, the coverage of this interval

would increase in proportion to the

number of copies. Thus, the observed

coverage of an interval of the reference

genome, the depth of coverage, gives an

indication of the number of copies of this

interval in the individual genome. Of

course, there are numerous additional

factors to consider beyond this simple

analysis. For example, since reads are

sampled at random from the genome,

coverage is not constant, but rather follows

a distribution with mean c. A Poisson

distribution is typically used as an approx-

imation to this distribution, although other

distributions sometimes provide a better fit

to the data. In addition, repetitive se-

quences in the reference genome and

biases in sequencing (e.g. different cover-

age of GC-rich regions) also affect depth of

coverage calculations. Nevertheless, there

are several computational methods for

depth of coverage analysis [47,48]. Many

of these are largely similar to those used to

analyze microarray copy number data.

4.4 Paired-end Sequencing and
Mapping

The most common approach for rese-

quencing SVs is paired-end mapping

(PEM) (Figure 5). Paired-end mapping

was used to identify somatic SVs in cancer

Figure 4. Identification of a deletion in an individual genome by split read analysis (middle), and by depth of coverage analysis
(bottom).
doi:10.1371/journal.pcbi.1002821.g004
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genomes [49,50] and the same idea has

been applied to identify germline structur-

al variants [51,52]. While the early paired-

end mapping studies used older clone-

based sequencing, paired-end mapping is

now possible using various next-generation

sequencing technologies.

In PEM, a paired-end sequencing

protocol is used to obtain paired reads

from opposite ends of a larger DNA

fragment, or clone, from a individual genome.

These paired reads are then aligned to a

reference genome. Most paired reads

result in concordant pairs where the

distance between aligned reads is equal

to the fragment length. In contrast,

discordant pairs have alignments with

abnormal distance or that lie on different

chromosomes. These suggest the presence

of an SV or a sequencing error. For

example, a discordant pair whose distance

between alignments is too long suggests a

deletion in the individual genome

(Figure 5), while a discordant pair whose

alignments are on different chromosomes

suggests a translocation. Other types of

discordant pairs identify inversions, trans-

positions, or duplications that distinguish

the individual genome from the reference

genome. Note that in general the length of

any particular sequenced fragment is not

known. Rather, during the preparation of

genomic DNA for sequencing, the DNA is

fragmented and fragments are size-select-

ed to an appropriate target length. It is

desirable for this size selection to be as

strict as possible, so that only fragments

near the target length are sequenced.

However, in practice the size selection

procedure produces fragments whose

lengths vary around the target length.

Typically, the distribution of fragment

lengths is obtained empirically by exam-

ining the distances between all aligned

paired reads, as most fragments will

correspond to a concordant pair (Figure 5).

To distinguish real SVs from sequenc-

ing errors, one looks for clusters of

discordant pairs that indicate the same

SV. Numerous algorithms have been

developed to predict SVs by finding

clusters of discordant pairs. Early algo-

rithms used only those paired reads whose

alignments to the reference genome were

non-ambiguous; i.e. there was only a single

‘‘best alignment’’ [53–55]. More sophisti-

cated algorithms use paired reads with

multiple ambiguous alignments to the

reference genome and use a variety of

combinatorial and statistical techniques to

select among these alignments [56–58].

Finally, some approaches model the fact

that the human genome is diploid to avoid

making inconsistent structural variant

predictions [59].

All of the approaches above rely on

predicting structural variants that are

supported by multiple paired reads. Some,

but not all, of them are careful when

determining whether a group of paired

reads genuinely support the same variant.

We illustrate the issue here using the

Geometric Analysis of Structural Variants

(GASV) method of [55]. A key feature of

GASV is that it records both the informa-

tion that the paired reads reveal about the

boundaries (breakpoints) of the structural

variant and the uncertainty associated with this

measurement. Most types of SV, including

deletions, inversions, and translocations

have two breakpoints a and b where the

reference genome is cut. The segments

adjacent to these coordinates are then

pasted together in a way that is particular

to the type of SV. For example, a deletion

is defined by coordinates a and b in the

reference genome such that the nucleotide

at position a is joined to the nucleotide at

position b in the individual genome

(Figure 6). Note that this is a simplification

of the underlying biology, as there are

sometimes small insertions or deletions at

breakpoints, but these small changes have

limited effect on the analysis of larger

structural variants.

Now the discordant pairs that indicate

an SV have the property that the locations

of the read alignments are near the

breakpoints a and b. However, a paired

read does not give independent informa-

tion about the breakpoint a and the

breakpoint b. Rather, the breakpoints a

and b are related by a linear inequality

that defines a polygon in 2D genome space

called the breakpoint region (Figure 6).

For example, suppose that the pair of

reads from a single fragment align to the

same chromosome of the reference ge-

nome such that the read with lower

coordinate starts at position x in the

reference and the read with higher coor-

dinate ends at position y in the reference.

(For simplicity, we ignore the fact that the

sequence of a read can align to either

strand (forward or reverse) of the reference

genome. The strand of an alignment gives

additional information about the location

of the breakpoint. See [55] for further

details.) If the sequenced fragment has

length L then the breakpoints a and b
satisfy the equation (a{x)z(y{b)~L.

As described above, the size of any

particular fragment is typically unknown.

Rather, one defines a minimum size Lmin

and maximum size Lmax of a sequenced

fragment, perhaps according to the em-

pirical fragment length distribution. Thus,

we have the inequality

Lminƒ(a{x)z(y{b)ƒLmax:

This equation defines the unknown break-

points a and b in terms of the known

Figure 5. Paired end mapping (PEM). Fragments from an individual genome are sequenced from both ends and the resulting paired reads are
aligned to a reference genome. Most paired reads correspond to concordant pairs, where the distance between the alignment of each read agrees
with the distribution of fragment lengths (right). The remaining discordant pairs suggest structural variants (here a deletion) that distinguish the
individual and reference genomes.
doi:10.1371/journal.pcbi.1002821.g005
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coordinates x and y of the aligned reads

and the length of sequenced fragments.

The pairs of breakpoints (a,b) that satisfy

this equation form a polygon (specifically a

trapezoid) in two-dimensional genome

space. We define the breakpoint region B

of discordant pair (x,y) to be the break-

points (a,b) satisfying the above equation.

This geometric representation provides

a principled way to combine information

across multiple paired-reads: multiple

paired-reads indicate the same variant if

their corresponding breakpoint regions

intersect. The geometric representation

also provides precise breakpoint localiza-

tion by multiple paired reads; separates

multiple measurements of the same vari-

ant from measurements of nearby or

overlapping variants; and facilitates robust

comparisons across multiple samples and

measurement technologies. Finally, the

approach is computationally efficient as it

relies on computational geometry algo-

rithms for polygon intersection. These

scale to millions of discordant pairs that

result from next-generation sequencing

platforms.

While the algorithms above consider

many of the issues in prediction of

structural variants, there remains room

for improvement. Most notably, many

algorithms still use only one of the possible

signals of structural variants: read depth,

split reads, or paired reads. Improvements

in specificity are likely possible by inte-

grating these multiple signals into a single

prediction algorithm [60].

5. Representation of Structural
Variants

Next generation DNA sequencing tech-

nologies are dramatically reducing the cost

of sequence-based surveys of structural

variants, while oligonucleotide aCGH

techniques are now used in studies profil-

ing tens of thousands of genomes. Large

projects like the 1000 Genomes Project

and The Cancer Genome Atlas (TCGA)

are performing paired-end sequencing and

aCGH of many human genomes, and

matched tumor and normal genomes,

respectively. At the same time, smaller or

single investigator projects are using a

variety of paired-end sequencing ap-

proaches and/or microarray-based tech-

niques with different trade-offs in cost-per-

sample vs. measurement resolution. Thus,

in the near future there will be an

enormous number of measurements of

SVs, but using a wide range of technolo-

gies of varying resolution, sensitivity, and

specificity. This diversity of approaches

will likely continue for some time as

investigators explore tradeoffs between

the cost of measuring variants in one

Figure 6. (Top) A discordant pair (arc) indicates a deletion with unknown breakpoints a and b located in orange blocks. Positions x, y and the
minimum Lmin and maximum Lmax length of end-sequenced fragments constrain breakpoints (a,b) to lie within the indicated orange blocks, and are
governed by the indicated linear inequalities. (Bottom) A polygon in 2D genome space expresses the linear dependency between breakpoints a and
b and records the uncertainty in the location of the breakpoints.
doi:10.1371/journal.pcbi.1002821.g006

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002821



sample with high confidence versus sur-

veying variants in many samples with

lower confidence per sample. For exam-

ple, in cancer genome studies the goal of

finding recurrent mutations demands the

survey of many genomes and thus large

sample sizes might be preferred over high

coverage sequencing of one sample.

The problem of comparing variants

across samples and/or measurement plat-

forms is less studied than the problem of

detecting variants in a single sample.

Standard practice remains to use heuristics

that merge predicted structural variants

into the same variant in they overlap by a

significant fraction (e.g. 50–70%) on the

reference genome. For example, the Data-

base of Genomic Variations (DGV) [5],

arguably the most comprehensive reposito-

ry of measured human structural variants,

merges structural variant predictions whose

coordinates overlap by §70% on the

reference genome. Such heuristics are

typically the only approach available to

databases of human structural variants

because many early studies did not report

information on the uncertainty (i.e. ‘‘error

bars’’) in the boundaries (breakpoints) of the

variant. This situation makes it difficult to

explicitly separate multiple measurements

of the same variant from measurements of

nearby variants or overlapping variants.

This situation is now improving, and more

recent software records both the informa-

tion that the measurement reveals about

the breakpoints of the structural variant

and the uncertainty associated with this

measurement. Software that uses this

uncertainty to classify and compare SVs

across samples and measurement platforms

is also now available [55]. Such precision

provides increased confidence in associa-

tions between a structural variant and a

disease, helps separate germline from

somatic structural variants in cancer ge-

nome sequencing projects, and aids in the

study of rare recurrent variants that might

occur on a variety of genetic backgrounds.

6. Challenges for Cancer
Genomics Studies

The study of somatic structural variation

in cancer genomes presents additional

challenges beyond those described above

for generic resequencing approaches. First,

most cancer genomes are aneuploid, mean-

ing that the number of copies of regions of

the genome are variable, due to duplica-

tions and deletions of segments of the

normal genome. High-resolution recon-

structions of cancer genomes by paired

read sequencing showed that many rear-

rangements were too small to be detected

by cytogenetics, and identified highly

rearranged genomic loci that encompass a

complex intertwining of rearrangement

and duplication [21,29,49,50,61–63]. Such

highly rearranged loci are hypothesized to

result from genome instability caused by

defective DNA repair in cancer cells, or

from external DNA damage. An extreme

example is the phenomenon of chromo-

thripsis that results from massive, simulta-

neous breakage and aberrant repair of

many genomic loci [64]. Identifying all of

the SVs and thereby reconstructing the

organization of cancer genomes can suggest

that certain regions of the genome are

selected for their pathogenetic properties,

and also lend insight into the mechanisms

of genome instability in tumors [14].

A second challenge is that cancer tissues

are a heterogeneous mixture of cells with

possibly different numbers of mutations.

This heterogeneity includes admixture

between normal and cancer cells, as well

as subpopulations of tumor cells. Some of

these subpopulations might contain impor-

tant driver mutations, or drug resistance

mutations. Because of the amount of DNA

required for current sequencing technolo-

gies, most cancer genome sequencing

studies do not sequence single tumor cells

but rather sequence a mixture of cells

(Figure 7). Since the signal for detecting

variants is proportional to the number of

cells in the mixture that contain the variant,

presence of normal cells will reduce the

power to detect somatic mutations. Fur-

ther, the ability to detect mutations that are

rare in the tumor cell population will be

even lower. Eventually, whole genome

sequencing of single cells will provide

fascinating datasets to study cancer genome

evolution, with some recent hints of the

discoveries to come in [65].

7. Future Prospects

This chapter described the challenges in

identification and characterization of

structural variants. With further improve-

ments in sequencing technologies and

algorithms over the next few years, it will

be possible to systematically measure

nearly all but the most complex variants

in an individual genome. The most

difficult cases, such as variants mediated

by homologous recombination between

nearly identical sequences, might remain

inaccesible until significantly different

types of DNA sequencing technologies

become available. Nevertheless, the fact

that systematic identification of nearly all

germline and somatic structural variants in

Figure 7. Mutation, selection, and clonal expansion in tumor development leads to
genomic heterogeneity between cells in a tumor. Current DNA sequencing approaches
sequence DNA from many cells and thus result in a heterogenous mixture of mutations, with
varying numbers of both passenger mutations (black) and driver mutations (red).
doi:10.1371/journal.pcbi.1002821.g007
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an individual genome is now possible will

enable further progress in human and

cancer genetics.

For genetic association studies, having

complete lists of germline variants from

many individuals means that unexplained

heritability for a trait cannot readily be

blamed on lack of measurement of genetic

information. Unfortunately, this does not

necessarily imply that finding the genetic

basis for specifc traits will become easy.

There remain other challenges, including

the possiblity that combinations of vari-

ants, interactions between genetic and

environmental factors, or other epigenetic

mechanisms, may contribute to pheno-

type. See [66] in this collection for further

discussion of these issues. Finally, translat-

ing genetic information about susceptibil-

ity to a disease or efficacy of particular

treatments into improved medical out-

comes will require additional work.

The opportunities and challenges are

similar in cancer genetics. Systematic mea-

surement of all somatic mutations will yield

information that might guide treatments,

and eventually lead to personalized oncol-

ogy. Current cancer treatments are limited

by the non-specificity of most cancer drugs

and by the fact that cancer cells can evolve

resistance to single drug treatments. Tailor-

ing of treatment to the particular genetic

mutations in a tumor promises to revolu-

tionize cancer therapy. There are already

several examples of such personalized

treatments including the drug Gleevec that

targets the BCR-ABL fusion gene in chronic

myelogenous leukemia (CML) and Iressa

that targets the EGFR gene in lung cancer.

Discovery of additional cancer-specific drug

targets requires not only technologies to

globally survey somatic mutations in cancer

genomes, but also techniques (experimental

and/or computational) to classify the subset

of variants that are functional, and then the

further subset of these functional variants

that are druggable.

The sequencing technologies and algo-

rithms described in this chapter are laying

the foundation for personalized medicine,

but much work remains to translate the

information revealed by genome sequenc-

ing into improved clinical practice.

8. Exercises

(1) Consider the chromosomal inversion

in Figure 1. What signals in next-

generation sequencing data can be

used to detect a chromosomal inver-

sion?

(2) The human genome is diploid with

two copies, maternal and paternal, of

each chromosome. What constraints

does this place on prediction of

germline structural variants?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(PDF)
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Abstract: There is great variation in
drug-response phenotypes, and a
‘‘one size fits all’’ paradigm for drug
delivery is flawed. Pharmacoge-
nomics is the study of how human
genetic information impacts drug
response, and it aims to improve
efficacy and reduced side effects. In
this article, we provide an overview
of pharmacogenetics, including
pharmacokinetics (PK), pharmaco-
dynamics (PD), gene and pathway
interactions, and off-target effects.
We describe methods for discover-
ing genetic factors in drug response,
including genome-wide association
studies (GWAS), expression analysis,
and other methods such as che-
moinformatics and natural lan-
guage processing (NLP). We cover
the practical applications of phar-
macogenomics both in the pharma-
ceutical industry and in a clinical
setting. In drug discovery, pharma-
cogenomics can be used to aid lead
identification, anticipate adverse
events, and assist in drug repurpos-
ing efforts. Moreover, pharmacoge-
nomic discoveries show promise as
important elements of physician
decision support. Finally, we con-
sider the ethical, regulatory, and
reimbursement challenges that re-
main for the clinical implementation
of pharmacogenomics.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

A child with leukemia goes to the

doctor’s office to be treated. The oncolo-

gist has decided to use mercaptopurine, a

drug with a narrow therapeutic range.

The efficacy and toxicity of this drug lies in

its ability to act as a myelosuppressant,

which means it suppresses white and red

blood cell production. Despite the dangers

this regimen poses, the oncologist is

confident with his ability to administer

the drug based on his experience with

prior patients. However, after the child has

undergone treatment, he begins experi-

encing unexpected bone marrow toxicity,

immunosuppression, and life-threatening

infections. This type of scenario was

encountered after mercaptopurine first

came on the market in the 1950s. In the

mid-1990s, scientists began to realize that

genetics could explain a majority of the

cases of life-threatening bone marrow

toxicity [1]. Now, many drugs that were

once noted to cause so-called ‘‘unpredict-

able’’ reactions are being re-evaluated for

drug-gene interactions.

The history of medicine is full of

medications with unintended consequenc-

es; the ability to understand some of the

underlying causes has been a recent

development. In the 1950s, succinylcholine

was used by anesthesiologists as a muscle

relaxant during operations. However,

about 1 in 2500 individuals experienced a

horrific reaction – respiratory arrest. Later

research revealed that those individuals had

defects in both copies of cholinesterase, the

enzyme required to metabolize succinyl-

choline into an inactive form. During the

1980s, a drug used to treat angina,

perhexiline, caused neural and liver toxicity

in a subset of patients. Scientists later found

that this toxicity occurred in individuals

with a rare polymorphism of CYP2D6, an

enzyme involved in the drug’s metabolism.

Genetics not only plays a role in adverse

events, but also influences an individual’s

optimal drug dose. Two anticoagulants,

warfarin and clopidogrel, have different

therapeutic doses based on an individual’s

genetic makeup. Scientists are increasingly

learning more about the interaction be-

tween drugs and human genetics in order

to take modern medicine down a more

personalized path.

Modern physicians prescribe medica-

tions based on clinical judgment or evi-

dence from clinical trials. In order to select

a drug and dosage, physicians take clinical

factors such as gender, weight, or organ

function into consideration. The personal

variation that may affect drug selection or

dosing, such as genetics, is not considered

in many settings. Thus, while a daily 75 mg

dose of clopidogrel for a 70 kg adult would

obviously be inappropriate for a 20 kg

child, it is less obvious that two adults with

identical presentations and clinical back-

grounds might require vastly different

doses. However, for an increasing number

of drugs, this appears to be the case. For

instance, two patients with similar clinical

presentations could be given the same dose

of the anti-platelet drug clopidogrel, and

one would be adequately protected against

cardiovascular events while the other

experiences a myocardial infarction due to

inadequate therapeutic protection. What

accounts for this difference? Genetics – the

patient with the inadequate therapeutic

protection likely has a polymorphism of

CYP2C19 with decreased activity, so that

this key enzyme cannot efficiently metab-

olize clopidogrel into its active metabolite.

The interaction between drugs and genetics

has been termed pharmacogenomics.

In general, pharmacogenomics can be

defined as the sum of the word’s parts: the

study and application of genetic factors

(often in a high-throughput, genomic

fashion) relating to the body’s response to

drugs, or pharmacology (for the major

questions in the field of pharmacoge-

Citation: Karczewski KJ, Daneshjou R, Altman RB (2012) Chapter 7: Pharmacogenomics. PLoS Comput
Biol 8(12): e1002817. doi:10.1371/journal.pcbi.1002817

Editors: Fran Lewitter, Whitehead Institute, United States of America and Maricel Kann, University of Maryland,
Baltimore County, United States of America

Published December , 2012

Copyright: � 2012 Karczewski et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: KJK is supported by NIH/NLM National Library of Medicine training grant ‘‘Graduate Training in
Biomedical Informatics’’ T15-LM007033 and the NSF Graduate Research Fellowship Program. RD is supported
by Stanford Medical Scholars. RBA is supported by PharmGKB GM61374. The funders had no role in the
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: russ.altman@stanford.edu

PLOS Computational Biology | www.ploscompbiol.org 1 December 2012 | Volume 8 | Issue 12 | e1002817

27



nomics, see Box 1). Once a patient takes a

drug, the drug must travel through the

body to its target(s), act on its target(s), and

then leave the body. The first and last of

these processes is facilitated by pharmaco-

kinetic (PK) genes, which may affect a

drug in the ‘‘ADME’’ processes: to be

absorbed into and distributed through the

body, metabolized (either to an active

form or broken down into an inactive

form), and excreted. The action of a drug

on its targets involves pharmacodynamic

(PD) genes, which include the direct

targets themselves, genes affected down-

stream, and the genes responsible for the

clinical outcome. PK and PD genes can be

involved in both intentional ‘‘on-target’’

effects that produce the desired therapeu-

tic response, as well as unintentional ‘‘off-

target’’ effects that cause adverse events

(side effects or other unintended conse-

quences of the drug). Current researchers

are working to tease out genes involved in

both the PK and PD pathways that affect

drug action in order to improve dosing

and avoid adverse drug reactions.

The search for genetic factors that relate

to pharmacological response begins much

like the search for a genetic association of

any trait. Standard association study meth-

ods (such as GWAS) search for significant

associations between a binary or continu-

ous trait and the genetic profiles of case and

control sets. In a GWAS, the trait of interest

can be a disease state or physical trait.

Specifically, in the case of pharmacoge-

nomics, the trait is an actual drug dose,

response, or adverse event profile, though

the study design should be carefully con-

sidered for the specific application (see

below: Methods). Additionally, high-

throughput expression analysis and che-

minformatics have provided investigators

with valuable tools for learning about

physiological drug responses. Finally, as

sequencing technologies become exponen-

tially cheaper and the ‘‘$1,000 Genome’’

becomes an attainable goal, whole-genome

or exome sequencing will soon become

commonplace in pharmacogenomic stud-

ies. As these types of studies become less

expensive and more mainstream, pharma-

cogenomics will transition from simply an

interesting research topic to a main role

player in pharmacological development

and clinical application.

The applications of pharmacogenomics

are of interest to industry, clinicians, academ-

ics, and patients alike. For the biopharma-

ceutical industry, pharmacogenomics can

improve the drug development process

through faster and safer drug trials and the

early identification of drug responders, non-

responders, and those prone to adverse

events. For clinicians and patients, pharma-

cogenomics can aid the decision-making

process in prescriptions and determination

of the optimal dose of a drug.

Many significant challenges remain in the

field of pharmacogenomics, beyond the

simple identification of more genetic variants

related to drug response. First, the transition

to whole-genome sequencing will require

newer analysis methods, as well as more

extensive annotations, to assign meaning to

novel variants. A database of the relation

between genes, variants, and drugs, such as

PharmGKB, will be instrumental in the

aggregation of information curated from the

literature. In addition, the characterization of

adverse events and their underlying causes is

a topic of active research. Finally, the

application of pharmacogenomics to a clin-

ical setting will require the education of

physicians in the utility of genome sequencing

or genotyping for the benefit of their patients.

With the dawn of human genome

sequencing, especially the impending wide-

spread availability of personal genotyping to

the public, and an expanded knowledge of

the clinical impact of genetics and molecular

biology, physicians around the world are

beginning to use patients’ personal genetics in

informing prescription decisions. While still in

its early phases, pharmacogenomics will

undoubtedly lead the way in the development

of personalized medicine.

2. Pharmacogenomics in Action

When a physician administers a drug,

an intricate cascade of events unfolds as

this molecule interacts with the physiolog-

ical environment. In the simplest scenario,

a drug (after interacting with a number of

proteins on its way to its target) may act as

an agonist or an antagonist against a

receptor, which is composed of one or

more proteins. At the molecular level, the

metabolite can bind to the protein’s active

site, which can include ligand-binding

sites, conformation-altering sites, or cata-

lytic sites. This effect can then be propa-

gated through biochemical pathways to

produce a cellular and finally, systemic

physiological effect. Along the way, hu-

man genetic variation can affect the way

these receptors interact with drugs, leading

to consequences in the efficacy of the drug

and causing potential adverse events.

2.1. Drug-Receptor Interactions:
Agonists and Antagonists

Agonists interact with a receptor in an

activating fashion: these small molecules

mimic the behavior of the receptor’s natural

ligand, producing a result that is either

weaker than, the same as, or stronger than

the natural ligand. For example, sympatho-

mimetic drugs are a clinically important class

of agonists that interact with the G-protein-

coupled receptors that are endogenously

stimulated by catecholamines. These drugs

are given to produce responses normally

elicited by the sympathetic nervous system.

Some examples of sympathomimetic drug

action include relaxation of bronchial smooth

muscle in asthma, increasing the muscular

contractions of the heart in cases of reversible

heart failure due to cardiogenic or septic

shock, or vasoconstriction of superficial

vasculature to reduce nasal congestion. There

are several subtypes of adrenoreceptors and

different drugs stimulate different receptor

subtypes. For instance, a very clinically

relevant drug, albuterol, can be inhaled to

What to Learn in This Chapter

N Interactions between drugs (small molecules) and genes (proteins)

N Methods for pharmacogenomic discovery

N Association- and expression-based methods

N Cheminformatics and pathway-based methods

N Database resources for pharmacogenomic discovery and application
(PharmGKB)

N Applications of pharmacogenomics into a clinical setting

Box 1. Problem Statement

N What are the genes involved in a drug’s mechanism of action?

N How are a drug’s effects propagated through pathways?

N How can this information be applied to characterize ‘‘off-target’’ adverse
events?

N How can pharmacogenomics information be utilized in prescription and dosing
decisions?
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stimulate b2 receptors (whose natural ligand

is norepinephrine) on the smooth muscle of

the lungs. Its action leads to the activation of

adenylyl cyclase, which ultimately leads to the

dilation of bronchial smooth muscle, provid-

ing life-saving relief for asthma patients (See

Chapter 9 of [2]). However, some studies

have identified that the very agonists that

provide relief to asthmatics can lead to

asthma exacerbation or death in a subset of

patients. Research has indicated that at least

in some populations, this phenomenon could

be related to genetic polymorphisms of the b2

receptors [3].

Antagonists, on the other hand, inhibit the

receptor partially or fully, reversibly or

irreversibly so that the cascade caused by

normal receptor activation cannot occur.

The same adrenergic receptor subclasses

mentioned before can also be antagonized.

b receptor blockers (‘‘beta-blockers’’) are an

antagonist drug class clinically indicated to

treat chronic, irreversible heart failure. The

mechanism of the beneficial effects of b
blockers is not well understood. The prevail-

ing theory is that since the high levels of

circulating catecholamines triggered by heart

failure lead to detrimental cardiac remodel-

ing, blocking the cardiac catecholamine

receptors (b1 and b2 receptors) with a b
blocker can slow down additional de-com-

pensation. The b blockers for heart failure,

bisoprolol, carvedilol, and metoprolol, antag-

onize (that is, inhibit) b1 and b2 receptors:

their action is substantially greater at the b1

receptor, which is the dominant receptor in

the heart. However, some patients do not

respond as well to this therapy as others, and

clinical studies have suggested that this may

be due to b1 receptor polymorphisms. More

extensive studies of these polymorphisms are

underway to definitively identify the phar-

macogenetic variables affecting b blocker

success [4].

Often in the literature, the discussion of

drugs and proteins has involved vague

notions of ‘‘interactions’’ without any discus-

sion about the underlying molecular mecha-

nisms. A drug’s interaction with any receptor

is dependent on how well the molecular

conformation of the drug can interact with

the structure of the target. Before any

discussion of downstream physiological ef-

fects, a drug’s mechanism of action begins

with the specific molecular reaction between

the drug and cellular proteins. This interac-

tion itself can provide insight into the effect of

drugs on physiology and influence potential

pharmacogenomic knowledge.

2.2. Drug-Receptor Interactions: The
Details

While biologists tend to represent pro-

teins as colored ovals existing in an

idealized environment, in reality, proteins

are complex molecules with intricate

secondary and tertiary structures: they

harbor rugged landscapes on their surfac-

es, with charged or hydrophobic hills and

valleys serving as pockets to which poten-

tial small molecules can bind. At these

twists and turns, proteins contain their

active sites, including structural sites,

binding sites, and catalytic sites. Metabo-

lites (drugs) that enter a protein’s binding

site or catalytic site can either switch on

the function of the protein (agonists) or

prevent further reactions (antagonists).

Such an effect is especially common if

the drug bears chemical similarity to the

natural ligand of the protein.

Non-steroidal anti-inflammatory drugs

(NSAIDs), which cause both reversible

and irreversible inhibitory processes, are

a familiar drug class that illustrates drug-

protein interactions. In general, NSAIDs

inhibit the action of cyclooxygenases

(coded by the COX genes), which mediate

inflammation (see below: Molecular and

Physiological Effects; reviewed in [5]). For

instance, ibuprofen inhibits cyclooxygen-

ases in a reversible fashion, by localizing to

its critical catalytic site and competing

with arachidonic acid to prevent the

modification of the substrate [6].

Alternatively, a drug can react cova-

lently with a protein’s critical structural,

binding, or catalytic site to affect the

structure of the site or the protein as a

whole. As mentioned previously, drugs can

covalently modify their protein targets,

causing protein inactivation. In the case of

NSAIDs, aspirin irreversibly inactivates

cyclooxygenases by acetylating critical

serine resides (e.g. Serine 530 of COX-

2): the bulky sidechain renders the cata-

lytic sites unable to modify arachidonic

acid [7]. Irreversible reactions can also

work in the opposite direction, where the

protein modifies the structure of the drug,

potentially altering its activity (see below:

PK Interactions).

Often, such an interaction occurs be-

cause a drug bears structural similarity to

the molecule’s natural ligand. For instance,

methotrexate is an antifolate drug used to

treat a number of diseases, including

cancers and autoimmune diseases. Metho-

trexate is structurally similar to dihydrofo-

late (Figure 1A) and as such, binds to the

same region of DHFR (Figure 1B). Dihy-

drofolate typically fits into DHFR in a

known conformation (Figure 1C), but a

phenylalanine to arginine mutation chang-

es this binding conformation (Figure 1D–

E). This mutation is hypothesized to confer

methotrexate resistance in individuals with

this variant [8].

All such drug-protein interactions are

often associated with the ‘‘intended’’

action of the drug, whether they involve

‘‘what the body does to the drug’’

(pharmacokinetics, PK) or ‘‘what the drug

does to the body’’ (pharmacodynamics,

PD). However, drug-protein interactions

may also lead to ‘‘off-target’’ interactions,

which can cause adverse events. Along the

way, variants in genes can affect these

interactions, which influence the pharma-

cological effect of the drug (See Figure 2 of

[9]).

2.2.1. Pharmacokinetic (PK)

interactions. On the way to its target

and on its way out, a drug may interact

with many proteins that aid or hinder its

progress. These interactions define

a drug’s pharmacokinetics, which en-

compass absorption, distribution,

metabolism, and excretion (ADME)

processes. These parameters determine

how quickly a drug reaches its target

and how long its action can last.

When a drug is administered, it must first

be absorbed by the body and distributed to

the relevant organs and cells. One impor-

tant parameter, bioavailability, involves the

fraction of the dose of the drug that ends in

systemic circulation, much of which is

based on mode of administration: intrave-

nous delivery would provide 100% bio-

availability, while an orally ingested tablet

or capsule may be incompletely absorbed

by the gastrointestinal tract or metabolized

before it reaches systemic circulation. For

non-injection methods (as most prescrip-

tion drugs are administered), bioavailability

often depends on absorption and enzymatic

action. If the drug is administered orally,

bioavailability is influenced by gastric

emptying (i.e. transit time), gastrointestinal

enzymatic action, gastrointestinal absorp-

tion, and liver metabolism. Since drugs

absorbed from the gastrointestinal system

are taken to the liver via the portal vein

prior to entering systemic circulation, the

liver can exert a tremendous effect on first

pass metabolism. Once a drug has entered

systemic circulation, issues of molecular

transport affects the drug’s ability to

distribute (or reach its target). Genetic

variation in the proteins that mediate these

processes can affect the absorption and

distribution of certain drugs. For instance,

the class of ABC (ATP binding cassette)

transporters is involved in many of the

transport processes in the circulation of

drugs and metabolites, especially in the gut

and across the blood-brain barrier: poly-

morphisms in these genes is associated with

altered bioavailability of certain drugs, such

as the cardiac drug digoxin (digitalis;

reviewed in [10]).
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The body’s metabolism of a drug can

lead to the conversion of a precursor drug

into an active metabolite or the break-

down of the active form into an inactive

form for excretion. As with absorption and

distribution, inter-individual variation in

metabolism can often be explained by

genetics (specifically, changes in the pro-

teins that interact with the drug). Perhaps

the most famous drug-metabolizing

proteins are members of the cytochrome

P450 family (‘‘CYP’’ genes), which are

involved in the phase I metabolism of the

majority of known drugs [11]. Polymor-

phisms in these genes have been implicat-

ed in human drug response variation,

affecting up to 25% of all drug therapies

(reviewed in [12]). For instance, CYP2C9

plays a major role in the metabolism of

warfarin to the inactive hydroxylated

forms, including 7-hydroxywarfarin ([13],

reviewed in [14]). As such, CYP2C9 is the

second greatest contributor to the varia-

tion in warfarin dosage discovered thus

Figure 1. Methotrexate binds to the folate-binding region of DHFR. (A) Structural similarity between methotrexate and dihydrofolate. (B)
Methotrexate (green) and dihydrofolate (blue) fit into the same binding pocket of DHFR. (C) The conformation of dihydrofolate bound to the
reference version of the receptor. (D–E) Two possible conformations of dihydrofolate bound to the F31R/Q35E variants of the receptor. These variants
have decreased affinity to methotrexate, relative to dihydrofolate. Reprinted with permission from [8].
doi:10.1371/journal.pcbi.1002817.g001
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far, which has led to its inclusion in

pharmacogenetic dosing equations [15].

Finally, the body constantly cycles

through the gamut of small molecules

that flow through it. For example, the

kidney is involved in finely regulating

ionic concentrations and purging out

unwanted metabolites. As small mole-

cules, drugs are not exempt from these

processes and are also excreted from the

body, purging what was brought in and

circulated by absorption and distribution.

For instance, one member of the ABC

family, P-glycoprotein (P-gp or ABCB1) is

a transporter protein that actively pumps

drugs and other metabolites out of cells (a

detailed view into the mechanism of P-gp

can be found in [16]). Upregulation of P-

gp causes increased efflux of small mole-

cules, which causes multi-drug resistance.

For example, resistance to statins and

chemotherapeutic drugs occurs because

the drugs are pumped out before achiev-

ing their therapeutic effect (reviewed in

[17]). Thus, inhibition of P-gp has

remained an active area of research for

augmenting cancer treatment [18]. Addi-

tionally, upregulation of elimination me-

diators such as P-gp should be considered

for pharmacogenomic dose adjustments,

with the caveat that increasing a drug’s

dose may have other potential detrimen-

tal effects.

Figure 2. Association methods. (A) An association study with cases and controls. Millions of genetic loci are probed to ascertain ‘‘association,’’ or
separation between genotypes in cases and controls. (B) Each SNP is tested independently using a 262 contingency table and a x2 test or Fisher’s
exact test. (C) Each SNP is assessed for ‘‘genome-wide’’ significance, after Bonferroni correction. Reprinted from [64].
doi:10.1371/journal.pcbi.1002817.g002
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2.2.2. Pharmacodynamic (PD)

interactions. Pharmacodynamics (PD)

encapsulates the specific effect of the

drug on its targets and downstream

pathways. The drug-target interactions

can be ‘‘on-target’’, where interactions

lead to a therapeutic effect, or ‘‘off-

target’’, where interactions lead to

undesired effects. PD also deals with how

a drug concentration affects the target –

what concentration is needed to reach the

maximum effect, beyond which additional

drug does not increase response (maximal

effect) and what concentration is required

to reach half of this maximal effect

(sensitivity).

In many cases, structurally similar

molecules (e.g. a drug that is similar to a

protein’s natural ligand) can bind and

affect the same region of a protein and

produce a pharmacological effect. For

instance, vitamin K and warfarin both

interact with VKORC1 (Vitamin K ep-

Oxide Reductase Complex subunit 1), an

enzyme that typically converts the inactive

epoxidized form of Vitamin K back to the

active reduced form [19]. Warfarin binds

to VKORC1 near its catalytic site (See

Figure 3 of [20]), inhibiting the reduction

reaction; the ensuing lack of active Vita-

min K results in the downstream anti-

coagulant effects of warfarin (See Figure 2

of [21] and below: Molecular and Physi-

ological Effects). Polymorphisms in

VKORC1 are intensely linked to the

efficacy of warfarin [22] by affecting

warfarin’s ability to bind to VKORC1

and displace vitamin K. As such, sensitiv-

ity to warfarin varies significantly in

individuals, leading to twenty-fold dose

differences. Warfarin’s optimal dose can

be better estimated by including

VKORC1 polymorphisms in a dosing

equation rather than using clinical factors

alone [15].

Often, a drug’s mechanism of action

involves its localization to some binding

pocket that then disrupts (or enhances) the

function of the protein. For example,

hydrocortisone is a lipid-soluble drug that

diffuses across the cell membrane and

interacts with the glucocorticoid receptors.

These receptors reside in an inactive

conformation because they are bound to

heat shock proteins, which hold the

glucocorticoid receptors in the inactive

state. The binding of hydrocortisone

causes the dissociation of the heat shock

protein and allows the DNA-binding and

transcription-activating binding domains

of the glucocorticoid receptor to enter an

active conformation. Now, target genes

can be transcribed, and the many anti-

inflammatory downstream effects of

hydrocortisone can occur (See Chapter 2

of [2]).

2.3. Propagation through Pathways
As in the example of hydrocortisone,

once a drug affects a gene (whether ‘‘on-

target’’ or ‘‘off-target’’), the effects can

propagate through multiple proteins in the

same pathway. Biology does not occur in a

vacuum: proteins are dynamic and inter-

act with many other proteins to produce a

physiological function.

In the simplest cases, if the direct effect

of a drug is the inhibition of a functional

protein, all downstream effects of that

protein will be affected. For instance, if a

drug disrupts a kinase’s active site, all

downstream factors in a kinase cascade

would not be phosphorylated. As in the

case of hydrocortisone, a drug’s activation

of a transcription factor’s DNA-binding

domain will switch on the expression of

the transcription factor’s targets. These

downstream targets lead to many of the

biological effects of a given drug. Thus, a

variant in a pharmacogene may be

considerably upstream or downstream of

the drug’s direct protein interactions, but

still affect the action of the drug.

For instance, suppose protein A is

known to interact with proteins B and C.

When a drug is used to block protein A in

order to inhibit protein B’s downstream

effects, the interaction between proteins A

and C may also be affected. If protein A

and C’s interaction is essential for healthy

cellular function, administration of the

drug could lead to severe adverse events.

Most of the interactions discussed so far

comprise ‘‘on-target’’ effects (A and B),

while ‘‘innocent bystander’’ interactions (A

and C) are known as ‘‘off-target’’ events.

In other cases, the drug may exert an

effect on an unrelated protein D (that may,

for example, bear structural resemblance

to protein A).

2.4. Adverse Events (‘‘Off-Target’’)
Drugs are designed for their therapeutic

effects, which require the molecule to bind

to one or more targets that then produce

downstream effects. Adverse events, how-

ever, can occur when the ‘‘on-target’’

interaction produces a potentially related,

but unintended effect, or when drugs bind

to ‘‘off-target’’ proteins to produce an

unrelated, unintended effect. Such effects

may be harmful to the patient, but may

occasionally be inadvertently helpful (see

below: Drug Repurposing). For instance,

this adverse event can occur due to the

intended interaction in an unintended

tissue: the b blockers used to treat heart

failure can also block b receptors in the

bronchial smooth muscle, causing bron-

chial spasm, a dangerous event for asth-

matics (See Chapter 13 of [2]). Another

example is tamoxifen, the selective estro-

gen receptor modulator (SERM), which

has improved outcomes in patients with

estrogen receptor positive breast cancers.

This drug antagonizes the estrogen recep-

tor in the breast, blocking one of the

signals that the cancer cells rely on.

However, tamoxifen also has agonist

activity at the estrogen receptors in

endometrial tissue. This off target action

can lead to a 2- to 7-fold increased risk of

endometrial cancer [23].

Alternatively, a drug may interact with

a protein (unrelated to the intended target)

to produce an ‘‘off-target’’ adverse event.

For example, in addition to the ‘‘on-

target’’ adverse events described above,

tamoxifen is also associated with cardiac

abnormalities and muscle cramping. Pre-

liminary data (discovered by docking

methods, see below: Cheminformatics)

suggest that these events may be due to

an ‘‘off-target’’ interaction with sarcoplas-

mic reticulum Ca2+ ion channel ATPase

protein (SERCA) [24].

2.5. Molecular and Physiological
Effects

A drug’s interaction with its target and

the downstream effects (through any of the

target’s pathways) leads to the alterations

in cellular physiology. In some cases, a

cellular ‘‘systemic’’ response may be acti-

vated or switched off, such as apoptosis or

inflammation. The cell may signal to other

cells to produce a larger response, which is

then observed in the larger context of the

body. For instance, warfarin’s inhibition of

VKORC1 slows the vitamin K-dependent

clotting pathway. This results in decreased

thrombus formation by platelets, or collo-

quially known as ‘‘blood thinning.’’ In

other cases, a drug may suppress a body’s

natural response. For instance, NSAIDs

such as aspirin and ibuprofen inhibit COX

proteins, preventing the conversion of

arachidonic acid to prostoglandin H2

(PGH2) and blocking the downstream

production of other prostoglandins, which

mediate inflammation and pain response.

While in the case of VKORC1, phar-

macogenomic variation is observed at the

direct site of action of warfarin, variation

in downstream receptors can also influ-

ence the effect of drugs on the body.

For instance, calumenin (CALU) is an

inhibitor of the vitamin K-dependent

clotting pathway. While calumenin’s ef-

fects are downstream of the direct inter-

action between VKORC1 and warfarin,
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Figure 3. Cheminformatics methods. New associations discovered by cheminformatics methods. The Similarity Ensemble Approach (SEA) uses
ligand similarity methods to discover potential new associations between drugs and targets. Reprinted with permission from [33].
doi:10.1371/journal.pcbi.1002817.g003
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variants in calumenin are also associated

with differences in warfarin dosage [25].

3. Methods for Discovery of
Pharmacogenomic Genes and
Variants

Pharmacogenomic research aims to

identify the genes (and gene variants)

involved in the interaction between a drug

and the body. For any of the pharmaco-

genomic applications discussed below,

there exist methods for discovering rele-

vant genes and variants (typically single

nucleotide polymorphisms, or SNPs) relat-

ed to drug response. Traditional SNP-

based methods, such as genome wide

association studies (GWAS), can be used

to discover candidate regions of interest.

Alternatively, analysis of other sources of

data, including expression or biochemical

data, may provide additional gene candi-

dates. Once candidate variants are identi-

fied, further computational and experi-

mental follow-up may be required to fully

characterize all the genes and pathways

involved in the drug’s progression through

the body.

3.1. Association Methods
In a GWAS, hundreds of thousands or

millions of SNPs (representing regions of

the genome with the most inter-individual

variation) are probed on a DNA micro-

array for each individual in a set of cases

and controls (Figure 2A). For each SNP,

significance of the association between a

SNP and the trait is measured a chi-

squared test, based on a 262 contingency

table of alleles (or genotypes, if a dominant

or recessive model is assumed) and case/

control status (Figure 2B). In the case of a

continuous independent variable, such as

drug dose, a likelihood-ratio test or a Wald

test is applied to measure whether there is

a significantly different dose between the

two groups of genotypes.

Each SNP is tested independently, and

thus significance (p-values) must be cor-

rected for multiple hypotheses, usually

using a Bonferroni correction or False

Discovery Rate (FDR). A SNP that

reaches ‘‘genome-wide significance’’

(Figure 2C) is then a candidate for

follow-up analysis, as are genes in or near

the significant SNP, genes for which the

SNP is an eQTL (a SNP associated with

the expression of some other gene), and

genes in the same pathway as these genes.

The two most important considerations

for the design of any pharmacogenomic

study include the selection of representa-

tive genetic markers, as well as phenotyp-

ically well-characterized patients (includ-

ing cases and controls). The first of these,

design of a suitable genotyping array, is

technically easy and inexpensive, though

the exact design can depend on the desired

balance between unbiased genome-wide

studies and a targeted SNP panel (see

below). As in any trait-association study,

the second consideration: the selection,

characterization, and covariate identifica-

tion of cases and controls provides a

significant challenge.

Because performing a million indepen-

dent tests requires stringent significance

correction, large numbers of cases and

controls, often in the thousands, are

required to discover a SNP that will

achieve ‘‘genome-wide’’ significance.

SNP-based GWAS methods are effective

when there is a strong signal from some

SNP for the size of the study (that is, when

there is good separation between geno-

types for the cases and controls). However,

under this stringent independence model,

weaker signals may be lost among the

noise that plagues genetic association

studies. Thus, combining data from mul-

tiple SNPs in a single gene can boost

power and decrease the number of

hypotheses for multiple hypothesis correc-

tion [26]. Alternatively, if we have prior

information about the drug’s mechanism

of action, we can create targeted SNP

panels, limited to genes in the drug target’s

pathway, to decrease the hypothesis space

[27].

As the price of high-throughput se-

quencing continues to fall, many investi-

gators are turning to exome or whole

genome sequencing to discover genetic

factors of drug response. Such technolo-

gies have the advantage of remaining

unbiased in SNP discovery, detecting less

common (and even personal) mutations,

and capturing larger-scale information,

including copy number variants (CNVs)

and structural variants (SVs).

Often, in major association studies, the

SNP platform (DNA microarray) used is

comprised of SNPs that serve as ‘‘tags’’ for

a larger stretch of nearby SNPs. Such an

approach is possible due to the presence of

‘‘linkage disequilibrium’’ in the genome, a

phenomenon where SNPs tend to be

inherited together (‘‘linked’’); the particu-

lar structure of these ‘‘haploblocks’’ (which

SNPs are typically inherited together) is

specific to each racial population. Because

different populations have different linkage

structures and a different series of poly-

morphisms, platforms that are optimized

for one population may not be the best

choice for another. This problem is further

complicated by underlying differences in

genomes: the effect a given SNP has on

drug response may be different (or even

the opposite) because of a hidden interac-

tion with an alternate variant of another

gene. Specifically, since many of the

original genotyping platforms were devel-

oped for Caucasian populations, studies

on Africans or Asians will require different

approaches. Additionally, the first SNP

identified is typically simply an ‘‘associat-

ed’’ variant, rather than the causative

variant. In order to determine the specific

proteins directly involved in drug re-

sponse, further experimental or informat-

ics analysis must be performed on genes

and variants ‘‘linked’’ to the associated

variant.

3.2. Expression Methods
In addition, other sources of data can be

used to identify genes involved in drug

response, including RNA expression data

from microarrays or RNA-Seq experi-

ments from drug-treated samples. For

instance, using expression profiles from

patients with a disease of interest, one can

identify the genes involved in the progres-

sion of the disease and identify potential

drug target candidates. Alternatively, ex-

pression profiles generated from a drug

treated sample (compared to control) can

be used to determine a molecular response

to a drug. Ideally, such drug treatment

experiments would be done on humans in

order to generate organic in vivo physio-

logical response. However, such experi-

ments are unethical for experimental

(early phase) drugs, require significant

regulatory approval, and are expensive.

Thus, established cell lines have provided

a valuable, lower-cost resource for inves-

tigators to generate gene expression pro-

files.

One such effort, the connectivity map

(CMAP), a publicly available resource of

gene expression data of cell lines treated

with various small molecules, has been

used to compare expression profiles (See

Figure 1 of [28]) to identify metabolite-

protein interactions, small molecules with

similar binding profiles, and metabolites

that may mimic or suppress disease [28].

For instance, this approach predicted

gedunin to be an inhibitor of HSP90 due

to the similarity between gedunin’s ex-

pression profile and the profile of known

inhibitors. Despite the lack of structural

similarity between gedunin and other

HSP90 inhibitors, CMAP’s predicted re-

sult was validated biochemically.

Thus, cell lines can be used as surro-

gates for individuals, where a cellular

phenotype is used as a proxy for the

individual’s own physiological response

based on the cellular expression response
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to a drug treatment. For instance, one can

search for associations between a cell line’s

genetic makeup and cell viability after

drug treatment (the IC50 of drug for each

cell lines) [29]. Alternatively, similar meth-

ods can be used to characterize toxicolog-

ical response: treating cell lines with a drug

and measuring gene expression can sug-

gest genes involved in the drug’s toxicity.

While not yet extensively employed in

practice, other sources of high-throughput

experimental ‘‘omics’’ data, such as meta-

bolomics or proteomics data could be used

for similar analyses.

3.3. Cheminformatics/NLP (Other
Discovery Methods)

While not strictly ‘‘pharmacoge-

nomics’’ methods, cheminformatics has

provided a valuable tool for investigators

in the initial stages of drug discovery. For

instance, combining information about

protein structure and small molecule

structure, docking methods predict the

best fit of a molecule (or all molecules in

a database such as PubChem or

ChEMBL) by minimizing the conforma-

tion energy of the molecule-protein ‘‘fit’’.

Such methods are computationally ex-

pensive, as they explore a large search

space for each pair of molecule and

protein and use molecular dynamics or

genetic algorithms to optimize fits.

Therefore, molecule docking can be

limited to the active site of a protein

with a group of molecules to decrease the

search space. Alternatively, if a given

molecule is previously known to interact

with a protein, molecule similarity met-

rics can be included to suggest similar

molecules as protein-binding candidates.

In this way, a search limited to ligands

that score above a similarity threshold to

the known ligand would be much faster

than a search through all of PubChem.

While such predictions must still be

confirmed through biochemistry (such

as binding assays), these methods can

be used to limit the hypothesis space for

drug discovery, prioritizing the expen-

sive, lower-throughput biochemical as-

says.

For a potential drug target, cheminfor-

matics methods can be used to identify

new ‘‘hits’’ or optimize ‘‘leads’’ by sug-

gesting molecules that may disrupt the

function of the protein. For instance,

docking methods were used to successfully

identify novel molecules that could serve

as inhibitors of CTX-M b-lactamase at

millimolar binding affinities [30]. Various

algorithms have been developed for

screening ligand-target fits using docking

(reviewed in [31]). Additionally, methods

that incorporate the structure of the ligand

along with known interactions can identify

patterns of related drug targets [32]. Such

an approach can suggest new functions for

known drugs, explain ‘‘off-target’’ adverse

events, and importantly, predict ‘‘poly-

pharmacology,’’ or the action of a single

drug on multiple targets [33] (Figure 3).

These methods leverage small molecule

databases such as PubChem and

ChEMBL, which maintain structures and

properties of small molecules and ligands,

as well as bioassay results of these

compounds.

Additionally, a wealth of scientific

information is available in the biomedical

literature as lower-throughput free text.

Thus, text mining techniques such as

natural language processing (NLP), which

exploits sentence syntax to pull structured

knowledge from the literature, can be used

to mine PubMed and other sources of

published information to discover new

drug-protein interactions [34].

3.4. Pathway Discovery
Once a candidate gene is identified,

studying the gene’s known genetic net-

works, cascades, and pathways can help

identify other possible candidates that

affect drug action. For instance, if a kinase

is identified as a drug target, the proteins it

phosphorylates (and any proteins affected

downstream) may be relevant to the study

of the drug. Additionally, knowledge of

biological pathways influencing a disease

can aid in the drug discovery process (see

below: Drug Discovery).

Numerous online or downloadable re-

sources exist for pathway and network

analysis, such as Biocarta, Ingenuity,

KEGG, and PharmGKB. For a gene-drug

relationship of interest, information on the

gene’s network or pathway can be used to

limit the hypothesis space of other analyses

and experiments. Pathway analysis can

‘‘connect the dots’’ between known gene-

drug interactions to generate new hypoth-

eses of key genes that may also contribute

to the pharmacogenomics of the drug.

Additionally, a mechanism of action can

be formalized by closing the loop between

all the genes involved.

3.5. Validation and Application
The methods discussed thus far provide

only computational evidence for potential

drug-protein interactions. In order to

prove drug-protein interactions and ef-

fects, follow-up biochemical methods, such

as measuring binding affinity or functional

assays, are required to demonstrate a

molecule’s potential therapeutic activity

or to definitively prove an interaction.

Ideally, multiple sources of evidence can

be integrated to fully characterize the

physiological response to a drug. Once

sufficient confidence is generated for a

potential pharmacogenomic mechanism,

the first step towards clinical application

involves the storage and dissemination of

the information in a curated database, such

as PharmGKB. Combining information

from multiple analyses will allow for more

powerful characterization of the pharmaco-

genomic response. For instance, dosing

equations for sensitive drugs such as warfarin

can be developed by multiple linear regres-

sion of variants (as well as clinical covariates)

on observed doses [15]. Finally, a centralized

resource such as PharmGKB will allow for

systematic pharmacogenomic analysis: such

as for automated annotation of an input of

genomic variants.

4. Pharmacogenomics in Drug
Discovery

Pharmacogenomics can impact how the

pharmaceutical industry develops drugs, as

early as the drug discovery process itself

(Figure 4). First, cheminformatics and path-

way analysis can aid in the discovery of

suitable gene targets, followed by small

molecules as ‘‘leads’’ for potential drugs.

Additionally, discovery of pharmacogenomic

variants for the design of clinical trials can

allow for safer, more successful passage of

drugs through the pharmaceutical pipeline.

4.1. Small Molecule Candidate
Identification

A key starting point in developing a drug

for illness or disease involves finding a suitable

gene to target. Typically, genes implicated in

a disease can be discovered by GWAS,

exome sequencing, analysis of RNA expres-

sion profiles, or other biochemical methods.

These genes and others in the same pathway

can be considered as candidate drug targets.

The potential target space could be limited by

excluding genes on the basis of their similarity

to other genes (possibly due to paralogy) to

avoid ‘‘off-target’’ effects.

Once potential gene or pathway targets

are identified, cheminformatics methods

can be used to generate predictions for

potential ‘‘leads’’ (or drug candidates) for

a high-throughput drug screen. For in-

stance, protein structure information can

be combined with small molecule struc-

ture information to predict favorable

drug-gene interactions. After such predic-

tions are generated, follow-up biochemi-

cal experiments would be required to

confirm the interaction before the small

molecules are considered further.
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In a similar vein, pathway analysis can be

used to select new, potentially safer drug

targets. Namely, if a drug (which targets some

gene) is initially discovered as effective, but

found to cause adverse events, safer alterna-

tives might be found by searching for drugs

that target genes in the same pathway as the

original gene.

4.2. Clinical Trial Pipeline
Once a small molecule has been

biochemically identified as a ‘‘lead’’ and

a lack of toxicity verified in animal models,

the small molecule goes through a series of

increasingly larger phases of clinical trials.

Basic efficacy and relative safety are

demonstrated before and during Phase II

clinical trials, on the path to Phase III.

Figure 4. Drug discovery. Pharmacogenomics can be used at multiple steps along the drug discovery pipeline to minimize costs, as well as
increase throughput and safety. First, association and expression methods (as well as pathway analysis) can be used to identify potential gene targets
for a given disease. Cheminformatics can then be used to narrow the number of targets to be tested biochemically, as well as identifying potential
polypharmacological factors that could contribute to adverse events. After initial trials (including animal models and Phase I trials),
pharmacogenomics can identify variants that may potentially affect dosing and efficacy. This information can then be used in designing a larger
Phase III clinical trial, excluding ‘‘non-responding’’ and targeting the drug towards those more likely to respond favorably.
doi:10.1371/journal.pcbi.1002817.g004
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However, Phase III trials often require

thousands of patients, and thus, a phar-

maceutical company would ideally be

confident that the drug will successfully

pass and be profitable before investing in

such an expensive endeavor.

Most of the time, patient response to a

drug is variable during the initial Phase II

trials and as this response is often related

to genetic factors (PK or PD protein

variability), pharmacogenomics can be

used to limit the cohort for Phase III

trials. Specifically, if a protein variant is

identified that separates drug responders

from non-responders, individuals with the

‘‘non-responder’’ variant could be exclud-

ed from the next phase of the trial

(reviewed in [35]). While this would limit

the scope and usability of the drug, it

would ensure the passage of the drug

through the trial. As such, pharmaceutical

companies would need to balance the loss

in revenue of a less globally applicable

drug with the risk of FDA rejection of the

drug.

4.3. Drug Repurposing
As mentioned previously, cheminfor-

matics methods can be used to identify

novel drug-protein interactions. While

these predicted interactions can be used

to discover new small molecules for

therapeutic purposes, any new drug must

still go through the significant regulatory

hurdles of safety and efficacy testing.

However, drugs already on the market

for some therapeutic purpose are FDA-

approved for safe use in humans, and their

‘‘repurposing’’ would simply involve dem-

onstrating that the drug can be used

effectively for a different indication. In

general, any method that can be used to

characterize ‘‘off-target’’ effects can be

used in drug repurposing, by finding

effects that are salubrious.

For instance, docking methods have

been used in discovering novel functions

for already-established small molecules (or

drug ‘‘repurposing’’ or ‘‘repositioning’’).

The similarity between a drug target for

Parkinson’s disease, catchol-O-methyl-

transferase (COMT) and a bacterial pro-

tein in Mycobaterium tuberculosis (the

enoyl-acyl carrier protein reductase, InhA)

narrowed down an investigation of poten-

tial drug targets for M. tuberculosis

infections (Figure 5). From this result,

entacapone, a drug already approved to

treat Parkinson’s by inhibiting COMT,

was predicted to bind to InhA, which was

then validated biochemically and shown to

have antibacterial activity [36]. Thus,

while full efficacy for treatment of tuber-

culosis must still be demonstrated in larger

studies, studies on a known safe drug are

significantly cheaper and carry much

lower risk.

5. Applying Pharmacogenomic
Knowledge

Pharmacogenomics has the potential to

transform the way medicine is practiced,

by replacing broad methods of screening

and treatment with a more personalized

approach that takes into account both

clinical factors and the patient’s genetics.

As demonstrated previously, genetic vari-

ation can greatly influence the nature of

the effects a drug will have on an

individual (whether it will work or cause

an adverse event), as well as the amount of

drug required to produce the desired

effect. To this end, pharmacogenomics

will impact the way drugs are prescribed,

dosed, and monitored for adverse reac-

tions.

On an individual scale, the derivation of

clinically actionable pharmacological in-

formation from the genome is already a

reality: the clinical annotation of a pa-

tient’s full genome sequence has suggested

the patient’s likely resistance to clopido-

grel, positive response to lipid-lowering

drugs, and lower initial dose requirement

of warfarin [37]. Thus, physicians will use

pharmacogenomics alongside traditional

clinical practices to predict which drugs

are more or less likely to work, which

patients will require more or less medica-

tion to achieve therapeutic response, and

which drugs should be avoided on basis of

adverse events. In order to achieve these

goals, the findings of the research lab

needs to be translated into the clinic, and

the practice of using pharmacogenomics

must be integrated into the existing

medical system (Figure 6).

5.1. Prescribing
When a physician treats a condition,

there can be multiple approaches to that

treatment. Currently, a physician consid-

ers clinical and social factors when choos-

ing an approach, asking questions such as,

‘‘how is the patient’s organ function?’’,

‘‘have their been any past problems with

this type of treatment?’’, ‘‘how compliant

will the patient be with one treatment

versus another?’’, and ‘‘for this kind of

patient, what is the best evidence-based

treatment?’’. Based on his or her clinical

experience, the physician then chooses a

drug to use. If there are multiple treat-

ments available, the physician will choose

one and monitor the patient’s progress.

Having the ability to know which drugs

will work best beforehand can improve

care, because a physician will administer

the best treatment and not waste time on a

treatment that is likely to fail for a

particular individual.

One area where gene-based prescribing

is steadily advancing is in the area of cancer

genomics. Cancer drugs generally have

Figure 5. Drug repurposing. Docking methods suggest binding site similarity between COMT
(green) and InhA (blue). The overlap between the predicted locations of their cofactors (purple
and orange, respectively) and ligands (red and yellow, respectively) suggest potential similarity in
their functions. Thus, the same drug that has been used to inhibit COMT (entacapone) was
predicted to inhibit the M. tuberculosis protein InhA for potential treatment of tuberculosis.
Reprinted from [36].
doi:10.1371/journal.pcbi.1002817.g005
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Figure 6. Applying pharmacogenomics in the clinic. A proposed clinical workflow including pharmacogenomic information. A physician
considers the patient’s current presentation and past history when coming up with a working diagnosis and based on his or her clinical judgment,
decides what drugs the patient may need. For example, if the physician wanted to add clopidogrel to the patient’s regimen, the physician would
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many toxic side effects, and in many cases

of advanced cancers, physicians ‘‘guess and

test’’ medications by prescribing them and

monitoring progress. In addition, the very

nature of cancer is ‘‘personal,’’ insofar as

each specific cancer is caused by the unique

sum of individual somatic mutations (that

is, mutations that occur in the individual

after birth and are not inherited or passed

on). Certain ‘‘signatures’’ of cancers, or

mutations that produce similar cancer

phenotypes, allow for the grouping of

cancers into distinctions, such as leukemia

or lymphoma, but even these exhibit

significant variability among classifications.

Thus, the ability to sequence and study the

genomes of cancer cells of an individual can

help identify the driving somatic mutations

and provide a tool for rational drug choice.

For example, the median survival for ad-

vanced or recurrent endometrial cancer is

very poor, due to the fact that physicians treat

empirically with chemotherapy, which may

have no therapeutic benefits. Researchers

studying mutations in the pathways of

endometrial cancer cell lines found that

response to doxorubicin, a chemotherapy

used to treat endometrial cancer, was related

to mutations in the Src pathways, which are

involved in cell proliferation, motility, and

survival. By pinpointing mutations in this

pathway, the researchers were able to

rationalize supplementing the drug regimen

with the addition of SU6656, a drug that

competitively inhibits the Src pathway, which

increased the sensitivity of some of the cell

lines to doxorubicin [38]. As cancers are

typically characterized by a lack of error-

correction mechanisms and inhibited apop-

tosis, such an approach is particularly

important, as the initial failure of a chemo-

therapeutic drug allows time for a cancer to

develop further mutations and spread further.

In the future, interrogating cancer genomes

could allow rational drug prescribing, de-

creasing the amount of time spent on

ineffective therapies and increasing the

number of successful cures.

Pharmacogenomics can also play a role in

drug decisions for prevalent conditions,

allowing physicians to predict when a

commonly successful therapy may fail. For

instance, there is an arsenal of drugs doctors

can use to combat the co-morbidities of type

II diabetes. These co-moribidities are usually

cardiac risk factors, such as lipid abnormal-

ities and high blood pressure: the cardiac risk

factor conferred by type II diabetes is

equivalent to that of a prior myocardial

infarction in a nondiabetic individual. Pres-

ently, the physician chooses drugs based on

his best clinical judgment and then monitors

the outcome of the treatment. However, as

the tolerance and efficacy of certain popularly

prescribed drugs has been shown to be tied to

genetics, such information could be used in

prescription decisions. For instance, statins

are a class of drugs that are inhibitors of

HMG-CoA reductase, an enzyme that helps

produce cholesterol in the liver. Thus, statins

are given in an effort to lower cholesterol,

particularly low-density lipoprotein (LDL)

cholesterol, whose increased levels are a

cardiac risk factor. Statins are often pre-

scribed to patients with type II diabetes and

high cholesterol in order to help them reach a

more healthy cholesterol range. Even though

studies have suggested genetic influences on

statin efficacy and tolerance, such findings are

not yet widely applied in clinical medicine.

One study found that in individuals with

diabetes, variation in the HMG-coA reduc-

tase gene was associated with a decreased

response to statin therapy. In this study, a

significantly greater percentage of individuals

heterozygous for the G minor allele of

rs17238540 were unable to reach target

cholesterol and triglyceride goals when

compared to individuals homozygous for

the major allele. Additionally, these individ-

uals had a 13% smaller reduction in total

cholesterol and a 27% smaller reduction in

triglycerides. This is an example of just one

variation in the HMG-coA gene; other

variations certainly exist and can impact

how well a patient responds to statins [39].

Another gene that has been found to affect

response to statins is the APOE gene, which is

associated with the regulation of total

cholesterol and LDL cholesterol. There are

several variants in this gene, and there are

differences between how type II diabetic

individuals carrying these variants respond to

statins. For instance, the individuals homo-

zygous for the E2 variant were all able to

reach their target LDL cholesterol; however

32% of individuals homozygous for the E4

variant failed to reach target LDL cholesterol.

Moreover, E2 variant homozygotes had a

significantly greater lipid lower response to

statins than some of the other variants. Thus,

APOE is another gene that may be predictive

of statin resistance or reduced efficacy.

Knowledge of these genes could play a role

in the future of drug prescribing, as physicians

would be able to predict a priori if a drug was

going to succeed or if another drug would be

a better choice [40].

One major caveat of gene-based pre-

scription decisions (as well as dosing, as

discussed below) involves the applicability

of a finding in one population to other

populations (see above: Association Meth-

ods). While a pharmacogenomic effect

may be true for a given population (with

a certain genetic background, in animal

model parlance), it may not directly apply

to other populations due to unknown

genetic factors, especially combinatorial

effects. Because there is no current stan-

dard for translating a result between

ethnicities, follow-up work is required for

each specific pharmacogenomic interac-

tion before it is applied in a clinical setting.

5.2. Adverse Drug Reactions
Another factor physicians need to consider

when choosing a drug is the risk of adverse

events, or any detrimental, unintended

consequence of administering a drug at

indicated clinical doses. In a milder form,

an adverse event could be an allergic rash

from penicillin. These events can also be

much more intense: severe adverse drug

reactions (SADRs) are those that can cause

significant injury or even death, and are

estimated to occur in about 2 million patients

a year in the United States. In fact, SADRs

are the fourth leading cause of death in the

United States, with about 100,000 yearly

deaths. Because of the impact of SADRs,

scientists and physicians hope that the

application of pharmacogenomics can help

predict which patients are most susceptible to

experiencing an SADR to a given drug. With

this knowledge in hand, a physician can

either more closely monitor these patients or

choose an alternative therapy [41].

For instance, statins have been associated

with a rare but incredibly severe adverse

reaction: myopathy and rhabdomyolysis. A

study looking at the possible genetic influenc-

es of this reaction found a SNP in the

SLCO1B1 gene associated with this severe

adverse drug reaction, with an odds ratio of

4.5 [42]. However, there are also cases of

individuals who experience milder symptoms

and develop statin intolerance. Some of these

individuals experience an elevation in crea-

tine kinase or alanine aminotransferase while

on statins, indicating possible muscle or liver

damage. A recent study found that the

functional variants V174A and N130D in

the SLCO1B1 gene, which encodes the

input it into the electronic medical record (EMR). The EMR would interrogate the genome and present a message such as ‘‘clopidogrel sensitivity:
POOR METABOLIZER, REDUCED ANTI-PLATELET EFFECT - gene: CYP2C19 - gene result *2/*2.’’ Based on this recommendation, the physician may
adjust the dose accordingly or choose another drug. In this case, the physician will likely increase the dose of clopidogrel in order to achieve
therapeutic effect. Reprinted with permission from [65].
doi:10.1371/journal.pcbi.1002817.g006
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organic anion transporting polypeptide

OATP1B1, are predictive of statin intoler-

ance [43]. OATP1B1 in these individuals has

reduced maximal transport ability, possibly

leading to higher levels of statins in the

patient’s blood. Currently, studies are under-

way to determine if there is a difference

between the available statin drugs with

regards to these pharmacogenetic compo-

nents, in order to better inform physicians

about the drug choices they make.

In the effort of applying pharmacogenetics

in the clinic, trials have already shown that

screening tests have clinical utility. For

instance, abacavir, a nucleoside reverse-

transcriptase inhibitor used to treat AIDS,

causes a hypersensitivity reaction in 5 to 8%

of patients. This reaction can include fever,

rash, and gastrointestinal or respiratory

symptoms. Since this adverse reaction neces-

sitates stopping therapy (and patients cannot

be put on the drug again because of the risk of

a more severe reaction upon re-exposure),

physicians could avoid prescribing this drug if

they were capable of predicting which

individuals would have a reaction. Recently,

it was identified that HLA-B*5701 was

associated with hypersensitivity to abacavir.

Armed with this information, a double-blind,

randomized, prospective study in nearly 2000

patients was conducted to determine if

screening for this variant could help prevent

hypersensitivity reactions in AIDS patients.

The results supported the use of pharmaco-

genetics in the clinic: prescreening eliminated

immunologically confirmed hypersensitivity

reactions and significantly decreased hyper-

sensitivity symptoms, compared to the con-

trol group [44].

5.3. Dosing
Once a physician has chosen a drug based

on efficacy and consideration of adverse

events, the next step is to determine what

the correct dose at which to administer the

drug. Currently, clinical factors such as

gender, weight, and kidney or liver function

may be taken into account when dosing a

medication. However, genetics can play a

large role in how a drug is dosed as well.

As mentioned previously, a major reason

drug doses differ between individuals is due to

polymorphisms in proteins involved in phar-

macokinetics or pharmacodynamics. Varia-

tion in enzymes involved in pharmacokinet-

ics, such as the Cytochrome P450 metabolic

enzymes (and mainly, CYP2D6, CYP2C9,

and CYP3A4), can affect the availability of

drugs reaching their targets. Alternatively, the

targets themselves (PD genes) can respond

differently based on their specific structure.

One of the emerging examples of dosing

based on genetics is the anticoagulant,

warfarin. Prescriptions for warfarin number

about 30 million cases annually and are

indicated to prevent myocardial infarction,

venous thrombosis, and cardioembolic

stroke. However, the dose needed to achieve

adequate anticoagulation can vary by as

much as twentyfold between patients. Cur-

rently, physicians start with an initial dose

and titrate (adjust) over time until the target

international normalized ratio (INR), an

indicator of anticoagulation, is reached.

However, until the therapeutic dose is

reached, there is the opportunity for over-

coagulation, which leads to an increased risk

of thromboembolic events, or under-dosing,

which can lead to ineffectiveness, and thus,

hemorrhaging and bleeding. The discovery

of variants affecting warfarin dosing have led

to the creation of algorithms that use clinical

(such as weight and other drug status) and

pharmacogenetic (variants in CYP2C9 and

VKORC1; see above, PK and PD Interac-

tions, respectively) information in order to

predict a patient’s optimal starting warfarin

dose. One such dosing algorithm, produced

by the International Warfarin Pharmacoge-

netic Consortium, was capable of predicting

doses using a pharmacogenetic algorithm at a

significantly more accurate rate than an

algorithm using clinical factors alone [15].

However, one of the drawbacks is that these

predictions are most accurate in a Caucasian

population; additional research is needed in

populations of different ancestries in order to

produce a more broad-spanning pharmaco-

genetic algorithm.

5.4. Applying Pharmacogenomics in
the Clinic

Though examples exist of how pharmaco-

genomics could impact prescribing drugs,

predicting adverse events, and dosing drugs,

the actual application of pharmacogenomics

is just beginning to gain traction. As

pharmacogenomics knowledge steadily in-

creases and the infrastructure for its usage

continually develops, the day when all

physicians regularly apply genetics to drug

dosing draws closer. The challenges that

remain include surmounting regulatory hur-

dles, developing ways to continually update

known findings, delivering knowledge to

physicians, and integrating genomics into

medicine. However, scientists have worked to

address these challenges, and pharmacoge-

nomics will likely serve as one of the first

major clinical applications of personalized

genomic medicine.

In the United States, the FDA regulates

drugs and drug labels. Therefore, the

communication between scientists and the

FDA will be critical to the adoption of

pharmacogenomic information on drug la-

bels. Evaluation will depend on the trial

design, sample size, reproducibility, and effect

size [45]. One benefit of pharmacogenomics

is that the associations between genetics and

drug effects is more concrete and immedi-

ately applicable than in other translational

bioinformatics concepts such as disease risk

assessment, where scientists are struggling

with ‘‘missing heritability’’ and combinations

of moderate risks. Because of this, unlike

other therapies, which require a randomized

clinical trial in order to prove efficacy, the

application of pharmacogenomic principles

may not require the same level of scrutiny.

Rather than providing some novel therapy,

the vast majority of pharmacogenomic

findings are simply supplementing physician

knowledge about previously approved drugs.

Physicians already utilize the clinical back-

grounds of their patients (i.e. weight, gender,

presumed organ function, drug interactions,

compliance) when making decisions about

drugs. As long as adding the variable of

genetic information is non-inferior to the

current standard of care, there should not be

resistance to its implementation [46].

Once a biomarker is shown to be

important, other decisions will have to be

made: Should testing for the biomarker be

required, or should it just be recommended?

Socio-economic considerations along with

the predictive value of the biomarker will

need to be considered. At first pass, the use of

pharmacogenomic data may be completely

left to the clinician’s judgment until the FDA

has formalized its role in their application.

Once a pharmacogenetic biomarker is ap-

proved, the drug’s label will need to reflect

the genetic components involved: biomarkers

identifying the patient population that should

receive the drug would be printed under

‘‘indication,’’ biomarkers related to drug

mechanism may appear under the ‘‘clinical

pharmacology’’ section, and biomarkers

related to safety may be indicated in ‘‘adverse

events.’’ The challenge for the FDA and

clinicians alike will require vigilance about

updating new information as the onslaught of

pharmacogenetic associations continues to

pour in [45].

Pharmacogenetic research continues to

discover new drug-gene interactions. The

volume of new findings exceeds the capabil-

ities of any individual to parse. Thus,

bioinformatics will have to play an integral

role in the translation of the data to the

bedside. Text mining (see Methods: Chemin-

formatics/NLP) will be instrumental to

extracting structured data from the literature

in order to update knowledge bases, such as

PharmGKB. Ultimately, this knowledge will

be integrated into a centralized database to

make the information accessible to all.

In order to fully translate pharmacoge-

nomics into the clinic, this information must

be well integrated with the electronic medical
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system (Figure 6). Full adoption will require a

curated, updated database with FDA or

evidence-based approved drug-gene interac-

tions that would be available for physicians to

use in their medical practice. For example,

PharmGKB is primarily used as a scientific

tool for identifying drug-gene interactions.

However, its clinical utility was shown when

it was used to generate drug recommenda-

tions based on an individual’s fully sequenced

genome [37]. Such resources serve as the

precursor to the systems that will be in place

when all individuals have sequenced genomes

readily available for physician use.

Finally, for pharmacogenomics to be

widely applied, personal genomics needs

to become ingrained into modern med-

icine. Physicians and patients must be

educated as to the benefits of genomic

medicine, in order to dispel any myths

and to avoid ethical issues. Moreover,

genetic testing facilities meeting the

U.S. government’s Clincial Laboratory

Improvement Amendments (CLIA) cer-

tification requirements need to be es-

tablished in order to provide patients

with genomic data that is considered

acceptable for clinical use. Finally,

insurance companies must be on board

to reimburse genetic testing. Since

sequencing costs continue to drastically

fall, the debates surrounding cost will

soon become moot [46]. Thus, we are

rapidly entering an age where every

patient can have his or her genome

available. With the availability of an

individual’s genome, a physician looking

to administer a drug such as a statin can

check to see whether or not the statin

would be expected to work and if any

possible adverse events might be expect-

ed (Figure 6).

Pharmacogenetics is a rapidly developing

field; however, some challenges remain in

implementing scientific findings from the

bench to the bedside. Because of the continued

development and work in this field, these

challenges will be addressed, ushering in an

age of personalized drug treatments.

6. Summary

Pharmacogenomics encompasses the in-

teraction between human genetics and drugs,

which can be affected by variation in genes

involved in pharmacokinetics (PK) and

pharmacodynamics (PD). Thus, a major goal

of pharmacogenomics is to elucidate which

genes affect drug action, using cheminfor-

matics, expression studies, and genome-wide

association studies (GWAS). Association

methods can be used to discover novel

associations by comparing the genetic differ-

ences between cases with a certain phenotype

and controls. Expression analysis and che-

minformatics can be used to expand knowl-

edge about drug-gene interactions by com-

paring gene expression or interaction profiles

among drugs and genes. Analysis of these

studies can yield information about how these

genes affect drug action. Because of differ-

ences in haplotype structure between popu-

lations, studies validated in one population

may not be directly applicable to a different

population. However, as knowledge accumu-

lates about drug-gene interactions, scientists

can contribute to databases, such as

PharmGKB, documenting known relation-

ships (Table 1). As the volume of knowledge

grows, text mining methods may become

instrumental in interrogating the literature

and collecting relevant data for clinical use.

The application of pharmacogenomics in the

clinic can help inform physicians in drug

prescribing, drug dosing, and prediction of

adverse events. Because many of the drugs

undergoing pharmacogenomic study are

already FDA-approved, adoption of pharma-

cogenomics in the clinic is mostly dependent

on the availability of genome sequencing and

the development of implementation infra-

structure. Moreover, pharmacogenomics can

also aid in drug development, providing

pharmaceutical companies with an additional

tool to design more successful, cheaper trials.

Thus, pharmacogenomics promises to help

launch medicine and drug development into

the realm of personalized care.

7. Exercises

1. (A) Download a genotype and phenotype

dataset of your choosing. Using PLINK

(http://pngu.mgh.harvard.edu/

,purcell/plink/) or a statistical program

such as R (http://www.r-project.org/),

calculate the association (using a Fisher’s

exact test) between ,Trait. and each

SNP. After Bonferroni correction, does

any SNP reach genome-wide signifi-

cance? (B) Does using a different correc-

tion method such as Benjamini or False

Discovery Rate (FDR) result in any more

significant SNPs?

2. (A) Use a pharmacogenomic database

(such as PharmGKB) to find genes that

may interact with metformin. (B) Are

any of these genes known to interact

Table 1. Examples of pharmacogenomics used in this chapter. Additional examples can be found at PharmGKB.

Drug Gene (Selected Examples) SNPs/Genotypes (Selected Examples) Sources

Mercaptopurine Inosine triphosphate, pyrophosphatase (ITPA),
Thiopurine methyltransferase (TMPT)

rs41320251, rs1800584 [63], [62]

Succinylcholine Butyrylcholinesterase (BCHE) rs28933390, rs28933389 [61]

Perhexiline Cytochrome P450 2D6 (CYP2D6) CYP2D6 *4/*5, *5/*6, *4/*6 [60]

Clopidogrel Cytochrome P450 2C19 (CYP2C19) rs4244285 [59]

Albuterol Beta-2 adrenergic receptor (ADRB2) rs1042713 [58]

Metoprolol Beta-1 adrenergic receptor (ADRB1) rs1801252 [57]

Methotrexate Methylenetetrahydrofolate reductase (MTHFR) rs4846051 [56]

Warfarin Cytochrome P450 2C9 (CYP2C9), Vitamin K expodide
reductase (VKORC1), Calumenin (CALU)

rs1799853, rs1057910, rs7294, rs9934438,
rs9923231, rs339097

[55], [54], [53], [52], [25],
[51]

Atorvastatin P-glycoprotein (ABCB1) rs1045642, rs2032582 [50]

Statins HMG-coA reductase (HMGCR), Apolipoprotein
E (APOE), Solute carrier organic anion transporter
family, member 1B1 (SLCO1B1)

rs17238540, APOE - E2, E4, rs4149056,
rs2306283

[39], [40], [49], [43]

Abacavir HLA-B*5701 genes rs2395029, rs3093726 [48]

doi:10.1371/journal.pcbi.1002817.t001

PLOS Computational Biology | www.ploscompbiol.org 15 December 2012 | Volume 8 | Issue 12 | e1002817



with other drugs? Which drugs? (C)

Bonus question: Are any of these drugs

related (by structure or function) to

metformin?

3. (A) Implement a warfarin dosing

equation (e.g. the one found in [15]).

If you have a personal genotype, input

your information and calculate your

optimal starting warfarin dose; other-

wise, calculate the optimal dose (as

predicted by both the clinical and

pharmacogenetic algorithms) for a 66-

year old Caucasian (175 cm, 75 kg),

not taking amiodarone or enzyme

inhibitors, who is rs9923231 TT and

CYP2C9 *2/*2? (B) Would the clinical

algorithm have over- or under-estimated

his (or your) dose and what are the

potential consequences of such an error?

4. You are a physician and would like to

prescribe simvastatin. What parts of the

genome would you want interrogated to

know about prescribing this drug and

why?

5. Read about the clinical uses of a whole

genome or exome in healthy [37] and

diseased [47] individuals. How can

pharmacogenomics be directly applied

in a clinical setting?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)

Glossary

N Adverse event - A ‘‘side effect,’’ or unintended consequence of taking a drug.

N Cheminformatics - Methods that utilize chemical structures of metabolites and/or protein structure to discover potential
drug-gene interactions.

N Drug Target - The specific protein whose interaction with a drug constitutes that drug’s mechanism of action.

N (Gene) Expression - The relative amount of RNA from a gene in a cell at a given snapshot in time, often used as a proxy for
activity of the gene in the condition in which the experiment was performed.

N Hit - A small molecule that disrupts the function of a potential drug target (for treatment of a disease).

N Lead - An optimized (often chemically modified) ‘‘hit’’ with high specificity for its target and reasonable pharmacogenomic
properties.

N Linkage - The property that multiple SNPs are often inherited together. When a SNP is associated with a trait or disease, it is
not necessarily the causal SNP, but may be ‘‘linked’’ to other variation that is the molecular and physiological cause of the
association.

N (DNA) Microarray - An experimental method that probes hundreds of thousands or millions of regions of the genome to
determine the genotype at each locus.

N ‘‘Off-target’’ effect - The effects of a drug propagated by interactions with proteins other than the drug target (‘‘innocent
bystanders’’).

N ‘‘On-target’’ effect - The effects of a drug propagated by the intended interaction with the drug target.

N Pharmacodynamics - The mechanisms that relate to ‘‘what the drug does to the body,’’ including ‘‘on-target’’ and ‘‘off-target’’
effects, intended and unintended, beneficial or harmful.

N Pharmacogenomics - The study and application of genetic factors relating to the body’s response to drugs.

N Pharmacokinetics - The range of mechanisms that relate to ‘‘what the body does to the drug,’’ including absorption,
distribution, metabolism, and elimination of a drug.

N Polymorphism - A mutation in the genome that varies among individuals in a sizable fraction (often, minor allele frequency
.0.01) of the population.

N Polypharmacology - The interaction of a drug with multiple targets.

N SADR - Severe Adverse Drug Reaction. An adverse event that results in significant injury or death.

N SNP - Single Nucleotide Polymorphism (see Polymorphism)

Further Reading

N Altman RB, Flockhart D, Goldstein DB (2012) Principles of pharmacogenetics and pharmacogenomics. Cambridge: Cambridge
University Press. 400 p.

N Altman RB, Kroemer HK, McCarty CA, Ratain MJ, Roden D (2010) Pharmacogenomics: will the promise be fulfilled? Nat Rev
Genet 12: 69–73.

N Altman RB (2011) Pharmacogenomics: ‘noninferiority’ is sufficient for initial implementation. Clin Pharmacol Ther 89: 348–350.

N Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, et al. (2001) Integrating genotype and phenotype information: an
overview of the PharmGKB project. Pharmacogenetics Research Network and Knowledge Base. Pharmacogenomics J 1: 167–
170.

N Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405: 857–865.

N Roses AD (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 5: 645–
656.
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Abstract: Most methods for large-
scale gene expression microarray
and RNA-Seq data analysis are de-
signed to determine the lists of
genes or gene products that show
distinct patterns and/or significant
differences. The most challenging
and rate-liming step, however, is to
determine what the resulting lists of
genes and/or transcripts biologically
mean. Biomedical ontology and
pathway-based functional enrich-
ment analysis is widely used to
interpret the functional role of tightly
correlated or differentially expressed
genes. The groups of genes are
assigned to the associated biological
annotations using Gene Ontology
terms or biological pathways and
then tested if they are significantly
enriched with the corresponding
annotations. Unlike previous ap-
proaches, Gene Set Enrichment Anal-
ysis takes quite the reverse approach
by using pre-defined gene sets.
Differential co-expression analysis
determines the degree of co-expres-
sion difference of paired gene sets
across different conditions. Out-
comes in DNA microarray and RNA-
Seq data can be transformed into the
graphical structure that represents
biological semantics. A number of
biomedical annotation and external
repositories including clinical re-
sources can be systematically inte-
grated by biological semantics with-
in the framework of concept lattice
analysis. This array of methods for
biological knowledge assembly and
interpretation has been developed
during the past decade and clearly
improved our biological understand-
ing of large-scale genomic data from
the high-throughput technologies.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

One of the challenges in DNA micro-

array and RNA-Seq data analysis is to

extract biological meanings from the mas-

sive amounts of transcriptome expression

data. Most of the microarray and RNA-Seq

data analysis methods are designed to

determine the lists of genes or gene

products that show distinct patterns and/

or significant differences. Clustering and

differential expression analysis, for exam-

ple, typically generate lists of ‘significantly’

clustered and Differentially Expressed

Genes (DEGs), respectively. The most

challenging and rate-liming step, however,

is to determine what the resulting lists of

genes or gene products biologically mean.

The first analytic approach for the

biological interpretation of obtained gene

lists was to manually collect and put down

all available descriptive information con-

cerning each gene next to it and to try to

infer the collective meaning of the textual

descriptors for the group of genes under the

biological systems context. The assumption

here is that if a certain keyword is

significantly over-represented or a mean-

ingful pattern is found among the textual

descriptors for a gene group, then the

keyword or the pattern can be regarded as

the semantic interpretation of the gene

group.

It seems that Tavazoie et al. [1] was first to

formally analyze the over-representation of

‘functional annotations’ for the lists of genes

with semantic interpretations. By means of

partitional clustering and motif discovery,

given genome-wide gene-expression clusters,

he analyzed significantly over-represented

regulatory motifs in the upstream sequences

of clustered yeast genes for uncovering new

‘regulons’ (i.e., sets of co-regulated genes)

and their putative cis-regulatory elements.

Here, the discovered motifs seem to be

regarded as functional annotations to the

corresponding genes. Many Functional An-

notation Analysis (FAA) methods have been

developed to test whether certain Gene

Ontology (GO) terms [2] or biological

pathways are significantly enriched within

a particular list of genes. Many GO and

biological pathway-based tools for gene

expression analysis have been developed

and proven to be useful [3–9].

FAA is an attempt to extract biological

semantics from given lists of genes that are

determined without considering any bio-

logical meaning but by a quantitative

statistical analysis like clustering and

DEG analysis methods. Gene Set Enrich-

ment Analysis (GSEA) [10,11], however,

takes quite the reverse way. GSEA uses

pre-defined gene sets with a priori estab-

lished biological meanings like biological

pathways. For each pre-defined gene set,

GSEA tries to determine if it shows

significant expression change. Therefore,

what GSEA essentially tests is if the pre-

defined ‘biological meaning’ assigned to

the gene set shows significant change or

not. It has been successfully demonstrated

that GSEA can successfully detect subtle

but set-wise coordinated expression chang-

es that cannot be detected by individual

gene tests [10].

The gene-set approach greatly improves

biological interpretability by using pre-

defined gene sets with established biological

meanings. The same strategy can be applied
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for the analysis of differential co-expression

analysis. Cho et al. proposed dCoxS algo-

rithm that determines if a pair of gene sets’

coordinated co-expression patterns shows

significant changes across different condi-

tions [12]. If a pair of gene sets (or pathways)

shows a positive co-expression pattern in

normal tissue but a negative co-expression

pattern in cancer cells, then it can be

assumed that the pair of gene sets may play

an important role in the cancerous trans-

formation. This dyadic relation can easily

be extended to create a network of gene sets

showing differential co-expression patterns

across different conditions.

Sometimes, given the genomic scale,

even the extracted list of biological mean-

ings and significant functional annotations

are too big and complex such that they

need to be systematically organized. Or-

dering of obtained semantics using con-

cept lattice analysis improves biological

interpretation of microarray gene-expres-

sion data. BioLattice considers gene ex-

pression clusters as objects and annota-

tions as attributes and provides a graphical

‘executive summary’ (i.e. the context of the

whole experiment) of the order relations

by arranging them on a concept lattice in

an order based on the set inclusion theory

[13].

A wide range of tools and resources in

microarray and RNA-Seq data analysis

have a potential impact on personalized

medicine and are invaluable in biomedical

research. Integrative analysis of heteroge-

neous biological and clinical data is

essential to discover meaningful knowl-

edge. The construction of semantic rela-

tionships of biological resources makes it

possible to unify multi-layered and hetero-

geneously formatted data from genome to

phenome. Semantic analysis integrating

gene expression profiles and annotations

into a unified framework enables us to

interpret complex biomedical data in a

comprehensive and organized fashion.

The outline for this chapter is as follows.

In Section 2, a comprehensive survey of

biomedical annotation resources will be

given with major ontology and biological

pathway-based analysis methods. Section

3 describes gene set-wise differential ex-

pression analysis methods with its semantic

interpretation power. Section 4 describes

differential co-expression analysis. Finally,

in Section 5, application of formal concept

analysis for systematic semantic interpre-

tation of gene expression profiles will be

introduced with the following summary in

section 6.

2. Pathway and Ontology-Based
Analysis

GO and biological pathway-based anal-

ysis is one of the most powerful methods for

inferring the biological meanings of ob-

served expression changes (Figure 1). It

enables us to analyze a list of interesting

genes resulting from microarray and RNA-

Seq experiments, without molecular biolo-

gist’s help. The genes in the list may be the

ones statistically significantly up or down

regulated between conditions (i.e. DEGs),

where the number of the genes belong to a

list depends on the threshold of signifi-

cance. Another method is to perform a co-

expression (or clustering) analysis grouping

genes with similar expression patterns

across different experimental conditions.

Many genome databases provide GO

annotations to their genes and gene prod-

ucts, which are also members of biological

pathways. FAA determines which biological

pathways or GO terms are significantly

overrepresented in a given list of genes. GO

annotation and pathway membership fre-

quencies for a list of genes obtained by

differential expression analysis (Figure 1 (a))

or co-expression analysis (or clustering)

(Figure 1 (b)) are input to statistical analyses

to test if they are significantly over-repre-

sented. For example, in Figure 1, the genes

in the gene list (i.e. selected genes) are

significantly enriched with a GO term,

GO:000123, but not with GO:000126. It

means that the genes are significantly

associated with the biological meaning of

the GO term, GO:000123.

In principle, any attribute of a gene can

be applied for FAA including transcription

factor binding sites [1], clinical phenotypes

like disease associations, MeSH (Medical

Subject Heading) terms, microRNA bind-

ing sites, protein family memberships,

chromosomal bands, etc. as well as GO

terms and biological pathways. Moreover,

these features may in turn have their own

ontological structures as illustrated in

Figure 2. GO and MeSH have a ‘tree-

ish’ graph structure, which is more

formally a DAG (Directed Acyclic Graph),

in which each term may be a child of one

or more parents. Pathways have directed

graph structures. Clusters may also be

organized into a hierarchical tree or a

graph structure. ArrayXPath [6,9] pro-

vides one of the most comprehensive

collections of these structured features for

annotation analysis [14].

Differential expression analysis deter-

mines significantly down- or up-regulated

genes (or DEGs) between two conditions,

i.e. control and treatment groups to

explore the effect of a drug. Student’s t-

test, Wilcoxon’s rank sum test and AN-

OVA may be applied to detect DEGs.

Given the huge number of genes to be

tested, multiple-hypothesis-testing prob-

lem should be properly managed. Co-

expression analysis puts similar expression

profiles together and different ones apart,

returning lists of co-expressed genes that

are assumed to be tightly co-regulated.

Clustering algorithms can be classified into

hierarchical-tree clustering and partitional

clustering. While some partitional cluster-

ing algorithms do not impose a structure

to the clusters, others like Self Organizing

Feature Maps (SOM) organize clusters

into a grid structure. Imposing a structure

based on cluster similarity may be per-

formed after clustering.

Although DEGs are different from

clusters, biological interpretation of the

resulting lists of significantly up- or down-

regulated DEGs (Figure 1(a)) may also be

benefited by the same ontology and

pathway-based annotation analysis. Clus-

What to Learn in This Chapter

N How to find genes associated with a particular disease (or condition) from
microarray or RNA-Seq data

N How to find biological pathways and/or biomedical ontology terms for the
interpretation of particular gene groups associated with a particular disease

N How to characterize biological properties of a particular list of genes

N Which data resources are useful for interpreting large-scale gene expression
profiles

N What are the limitations of individual gene-based analysis for determining
differentially expressed genes (even with multiple hypothesis correction)

N How to identify gene groups that are differentially expressed or differentially
co-expressed between normal and disease samples

N Compare in terms of semantic interpretation the functional annotation analysis
methods for co-expressed genes as in clustering and for pre-defined gene sets
as in GSEA

N How to organize and visualize a massive and redundant annotation list of genes
or gene sets into a unified framework of biological understanding
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tering is classified as an unsupervised

method. Results from supervised methods

for a variety of classification tasks can

sometimes be organized into a list based

on, for example, their contributions to the

task. In principle any list of genes can be

carefully applied to ontology and pathway-

based annotation analysis.

Metabolic pathways like KEGG and

MetaCyc and signaling pathways like

BioCarta are very powerful resources for

the understanding of shared biological

processes of a group of genes. Pathways

are commonly presented as directed

graphs, where nodes mainly represent

molecules such as proteins and com-

pounds, and edges represent relation types

between two nodes. MetaCyc is an

experimentally determined non-redundant

metabolic pathway database. It is the

largest collection containing over 1400

metabolic pathways [15]. It is a part of the

BioCyc collection of pathways and genome

databases developed by SRI International.

The pathway figures of MetaCyc are not

static diagrams so that it can be updated

and expanded while KEGG provides static

collections of pathway diagrams.

One major goal of ontology is to

provide a shared understanding of a

certain domain of information. GO was

first created as controlled vocabularies for

standardized annotation of genome data-

bases. Genes and gene products are

annotated by GO as well as free text

input by curators. DAG structures are

imposed to the three controlled vocabu-

laries of GO; Molecular Function (MF),

Cellular Compartment (CC), and Biolog-

ical Process (BP). To each node (or GO

term), a set of genes are annotated. MIPS

began as a source for data on yeast

biology, and now provides an integrated

source for experimental, literature and

computationally-predicted protein proper-

ties for a variety of complete genomes as

well. MeSH has many clinical terms

including disease names. Other knowledge

resources like OMIM (Online Mendelian

Inheritance in Man) Morbid Map can also

be used to associate genes to MeSH disease

names. GO and MeSH are now parts of

UMLS (Unified Medical Language System)

which has a semantic network structure. In

principle, any biomedical ontology can be

systematically applied for improving bio-

medical understanding of gene expression

microarray and RNA-Seq data.

Once the genes of interest are success-

fully associated with correct functional

annotations, the next step is to examine

if there are any GO terms that have a

larger than expected subset of listed genes

in their annotation list. For example, if

20% of the genes in a gene list are

annotated with a GO term ‘apoptosis’ while

Figure 1. Functional annotation analysis based on biological pathways and GO terms. Annotation frequencies for a list of genes obtained
by differential expression and co-expression analyses of microarray and RNA-Seq data are input to a statistical analysis of significant over-
representation within the selected group. C: conditions, g: genes, s: gene groups.
doi:10.1371/journal.pcbi.1002858.g001
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only 1% of the genes in the whole human

genome fall into this functional category,

then the gene list can be regarded as

strongly related with the functional anno-

tation. Most statistical tests like Chi-square,

binomial and hypergeometric tests can be

applied. Chi-square test cannot be used to

test data of small sample size. Hypergeo-

metric test is widely used for functional

enrichment analysis of gene lists, but it is

computationally more intensive.

Suppose we have a total of N genes with

n genes belonging to a group of interest

(cluster or DEGs). Among them M genes

are annotated to a specific GO term and k

genes belong to the interest group and are

annotated to the specific GO term. The

probability of having at most k genes can

be calculated by hypergeometric distribu-

tion according to the following:

P Xƒkð Þ~
Xk

y~0

h yjN; M; nð Þ

~
Xk

y~0

M

y

 !
N{M

n{y

 !

N

n

 !

Hypergeometric distribution is a dis-

crete probability distribution describing

the number of successes by a serial

sampling from a finite population. It is

equivalent to a one-tailed Fisher’s exact

test. One should consider the choice of

universe (or background), that makes

substantial impact on the result. All genes

having at least one GO annotation, all

genes ever known in genome databases, all

genes on the microarray, or all transcripts

of RNA-Seq data that pass non-specific

filters can be candidate universe. One

more problem comes from the hierarchi-

cal tree (or graphical) structure of GO

categories (or pathways) while the hyper-

geometric test assumes independence of

categories. A parent term can simply be

rated as significant because of the influ-

ence from its significant children. More-

over, more general statements require

stronger evidence that is required to prove

more specific statements. Conditional

hypergeometric testing methods [16,17]

exclude GO terms if there is no evidence

beyond that provided by its significant

children. Because many tests are per-

formed, p-values must be interpreted with

caution.

Pathway and ontology-based analysis con-

sist of database mapping, statistical testing,

and presentation steps [18]. Mapping gene

lists to GO terms or pathways requires

resolving gene name ambiguities and incon-

sistencies (not discussed here) using a wide

range of genomic resources and techniques.

Visual and textual presentation helps users

to understand biological semantics and

contexts. A number of analysis tools with

these steps have been introduced: ArrayX-

Path, Pathway Miner, EASE in pathway

analysis, GOFish, GOTree Machine, Fa-

tiGO, GOAL, GOMIner, FuncAssociate

in ontology analysis and GeneMerge,

MAPPFinder, DAVID, GFINDer, Onto-

Tools in both analyses [14].

3. Gene Set-Wise Differential
Expression Analysis

Researcher’s primary interest with

DNA microarray and RNA-Seq data is

to identify differentially expressed genes

(DEGs). To this aim, a number of

statistical methods have been introduced,

evaluating statistical significance of indi-

vidual genes between two conditions.

Gene set-wise differential expression anal-

ysis method, however, evaluates coordi-

nated differential expression of gene

groups, the meaning of which are previ-

ously defined as those of biological path-

ways. The first developed in this category

is the Gene Set Enrichment Analysis

(GSEA) that evaluates for each a priori

defined gene set the significant association

with phenotypic classes in DNA micro-

array experiments [10].

Figure 2. Collection of biological knowledge-based annotation resources for genes and gene clusters. The right panel shows an
example of GO enrichment analysis result for a yeast cell division experiment.
doi:10.1371/journal.pcbi.1002858.g002
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While FAA tries to determine over-

represented GO terms or biological pathways

after determining significant co-expression

clusters or DEG lists (Figure 3(a) and (c)),

GSEA takes the ‘reverse-annotation’ or ‘gene

set-wise’ approach (Figure 3(b)). This gene

set-wise differential expression analysis meth-

od successfully identified modest but coordi-

nated changes in gene expression that might

have been missed by conventional ‘individual

gene-wise’ differential expression analysis.

Moreover, gene set-wise approach provides

straightforward biological interpretation be-

cause the gene sets are defined by biological

knowledge. GSEA’s success clearly demon-

strates that many tiny expression changes can

collectively create a big change that is

statistically significant. Another advantage is

that utilizing pre-defined and well-established

gene sets rather than finding or creating novel

lists of genes markedly improves semantic

interpretability and computational feasibility.

It is believed that functionally related genes

often show a coordinated expression pattern

to accomplish their functional role.

GSEA first creates a ranked list of genes

according to their differential expression

between experimental conditions and then

determines, for each a priori defined gene

set, whether members of a gene set tend to

occur toward the top (or bottom) of the

ranked list, in which case the gene set is

correlated with the phenotypic class dis-

tinction. With the interesting gene set, S,

Enrichment Score (ES) is calculated by

evaluating the fractions of genes in S

(‘‘hits’’) weighted by their correlation and

the fractions of genes not in S (‘‘misses’’)

present up to a given position i in the

ranked gene list, L, where N genes are

ordered according to the correlation,

r(gj) = rj of their expression profiles with

interest gene set:

Phit S,ið Þ~
X

gj[S

jƒi

rj

�� ��p

NR

, where NR~
X

gj[S

rj

�� ��p

Pmiss S,ið Þ~
X

gj 6[S

jƒi

1

N{NHð Þ

where NH indicates the number of genes in

S and is an exponent to control the weight

of the step. The ES is the maximum

deviation from zero of Phit – Pmiss. It

corresponds to a weighted Kolmogorov-

Smirnov-like statistic.

GSEA assesses the significance by

permuting the class labels. Concerning

the definition of the null hypothesis,

methods can be classified into competitive

and self-contained tests [19]. A competi-

tive test compares differential expression of

the gene set to a standard defined by the

complement of that gene set. A self-

contained test, in contrast, compares the

gene set to a fixed standard that does not

depend on the measurements of genes

outside the gene set. The competitive test

is more popular than the self-contained

test.

Figure 3. Differential expression analysis for individual genes and predefined gene sets. C: conditions, c: condition sets, g: genes, s: gene
groups, S: predefined gene sets. (Modified from [30]).
doi:10.1371/journal.pcbi.1002858.g003
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Typical gene sets are regulatory-motif,

function-related, and disease-related sets.

MSigDB (Molecular Signatures Database)

is one of leading gene set databases (http://

www.broadinstitute.org/gsea/msigdb) con-

taining a total of 6769 gene sets which are

classified into five different collections

(positional, curated, motif, computational

and GO gene sets). Several interesting

extensions were proposed in terms of

sample level applications. For example,

researchers developed genomic signatures

to identify the activation status of on-

cogenic pathways and predict the sensiti-

vity to individual chemotherapeutic drugs

[20,21]. Significance Analysis of Function

and Expression (SAFE) [22] extends

GSEA to cover multiclass, continuous and

survival phenotypes. It also provides more

options for the test statistic, including

Wilcoxon rank sum, Kolmogorov-Smirnov

and Hypergeometric statistic.

4. Differential Co-Expression
Analysis

Co-expression analysis determines the

degree of co-expression of a group (or

cluster) of genes under a certain condition.

Unlike co-expression analysis, differential

co-expression analysis determines the degree

of co-expression difference of a gene pair or

a gene cluster across different conditions,

which may relate to key biological processes

provoked by changes in environmental

conditions [12,23–25]. Differential co-ex-

pression analysis methods can be catego-

rized into three major types (Figure 4): (a)

differential co-expression of gene cluster(s)

[26], (b) gene pair-wise differential co-

expression [24] and (c) differential co-

expression of paired gene sets [12].

To identify differentially co-expressed

gene cluster(s) between two conditions, (C1

and C2 in Figure 4 (a)), a method determines

whether a cluster shows significant condi-

tional difference in the degree of co-

expression. An additive model-based scoring

can be used based on the mean squared

residual [26]. Let conditions and genes be

denoted by J and I, respectively. The mean

squared residual of model is a measurement

of co-expression of genes:

S’ I ,Jð Þ~
1

Ij j{1ð Þ Jj j{1ð Þ
X

I ,J

aij{ai:{a:j{a::
� �2

where an entry aij is the expression level of

gene i in condition j, ai. is the mean

expression level of gene i in conditions, a.j
is the mean expression level of genes in

condition j, a..is the mean expression levels

of genes in conditions. A group of gene with

a low score S9 means high correlation of

genes. Given two groups J1 and J2, e.g.

Figure 4. Differential co-expression anslyses. Differential co-expression (a) of clusters can be detected by a method proposed by Kostka and
Spang [26], (b) of gene pairs can be detected by a method proposed by Lai et al. [24], and (c) of paired gene sets by a method proposed by Cho et al.
[12]. C: conditions, g: genes, s: gene clusters, S: a priori defined gene sets. (Modified from [30]).
doi:10.1371/journal.pcbi.1002858.g004
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disease and control, the method minimizes

the score, S (I) of a set of genes, I:

S Ið Þ~ S’ I ,J1ð Þ
S’ I ,J2ð Þ

~
J2j j{1

J1j j{1
:

P
I ,J1

aij{a
1ð Þ

i: {a
1ð Þ
:j {a

1ð Þ
::

� �2

P
I ,J2

aij{a
2ð Þ

i: {a
2ð Þ
:j {a

2ð Þ
::

� �2

A greedy downhill approach finds local

minima of the score. Another approach

uses t-statistic for each cluster to evaluate

the difference of the degree of co-expression

between conditions, after creating gene

expression clusters [27]. These methods

can be viewed as an attempt to find gene

clusters that are tightly co-regulated (i.e.

highly co-expressed) in one condition (i.e.

normal) but not in another (i.e. cancer).

To identify differentially co-expressed

gene pairs in Figure 4(b), F-statistic can be

calculated as expected conditional F-sta-

tistic (ECF), a modified F-statistic, for all

pair of genes between two conditions [24].

A meta-analytic approach can also detect

gene pairs with significant differential co-

expression between normal and cancer

samples [25]. These methodologies can be

regarded as an attempt to discover gene

pairs that are, in principle, positively

correlated in one condition (i.e. normal)

and negatively correlated in another (i.e.

cancer). Identification of differentially co-

expressed gene clusters or gene pairs

usually do not use a priori defined gene

sets or pairs but try to find the best ones

among all possible combinations without

considering prior knowledge. Thus the

biological interpretation of the clusters or

pairs may also be improved by ontology

and pathway-based annotation analysis.

The idea of finding gene clusters that show

positive correlation in one condition and

negative correlation in another condition

sounds very interesting. However, it seems

that there is very little chance for such a

cluster to exist. Similarly, one can hardly find

such a set among a priori defined gene sets

(i.e. biological pathways). It is even difficult to

expect a biological pathway whose members

are all highly positively (or negatively) co-

expressed in a condition because a biological

pathway is a complex functional system with

interacting positive and negative feedback

loops. Thus, members of a biological

pathway may not be contained in a single

co-expression cluster, especially when the

cluster is not very big, but be split into

different clusters.

The dCoxS (differential co-expression

of gene sets) algorithm identifies (a priori

defined or semantically enriched) gene set

pairs differentially co-expressed across

different conditions (Figure 4 (c) and

Figure 5) [12]. Biological pathways can

be used as pre-defined gene sets and the

differential co-expression of the biological

Figure 5. The dCoxS algorithm. Expression matrices of two gene sets (upper panel) are transformed into Renyi relative entropy matrices by all
sample pair-wise comparisons (middle panel). For each condition, Interaction Score (IS), a kind of correlation coefficients, between a pair of entropy
matrices is obtained. Upper diagonal heat maps in the middle panel are transformed into scatter plots in the lower panel where ISs are depicted as
fitted lines. (Modified from [12]).
doi:10.1371/journal.pcbi.1002858.g005
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pathway pairs between conditions is ana-

lyzed. To measure the expression similarity

between paired gene-sets under the same

condition, dCoxS defines the interaction

score (IS) as the correlation coefficient

between the sample-wise entropies. Even

when the numbers of the genes in different

pathways are different, IS can always be

obtained because it uses only sample-wise

distances regardless of whether the two

pathways have the same number of genes

or not.

IS~

P
ivj (REG1 {REG2 )(REG1 {REG2 )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ivj (REG1 {REG1 )2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ivj (REG2 {REG2 )2

q

where RESi and RESj are the matrices of the

Renyi relative entropy of gene sets, Si and Sj.

When estimating the relative entropy, mul-

tivariate kernel density estimation was used

to model gene-gene correlation structure.

For example, when we compute the IS

of a pair of pathway expression matrices

with dimensions 20 (genes) by 25 and by

15 (samples) for a condition, we calculate

190 ( = (20*19)/2) sample pair-wise entro-

py distances for each pathway expression

matrix. The IS is obtained by calculating

the correlation coefficient between the two

entropy vectors. Finally, the statistical

significance of the difference of the Fisher’s

Z-transformed ISs between two conditions

is tested for each pathway pair.

Zf ~
1

2
|ln

1zIS

1{IS

� 	

The p-value of the difference in the Zf

values is calculated using the standard

normal distribution in equation.

P(Z§D
(Zf1{Zf2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= N1{3ð Þz1= N2{3ð Þ

p

Zf1 and Zf2 are the Fisher’s Z-trans-

formed values of the IS under two

different conditions and N1 and N2 are

the numbers of upper-diagonal elements,

which is calculated by n(n21)/2 (n = num-

ber of samples) for each condition.

For the purpose of comparison, all gene

pair-wise Zf values are calculated for each

condition and the conditional difference of

the Fisher’s Z-transformed correlation

coefficients is tested for each gene pair as

follows,

Zf ~
1

2
|ln

1zCC

1{CC

� 	

p(Z§D
(Zf1{Zf2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= N1{3ð Þz1= N2{3ð Þ

p

where CC indicates the correlation coeffi-

cient of a gene pair, Zfi Fisher’s Z-

transformed correlation coefficient and Ni

the number of samples in conditions i. The

p value for differential co-expression is

obtained according to the difference

Figure 6. Concept lattice. The binary relation set R = { (C1,b), (C1,f), (C1,j), (C2,b), (C2,d),…, (C5,e), (C5,h)} can be represented as (a) a relation matrix,
(b) a directed bipartite graph, and (c) a concept lattice. Colored rectangles in the relation matrix represent concepts. The same color represents the
same concept in (a) and (c). (Modified from [13]).
doi:10.1371/journal.pcbi.1002858.g006
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between the Z values from the normal

distribution. For each gene pair, three p

values are obtained, one from each

condition and another from the difference

between the conditions. Bonferroni cor-

rection is applied.

5. Biological Interpretation and
Biological Semantics

Biological interpretation of genomic

data requires a variety of semantic knowl-

edge. Biomedical semantics provides rich

descriptions for biomedical domain knowl-

edge. Biomedical semantics is a valuable

resource not only for biological interpre-

tation but also for multi-layered heteroge-

neous data integration and genotype-

phenotype association. Symbolic inference

algorithms may add further values.

Although GO and pathway-based anal-

ysis of co-expressed gene groups is one of

the most powerful approaches for inter-

preting microarray experiments, they have

limitations. The result, for example, is

typically a long unordered list of annota-

tions for tens or hundreds of gene clusters.

Most of the analysis tools evaluate only

one cluster at a time in a sequential

manner without considering the informa-

tive association network of clusters and

annotations. It is very time-consuming to

read the massive annotation lists for a

large number of clusters. It is unthinkably

hard to manually assemble the ‘puzzle

pieces’ (i.e., the cluster-annotation sets)

into an ‘executive summary’ (i.e., the

context of the whole experiment). Many

annotations are redundant such that many

clusters share the same annotations in a

very complex manner. Ideally, the assem-

bly should involve eliminating redundant

attributes and organizing the pieces in a

well-defined order for better biological

understanding and insight into the under-

lying ‘context’ of the experiment under

investigation.

BioLattice is a mathematical framework

based on concept lattice analysis to

organize traditional clusters and associated

annotations into a lattice of concepts for

better biological interpretation of micro-

array gene-expression data [13]. BioLat-

tice considers gene expression clusters as

objects and annotations as attributes and

provides a graphical summary of the order

relations by arranging them on a concept

lattice in an order based on set inclusion

relation. Complex relations among clusters

and annotations are clarified, ordered and

visualized. Redundancy of annotation is

completely removed. It also has an

advantage that heterogeneous biological

knowledge resources (such as transcription

factor binding, chromosomal co-location

and protein–protein interaction networks)

can be added to better explore the

underlying structures. The representation

of relationship between clusters can give

more insight to interpret functions of

interesting genes.

Figure 6 demonstrates a context (or a

gene expression dataset) with clusters and

annotations. Note that the relation matrix

between objects (i.e., rows or clusters) and

attributes (i.e., columns or annotations)

can be represented by a bipartite graph

(Figure 6(b)) or a concept lattice

(Figure 6(c)). A concept lattice organizes

all clusters and annotations of a relation

matrix into a single unified structure with

no ‘redundancy’ and no loss of informa-

tion. It is worth noting that the cluster

labels, C1 to C5, and the annotation labels

appear once and only once in the lattice

diagram (Figure 6(c)). Now one can

interpret the whole experimental context

(Figure 6(a)) by reading the ordered

concepts with clusters and annotations.

Structural analyses methods like prom-

inent sub-lattice analysis and core-periph-

ery structure analysis may help further

understanding [13]. Figure 7 shows a

BioLattice for a mouse anti-GBM glomer-

ulonephritis model [28]. Genes showing

significant time-dose effect were clustered

Figure 7. BioLattice of mouse renal inflammation induced by glomerular basement membrane (GBM) antibody.
doi:10.1371/journal.pcbi.1002858.g007
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into 100 clusters and annotated with GO

terms. The whole complex clusters and

annotations are organized into a single

unified lattice graph, providing an ‘executive

summary.’ The Ganter algorithm [29] can

be used to construct BioLattice. A web-based

tool using Perl, JavaScript and Scalable

Vector Graphics are available at http://

www.snubi.org/software/biolattice/. Prom-

inent sub-lattice analysis reveals a mean-

ingful sub-structure converging into clus-

ter 85, which has the GO term

‘chemotaxis’ and inherits ‘proteolysis and

peptidolysis’ (clusters 58 and 96), ‘inflam-

matory response’, ‘immune response’, ‘protein

amino acid phosphorylation’, and ‘cell surface

receptor linked signal transduction’ (cluster 60),

‘signal transduction’ (cluster 19), ‘intracellular

signaling cascade’ (cluster 65). It is clearly

visualized that cellular immune response

system activation is the core pathological

process in the IgA nephropathy model of

kidney and clusters 19, 58, 60, 65, 5 and

96 are within those concepts.

Context in concept lattice analysis is a

triplet (G, M, I) consisting of two sets G and M

and a relation I between G and M. The

elements of G and M are called objects and

attributes, respectively. We denote gIm or (g,

m) M I to show that object g has attribute m. For

a set A # G of objects, we define A9: = { m M M

| gIm for all g M A } (i.e., the set of attributes

common to the objects in A). Corresponding-

ly, for a set B#M of attributes, we define

B9: = { g M G | gIm for all m M B } (i.e., the set of

objects that have all attributes in B).

Concept lattice analysis models concepts

as units of thought, consisting of two parts.

A concept of the context (G, M, I) is a pair

(A, B) with A#G, B#M, A9 = B and B9 = A.

We call A and B the extent and the intent,

respectively, of concept (A, B). The extent

consists of all objects belonging to the

concept while the intent contains all

attributes shared by the objects. The set of

all concepts of the context (G, M, I) is

denoted by C(G, M, I). A concept lattice is

drawn by ordering (A, B), which are defined

as concepts of the context (G, M, I). The set

of all concepts of a context together with

the partial order (A1, B1)#(A2, B2): u A1

# A2 (which is equivalent to B1 $ B2) is

called a concept lattice.

We regard A as defining gene expression

clusters that share common knowledge

attributes and B as defining the knowledge

terms that are annotated to the clusters.

The concepts are arranged in a hierarchi-

cal order so that the order of C1#C2 u
A1 # A2 u B1 $ B2 is defined at

C1 = (A1, B1), C2 = (A2, B2). The top

element of a lattice is a unit concept,

representing a concept that contains all

objects. The bottom element is a zero

concept having no object.

6. Summary

This chapter has shown major compu-

tational approaches to facilitate biological

interpretation of high-throughput micro-

array and RNA-Seq experiments. The

enrichment analysis with ontologies, bio-

logical pathways or external resources is

widely used to interpret the functional role

of correlated genes or differentially ex-

pressed genes. In analysis steps, the groups

of genes are assigned to the associated

biological annotation terms using GO

terms or biological pathways. Then it is

necessary to examine whether gene mem-

bers are statistically enriched in each of the

annotation terms or pathway by compar-

ing background set by measuring statistical

test such as Chi-square, Fisher’s exact,

binomial and hypergeometric test. Unlike

previous approaches identifying a set of

significant genes, Gene Set Enrichment

Analysis uses pre-defined sets to search for

groups of functionally related genes with

coordinated expression across a list of

genes ranked by differentially expression.

Differential co-expression analysis deter-

mines the degree of co-expression differ-

ence of a gene set pair across different

conditions. The dCoxS algorithm identi-

fies differentially co-expressed gene set

under different conditions. Outcomes in

microarray and RNA-Seq data can be

transformed into the graphical structure

that represents biological semantics. A

number of biomedical annotation and

external repositories including clinical

resources can be integrated by biological

semantics analysis tools such as BioLattice.

7. Exercises

1) Select significantly DEGs from the train

dataset of AML (Acute Myelocytic

Leukemia) and ALL (acute lympho-

blastic leukemia) expression data

(http://www.broadinstitute.org/cgi-

bin/cancer/publications/pub_paper.

cgi?mode = view&paper_id = 43) and

find enriched GO terms from an

ontology analysis tool. Dataset and

analysis functions are also included in

R statistical package, golubEsets in

Bioconductor.

2) List significantly enriched pathways

using a pathway analysis tool with

the dataset in Exercise 1.

3) Find KEGG pathways significantly

associated with leukemia subtype in

the 2-sample comparison of AML

and ALL by GSEA through the

Kolmogorov-Smirnoff test. Analysis

and data set are provided by SAFE R

(http://bioconductor.org/packages/

2.0/bioc/html/safe.html).

4) Identify the differentially co-ex-

pressed gene set pairs using dCoxS

with simulated data in (http://www.

snubi.org/publication/dCoxS).

Compute interaction score between

matrix M and M1 using ias function.

And, compute interaction score be-

tween M and M2. Finally, using

compcorr function, estimate signifi-

cance of difference of ias. Note that in

compcorr function, n1 and n2 is the

number of all possible sample pairs.

5) Report semantic relationships of

pathways and GO terms using Bio-

Lattice (http://www.snubi.org/

software/biolattice/). Use the result

of k-means clustering (k = 10) with
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DEG in Exercise 1. Select Category

as ‘biological process,’ p-value,0.05.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)

References

1. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ,

Church GM (1999) Systematic determination of
genetic network architecture. Nat Genet 22(3):

281–285.

2. Ashburner M, Ball CA, Blake JA, Botstein D,

Butler H, et al. (2000) Gene ontology: tool for the
unification of biology. The Gene Ontology

Consortium. Nat Genet 25(1): 25–29.

3. Dahlquist KD, Salomonis N, Vranizan K, Lawlor

SC, Conklin BR (2002) GenMAPP, a new tool for
viewing and analyzing microarray data on

biological pathways. Nat Genet 31(1): 19–20.

4. Al-Shahrour F, Dı́az-Uriarte R, Dopazo J (2004)

FatiGO: a web tool for finding significant
associations of Gene Ontology terms with groups

of genes. Bioinformatics 20(4): 578–580.

5. Boyle EI, Weng S, Gollub J, Jin H, Botstein D,

et al. (2004) TermFinder–open source software
for accessing Gene Ontology information and

finding significantly enriched Gene Ontology
terms associated with a list of genes. Bioinfor-

matics 20(18): 3710–3715.

6. Chung HJ, Kim M, Park CH, Kim J, Kim JH

(2004) ArrayXPath: mapping and visualizing
microarray gene-expression data with integrated

biological pathway resources using Scalable

Vector Graphics. Nucleic Acids Res 32(Web
Server issue): W460–464.

7. Zhang B, Schmoyer D, Kirov S, Snoddy J (2004)

GOTree Machine (GOTM): a web-based plat-

form for interpreting sets of interesting genes
using Gene Ontology hierarchies. BMC Bioinfor-

matics 5: 16.

8. Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ,

et al. (2004) GoSurfer: a graphical interactive tool

for comparative analysis of large gene sets in Gene

Ontology space. Appl Bioinformatics 3(4): 261–264.

9. Chung HJ, Park CH, Han MR, Lee S, Ohn JH,

et al. (2005) ArrayXPath II: mapping and

visualizing microarray gene-expression data with

biomedical ontologies and integrated biological

pathway resources using Scalable Vector Graph-

ics. Nucleic Acids Res 33(Web Server issue):

W621–626.

10. Mootha VK, Lindgren CM, Eriksson KF, Sub-

ramanian A, Sihag S, et al. (2003) PGC-1alpha-

responsive genes involved in oxidative phosphor-

ylation are coordinately downregulated in human

diabetes. Nat Genet 34(3): 267–273.

11. Subramanian A, Tamayo P, Mootha VK, Mu-

kherjee S, Ebert BL, et al. (2005) Gene set

enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles.

Proc Natl Acad Sci U S A. 102(43): 15545–15550.

12. Cho SB, Kim J, Kim JH (2009) Identifying set-

wise differential co-expression in gene expression

microarray data. BMC Bioinformatics 10: 109.

13. Kim J, Chung HJ, Jung Y, Kim KK, Kim JH

(2008) BioLattice: a framework for the biological

interpretation of microarray gene expression data

using concept lattice analysis. J Biomed Inform 41

(2): 232–241.

14. Yue L, Reisdorf WC (2005) Pathway and onto-

logy analysis: emerging approaches connecting

transcriptome data and clinical endpoints. Curr

Mol Med 5(1): 11–21.

15. Caspi R, Altman T, Dale JM, Dreher K, Fulcher

CA, et al. (2010) The MetaCyc database of

metabolic pathways and enzymes and the BioCyc

collection of pathway/genome databases. Nucleic

Acids Res 38 (Database issue): D473–479.

16. Alexa A, Rahnenführer J, Lengauer T (2006)

Improved scoring of functional groups from gene

expression data by decorrelating GO graph

structure. Bioinformatics 22(13): 1600–1607.

17. Falcon S, Gentleman R (2007) Using GOstats to

test gene lists for GO term association. Bioinfor-

matics. 23(2): 257–258.

18. Huang da W, Sherman BT, Lempicki RA (2009)

Bioinformatics enrichment tools: paths toward the

comprehensive functional analysis of large gene

lists. Nucleic Acids Res 37(1): 1–13.

19. Goeman JJ, Buhlmann P (2007) Analyzing gene

expression data in terms of gene sets: methodo-

logical issues. Bioinformatics 23 (8): 980–987.

20. Bild AH, Yao G, Chang JT, Wang Q, Potti A,

et al. (2006) Oncogenic pathway signatures in

human cancers as a guide to targeted therapies.

Nature 439(7074): 353–357.

21. Potti A, Dressman HK, Bild A, Riedel RF, Chan

G (2006) Genomic signatures to guide the use of

chemotherapeutics. Nat Med 12(11): 1294–1300.

22. Barry WT, Nobel AB, Wright FA (2005)

Significance analysis of functional categories in

gene expression studies: a structured permutation

approach. Bioinformatics 21(9): 1943–1949.

23. Li KC (2002) Genome-wide co-expression dy-

namics: theory and application. Proc Natl Acad

Sci U S A 99(26): 16875–16880.

24. Lai Y, Wu B, Chen L, Zhao H (2004) A statistical

method for identifying differential gene-gene co-

expression patterns. Bioinformatics 20 (17): 3146–

55.

Glossary

Bioconductor: a free, open source and open development software project for
the analysis and comprehension of genomic data generated by wet lab
experiments in molecular biology written in R Statistical Package.

Clustering: algorithm that puts similar things together and different things
apart.

Gene expression profiling: the measurement of the activity (or expression) of
thousands of genes at once to create a global picture of cellular function using
DNA microarray technology.

Gene set: a meaningful grouping of genes like biological pathways, genes
sharing certain regulatory-motifs, genes sharing certain functional annotations,
and certain disease-related gene sets.

Gene Set Enrichment Analysis: an algorithm to determine whether an a priori
defined set of genes shows statistically significant coordinated differential
expression between conditions.

Gene Ontology: a set of controlled vocabularies in molecular function,
biological process and cellular component for the standardized annotations of
genes and gene products across all species.

Hypergeometric distribution: a discrete probability distribution that describes
the number of successes in a sequence of n draws from a finite population
without replacement, just as the binomial distribution describes the number of
successes for draws with replacement.

Kolmogorov–Smirnov test (K–S test): a nonparametric test for the equality of
continuous, one-dimensional probability distributions that can be used to
compare a sample with a reference probability distribution (one-sample K–S test),
or to compare two samples (two-sample K–S test).
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Chapter 9: Analyses Using Disease Ontologies
Nigam H. Shah*, Tyler Cole, Mark A. Musen

Center for Biomedical Informatics Research, Stanford University, Stanford, California, United States of America

Abstract: Advanced statistical methods
used to analyze high-throughput data
such as gene-expression assays result in
long lists of ‘‘significant genes.’’ One way
to gain insight into the significance of
altered expression levels is to determine
whether Gene Ontology (GO) terms
associated with a particular biological
process, molecular function, or cellular
component are over- or under-represent-
ed in the set of genes deemed significant.
This process, referred to as enrichment
analysis, profiles a gene-set, and is widely
used to makes sense of the results of
high-throughput experiments. The ca-
nonical example of enrichment analysis
is when the output dataset is a list of
genes differentially expressed in some
condition. To determine the biological
relevance of a lengthy gene list, the usual
solution is to perform enrichment analysis
with the GO. We can aggregate the
annotating GO concepts for each gene
in this list, and arrive at a profile of the
biological processes or mechanisms af-
fected by the condition under study.
While GO has been the principal target
for enrichment analysis, the methods of
enrichment analysis are generalizable. We
can conduct the same sort of profiling
along other ontologies of interest. Just as
scientists can ask ‘‘Which biological pro-
cess is over-represented in my set of
interesting genes or proteins?’’ we can
also ask ‘‘Which disease (or class of
diseases) is over-represented in my set
of interesting genes or proteins?‘‘. For
example, by annotating known protein
mutations with disease terms from the
ontologies in BioPortal, Mort et al. recently
identified a class of diseases—blood
coagulation disorders—that were associ-
ated with a 14-fold depletion in substitu-
tions at O-linked glycosylation sites. With
the availability of tools for automatic
annotation of datasets with terms from
disease ontologies, there is no reason to
restrict enrichment analyses to the GO. In
this chapter, we will discuss methods to
perform enrichment analysis using any
ontology available in the biomedical
domain. We will review the general
methodology of enrichment analysis, the
associated challenges, and discuss the
novel translational analyses enabled by
the existence of public, national compu-
tational infrastructure and by the use of
disease ontologies in such analyses.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Advanced statistical methods are most

often used to perform the analysis of high-

throughput data such as gene-expression

assays [1–5], the result of which is a long

list of ‘‘significant genes.’’ Extracting

biological meaning from such lists is a

nontrivial and time-consuming task,

which is exacerbated by the inconsisten-

cies in free-text gene annotations. The

Gene Ontology (GO) offers a taxonomy

that provides a mechanism to determine

statistically significant functional sub-

groups within gene groups. One way to

gain insight into the biological signifi-

cance of alterations in gene expression

levels is to determine whether the GO

terms associated with the particular bio-

logical process, molecular function, or

cellular component are over- or under-

represented in the set of genes deemed

significant by the statistical analysis [6].

This process, often referred to as ‘‘enrich-

ment analysis,’’ can be used to summarize

a gene-set [7], although it can also be

relevant for other high-throughput mea-

surement modalities including proteo-

mics, metabolomics, and studies using

tissue-microarrays [8].

With the availability of tools for auto-

matic ontology-based annotation of data-

sets with terms from biomedical ontologies

besides the GO, we need not restrict

enrichment analysis to the GO. In this

chapter, we outline the methodology of

enrichment analysis, the associated chal-

lenges, and discuss novel analyses enabled

by performing enrichment analysis using

disease ontologies. We first review the

current methods of GO based enrichment

analysis to provide a foundation for

discussing analyses using Disease Ontolo-

gies. Note that there is also research

underway on the use of ‘‘pathways’’ for

enrichment analyses as well as comparing

statistically significant, concordant differ-

ences between two biological states as in

Gene Set Enrichment Analysis [9], which

are not discussed here.

1.1 Gene Ontology Enrichment
Analysis

The goal of enrichment analysis is to

determine which biological processes (or

molecular function) might be predomi-

nantly affected in the set of genes that were

deemed interesting or significantly

changed. The simplest approach is to

calculate functional ‘enrichment/deple-

tion’ for each GO term—a higher (or

lower) proportion of genes with certain

annotations among the significantly

changed genes than among all of the

genes measured in the experiment. The

finding of enrichment should not be

interpreted as evidence implicating the

GO term in the process studied without an

appropriate statistical test.

The calculation of GO based functional

enrichment involves two sets of items

(usually genes or proteins): 1) The refer-

ence set, which is the set of items with

which the ‘‘significant-set’’ is to be com-

pared; the reference set may comprise all

of the genes in the genome or all of the

genes for which there were probes in the

high throughput experiment; 2) The set of

interest, which is the subset or list of

significant genes that is to be analyzed for
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enrichment (or depletion) of GO terms in

their annotations.

The analysis process (Figure 1) counts

the GO annotations for both gene lists to

calculate the number of genes (n and m)

annotated with a particular GO term in

each list and then calculates the probabil-

ity (p-value) of the occurrence of at least n

genes belonging to that category among

the N genes in the set of interest, given that

m genes are annotated with that term

among the M genes in the reference set.

There are multiple ways to calculate the

probability of observing a specific enrich-

ment value. The simplest approach is to use

a binomial model. For example, if one

assumes that the probability of picking a

gene annotated with the GO term ‘apopto-

sis’ is fixed and is equal to the proportion of

genes annotated with ‘apoptosis’ in the

reference set, then the binomial distribution

provides the probability of obtaining a

particular proportion of apoptosis genes

among the genes in the set of interest by

chance [10]. Such an approximation is

quite reasonable for large reference sets (e.g.

the whole genome) because the probability

of selecting a gene annotated with the term

‘apoptosis’ into the set of interest does not

change significantly after each selection.

However, when a gene or protein is

picked from a smaller reference set, then the

probability that the next picked gene is

annotated to apoptosis is affected by wheth-

er the previously picked genes were anno-

tated to apoptosis. Under these circumstanc-

es, the hypergeometric distribution—a

discrete probability distribution that de-

scribes the number of successes in a

sequence of n draws from a finite population

without replacement—is a better statistical

model. Another option is the Fisher’s exact

test or the chi-squared distribution, both of

which take into consideration how the

probabilities change when a gene is picked.

The hypergeometric p-value is calculated

using the following formula:

P nð Þ~
m
n

� �
M{m
N{n

� �

N
n

� �

The p-value reports the likelihood of finding

n genes annotated with a particular GO

term in the set of interest by chance alone,

given the number of genes annotated with

that GO terms in the reference set. A

biological process, molecular function or

cellular location (represented by a GO term)

is called enriched if the p-value is less than

0.05. GO annotations form the corner-stone

of enrichment analysis in sets of differentially

expressed genes. The GO project’s Web site

lists over 50 tools that can be used in this

process [11].

Enrichment analysis can be done as a

hypothesis-generating task, such as asking

which GO terms are significant in a

particular set of genes or a hypothesis-

driven task such as asking whether apop-

tosis is significantly enriched or depleted in

a particular set of genes.

In the hypothesis-driven setting, the

analysis can include all of the genes that

are annotated both directly to apoptosis

and to its child nodes to maximize the

statistical power because no correction for

multiple comparisons is required. The

hypothesis-generating approach allows an

unbiased search for significant GO anno-

tations. The analysis can be done with a

bottom-up approach where for every leaf

term the genes annotated with that GO

term are also assigned to its immediate

parent term. One can propagate the

annotations recursively up along parent

nodes until a significant node is found or

until the root is reached. (Note: this

upward propagation of annotations is

Figure 1. An overview of the process to calculate enrichment of GO categories. The steps usually followed are: (1) Get annotations for each
gene in reference set and the set of interest. (2) Count the occurrence (n) of each GO term in the annotations of the genes comprising the set of
interest. (3) Count the occurrence (m) of that same GO term in the annotations of the reference set. (4) Assess how ‘‘surprising’’ is it to find n, given m,
M and N.
doi:10.1371/journal.pcbi.1002827.g001

What to Learn in This Chapter

N Review the commonly used approach of Gene Ontology based enrichment
analysis

N Understand the pitfalls associated with current approaches

N Understand the national infrastructure available for using alternative ontologies
for enrichment analysis

N Learn about a generalized enrichment analysis workflow and its application
using disease ontologies
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referred to as computing the transitive

closure of the annotation set over the

graph of the Gene Ontology). Newer

approaches can also perform the enrich-

ment analysis accounting for the position

of the term in the GO hierarchy [12–

14].

1.1.1 Interpretation of p-

values. The p-values should be

interpreted with caution because the

choice of the reference set to which the

set of interest is compared affects the p-

value. For whole genome arrays, using the

list of all genes on the array as the

reference set is equivalent to using the

complete list of genes in the genome.

However, for arrays containing a selected

subset of genes associated with a biological

process, the choice of the gene set to use as

the reference set is not obvious. Moreover,

the p-value calculation using the

hypergeometric distribution assumes the

independence of the GO annotation

categories, an assumption that may not

be justified.

Another difficulty in determining sig-

nificance using the calculated p-value and

a cutoff of 0.05, especially in the hypoth-

esis-generating approach mentioned

above, is that multiple testing increases

the likelihood of obtaining what appears

to be a statistically significant value by

chance. Multiple testing occurs because

the GO term to be tested for enrichment

is not pre-selected, but each term is tested.

This allows multiple opportunities (equal

to the number of terms tested) to obtain a

statistically significant p-value by chance

alone in a given gene list. However,

correcting for multiple testing by using a

Bonferroni correction in which the critical

p-value cut-off is divided by the number

of tests performed is too restrictive—

especially when annotations are propa-

gated up to the root node via a transitive

closure; then the number of tests is equal

to the number of terms in the GO

hierarchy.

In this situation, calculation of the false

discovery rate (FDR), which provides an

estimate of the percentage of false posi-

tives among the categories considered

enriched at a certain p-value cutoff,

allows for a more informed choice of the

p-value cutoff. One can estimate the false

discovery rate (FDR) for the enriched

categories by performing simulations

which generate a user-specified number

of random gene sets of the same size as

the set of interest and calculate the

average number of categories that are

considered enriched in the random gene

sets, at a p-value cutoff of 0.05. If the

FDR is above the desired threshold, we

can lower the p-value cutoff in order to

re-duce the FDR to acceptable levels.

Multiple hypothesis testing is a general

problem that is not specific to GO (see

[15] for a general review).

A related issue arising from performing

the transitive closure—the propagation of

annotations along the parent-child

paths—is that the parallel tests performed

for nodes in a given path will be correlated

because the same genes can appear several

times on each path. Correction methods

that assumes independence of categories

might not function well in this situation

and might preclude identification of some

categories that are indeed enriched [6]. It

is possible to use the structure of the GO

to decorrelate the analysis of various terms

[12–14] or to use corrections methods

such as a Benjamini–Yekutieli correction,

which accounts for the dependency be-

tween the multiple tests [16].

1.2 Summary of Existing Limitations
In 2005, Khatri and Draghici noted

that, despite widespread adoption, GO-

based enrichment analysis has intrinsic

drawbacks [17] and scientists must still

rely on literature searches to understand a

set of genes fully. These drawbacks

represent conceptual limitations of the

current state of the art and include:

N Incomplete annotations—even today,

roughly 20% of genes lack any GO

annotation

N Annotation bias because of inter-rela-

tionships between annotations (e.g.

annotation with certain GO terms is

not conditionally independent).

N Lack of a systematic mechanism to

define a level of abstraction, to com-

pensate for differing levels of granular-

ity.

The remainder of the chapter discusses

approaches to using existing, public bioin-

formatics tools to address these limitations

and use disease ontologies in such analy-

ses.

2. Using Disease Ontologies—
Going beyond GO Annotations

As we have discussed, enrichment

analysis provides a means of understand-

ing the results of high-throughput datasets

[17,18]. Conceptually, enrichment analy-

sis involves associating elements in the

results of high-throughput data analysis to

concepts in an ontology of interest, using

the ontology hierarchy to create a sum-

marization of the result, and computing

statistical significance for any observed

trend. The canonical example of enrich-

ment analysis is in the interpretation of a

list of differentially expressed genes in

some condition. The usual approach is to

perform enrichment analysis with the GO

[17]. There are currently over 400 publi-

cations on methods and tools for GO-

based enrichment, but (to the best of our

knowledge) only a single tool, Genes2Mesh,

uses something other than the GO (i.e. the

Medical Subject Headings or MeSH), to

calculate enrichment [19].

While GO has been the principal target

for enrichment analysis, we can carry out

the same sort of profiling using Disease

Ontologies. Just as scientists can ask

‘‘Which biological process is over-represented in

my set of interesting genes or proteins?’’, they also

should be able to ask ‘‘Which disease (or class

of diseases) is over-represented in my set of

interesting genes or proteins?’’ For example, by

annotating known protein mutations with

disease terms from the ontologies in

BioPortal, Mort et al. recently identified

a class of diseases—blood coagulation

disorders—that were associated with a

14-fold depletion in substitutions at O-

linked glycosylation sites [20].

There are several resources that can be

used as disease ontologies for enrichment

analysis. We use the term ‘‘disease ontol-

ogy’’ to refer to artifacts—terminologies,

vocabularies as well as ontologies—that

can provide a hierarchy of parent-child

terms for disease conditions. One of the

most elaborate ontology for diseases is the

Systematized Nomenclature for Medicine-

Clinical Terms (SNOMED CT) is consid-

ered to be the most comprehensive,

multilingual clinical healthcare terminolo-

gy in the world [21]. SNOMED CT was a

joint development between the NHS in

England and the College of American

Pathologists (CAP). It was formed in 1999

by the convergence of SNOMED RT and

the United Kingdom’s Clinical Terms

Version 3 (formerly known as the Read

Codes). As of 2007, SNOMED CT is

maintained and distributed by the Inter-

national Health Terminology Standards

Development Organization (IHTSDO).

Currently, SNOMED CT contains more

than 311,000 active concepts with unique

meanings and formal logic-based defini-

tions organized into multiple hierarchies.

The disease hierarchy is available under

the clinical finding root node (analogous to

the ‘‘biological process’’ root node in the

Gene Ontology). Another widely used

disease ontology is the National Cancer

Institute thesaurus (NCIt), which is an

ontology that provides terms for clinical

care, translational and basic research, and

public information and administrative
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activities. NCIt is a widely recognized

standard for biomedical coding and refer-

ence, used by a variety of public and

private institutions including the Clinical

Data Interchange Standards Consortium

Terminology (CDISC), the U.S. Food and

Drug Administration (FDA), the Federal

Medication Terminologies (FMT), and the

National Council for Prescription Drug

Programs (NCPDP). The disease hierar-

chy is available under the root node of

‘‘Diseases, Disorders and Findings’’. The

most widely used disease ontology is the

International Classification of Diseases

(ICD), which is part of the WHO Family

of International Classifications. Version 9

of ICD is widely used in the United States

for billing purposes in the health care

system. Finally, there is effort to create an

ontology of Human Diseases (available at

http://diseaseontology.sourceforge.net)

that conforms to the principles of the

Open Biomedical Ontologies Foundry

[22]. The Human Disease ontology is

under review by the OBO Foundry since

2006. For the purpose of the current

discussion, and enrichment analysis in

general, pretty much disease ontology that

provides a clear hierarchy of parent-child

for diseases would be suitable for use.

Enrichment analysis owes its popular-

ity to the fact that the process is

methodologically straightforward and

yields these easily interpretable results.

Apart from analyzing results of high

throughput experiments, enrichment

analysis can also be used as an explor-

atory tool to generate hypotheses for

clinical research. Computationally gener-

ated annotations (from multiple ontolo-

gies) on patient cohorts can provide a

foundation for enrichment analysis for

risk-factor determination. For example,

enrichment analysis can identify general

classes of drugs, diseases, and test results

that are commonly found in readmitted

transplant patients but not in healthy

recipients. As noted, the GO has been the

principal target for such analysis and

despite widespread adoption, GO-based

enrichment analysis has intrinsic draw-

backs—the primary ones being incom-

pleteness of and bias among available

manually created annotations. Below, we

discuss recent advances in the use of

ontologies for automated creation of

annotations that allow us to address these

drawbacks and apply enrichment analysis

using disease ontologies.

2.1 Advances in Ontology Access
and Automated Annotation

There are several recent advances that

enable us to use disease ontologies in

enrichment analysis. The most obvious

advancement is that almost all biomedical

ontologies are now available in public

repositories such as BioPortal [23]—built

as a part of the NIH’s Biomedical

Information Science and Technology Ini-

tiative—which enables the use of terms

from multiple ontologies in data analysis

workflows. As of this writing, the BioPortal

library contains more than 204 publicly

accessible biomedical ontologies and their

metadata, ranging in domains from geno-

mics to clinical medicine to biomedical

software resources, and comprising nearly

1.5 million terms. BioPortal’s ontology

library includes ontologies that individual

investigators submit directly to BioPortal,

terminologies drawn from both the Uni-

fied Medical Language System (UMLS)

and the WHO Family of International

Classifications (WHO-FIC). The BioPortal

library also includes the ontologies that are

candidates to the OBO Foundry, which is

an initiative to create a set of well-

documented and well-defined reference

ontologies that are designed to work with

one another to form a single, non-

redundant system [22]. In addition to

ontologies, BioPortal contains more than 1

million mappings between similar terms in

different ontologies and 16.4 billion auto-

matically created annotations on records

from 22 public databases of biomedical

data. Resources such as BioPortal provides

a unified view of all its ontologies, which

may be encoded in different formats,

each of which has its own purpose,

scope, and use. The unified view of the

content enables uniform programmatic

access to all ontologies and terminologies

in the library for use in data analysis

workflows.

The availability of automated annota-

tion tools, such as the Annotator Web

service from the NCBO and MetaMap

from the National Library of Medicine

allows the creation ontology-based anno-

tations from free-text descriptions of gene

and protein functions (such as GeneRIFs);

as a result the lack of preexisting, manually

assigned annotations is no longer a

bottleneck. For example, the Annotator

Web service enables users to provide a

textual metadata of an item of interest—

such as a GeneRIF describing a gene’s

function or an abstract corresponding to a

PubMed record—to computationally gen-

erate ontology-based annotations for the

item of interest. The user specifies which

ontologies to use, and whether also to use

mappings to other ontologies or transitive

closure of hierarchy relations to extend the

annotations. The service returns the on-

tology terms that it recognizes from the

text—the annotations—and their position

in the submitted record.

Finally the availability of large annota-

tion repositories such as the Resource

Index, which is a large repository of

automatically created annotations by the

NCBO, and the NIF database index,

which is another large repository of

computationally generated annotations

on public data sources relevant to neuro-

science, provide a source of co-occurrence

statistics among ontology-terms in anno-

tations. The availability of such annotation

corpora makes the dependence between

annotations with different ontology terms

explicit.

Given these publicly available sources

for ontologies, tools for creating ontology-

based annotations and large repositories

(or corpora) of annotations, it is now

feasible to use disease ontologies in

enrichment analysis in a manner similar

to the Gene Ontology.

As we have discussed, one key aspect of

calculating statistical enrichment is the

choice of a reference-term frequency. It

is not clear what the appropriate refer-

ence-term frequency should be when

calculating enrichment of ontology-terms

for which a ‘‘background set’’ is not

defined. For example, in the case of Gene

Ontology annotations, the background set

is usually the GO annotations of the set of

genes on which the data were collected or

the GO annotations of a set of genes

known in the genome for the species on

which the data were collected. A back-

ground set is not available, however, when

calculating enrichment using disease on-

tologies that have not been used for

manual annotation in a way the Gene

Ontology has. For this situation, there are

two main options: 1) to construct a

reference set programmatically (discussed

in Section 2.3); or 2) use the frequency of

particular terms in a large corpus, such as

the Resource Index, Medline abstracts or

on Web pages indexed by Internet search

engines such as Google.

Multiple hypothesis testing—because

each term is tested for enrichment indi-

vidually—is also unavoidable when per-

forming enrichment analysis with disease

ontologies. However, methods of correct-

ing the resultant increase in false discovery

rates that work in the case of GO based

enrichment analyses are directly applica-

ble when using disease ontologies for such

analyses.

Several researchers have noted that

enrichment analysis is more meaningful

when performed for combinations for

terms [24]. For example, it is biologically

more meaningful to know that a certain
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molecular function in a certain biological process

at a certain cellular location is enriched than

it is to know about each of the terms

separately. Similarly, when using ontolo-

gies other than GO, it is more meaningful

to look for enrichment of combinations

such as certain adverse reactions in a given

disease when treated by a particular drug.

However, exhaustively examining all pos-

sible 3-term combinations of ontology

terms is computationally expensive and

most of the random term combinations

make no biological sense. The identifica-

tion of combinations that are meaningful

and appear at a high enough frequency to

justify their use in enrichment computa-

tions is an exciting and fruitful area of

research.

2.2 DIY Disease Ontology-based
Enrichment Analysis Workflow

We have seen that the progress in the

current state of the art in storing, accessing

and using ontologies for annotation pro-

vides components that allow enrichment

analysis when preexisting annotations do

not exist; as in the case of disease

ontologies. We now discuss a workflow to

conduct enrichment analysis in domains

beyond just expression analysis. A sche-

matic of the workflow is shown in Figure 2.

A user can start with two principal types

of inputs. In the first case, the user already

has the elements of the dataset of interest

annotated with specific ontology terms—

i.e. the user already has a file associating

element identifiers (gene names, patient

ID numbers, etc.) with ontology term

identifiers. In the second case, the user

has associations of identifiers to textual

descriptions instead of ontology terms. For

example, a user might have a file associ-

ating gene IDs with their GeneRIF

descriptions from NCBI. In this situation

a user can invoke the NCBO Annotator

service [25,26] to process these textual

descriptions and assign ontology terms to

the element identifiers (Step 0). Given the

user’s selection of an ontology, the anno-

tator processes the input text (say GeneR-

IFs) to identify concepts that match

ontology terms (based on preferred names

or synonyms). The implementation details

and accuracy of the Annotator service are

described in [25]. The result is a list of

computationally annotated element iden-

tifiers based on the input textual descrip-

tion, and this output is equivalent to the

first input type. Using this step, we’re able

to create ontology-based annotations from

free-text descriptions. Thus, we are no

longer reliant on the availability of ex-

haustive manually-curated annotations,

such as those required with GO-based

analyses.

Step 1 After this optional preprocessing

step, for each ontology term in the input

dataset one can programmatically traverse

the ontology structure and retrieve the

complete listing of paths from the concept

to the root(s) of the ontology using Web

services [27]. A traversal through each of

these paths, essentially recapitulates the

ontology hierarchy. Each term along the

path is associated as an annotation to that

element identifier in the input dataset to

which the starting term was associated

with. This procedure of tracing terms back

to the graph’s root performs the transitive

closure of the annotations over the ontol-

ogy hierarchy. In essence, for each

child-parent (IS_A) relationship, we gen-

erate the complete set of implied (indirect)

annotations based on child-parent rela-

tionships, by traversing and aggregating

along the ontology hierarchy.

Step 2 Once the ontology terms and

their aggregate frequencies in the input

dataset are calculated, we arrive at the step

of determining the meaning or significance

of the results. Enrichment analysis with

GO has benefited from the existence of a

natural and easily defensible choice for a

background set—all of the given organ-

ism’s genes, all genes measured on the

platform, etc. For most of the disease

ontologies we consider, no such compre-

hensive distribution exists [28]; and as

discussed before, for calculating statistical

enrichment, we need the background term

frequency to determine if the aggregate

annotation counts after step 1 are ‘‘sur-

prising’’ given the background. By lever-

aging existing projects and resources, there

are several methods by which a user can

address this problem. We discuss a couple

of heuristic approaches to address this

problem, and in Section 2.3 discuss a

systematic process to create custom refer-

ence sets.

In the first approach, one can access a

database of automatically created annota-

tions over the entirety of MEDLINE

abstracts and use these annotations source

as an approximate proxy for the true

‘‘background distribution’’ frequency of a

specific term. To generate the background

frequency, for a given term X, we retrieve

the text strings corresponding to its

preferred name and all of its synonyms,

and then add up the MEDLINE occur-

rence counts for each of these strings. We

Figure 2. Workflow schematic of enrichment analysis. If the input set has only textual annotations, we first run the Annotator service to create
ontology-term annotations. The annotation counts in the input set are first aggregated along the ontology hierarchy and then compared with a
background set for a statistically significant difference in the frequency of each ontology term. If a significant difference in the term frequency is
found, that term is called ‘‘enriched’’ in the input set of entities. The results of the analysis are returned either as a tag-cloud, a graph, or as an XML
output that users can process as required.
doi:10.1371/journal.pcbi.1002827.g002

PLOS Computational Biology | www.ploscompbiol.org 5 December 2012 | Volume 8 | Issue 12 | e1002827



return this number (m) as well as the total

number of entries in the MEDLINE

annotation database (M). The fraction m/

M then represents the background fre-

quency of the term X in the annotated

corpus. Using this frequency we can

compute significant comparative over- or

under-representation in the input dataset.

The second approach uses NCBO’s

Resource Index, which is a repository of

automatically-created annotations. Access

to the Resource Index allows a user to

make the same sort of calculations as with

the MEDLINE term frequencies, but also

offers information on the co-occurrence of

ontological terms in textual descriptions

and annotations of datasets; enabling the

user to quantify the degree to which terms

are independent or correlated in the

annotation space.

Step 3 There are several possible output

mechanisms to such an analysis workflow.

The simplest is a tag cloud, which intui-

tively summarizes the results of the analysis

(Figure 3). The sizes and colors of terms in

the cloud indicate the relative frequency of

the terms offering a high-level overview.

However, a tag cloud’s representative

ability is limited because there is no easy

way to show significance relative to some

expectation, or to show the elements in the

input associated with some term.

The second output format is in XML,

which is amenable to postprocessing by

the user, as needed. The result for each

term contains its respective frequency

information in the input data along with

the counts on which the frequency is

based. The results on each term can also

contain the list of identifiers that mapped

to that term. Each node includes informa-

tion on the level in the ontology at which

the term is found. Using such an output, it

is straight forward to create graphical

visualizations similar to those that most

GO based enrichment analysis tools pro-

vide [29]; see example in Figure 4.

2.2.1. Ensuring quality. For any

such custom analysis workflow it is

essential to set up tests that ensure

technical accuracy before interpreting the

results for scientific significance. To

evaluate technical accuracy, we suggest

that users create benchmark data sets

similar to those of Toronen and

colleagues [30], who created gene lists

with a selected enrichment level and a

selected number of independent, over-

represented classes to compare different

GO-based enrichment methods. In the

case of analyses using disease ontologies,

the benchmark data sets would comprise

gene lists enriched for specific disease

terms, clinical-trial lists enriched for a

specific drug being studied; lists of research

publications that are enriched for known

NCIt terms, and so on. A sample

benchmark list of aging related genes and

their annotations is provided in Section 5.

Exercises. This dataset was compiled by

computationally creating disease term

annotations on 261 human genes

designated to be related to aging

according to the GeneAge database [31].

The annotations of this gene list are

enriched for disorders, such as

atherosclerosis, that are known to be

associated with aging. Such benchmark

data sets can be used to ensure accuracy of

the enrichment statistics as well as to

evaluate the appropriateness of different

sources of reference-term frequencies for

computing enrichment.

The inconsistency of abstraction levels

in ontologies is an often discussed stum-

bling block for enrichment analysis [17].

Two terms at equal depths may not

represent concepts of similar granularity,

creating a bias in the reported term

enrichment. By comprehensively analyz-

ing the frequencies of terms in MEDLINE

and the NCBO Resource Index, a user

can perform a thorough analysis of

dependencies among ontology-term anno-

tations to make existing biases explicit as

well as to define custom abstraction levels

using methods developed by Alterovitz

et al. [32]. The development of methods to

reliably identify the appropriate level of

abstraction at which to report the results of

enrichment analysis is another exciting

and fruitful area of research.

2.3 Creating Reference Sets for
Custom Enrichment Analysis

As discussed before, a key pre-requisite

for performing enrichment analysis is the

availability of an appropriate reference

dataset to compare against when looking

for over- or under-represented terms. In

this section, we describe: (i) a general

method that uses hand-curated GO anno-

tations as a starting point, for creating

reference datasets for enrichment analysis

using other ontologies; and (ii) a gene–

disease reference annotation dataset for

performing disease-based enrichment.

GO annotations are unique because

highly trained curators associate GO

terms to gene products manually, based

on literature review. We describe how,

with the availability of tools for automatic

ontology-based annotation with terms

from disease ontologies, it is possible to

create reference annotation datasets for

enrichment analysis using ontologies other

than the GO—for example, the Human

Disease Ontology.

Unlike GO terms, which actually ap-

pear in the text with low frequency, or

gene identifiers, which are ambiguous,

disease terms are amenable to automated,

term extraction techniques. Therefore,

using tools which recognize mentions of

ontology terms in user submitted text, we

can automatically recognize occurrences

of terms from the Human Disease Ontol-

ogy (DO) from a given corpus of text [28];

the key is to identify the text source that

can be relied upon to recognize disease

terms to associate with genes.

Unlike other natural-language tech-

niques for finding gene–disease associa-

tions, our proposed method uses manually

curated GO annotations as the starting

basis to identify the text source from which

to recognize disease terms. Basically, we

use manually curated GO annotations to

identify those publications that were the

Figure 3. Tag cloud output: An example for the annotations of grants from FY1981 using SNOMEDCT. Blue denotes low-frequency
terms and red denotes highly frequent terms. Many concepts, such as ‘‘neoplasm of digestive tract’’, occur at high frequencies in most years, possibly
denoting the constant focus on cancer research. An appropriate background term frequency distribution is necessary to determine significance of the
high frequency.
doi:10.1371/journal.pcbi.1002827.g003
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basis for associating a GO term with a

particular gene.

Figure 5 summarizes our method. First,

we start with GO annotations, which

provide the PubMed identifiers of papers

based on which gene products are associ-

ated with specific GO terms by a curator.

The annotations essentially give us a link

between gene identifiers and PubMed

articles and only those PubMed articles

that were deemed to be relevant for GO

annotation curation. Next, we recognize

terms from an ontology of interest (e.g.

Human Disease) in the title and abstracts

of those articles. Finally, we associate the

recognized ontology terms with the gene

identifiers to which the article analyzed

was associated.

In order to demonstrate feasibility of the

proposed workflow and to provide a

sample reference annotation set for per-

forming disease ontology based analyses in

the exercises of this chapter, we download

GO annotation files for human gene

products from geneontology.org. These

files are tab-delimited text files that

contain, among other things, a list of gene

identifiers, associated GO terms, and the

publication source (a PubMed identifier)

on the basis of which that GO annotation

was created. We removed all electronically

inferred annotations (IEA) from the anno-

tation file. We also removed all qualified

annotations, such as negated (NOT) ones.

As a result, we obtain a list of publications

and the genes they describe, gene–publi-

cation tuples. In the next step, using the

PubMed identifiers obtained from the GO

annotation files, we fetch each article’s title

and abstract using the National Library of

Medicine eUtils. We save each article’s

title and abstract as a file and annotate it

via the Annotator service using the disease

ontology as the target. Once we have the

publication–disease tuples, we cross-refer-

ence them with the gene–publication

tuples resulting in gene–disease associa-

tions for 7316 human genes.

Out of 25,000 currently estimated

human genes, we are able to annotate

7316 genes (29.2%) with at least one

disease term from the Human Disease

Ontology. Previous methods that use

advanced text mining have been able to

annotate 4408 genes (17.7%) [33]. A study

based on OMIM associated 1777 genes

(7.1%) with disease terms to create a

human ‘‘diseasome’’ [34] and an auto-

mated approach using MetaMap as the

concept recognizer and GeneRIFs as well

as descriptions from OMIM as the input

textual descriptions annotated roughly

14.9% of the human genome with disease

terms [28]. Because the number of human

genes known at the time of each study

varies, we make the comparisons loosely.

In order to validate our background

annotation set, we evaluated our gene–

disease association dataset in several ways

described in [35]. First, we examined a set

of genes related specifically to aging from

the GenAge database [31] for their

coherence in terms of the assigned disease

annotations. Next, we performed disease-

based enrichment analysis on the same

aging related gene set using our newly

created reference annotation set. The

results of the enrichment analysis are

shown in Figure 6 and the analysis itself

is offered as an exercise for the reader in

Section 6. Exercises. What differentiates

our suggested method from other ap-

proaches [28,36] for finding gene–disease

associations is the use of GO annotations

as a basis for identifying reliable gene–

publication records that serve as the

foundation for generating automated

annotations. Furthermore, researchers

can reuse our method to examine func-

tion along other dimensions. For exam-

ple, researchers can use the Pathway

ontology to generate gene–pathway asso-

ciations.

2.3.1 Ensuring quality. When using

an automated annotation process to create

a reference annotation set, there are some

caveats to consider. First, not all ontologies

are equally suited for creating automated

annotations. Second, automated

annotation depends highly on the quality

of the input text corpus. Third, some

errors in annotation are inevitable in an

automated process. We discuss these issues

below.

Using other ontologies. Although we specif-

ically focus on creating annotations with

terms from the human disease ontology,

the method we have devised (Figure 6) can

create annotations with terms from other

ontologies. In the presented workflow, to

obtain a background dataset for enrich-

ment for some ontology other than DO,

researchers would simply configure a

parameter for the Annotator Web service

to use their ontology of choice from

BioPortal. In fact, other researchers have

used a similar annotation workflow to

Figure 4. The figure shows a visualization generated using the GO TermFinder tool. The GO graph layout shows the significantly enriched
GO terms in the annotations of the analyzed gene set. The color of the nodes is an indication of their Bonferroni corrected P-value (orange , = 1e-10;
yellow 1e-10 to 1e-8; green 1e-8 to 1e-6; cyan 1e-6 to 1e-4; blue 1e-4 to 1e-2; tan .0.01).
doi:10.1371/journal.pcbi.1002827.g004

Figure 5. Workflow for generating background annotation sets for enrichment analysis: We obtain a set of PubMed articles from
manually curated GO annotations, which we process using the NCBO Annotator service.
doi:10.1371/journal.pcbi.1002827.g005

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002827



recognize morphological features in textu-

al descriptions of fish species [37].

Not all ontologies are viable candidates

for automatic annotation because not all

ontology terms appear in the text of a

MEDLINE abstract. For example, using

term–frequency counts in MEDLINE

abstracts [38], we calculated that disease

terms are mentioned 46% more often

than GO terms in MEDLINE abstracts.

As another example, only 10% of the

manually assigned GO terms can be

detected directly in the paper abstract

supporting that particular GO annota-

tion. Because disease terms are mentioned

significantly more often than GO terms,

the automated annotation process works

well for annotating genes with disease

ontology terms.

Missing annotations. Out of the 261 aging-

related genes in our evaluation subset, the

Annotator left out 24 genes (9%), for

which we have no disease terms associated

with those genes in our gene–disease

association dataset. These missed annota-

tions provide an opportunity for refining

the annotation workflows to use sources of

text beyond just the papers referenced in

GO annotations.

Annotation errors. Some errors in annota-

tion are inevitable in an automated

process. For example, in the reference

annotation set we created, TP53 was also

annotated, wrongly, to ‘‘Recruitment’’.

Papers that were the basis of creating

GO annotations for TP53 certainly men-

tion the term ‘‘Recruitment’’; however

that term is not a disease. The term

‘‘Recruitment’’ is in the Human Disease

Ontology and is declared to be a synonym

of ‘‘auditory recruitment’’, which does not

have an asserted superclass, or a place in

the hierarchy indicating a possible error in

the ontology. However, because such

errors will affect annotation of both the

set of interest and the reference set equally,

the errors will most likely cancel each

other out when computing statistical

enrichment (Figure 6)—though that is

not guaranteed. Advanced text mining

can potentially provide checks against

such kinds of errors by analyzing the

context in which a potential disease term is

mentioned.

3. Novel Use Cases Enabled

We believe that extending the current

enrichment-analysis methods to ontologies

beyond GO and to extending the method

beyond analyzing gene and protein anno-

tations to any set of entities for term

enrichment will enable several novel use

cases. For example, a user might analyze a

set of papers published in the last three

years in a particular domain (say, signal

transduction) and identify which pathway

was mentioned most frequently. Similar-

ly, a user could analyze descriptions of

genes controlled by a particular ultra-

conserved region of DNA to generate

hypotheses about the region’s function in

Figure 6. Disease terms significantly enriched in annotations of aging-related genes: The tag cloud shows those disease terms in
the annotations of the 261 aging related genes that are statistically enriched given our gene–disease background annotation
dataset. Terms that are significantly enriched appear larger. We used a binomial test to detect enriched disease terms in the aging related gene set.
Note that mis-annotated terms (such as Recruitment) and non-informative terms (such as Disease) are not deemed enriched by the statistical analysis.
doi:10.1371/journal.pcbi.1002827.g006
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specific disease processes. We discuss the

potential of some of the novel use cases

enabled by disease ontology based en-

richment analysis.

Analysis of protein annotations To demon-

strate the feasibility of performing enrich-

ment analysis and recovering known GO

annotations as well as to demonstrate

enrichment analysis with multiple ontolo-

gies, we analyzed a list of 261 known aging

related genes from the GenAge database

[31]. We started by collecting textual

descriptions for UniProt protein entries

corresponding to each human gene in the

GenAge database. The textual descrip-

tions included the protein name, gene

name, general descriptions of the function

and catalytic activity as well as keywords

and GO terms. We processed this text as

described in the workflow in Figure 6 and

created annotations from Medical Subject

Heading (MSH), Online Mendelian In-

heritance in Man (OMIM), UMLS Me-

tathesaurus (MTH) and Gene Ontology

(GO).

We created a background set of anno-

tations on 19671 proteins by applying the

same protocol to manually annotated and

reviewed proteins from SwissProt (Jan

2010 version). We calculated enrichment

and depletion of specific terms, corrected

for multiple hypotheses and obtained a list

of significant terms for all four ontologies.

Not surprisingly, ‘aging’ is an enriched

term. There were several other terms

enriched such as ‘electron transport’

(2.79e-10), ‘protein kinase activity’ (2.8e-

10) and ‘nucleotide excision repair’ (8.78e-

07) which appeared in MSH, MTH, and

GO. The enriched terms also included

aging associated diseases such as ‘Alzhei-

mer’s disease’ (0.01), ‘Werner syndrome’

(5.3e-05), ‘Diabetes Mellitus’ (1.5e-04) and

‘neurodegeneration’ (2.5e-03) from OMIM.

This case study demonstrate that en-

richment analysis with multiple ontologies

is feasible and it enables a comprehensive

characterization of the biological ‘‘signal’’

present in gene/protein lists [39]. For

example, by annotating known protein

mutations with disease terms from the

ontologies in BioPortal, Mort et al. recently

identified a class of diseases—blood coag-

ulation disorders—that were associated

with a 14-fold depletion in substitutions at

O-linked glycosylation sites [20].

Analysis of funding trends To demonstrate

the feasiblity of such analyses in a novel

domain, we processed the funding alloca-

tions of the NIH in fiscal years 1980–1989.

We aimed to identify trends in institutional

funding priorities over time, as represented

by changes in the relative frequencies of

ontology concepts from year-to-year.

Using a database containing the complete

set of grants in this interval—with their

titles, amounts, recipient institutions,

etc.—we selected grants worth over

$1,250,000 (in constant 2008 dollars). We

annotated the titles of these grants with

SNOMEDCT terms and used the anno-

tation sets to generate tag clouds for each

year, such as the one shown in Figure 3 for

year 1981, to create a visual summary of

funding trends on a per year basis. Further

analysis cross-linking annotation on grants

with annotations on publications from

specific institutions can enable compara-

tive analysis of the research efficacy at

different institutions.

Hypothesis generation for Clinical Research

Finally, enrichment analysis can also be

used as an exploratory tool to generate

hypotheses for clinical research by analyz-

ing annotations on medical records in

conjunction with annotation of molecular

datasets. For example, in the case of

kidney transplants, extended-criteria do-

nor (ECD) organs have a 40% rate of

delayed graft function and a higher

incidence of rejection compared to stan-

dard-criteria donor (SCD) kidneys.

Identifying causes of this difference is

crucial to identify patients in which an

ECD transplant has a high chance of

working.

At several research sites, the datasets

collected to address this question comprise

immunological metrics beyond the stan-

dard clinical risk factors, including multi-

parameter flow-cytometric analysis of the

peripheral immune-cell repertoire, geno-

mic analysis, and donor-specific functional

assessments. These patient data sets can be

annotated using automated methods

[8,26] to enable enrichment analysis for

risk-factor determination.

For example, simple enrichment anal-

ysis might allow identification of classes of

drugs, diseases, and test results that are

commonly found only in readmitted

transplant patients. Enrichment analysis

to identify common pairs of terms of

different semantic types can identify

combinations of drug classes and co-

morbidities, or test risk-factors and co-

morbidities that are common in this

population.

4. Summary

Because enrichment analysis with GO is

widely accepted and scientifically valuable,

we argue that the logical next step is to

extend this methodology to other ontolo-

gies—specifically disease ontologies.

Given the recent advances in ontology

repositories and methods of automated

annotation, we argue that enrichment

analysis based on textual descriptions is

possible.

We have systematically discussed how

to accomplish enrichment analysis using

ontologies other than the Gene Ontology

as well as address some of the limitations

of existing analysis methods. For example,

the roughly 20% of genes that lack

annotations can now be associated, via

their GeneRIFs, with terms from disease

ontologies. We have outlined possible

directions of research for overcoming

other limitations such as inconsistent

abstraction levels in ontologies, perform-

ing the analysis using combinations of

ontology terms, and accounting for anno-

tation bias.

In order to perform enrichment analysis

using ontologies other than the GO, a key

pre-requisite is the availability of a back-

ground set of annotations to enable the

enrichment calculation. We have de-

scribed a general method, which uses

hand-curated GO annotations as a start-

ing point, for creating background datasets

for enrichment analysis using other ontol-

ogies—such as the Human Disease On-

tology, for which hand-curated annota-

tions are not available.

To demonstrate the feasibility and

utility of our proposals, we have created

a background set of annotations to enable

enrichment analysis with the Human

Disease Ontology and validated that

background set by using the created

annotations to examine the coherence of

known aging related genes and by per-

forming enrichment analysis on an aging

related gene set from the GeneAge

database [31]. We make the set of aging

related genes and the reference annotation

set available for reader exercises in

enrichment analysis.

We argue that enrichment analysis

using computationally created ontology-

based annotations from textual descrip-

tions is possible, thus introducing

enrichment analysis as a research meth-

odology in new domains such as hypoth-

esis generation for clinical research;

without requiring manually created anno-

tations.

5. Exercises

(1) For the 260 aging related genes in

Dataset S1, perform enrichment analysis

using the Human Disease ontology, using

Dataset S2 as the reference annotation set.

Some considerations while working

through the problem:
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N The genes are listed with their Uni-

protIDs.

N Using the notation in Section 1.1, the

values of N and M are the total

number of unique genes in the aging

set and total set, respectively, and not

the number of unique terms. The

values of n and m are the unique genes

that are annotated with a given term in

the corresponding set.

N When performing the hypergeometric

test, if the test calculates the p value

based on finding a value of n greater

than or less than what was observed

(instead of equal to what was observed),

remember to add or subtract 1 from the

number of genes annotated with a given

term when calculating. If you are using a

function to calculate, refer to the

documentation to understand the input

required.

N Consider from which tail of the

hypergeometric distribution you wish

to calculate the p value.

(2) For the 260 aging related genes,

perform enrichment analysis using

SNOMED-CT (Systematized Nomencla-

ture of Medicine-Clinical Terms). Use the

GeneRIF (Gene Reference into Function)

database as the source text to annotate with

disease terms from SNOMED-CT. Choose

an appropriate reference annotation set

and justify the choice. Some considerations

while working through the problem:

N An index of GeneRIFs, maintained

by the National Center for Biotech-

nology Information (NCBI) and

the National Institutes of Health

(NIH), can be downloaded from here:

ftp://ftp.ncbi.nih.gov/gene/GeneRIF/

N Mapping from UniprotIDs to Gen-

eIDs, which are used in the GeneRIF

database, can be done here: http://

www.uniprot.org/help/mapping.

Note that you will get 261 GeneIDs for

the 260 UniprotIDs.

N Annotation using the National Center

for Biomedical Ontology’s BioPortal

Annotator Service requires obtaining

an API key. This can be done after

registration and going to ‘‘Account’’

where your API key will be displayed:

http://bioportal.bioontology.org/

N Information on the programmatic use of

the BioPortal Annotator as a client can be

found here: http://www.bioontology.

org/wiki/index.php/Annotator_Web_

service. Example code from numerous

languages, including Java, R, Python,

Ruby, Excel, HTML, and Perl, can be

found here: http://www.bioontology.

org/wiki/index.php/Annotator_Client_

Examples. All NCBO REST Web

services require the parameter ‘‘api-

key = YourApiKey’’. It is strongly en-

couraged that all users of the NCBO

Annotator Web service use only the

virtual ontology identifier. To do

so, set the ‘‘isVirtualOntolgyId’’ param-

eter to ‘‘true’’. This will ensure that you

access the version of the ontology that is

actually in the database. Failure to do this

will result in your code breaking every

time the database is updated.

N Output from the annotation service

can be conveniently parsed in XML.

To see an example of what this might

look like, visit http://bioportal.

bioontology.org/annotator. Insert the

sample text or use text of your choice,

makes selection(s) under ‘Select Ontol-

ogies’ and ‘Select UMLS Semantic

Types’ and click ‘Get Annotations’. At

the bottom by ‘Format Results As’ you

can select XML to see the XML tree

structure of the Annotator output.

N The suggested ontology for this exercise

is SNOMED-CT (ontology ID: 1353)

and semantic types Anatomical Struc-

ture (T017), Disease or Syndrome

(T047), Neoplastic Process (T191), and

NCBO BioPortal concept (T999).

N Some processing of the GeneRIF text

may be necessary to prevent errors in

annotation. It is suggested to remove

GeneRIFs with new line characters

(‘\n’) and replace single or double

quotes with white space.

N Many GeneIDs have multiple Gen-

eRIF entries. The user will find more

efficient annotation if all of the Gen-

eRIF entries for a given gene are

concatenated and passed to the anno-

tator instead of annotating individual

GeneRIF entries for the same gene.

N Due to the large number of GeneRIFs,

the BioPortal Annotator may timeout

while the user is looping through genes to

annotate. It is suggested that the annota-

tion is done incrementally and joined or

intermittent saves of the annotations is

done to prevent timely re-annotation.

N The given set of aging genes will have

considerably more annotations terms

per gene than the set of all genes in the

GeneRIF database. This bias should

be a consideration when deciding on

an appropriate M. There are numer-

ous approaches to address this, and a

simple method may be to limit the

reference set of genes M to only those

with at least a given number of

annotated terms. You may also want

to limit the results to only those terms

that appear at least a given amount of

times in the aging gene annotations.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Dataset S1 Data file for Exercise 1

(TXT)

Dataset S2 Data file for Exercise 1

(TXT)

Dataset S3 Data file for Exercise 1

(OBO)

Dataset S4 Additional info on genes

mentioned in S1 and S2. Can be used in

lieu of GeneRIFs in Exercise 2.

(TXT)

Text S1 Answers to Exercises

(DOCX)

Table S1 Exercise 1 analysis results

(CSV)

Table S2 Exercise 2 analysis results

(CSV)
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Abstract: Genome-wide associa-
tion study (GWAS) aims to discover
genetic factors underlying pheno-
typic traits. The large number of
genetic factors poses both compu-
tational and statistical challenges.
Various computational approaches
have been developed for large
scale GWAS. In this chapter, we will
discuss several widely used com-
putational approaches in GWAS.
The following topics will be cov-
ered: (1) An introduction to the
background of GWAS. (2) The
existing computational approaches
that are widely used in GWAS. This
will cover single-locus, epistasis
detection, and machine learning
methods that have been recently
developed in biology, statistic, and
computer science communities.
This part will be the main focus of
this chapter. (3) The limitations of
current approaches and future di-
rections.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

With the advancement of genotyping

technology, genome-wide high-density sin-

gle nucleotide polymorphisms (SNPs) of

human and other organisms are now

available [1,2]. The goal of genome-wide

association studies (GWAS) is to seek

strong associations between phenotype

and genetic variations in a population that

represent (genomically proximal) causal

genetic effects. As the most abundant

source of genetic variation, millions of

SNPs have been genotyped across the

entire genome. Analyzing such large

amount of markers poses great challenges

to traditional computational and statistical

methods. In this chapter, we introduce the

basic concept of genome-wide association

study, and discuss recently developed

methods for GWAS.

Genome-wide association study is an

inter-discipline problem of biology, statis-

tics and computer science [3,4,5,6]. In this

section, we will first provide a brief

introduction to the necessary biological

background. We will then formalize the

problem and discuss both traditional and

recently developed methods for genome-

wide analysis of associations.

A human genome contains over 3 billion

DNA base pairs. There are four possible

nucleotides at each base in the DNA:

adenine (A), guanine (G), thymine (T),

and cytosine (C). In some locations in the

genome, a genetic variation may be found

which involves two or more nucleotides

across different individuals. These genetic

variations are known as single-nucleotide

polymorphism (SNPs), i.e., a variation of a

single nucleotide in the DNA sequence. In

most cases, there are two possible nucleo-

tides for a variant. We denote the more

frequent one as ‘‘0’’, and the less frequent

one as ‘‘1’’. For bases on autosomal

chromosomes, there are two parallel nucle-

otides, which leads to three possible

combinations, ‘‘00’’, ‘‘01’’ and ‘‘11’’. These

genotype combinations are known as

‘‘major homozygous site’’, ‘‘heterozygous

site’’ and ‘‘minor heterozygous site’’ re-

spectively. These genetic variations con-

tribute to the phenotypic differences among

the individuals. (A phenotype is the com-

posite of an organism’s observable charac-

teristics or traits.) Genome-wide association

study (GWAS) aims to find strong associa-

tions between SNPs and phenotypes across

a set of individuals.

More formally, let X~fX1,X2, � � � ,
XNg be the set of N SNPs for M

individuals in the study, and Y be the

phenotype of interest. The goal of GWAS

is to find SNPs (markers) in X , that are

highly associated with Y . There are

several challenging issues that need to be

addressed when developing an analytic

method for GWAS [7,8].

Scalability Most GWAS datasets consist

of a large number of SNPs. Therefore the

algorithms for GWAS need to be highly

scalable. For example, for a typical human

GWAS, the dataset may contain up to

millions SNPs and involve thousands of

individuals. Inefficient methods may con-

sume a large amount of computational

resources and time to find highly associated

SNPs.

Missing markers Even with the

current dense genotyping technique, many

genetic variants are still not genotyped.

Current methods usually assume genetic

linkage to enhance the power. Imputation,

which tries to impute the unknown

markers by using existing SNPs databases,

is another popular approach to handle

missing markers. The well known related

projects include the International Hap-

Map project [9] and the 1000 Genomes

Project [10].

Complex traits One approach in

GWAS is to test the association between

the trait and each marker in a genome,

which is successful in detecting a single

gene related disease. However, this ap-

proach may have problems in finding

markers associated with complex traits.

This is because that complex traits are

affected by multiple genes, and each gene

may only have a weak association with the

phenotype. Such markers with low mar-

ginal effects are hard to detect by the

single-locus methods.
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In the remainder of the chapter, we will

first discuss the single-locus methods. We

will then study epistasis detection (multi-

locus) approaches which are designed for

association studies of complex traits. For

epistasis detection, we will mainly focus on

exact two-locus association mapping

methods.

2. Single-Locus Association
Mapping

As the rapid development of high-

throughput genotyping technology, mil-

lions of SNPs are now available for

genome-wide association studies. Single-

locus association test is a traditional way

for association studies. Specifically, for

each SNP, a statistical test is performed

to evaluate the association between the

SNP and the phenotype. A variety of tests

can be applied depending on the data

types. The phenotype involved in a study

can be case-control (binary), quantitative

(continuous), or categorical. We categorize

the statistical tests based on what kind of

phenotypes they can be applied on.

2.1 Problem Formalization
Let fX1, � � � ,XNg be a set of N SNPs

for M individuals and Xn~fXn1,
� � � ,XnMg (1ƒnƒN). We use 0, 1, 2 to

represent the homozygous major allele,

heterozygous allele, and homozygous mi-

nor allele respectively. Thus we have that

Xnm[f0,1,2g (1ƒnƒN,1ƒmƒM ). Let

Y~fy1, � � � ,yMg be the phenotype. Note

that the values that Y can take depend on

its type.

2.2 Case-Control Phenotype
In a case-control study, the phenotype

can be represented as a binary variable

with 0 representing controls and 1 repre-

senting cases.

A contingency table records the

frequencies of different events. Table 1

is an example contingency table. For a

SNP Xn and a phenotype Y , and we use

Oij to denote the number of individuals

whose Xn equals i and Y equals j. Also,

we have Oi:~
P

j

Oij and O:j~
P

i

Oij .

The total number of individuals

S~
P

i,j

Oij .

Many tests can be used to assess the

significance of the association between a

single SNP and a binary phenotype. The test

statistics are usually based on the contingency

table. The null hypothesis is that there is no

association between the rows and columns of

the contingency table.

2.2.1 Pearson’s x2 test. Pearson’s x2

test can be used to test a null hypothesis

stating that the frequency distribution of

certain events observed in a sample is

consistent with a particular theoretical

distribution [11].

The value of the test statistic is

X 2~
X

i

X

j

(Oij{Eij)
2

Eij

,

where Eij~
Oi:O:j

S
. The degree of freedom

is 2.

2.2.2 G-test. G-test is an

approximation of the log-likelihood ratio.

The test statistic is

G~2
X

i

X

j

Oij
:ln(

Oij

Eij

),

where Eij~
Oi:O:j

S
.

The null hypothesis is that the observed

frequencies result from random sampling

from a distribution with the given expect-

ed frequencies. The distribution of G is

approximately that of x2, with the same

degree of freedom as in the corresponding

x2 test. When applied to a reasonable size

of samples, the G-test and the x2 test will

lead to the same conclusions.

2.2.3 Fisher exact test. When the

sample size is small, the Fisher exact test is

useful to determine the significance of the

association. The p-value of the test is the

probability of the contingency table given the

fixed margins. The probability of obtaining

such values in Table 1 is given by the

hypergeometric distribution:

p~

O:0

O00

 !
O:1

O01

 !
O:2

O02

 !

S

O0:

 ! ~

(O:0!O:1!O:2!)(O0:!O1:!)

S!(O00!O01!O02!O10!O11!O12!)

Most modern statistical packages can

calculate the significance of Fisher tests. The

actual computation performed by the existing

software packages may be different from the

exact formulation given above because of the

numerical difficulties. A simple, somewhat

better computational approach relies on a

gamma function or log-gamma function.

How to accurately compute hypergeometric

and binomial probabilities remains an active

research area.

2.2.4 Cochran-Armitage test. For

complex traits, contributions to disease

risk from SNPs are widely considered to be

roughly additive. In other words, the

heterozygous alleles will have an inter-

mediate risk between two homozygous

alleles. Cochran-Armitage test can be used

in this case [12,5]. Let the test statistic of U

be the following:

U~O1:O0:

X2

i~0

i:(
O1i

O1:
{

O0i

O0:
)

After substitution, we get

U~S:(O11z2O12{O1:
:(O:1z2O:2)

The variance of U under the null

hypothesis can be computed as

Var(U)~
(S{O1:)O1:

S

½S(O:1z4O:2){(O:1z2O:2)2�

Notice that for a large sample size S, we

have Uffiffiffiffiffiffiffiffiffiffiffi
Var(U)
p *N(0,1), hence U2

Var(U)
*x2

1.

2.2.5 Summary. There is no overall

winner of the introduced tests. Cochran-

Armitage test may not be the best if the risks

are deviated from the additive model.

Meanwhile, x2 test, G-test, and Fisher exact

test can handle the full range of risks, but they

will unavoidably lose some power in the

detection of additive ones. Different tests may

be applied on the same data to detect

different effects.

What to Learn in This Chapter

N The background of Genome-wide association study (GWAS).

N The existing computational approaches that are widely used in GWAS. This will
cover single-locus, epistasis detection, and machine learning methods.

N The limitations of current approaches and future directions.

Table 1. Contingency table for a single
SNP Xn and a phenotype Y .

Xn~0 Xn~1 Xn~2 Totals

Y~0 O00 O01 O02 O0:

Y~1 O10 O11 O12 O1:

Totals O:0 O:1 O:2 S

doi:10.1371/journal.pcbi.1002828.t001
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2.3 Quantitative Phenotype
In addition to case-control phenotypes,

many complex traits are quantitative. This

type of study is also often referred to as the

quantitative trait locus (QTL) analysis.

The standard tools for testing the associ-

ation between a single marker and a

continuous outcome are analysis of vari-

ance (ANOVA) and linear regression.

2.3.1 One-way ANOVA. The F-test

in one-way analysis of variance is used to

assess whether the expected values of a

quantitative variable within several pre-

defined groups differ from each other.

For each SNP Xn, we can divide all the

individuals into three groups according to

their genotypes. Let Y ’i (i[f0,1,2g) be a

subset of phenotypes of which the individ-

uals have the genotypes equal to i. We

represent the number of phenotypes in Y ’i
as Mi, and we have Y ’i ~fyi1, � � � ,yiMi

g.

Notice that
S2

i~0

Y ’i ~Y and
P2

i~0

Mi~M

The total sum of squares (SST) can be

divided into two parts, the between-group

sum of squares (SSB) and the within-group

sum of squares (SSW):

SST~
XM

m~1

(ym{Y )2~

X2

i~0

XMi

m~1

(y0im {Y )2,

SSB~
X2

i~0

(Y 0i {Y )2, and

SSW~SST{SSB~
X2

i~0

XMi

m~1

(y0im { �YY ’
i )

2,

where

Y~
1

M

XM

m~1

ym and �YY ’
i ~

1

Mi

XMi

m~1

y’im :

The formula of F-test statistic is F~ SSB
SSW

,

and F follows the F-distribution with 2 and

S-3 degrees of freedom under the null

hypothesis, i.e., F*F(2,S{3).

2.3.2 Linear regression. In the

linear regression model, a least-squares

regression line is fit between the phenotype

values and the genotype values [11]. For

simplicity, we denote the genotypes of a

single SNP to be x1,x2, � � � ,xM . Based on

the data (x1,y1), � � � ,(xM ,yM ), we need to

fit a line in the form of Y~azbx.

We have the sums of squares as follows:

SSxx~
XM

i~1

(xi{x)2,SSyy~
XM

i~1

(Yi{Y )2,

and SSxy~
XM

i~1

(xi{x)(Yi{Y )

where x~ 1
M

PM

i~1

xi and Y~ 1
M

PM

i~1

yi

To achieve least squares, the estimator

of b is
SSxy

SSxx
. To evaluate the significance of

the obtained model, a hypothesis testing

for b~0 is then applied.

2.4 Multiple Testing Problem
In a typical GWAS, the test needs to be

performed many times. We should pay

attention to a statistical issue known as the

multiple testing problem. In the remainder

of this section, we will discuss the multiple

testing problem and how to effectively

control error rate in GWAS.

Type 1 error rate, is the possibility that a

null hypothesis is rejected when it is actually

true. In other words, it is the chance of

observing a positive (significant) result even if

it is not. If a test is performed multiple times,

the overall Type 1 Error rate will increase.

This is called the multiple testing problem.

Let a be the type 1 error rate for a statistical

test. If the test is performed n times, the

experimental-wise error rate a’ is given by

a’~1{(1{a)n:

For example, if a~0:05 and n~20, then

a’~1{(1{0:05)20~0:64. In this case, the

chance of getting at least one false positive is

64%.

Because of the multiple testing problem,

the test result may not be that significant

even if its p-value is less than a significant

level a. To solve this problem, the nominal

p-value need to be corrected/adjusted.

2.5 Family-Wise Error Rate Control
For the single-locus test, we denote the p-

value for a association test of a SNP Xi and a

phenotype Y to be p(Xi,Y ), and the

corrected p-value to be p’(Xi,Y ). Family-wise

error rate (FWER), or the experiment-wise

error rate, is the probability of at least one false

association. We use a’ to denote family-wise

error rate, and it is given by

a’~P(reject H0DH0)~P reject at leastð

one of Hi(1ƒiƒn)DH0Þ,

where n is the total number of tests and H0 is

the hypothesis that all the Hi(1ƒiƒn) are

true.

Many methods can be used to control

FWER. Bonferroni correction is a com-

monly used method, in which p-values

need to be enlarged to account for the

number of comparisons being performed.

Permutation test [13] is also widely used to

correct for multiple testing in GWAS.

2.5.1 Bonferroni correction. In

Bonferroni correction, the p-value of a

test is multiplied by the number of tests in

the multiple comparison.

p’(Xi,Y )~p(Xi,Y ) �N

Here the number of tests is the number of

SNPs N in a study. Bonferroni correction

is a single-step procedure, in which each of

the p-values is independently corrected.

2.5.2 Permutation tests. In the

permutation test, data are reshuffled. For

each permutation, p-values for all the tests are

re-calculated, and the minimal p-value is

retained. After K permutations, we get totally

K minimal p-values. The corrected p-value is

given by the proportion of minimal p-values

which is less than the original p-value.

Let fY1, � � � ,Ykg be the set of K

permutations. For each permutation

Yk(1ƒkƒK), the minimal p-value pYk

is given by

pYk
~minfp(Xi,Yk)D1ƒiƒng:

Then we have the corrected p-value

p’(Xi,Y )~
#fpYk

vp(Xi,Y )D1ƒkƒKg
K

:

The permutation method takes advantage of

the correlation structure between SNPs. It is

less stringent than Bonferroni correction.

2.6 False Discovery Rate Control
False discovery rate (FDR) controls the

expected proportion of type 1 error among all

significant hypotheses. It is less conservative

than the family-wise error rate. For example,

if 100 observed results are claimed to be

significant, and the FDR is 0.1, then 10 of

results are expected to be false discoveries.

One way to control the FDR is as

follows [14]. The p-values of SNPs and the

phenotype are ranked from smallest to

largest. We denote the ordered p-values to

be p1, � � � ,pN . Starting from the largest p-

value to the smallest, the original p-value is

multiplied by the total number of SNPs

and divided by its rank. For the ith p-value

pi, its corrected p-value p’i is given by

p’i ~pi � (
N

i
):
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In this section, we have discussed com-

monly used methods in single-locus study,

the multiple testing problem and how to

control error rate in GWAS. In the next

section, we will introduce methods used

for two-locus association studies. We will

focus on one class work that finds exact

solution when searching for SNP-SNP

interactions in GWAS.

3. Exact Methods for Two-Locus
Association Study

The vast number of SNPs has posed

great computational challenge to genome-

wide association study. In order to under-

stand the underlying biological mecha-

nisms of complex phenotype, one needs to

consider the joint effect of multiple SNPs

simultaneously. Although the idea of

studying the association between pheno-

type and multiple SNPs is straightforward,

the implementation is nontrivial. For a

study with total N SNPs, in order to find

the association between n SNPs and the

phenotype, a brute-force approach is to

exhaustively enumerate all
N

n

� �
possible

SNP combinations and evaluate their

associations with the phenotype. The

computational burden imposed by this

enormous search space often makes the

complete genome-wide association study

intractable. Moreover, although permuta-

tion test has been considered the gold

standard method for multiple testing

correction, it will dramatically increase

the computational burden because the

process needs to be performed for all

permuted data.

In this section, we will focus on the

recently developed exact method for two-

locus epistasis detection. Different from

the single-locus approach, the goal of two-

locus epistasis detection is to identify

interacting SNP-pairs that have strong

association with the phenotype. FastA-

NOVA [15] is an algorithm for two-locus

ANOVA (analysis of variance) test on

quantitative traits and FastChi [16] for

two-locus chi-square test on case-control

phenotypes. COE [17] is a general

method that can be applied in a wide

range of tests. TEAM [18] is designed for

studies involving a large number of

individuals such as human studies. In this

subsection, we will discuss these algo-

rithms, and their strengths and limita-

tions.

3.1 The FastANOVA Algorithm
FastANOVA utilizes an upper bound of

the two-locus ANOVA test to prune the

search space. The upper bound is ex-

pressed as the sum of two terms. The first

term is based on the single-SNP ANOVA

test. The second term is based on the

genotype of the SNP-pair and is indepen-

dent of permutations. This property allows

to index SNP-pairs in a 2D array based on

the genotype relationship between SNPs.

Since the number of entries in the 2D

array is bound by the number of individ-

uals in the study, many SNP-pairs share a

common entry. Moreover, it can be shown

that all SNP-pairs indexed by the same

entry have exactly the same upper bound.

Therefore, we can compute the upper

bound for a group of SNP-pairs together.

Another important property is that the

indexing structure only needs to be built

once and can be reused for all permutated

data. Utilizing the upper bound and the

indexing structure, FastANOVA only

needs to perform the ANOVA test on a

small number of candidate SNP-pairs

without the risk of missing any significant

pair. We discuss the algorithm in further

detail in the following.

Let fX1,X2, � � � ,XNg be the set of SNPs

of M individuals (Xi[f0,1g,1ƒiƒN) and

Y~fy1,y2, � � � ,yMg be the quantitative

phenotype of interest, where ym

(1ƒmƒM ) is the phenotype value of

individual m.

For any SNP Xi (1ƒiƒN ), we repre-

sent the F-statistic from the ANOVA test

of Xi and Y as F(Xi,Y ). For any SNP-

pair (XiXj), we represent the F-statistic

from the ANOVA test of (XiXj) and Y as

F (XiXj ,Y ).

The basic idea of ANOVA test is to

partition the total sum of squared devia-

tions SST into between-group sum of

squared deviations SSB and within-group

sum of squared deviations SSW :

SST~SSBzSSW :

In our application of the two-locus asso-

ciation study, Table 2 and Table 3 show

the possible groupings of phenotype values

by the genotypes of Xi and (XiXj)

respectively.

Let A, B, a1, a2, b1, b2 represent the

groups as indicated in Table 2 and

Table 3. We use SSB(Xi,Y ) and

SSB(XiXj ,Y ) to distinct the one locus

(i.e., single-SNP) and two locus (i.e., SNP-

pair) analyses. Specifically, we have

SST (Xi,Y )~SSB(Xi,Y )zSSW (Xi,Y ),

SST (XiXj ,Y )~SSB(XiXj ,Y )z

SSW (XiXj ,Y ):

The F-statistics for ANOVA tests on Xi

and (XiXj) are:

F (Xi,Y )~
M{2

2{1
|

SSB(Xi,Y )

SST (Xi,Y ){SSB(Xi,Y )
,

ð1:1Þ

F (XiXj ,Y )~

M{g

g{1
|

SSB(XiXj ,Y )

SST (XiXj ,Y ){SSB(XiXj ,Y )
,

ð1:2Þ

where g in Equation (1.2) is the number of

groups that the genotype of (XiXj) parti-

tions the individuals into. Possible values

of g are 3 or 4, assuming all SNPs are

distinct: If none of groups A, B, a1, a2, b1,

b2 is empty, then g~4. If one of them is

empty, then g~3.

Let T~
P

ym[Y

ym be the sum of all

phenotype values. The total sum of

squared deviations does not depend on

the groupings of individuals:

SST (Xi,Y )~SST (XiXj ,Y )~
X

ym[Y

y2
m{

T2

M
:

Let Tgroup~
P

ym[group

ym be the sum of

phenotype values in a specific group, and

ngroup be the number of individuals in that

group. SSB(Xi,Y ) and SSB(XiXj ,Y ) can

be calculated as follows:

SSB(Xi,Y )~
T2

A

nA

z
T2

B

nB

{
T2

M
,

Table 2. Grouping of Y by Xi .

Xi~1 Xi~0

group A group B

doi:10.1371/journal.pcbi.1002828.t002

Table 3. Grouping of Y by XiXj .

Xi~1 Xi~0

Xj~1 group a1 group b1

Xj~0 group a2 group b2

doi:10.1371/journal.pcbi.1002828.t003
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SSB(XiXj ,Y )~
T2

a1

na1

z
T2

a2

na2

z

T2
b1

nb1

z
T2

b2

nb2

{
T2

M
:

Note that for any group of A, B, a1, a2, b1,

b2, if ngroup~0, then
T2

group
ngroup

is defined to be

0.

Let fymDym[Ag~fyA1
,yA2

, � � � ,yAnA
g

be the phenotype values in group A.

Without loss of generality, assume that

these phenotype values are arranged in

ascending order, i.e.,

yA1
ƒyA2

ƒ � � �ƒyAnA
:

Let fymDym[Bg~fyB1
,yB2

, � � � ,yBnB
g be

the phenotype values in group B. Without

loss of generality, assume that these

phenotype values are arranged in ascend-

ing order, i.e.,

yB1
ƒyB2

ƒ � � �ƒyBnB
:

We have the overall upper bound on

SSB(XiXj ,Y ):

Theorem 1 (Upper bound of SSB(Xi

Xj ,Y ))

SSB(XiXj ,Y )ƒSSB(Xi,Y )zR1(XiXjY )z

R2(XiXjY ):

The notations in the bound can be found

in Table 4. The upper bound in Theorem 1

is tight. The tightness of the bound is obvious

from the derivation of the upper bound, since

there exists some genotype of SNP-pair

(XiXj) that makes the equality hold.

We now discuss how to apply the upper

bound in Theorem 1 in detail. The set of

all SNP-pairs is partitioned into non-

overlapping groups such that the upper

bound can be readily applied to each

group. For every Xi (1ƒiƒN), let

AP(Xi) be the set of SNP-pairs

AP(Xi)~f(XiXj)Diz1ƒjƒNg:

For all SNP-pairs in AP(Xi), nA, TA, nB, TB

and SSB(Xi,Y ) are constants. Moreover,

la1
, ua1

are determined by na1
, and lb1

, ub1

are determined by nb1
. Therefore, in the

upper bound, na1
and nb1

are the only

variables that depend on Xj and may vary

for different SNP-pairs (XiXj) in AP(Xi).

Note that na1
is the number of 1’s in Xj

when Xi takes value 1, and nb1
is the number

of 1’s in Xj when Xi takes value 0. It is easy to

prove that switching na1
and na2

does not

change the F-statistic value and the correct-

ness of the upper bound. This is also true if

we switch nb1
and nb2

. Therefore, without

loss of generality, we can always assume that

na1
is the smaller one between the number of

1’s and number of 0’s in Xj when Xi takes

value 1, and nb1
is the smaller one between

the number of 1’s and number of 0’s in Xj

when Xi takes value 0.

If there are m 1’s and (M{m) 0’s in Xi,

then for any (XiXj)[AP(Xi), the possible

values that na1
can take are f0,1,2, � � � ,

tm=2sg. The possible values that nb1
can

take are f0,1,2, � � � ,t(M{m)=2sg.
To efficiently retrieve the candidates, the

SNP-pairs (XiXj) in AP(Xi) are grouped

by their (na1
,nb1

) values and indexed in a

2D array, referred to as Array(Xi).

Suppose that there are 32 individuals, and

the genotype of Xi consists of half 0’s and half

1’s. Thus for the SNP-pairs in AP(Xi), the

possible values of na1
and nb1

are

f0,1,2, � � � ,8g. Figure 1 shows the 9|9
array, Array(Xi), whose entries represent

the possible values of (na1
,nb1

) for the SNP-

pairs (XiXj)[AP(Xi). The entries in the same

column have the same na1
value. The entries

in the same row have the same nb1
value. The

na1
value of each column is noted beneath

each column. The nb1
value of each row is

noted left to each row. Each entry of the array

is a pointer to the SNP-pairs (XiXj)[AP(Xi)

having the corresponding (na1
,nb1

) values.

For any SNP Xi, the maximum number of

the entries in Array(Xi) is (qM
4
rz1)2. The

proof of this property is straightforward and

omitted here. In order to find candidate SNP-

pairs, we scan all entries in Array(Xi) to

calculate their upper bounds. Since the

SNP-pairs indexed by the same entry share

the same (na1
,nb1

) value, they have the same

upper bound. In this way, we can calculate

the upper bound for a group of SNP-pairs

together. Note that for typical genome-wide

association studies, the number of individuals

M is much smaller than the number of SNPs

N . Therefore, the additional cost for access-

ing Array(Xi) is minimal compared to

performing ANOVA tests for all pairs

(XiXj)[AP(Xi).

For multiple tests, permutation proce-

dure is often used in genetic analysis for

controlling family-wise error rate. For

genome-wide association study, permuta-

tion is less commonly used because it often

entails prohibitively long computation

times. Our FastANOVA algorithm makes

permutation procedure feasible in ge-

nome-wide association study.

Let Y ’~fY1,Y2, � � � ,YKg be the K

permutations of the phenotype Y . Following

the idea discussed above, the upper bound in

Theorem 1 can be easily incorporated in the

algorithm to handle the permutations. For

every SNP Xi, the indexing structure

Array(Xi) is independent of the permuted

phenotypes in Y ’. The correctness of this

property relies on the fact that, for any

(XiXj)[AP(Xi), na1
and nb1

only depend on

the genotype of the SNP-pair and thus

remain constant for different phenotype

permutations. Therefore, for each Xi, once

we build Array(Xi), it can be reused in all

permutations.

3.2 The FastChi Algorithm
As our initial attempt to develop scalable

algorithms for genome-wide association

study, FastANOVA is specifically designed

for the ANOVA test on quantitative pheno-

types. Another category of phenotypes is

generated in case-control study, where the

phenotypes are binary variables representing

disease/non-disease individuals. Chi-square

test is one of the most commonly used

statistics in binary phenotype association

Table 4. Notations for the bounds.

Symbols Formulas

la1

Xna1

i~1
yAi

ua1

XnA

i~nA{na1
z1

yAi

R1(XiXjY ) maxf(nAla1
{na1

TA)2,(nAua1
{na1

TA)2g
na1

(nA{na1
)nA

lb1

Xnb1

i~1
yBi

ub1

XnB

i~nB{nb1
z1

yBi

R2(XiXjY ) maxf(nBlb1
{nb1

TB)2,(nBub1
{nb1

TB)2g
nb1

(nB{nb1
)nB

doi:10.1371/journal.pcbi.1002828.t004
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study. We can extend the principles in

FastANOVA for efficient two-locus chi-

square test. The general idea of FastChi is

similar to that of FastANOVA, i.e., re-

formulating the chi-square test statistic to

establish an upper bound of two-locus chi-

square test, and indexing the SNP-pairs

according to their genotypes in order to

effectively prune the search space and reuse

redundant computations. Here we briefly

introduce the FastChi algorithm.

For SNP Xi, we represent the chi-square

test value of Xi and the binary phenotype Y as

x2(Xi,Y ). For any SNP-pair Xi and Xj , we

use x2(XiXj ,Y ) to represent the chi-square

test value for the combined effect of (XiXj)

with Y . Let A,B,C,D represent the following

events respectively: Y~0 ^ Xi~0; Y~0^
Xi~1; Y~1 ^ Xi~0; Y~1 ^ Xi~1. Let

Oevent denote the observed value of an event.

T1, T2, S1, S2, R1, and R2 represent the

formulas shown in Table 5. We have the

upper bound of x2(XiXj ,Y ) stated in

Theorem 2.

Theorem 2 (Upper bound of x2(XiXj ,
Y ))

x2(XiXj ,Y )ƒx2(Xi,Y )zT1S1R1z

T2S2R2:

For given phenotype Y and SNPXi,

x2(Xi,Y ), T1, S1, T2, and S2 are constants.

R1 and R2 are the only variables that

depend on Xj and may vary for different

SNP-pairs (XiXj)[AP(Xi). (Recall that

AP(Xi)~f(XiXj)Diz1ƒjƒNg.) Thus for

a given Xi, we can treat equation

x2(Xi,Y )zT1S1R1zT2S2R2~h as a

straight line in the 2-D space of R1 and R2.

The ones whose (R1(XiXj),R2(XiXj)) val-

ues fall below the line can be pruned without

any further test.

Suppose that there are 32 individuals, Xi

contains half 0’s, and half 1’s. For the

SNP-pairs in AP(Xi), the possible values of

R1 (and R2) are f 0

16
,

1

15
,

2

14
,

3

13
,

4

12
,

5

11
,

6

10
,
7

9
,
8

8
g. Figure 2 shows the 2-D space

of R1 and R2. The blue stars represent the

values that (R1,R2) can take. The line

x2(Xi,Y )zT1S1R1zT2S2R2~h is plot-

ted in the figure. Only the SNP-pairs whose

(R1,R2) values are in the shaded region are

subject to two-locus Chi-square test.

Similar to FastANOVA, in FastChi, we

can index the SNP-pairs in AP(Xi) accord-

ing to their genotype relationships, i.e., by the

values of (R1,R2). Experimental results

demonstrate that FastChi is an order of

magnitude faster than the brute force

alternative.

3.3 The COE Algorithm
Both FastANOVA and FastChi rework the

formula of ANOVA test and Chi-square test

to estimate an upper bound of the test value

for SNP pairs. These upper bounds are used

to identify candidate SNP pairs that may have

strong epistatic effect. Repetitive computation

in a permutation test is also identified and

performed once those results are stored for use

by all permutations. These two strategies lead

to substantial speedup, especially for large

permutation test, without compromising the

accuracy of the test. These approaches

guarantee to find the optimal solutions.

However, a common drawback of these

methods is that they are designed for specific

tests, i.e., chi-square test and ANOVA test.

The upper bounds used in these methods do

not work for other statistical tests, which are

Figure 1. The index array Array(Xi) for efficient retrieval of the candidate SNP-pairs.
doi:10.1371/journal.pcbi.1002828.g001

Table 5. Notations used in the derivation of the upper bound for two-locus Chi-
square test.

Symbols Formulas

T1 M2

(OAzOB)(OAzOC )(OCzOD)

S1 maxfO2
A,O2

Cg

R1
minf

OXj ~1

OXj ~0

DXi~0

� �
,

OXj ~0

OXj ~1

DXi~0

� �
g

T2 M2

(OAzOB)(OBzOD)(OCzOD)

S2 maxfO2
B,O2

Dg

R2
minf

OXj ~1

OXj ~0

DXi~1

� �
,

OXj ~0

OXj ~1

DXi~1

� �
g

doi:10.1371/journal.pcbi.1002828.t005
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also routinely used by researchers. In addition,

new statistics for epistasis detection are

continually emerging in the literature. There-

fore, it is desirable to develop a general model

that supports a variety of statistical tests.

The COE algorithm takes the advantage

of convex optimization. It can be shown that

a wide range of statistical tests, such as

chi-square test, likelihood ratio test (also

known as G-test), and entropy-based tests

are all convex functions of observed frequen-

cies in contingency tables. Since the maxi-

mum value of a convex function is attained at

the vertices of its convex domain, by

constraining on the observed frequencies in

the contingency tables, we can determine the

domain of the convex function and get its

maximum value. This maximum value is

used as the upper bound on the test statistics

to filter out insignificant SNP-pairs. COE is

applicable to all tests that are convex.

3.4 The TEAM Algorithm
The methods we have discussed so far

provide promising alternatives for GWAS.

However, there are two major drawbacks that

limit their applicability. First, they are designed

for relatively small sample size and only

consider homozygous markers (i.e., each

SNP can be represented as a f0,1g binary

variable). In human study, the sample size is

usually large and most SNPs contain hetero-

zygous genotypes and are coded using

f0,1,2g. These make previous methods

intractable. Second, although the family-wise

error rate (FWER) and the false discovery rate

(FDR) are both widely used for error

controlling, previous methods are designed

only to control the FWER. From a compu-

tational point of view, the difference in the

FWER and the FDR controlling is that, to

estimate FWER, for each permutation, only

the maximum two-locus test value is needed.

To estimate the FDR, on the other hand, for

each permutation, all two-locus test values

must be computed.

To address these limitations, TEAM is

proposed for efficient epistasis detection in

human GWAS. TEAM has several advan-

tages over previous methods. It supports to

both homozygous and heterozygous data. By

exhaustively computing all two-locus test

values in permutation test, it enables both

FWER and FDR controlling. It is applicable

to all statistics based on the contingency table.

Previous methods are either designed for

specific tests or require the test statistics satisfy

certain property. Experimental results dem-

onstrate that TEAM is more efficient than

existing methods for large sample studies.

TEAM incorporates the permutation test

for proper error controlling. The key idea is

to incrementally update the contingency

tables of two-locus tests. We show that only

four of the eighteen observed frequencies in

the contingency table need to be updated to

compute the test value. In the algorithm, we

build a minimum spanning tree [19] on the

SNPs. The nodes of the tree are SNPs. Each

edge represents the genotype difference

between the two connected SNPs. This tree

structure can be utilized to speed up the

updating process for the contingency tables.

A majority of the individuals are pruned and

only a small portion are scanned to update

the contingency tables. This is advantageous

in human study, which usually involves

Figure 2. Pruning SNP-pairs in AP(Xi) using the upper bound.
doi:10.1371/journal.pcbi.1002828.g002
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thousands of individuals. Extensive experi-

mental results demonstrate the efficiency of

the TEAM algorithm.

As a summary of the exact two-locus

algorithms, FastANOVA and FastChi are

designed for specific tests and binary geno-

type data. The COE algorithm is a more

general method that can be applied to all

convex tests. The TEAM algorithm is more

suitable for large sample human GWAS.

4. Multifactor Dimensionality
Reduction

Multifactor dimensionality reduction

(MDR) [20] is a data mining method to

identify interactions among discrete variables

for binary outcomes. It can be used to detect

high-order gene-gene and gene-environment

interactions in case-control studies. By pooling

multi-locus SNPs into two groups, one

classified as high-risk and the other classified

as low risk, MDR effectively reduces the

predictors from n dimensions to one dimen-

sion. Then, the one-dimensional variable is

evaluated through cross-validation. The steps

are repeated for all other n factor combina-

tions, and the factor model which has the

lowest prediction error is chosen as the ‘best’ n
factor model. Its detailed steps are as follows:

N Divide the set of factors into 10 equal

subsets.

N Select a set of n factors from the pool

of all factors in the training set

N Create a contingency table for these n
factors by counting the number of cases

and controls in each combination.

N Compute the case-control ratio in each

combination. Label them as ‘‘high-risk if

it is greater than a certain threshold, and

otherwise, it is marked as ‘‘low-risk’’.

N Use the labels to classify individuals.

Compute the misclassification rate.

N Repeat previous steps for all combina-

tions of n factors across 10 training and

testing subsets.

N Choose the model whose average

misclassification rate is minimized

and cross-validation consistency is

maximized as the ‘‘best’’ model.

MDR designs a constructive induction

method that combines two or more SNPs

before testing for association. The power of

the MDR approach is that it can be

combined with other methodologies includ-

ing the ones described in this chapter.

5. Logistic Regression

Logistic regression is a statistical method

for predicting binary and categorical out-

come. It is widely used in GWAS [21,22].

The basic idea is to use linear regression to

model the probability of the occurrence of a

specific outcome. Logistic regression is appli-

cable to both single-locus and multi-locus

association studies and can incorporate

covariates and other factors in the model.

Let Y[f0,1g be a binary variable

representing disease status (diseased verses

non diseased), and X[f0,1,2g be a SNP.

The conditional probability of having the

disease given a SNP is h(X )~P(Y~1DX ).
We define the logit function to convert the

range of the probability from ½0,1� to

({?,z?) :

logit(X )~ln
h(X )

1{h(X )
:

The logit can be considered as a latent

continuous variable that will be fit to a

linear predictor function:

logit(X )*b0zb � X :

To cope with multiple SNP loci and

potential covariates, we can modify the

above model. For example, in the follow-

ing model the logit is fit with predictors of

SNPs (X1, X2) and covariates (Z1, Z2):

logit(X )*b0zb1 � X1zb2 � X2zb3�

X1 � X2zb4 � Z1zb5 � Z2:

Although logistic regression can handle

complicated models, it may be computa-

tionally demanding when the number of

predictors is large [23].

6. Summary

The potential of genome-wide association

study for the identification of genetic variants

that underlying phenotypic variations is well

recognized. The availability of large SNP data

generated by high-throughput genotyping

methods poses great computational and

statistical challenges. In this chapter, we have

discussed serval computational approaches to

detect associations between genetic markers

and the phenotypes. For further readings, the

readers are encouraged to refer to [11,7,24,25]

for discussions about current progress and

challenges in large-scale genetic association

studies.

7. Exercises

Question 1: The table below con-

tains binary genotype and case-control

phenotype data from ten individuals.

Give the contingency table and use x2

test to compute the association test

score.

Genotype

0

0

1

0

1

0

1

0

1

0

���������������������������

Phenotype

1

0

1

0

0

0

1

0

1

0

Question 2: Assuming that we have

the following SNP and phenotype data, is

the SNP significantly associated with the

phenotype? Here, we represent each SNP

site as the number of minor alleles on that

locus, so 0 and 2 are for major and minor

homozygous sites, respectively, and 1 is for

the heterozygous sites. We also assume

that minor alleles contribute to the phe-

notype and the effect is additive. In other

words, the effect from a minor homozy-

gous site should be twice as large as that

from a heterozygous site. You may use any

test methods introduced in the chapter.

How about permutation tests?

Genotype

1

2

2

1

1

0

2

0

1

0

���������������������������

Phenotype

0:53

0:78

0:81

{0:23

{0:73

0:81

0:27

2:59

1:84

0:03

Question 3: Categorize the following

methods in the table. The methods are x2

test, G-test, ANOVA, Student’s T-test,

Pearson’s correlation, linear regression,

logistic regression.

case� control phenotype
�
���
quantitative phenotype

Question 4: Why is it important to

study multiple-locus association? What are

the challenges?

Answers to the Exercises can be found

in Text S1.
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Abstract: Genome-wide associa-
tion studies (GWAS) have evolved
over the last ten years into a
powerful tool for investigating the
genetic architecture of human dis-
ease. In this work, we review the
key concepts underlying GWAS,
including the architecture of com-
mon diseases, the structure of
common human genetic variation,
technologies for capturing genetic
information, study designs, and the
statistical methods used for data
analysis. We also look forward to
the future beyond GWAS.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Important Questions in
Human Genetics

A central goal of human genetics is to

identify genetic risk factors for common,

complex diseases such as schizophrenia

and type II diabetes, and for rare Mende-

lian diseases such as cystic fibrosis and

sickle cell anemia. There are many

different technologies, study designs and

analytical tools for identifying genetic risk

factors. We will focus here on the genome-

wide association study or GWAS that

measures and analyzes DNA sequence

variations from across the human genome

in an effort to identify genetic risk factors

for diseases that are common in the

population. The ultimate goal of GWAS

is to use genetic risk factors to make

predictions about who is at risk and to

identify the biological underpinnings of

disease susceptibility for developing new

prevention and treatment strategies. One

of the early successes of GWAS was the

identification of the Complement Factor H

gene as a major risk factor for age-related

macular degeneration or AMD [1–3]. Not

only were DNA sequence variations in this

gene associated with AMD but the bio-

logical basis for the effect was demonstrat-

ed. Understanding the biological basis of

genetic effects will play an important role in

developing new pharmacologic therapies.

While understanding the complexity of

human health and disease is an important

objective, it is not the only focus of human

genetics. Accordingly, one of the most

successful applications of GWAS has been

in the area of pharmacology. Pharmaco-

genetics has the goal of identifying DNA

sequence variations that are associated

with drug metabolism and efficacy as well

as adverse effects. For example, warfarin is

a blood-thinning drug that helps prevent

blood clots in patients. Determining the

appropriate dose for each patient is

important and believed to be partly

controlled by genes. A recent GWAS

revealed DNA sequence variations in

several genes that have a large influence

on warfarin dosing [4]. These results, and

more recent validation studies, have led to

genetic tests for warfarin dosing that can

be used in a clinical setting. This type of

genetic test has given rise to a new field

called personalized medicine that aims to

tailor healthcare to individual patients

based on their genetic background and

other biological features. The widespread

availability of low-cost technology for

measuring an individual’s genetic back-

ground has been harnessed by businesses

that are now marketing genetic testing

directly to the consumer. Genome-wide

association studies, for better or for worse,

have ushered in the exciting era of

personalized medicine and personal ge-

netic testing. The goal of this chapter is to

introduce and review GWAS technology,

study design and analytical strategies as an

important example of translational bioin-

formatics. We focus here on the application

of GWAS to common diseases that have a

complex multifactorial etiology.

2. Concepts Underlying the
Study Design

2.1 Single Nucleotide
Polymorphisms

The modern unit of genetic variation is

the single nucleotide polymorphism or SNP.

SNPs are single base-pair changes in the

DNA sequence that occur with high

frequency in the human genome [5]. For

the purposes of genetic studies, SNPs are

typically used as markers of a genomic

region, with the large majority of them

having a minimal impact on biological

systems. SNPs can have functional conse-

quences, however, causing amino acid

changes, changes to mRNA transcript

stability, and changes to transcription

factor binding affinity [6]. SNPs are by

far the most abundant form of genetic

variation in the human genome.

SNPs are notably a type of common

genetic variation; many SNPs are present

in a large proportion of human popula-

tions [7]. SNPs typically have two alleles,

meaning within a population there are

two commonly occurring base-pair pos-

sibilities for a SNP location. The fre-

quency of a SNP is given in terms of the

minor allele frequency or the frequency of

the less common allele. For example, a

SNP with a minor allele (G) frequency of

0.40 implies that 40% of a population

has the G allele versus the more common

allele (the major allele), which is found in

60% of the population.
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Commonly occurring SNPs lie in stark

contrast to genetic variants that are

implicated in more rare genetic disorders,

such as cystic fibrosis [8]. These conditions

are largely caused by extremely rare

genetic variants that ultimately induce a

detrimental change to protein function,

which leads to the disease state. Variants

with such low frequency in the population

are sometimes referred to as mutations,

though they can be structurally equivalent

to SNPs - single base-pair changes in the

DNA sequence. In the genetics literature,

the term SNP is generally applied to

common single base-pair changes, and the

term mutation is applied to rare genetic

variants.

2.2 Failures of Linkage for Complex
Disease

Cystic fibrosis (and most rare genetic

disorders) can be caused by multiple

different genetic variants within a single

gene. Because the effect of the genetic

variants is so strong, cystic fibrosis follows

an autosomal dominant inheritance pat-

tern in families with the disorder. One of

the major successes of human genetics was

the identification of multiple mutations in

the CFTR gene as the cause of cystic

fibrosis [8]. This was achieved by geno-

typing families affected by cystic fibrosis

using a collection of genetic markers across

the genome, and examining how those

genetic markers segregate with the disease

across multiple families. This technique,

called linkage analysis, was subsequently

applied successfully to identify genetic

variants that contribute to rare disorders

like Huntington disease [9]. When applied

to more common disorders, like heart

disease or various forms of cancer, linkage

analysis has not fared as well. This implies

the genetic mechanisms that influence

common disorders are different from those

that cause rare disorders [10].

2.3 Common Disease Common
Variant Hypothesis

The idea that common diseases have a

different underlying genetic architecture

than rare disorders, coupled with the

discovery of several susceptibility variants

for common disease with high minor allele

frequency (including alleles in the apolipo-

protein E or APOE gene for Alzheimer’s

disease [11] and PPARg gene in type II

diabetes [12]), led to the development of

the common disease/common variant (CD/CV)

hypothesis [13].

This hypothesis states simply that com-

mon disorders are likely influenced by

genetic variation that is also common in

the population. There are several key

ramifications of this for the study of

complex disease. First, if common genetic

variants influence disease, the effect size

(or penetrance) for any one variant must

be small relative to that found for rare

disorders. For example, if a SNP with 40%

frequency in the population causes a

highly deleterious amino acid substitution

that directly leads to a disease phenotype,

nearly 40% of the population would have

that phenotype. Thus, the allele frequency

and the population prevalence are com-

pletely correlated. If, however, that same

SNP caused a small change in gene

expression that alters risk for a disease by

some small amount, the prevalence of the

disease and the influential allele would be

only slightly correlated. As such, common

variants almost by definition cannot have

high penetrance.

Secondly, if common alleles have small

genetic effects (low penetrance), but com-

mon disorders show heritability (inheri-

tance in families), then multiple common

alleles must influence disease susceptibility.

For example, twin studies might estimate

the heritability of a common disease to be

40%, that is, 40% of the total variance in

disease risk is due to genetic factors. If the

allele of a single SNP incurs only a small

degree of disease risk, that SNP only

explains a small proportion of the total

variance due to genetic factors. As such,

the total genetic risk due to common

genetic variation must be spread across

multiple genetic factors. These two points

suggest that traditional family-based ge-

netic studies are not likely to be successful

for complex diseases, prompting a shift

toward population-based studies.

The frequency with which an allele

occurs in the population and the risk

incurred by that allele for complex diseases

are key components to consider when

planning a genetic study, impacting the

technology needed to gather genetic

information and the sample size needed

to discover statistically significant genetic

effects. The spectrum of potential genetic

effects is sometimes visualized and parti-

tioned by effect size and allele frequency

(figure 1). Genetic effects in the upper right

are more amenable to smaller family-

based studies and linkage analysis, and

may require genotyping relatively few

genetic markers. Effects in the lower right

are typical of findings from GWAS,

requiring large sample sizes and a large

panel of genetic markers. Effects in the

upper right, most notably CFH, have been

identified using both linkage analysis and

GWAS. Effects in the lower left are

perhaps the most difficult challenge, re-

quiring genomic sequencing of large

samples to associate rare variants to

disease.

Over the last five years, the common

disease/common variant hypothesis has

been tested for a variety of common

diseases, and while much of the heritability

for these conditions is not yet explained,

common alleles certainly play a role in

susceptibility. The National Human Ge-

nome Institute GWAS catalog (http://

www.genome.gov/gwastudies) lists over

3,600 SNPs identified for common diseas-

es or traits, and in general, common

diseases have multiple susceptibility alleles,

each with small effect sizes (typically

increasing disease risk between 1.2–2

times the population risk) [14]. From these

results we can say that for most common

diseases, the CD/CV hypothesis is true,

though it should not be assumed that the

entire genetic component of any common

disease is due to common alleles only.

3. Capturing Common Variation

3.1 The Human Haplotype Map
Project

To test the common disease/common

variant hypothesis for a phenotype, a

systematic approach is needed to interro-

gate much of the common variation in the

human genome. First, the location and

density of commonly occurring SNPs is

needed to identify the genomic regions

and individual sites that must be examined

by genetic studies. Secondly, population-

specific differences in genetic variation

must be cataloged so that studies of

phenotypes in different populations can

be conducted with the proper design.

Finally, correlations among common ge-

netic variants must be determined so that

genetic studies do not collect redundant

information. The International HapMap

Project was designed to identify variation
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across the genome and to characterize

correlations among variants.

The International HapMap Project

used a variety of sequencing techniques

to discover and catalog SNPs in European

descent populations, the Yoruba popula-

tion of African origin, Han Chinese

individuals from Beijing, and Japanese

individuals from Tokyo [15,16]. The

project has since been expanded to include

11 human populations, with genotypes for

1.6 million SNPs [7]. HapMap genotype

data allowed the examination of linkage

disequilibrium.

3.2 Linkage Disequilibrium
Linkage disequilibrium (LD) is a prop-

erty of SNPs on a contiguous stretch of

genomic sequence that describes the

degree to which an allele of one SNP is

inherited or correlated with an allele of

another SNP within a population. The

term linkage disequilibrium was coined by

population geneticists in an attempt to

mathematically describe changes in ge-

netic variation within a population over

time. It is related to the concept of

chromosomal linkage, where two markers on

a chromosome remain physically joined

on a chromosome through generations of

a family. In figure 2, two founder

chromosomes are shown (one in blue

and one in orange). Recombination

events within a family from generation

to generation break apart chromosomal

segments. This effect is amplified through

generations, and in a population of fixed

size undergoing random mating, repeated

random recombination events will break

apart segments of contiguous chromo-

some (containing linked alleles) until

eventually all alleles in the population

are in linkage equilibrium or are indepen-

dent. Thus, linkage between markers on a

population scale is referred to as linkage

disequilibrium.

The rate of LD decay is dependent on

multiple factors, including the population

size, the number of founding chromo-

somes in the population, and the number

of generations for which the population

has existed. As such, different human sub-

populations have different degrees and

patterns of LD. African-descent popula-

tions are the most ancestral and have

smaller regions of LD due to the accumu-

lation of more recombination events in

that group. European-descent and Asian-

descent populations were created by

founder events (a sampling of chromo-

somes from the African population), which

altered the number of founding chromo-

somes, the population size, and the

generational age of the population. These

populations on average have larger regions

of LD than African-descent groups.

Many measures of LD have been

proposed [17], though all are ultimately

related to the difference between the

observed frequency of co-occurrence for

two alleles (i.e. a two-marker haplotype)

and the frequency expected if the two

markers are independent. The two com-

monly used measures of linkage disequi-

librium are D’ and r2 [15,17] shown in

equations 1 and 2. In these equations, p12

is the frequency of the ab haplotype, p1: is

Figure 1. Spectrum of Disease Allele Effects. Disease associations are often conceptualized in two dimensions: allele frequency and effect size.
Highly penetrant alleles for Mendelian disorders are extremely rare with large effect sizes (upper left), while most GWAS findings are associations of
common SNPs with small effect sizes (lower right). The bulk of discovered genetic associations lie on the diagonal denoted by the dashed lines.
doi:10.1371/journal.pcbi.1002822.g001
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the frequency of the a allele, and p2: is the

frequency of the b allele.

D0~

pABpab{pAbpaB

min(pApb,papB)
if pABpab{pAbpaBw0

pABpab{pAbpaB

min(pApB,papb)
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8
>><

>>:

9
>>=

>>;
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ð2Þ

D’ is a population genetics measure that is

related to recombination events between

markers and is scaled between 0 and 1. A

D’ value of 0 indicates complete linkage

equilibrium, which implies frequent re-

combination between the two markers and

statistical independence under principles

of Hardy-Weinberg equilibrium. A D’ of 1

indicates complete LD, indicating no

recombination between the two markers

within the population. For the purposes of

genetic analysis, LD is generally reported

in terms of r2, a statistical measure of

correlation. High r2 values indicate that

two SNPs convey similar information, as

one allele of the first SNP is often observed

with one allele of the second SNP, so only

one of the two SNPs needs to be

genotyped to capture the allelic variation.

There are dependencies between these

two statistics; r2 is sensitive to the allele

frequencies of the tow markers, and can

only be high in regions of high D’.
One often forgotten issue associated

with LD measures is that current technol-

ogy does not allow direct measurement of

haplotype frequencies from a sample

because each SNP is genotyped indepen-

dently and the phase or chromosome of

origin for each allele is unknown. Many

well-developed and documented methods

for inferring haplotype phase and estimat-

ing the subsequent two-marker haplotype

frequencies exist, and generally lead to

reasonable results [18].

SNPs that are selected specifically to

capture the variation at nearby sites in the

genome are called tag SNPs because alleles

for these SNPs tag the surrounding stretch

of LD. As noted before, patterns of LD are

population specific and as such, tag SNPs

selected for one population may not work

well for a different population. LD is

exploited to optimize genetic studies,

preventing genotyping SNPs that provide

redundant information. Based on analy-

sis of data from the HapMap project,

.80% of commonly occurring SNPs in

European descent populations can be

captured using a subset of 500,000 to one

million SNPs scattered across the ge-

nome [19].

3.3 Indirect Association
The presence of LD creates two possible

positive outcomes from a genetic associa-

tion study. In the first outcome, the SNP

influencing a biological system that ulti-

mately leads to the phenotype is directly

genotyped in the study and found to be

statistically associated with the trait. This is

referred to as a direct association, and the

genotyped SNP is sometimes referred to as

the functional SNP. The second possibility is

that the influential SNP is not directly

typed, but instead a tag SNP in high LD

with the influential SNP is typed and

statistically associated to the phenotype

(figure 3). This is referred to as an indirect

association [10]. Because of these two

possibilities, a significant SNP association

from a GWAS should not be assumed as

the causal variant and may require

Figure 2. Linkage and Linkage Disequilibrium. Within a family, linkage occurs when two genetic markers (points on a chromosome) remain
linked on a chromosome rather than being broken apart by recombination events during meiosis, shown as red lines. In a population, contiguous
stretches of founder chromosomes from the initial generation are sequentially reduced in size by recombination events. Over time, a pair of markers
or points on a chromosome in the population move from linkage disequilibrium to linkage equilibrium, as recombination events eventually occur
between every possible point on the chromosome.
doi:10.1371/journal.pcbi.1002822.g002
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additional studies to map the precise

location of the influential SNP.

Conceptually, the end result of GWAS

under the common disease/common var-

iant hypothesis is that a panel of 500,000

to one million markers will identify

common SNPs that are associated to

common phenotypes. To conduct such a

study practically requires a genotyping

technology that can accurately capture

the alleles of 500,000 to one million SNPs

for each individual in a study in a cost-

effective manner.

4. Genotyping Technologies

Genome-wide association studies were

made possible by the availability of chip-

based microarray technology for assaying

one million or more SNPs. Two primary

platforms have been used for most GWAS.

These include products from Illumina

(San Diego, CA) and Affymetrix (Santa

Clara, CA). These two competing tech-

nologies have been recently reviewed [20]

and offer different approaches to measure

SNP variation. For example, the Affyme-

trix platform prints short DNA sequences

as a spot on the chip that recognizes a

specific SNP allele. Alleles (i.e. nucleotides)

are detected by differential hybridization

of the sample DNA. Illumina on the other

hand uses a bead-based technology with

slightly longer DNA sequences to detect

alleles. The Illumina chips are more

expensive to make but provide better

specificity.

Aside from the technology, another

important consideration is the SNPs that

each platform has selected for assay. This

can be important depending on the

specific human population being studied.

For example, it is important to use a chip

that has more SNPs with better overall

genomic coverage for a study of Africans

than Europeans. This is because African

genomes have had more time to recom-

bine and therefore have less LD between

alleles at different SNPs. More SNPs are

needed to capture the variation across the

African genome.

It is important to note that the technol-

ogy for measuring genomic variation is

changing rapidly. Chip-based genotyping

platforms such as those briefly mentioned

above will likely be replaced over the next

few years with inexpensive new technolo-

gies for sequencing the entire genome.

These next-generation sequencing meth-

ods will provide all the DNA sequence

variation in the genome. It is time now to

retool for this new onslaught of data.

5. Study Design

Regardless of assumptions about the

genetic model of a trait, or the technology

used to assess genetic variation, no genetic

study will have meaningful results without

a thoughtful approach to characterize the

phenotype of interest. When embarking

on a genetic study, the initial focus should

be on identifying precisely what quantity or

trait genetic variation influences.

5.1 Case Control versus Quantitative
Designs

There are two primary classes of

phenotypes: categorical (often binary

case/control) or quantitative. From the

statistical perspective, quantitative traits

are preferred because they improve power

to detect a genetic effect, and often have a

more interpretable outcome. For some

disease traits of interest, quantitative

disease risk factors have already been

identified. High-density lipoprotein

(HDL) and low-density lipoprotein (LDL)

cholesterol levels are strong predictors of

heart disease, and so genetic studies of

heart disease outcomes can be conducted

by examining these levels as a quantitative

trait. Assays for HDL and LDL levels,

being already useful for clinical practice,

are precise and ubiquitous measurements

that are easy to obtain. Genetic variants

that influence these levels have a clear

interpretation – for example, a unit

change in LDL level per allele or by

genotype class. With an easily measurable

ubiquitous quantitative trait, GWAS of

blood lipids have been conducted in

numerous cohort studies. Their results

were also easily combined to conduct an

extremely well-powered massive meta-

analysis, which revealed 95 loci associated

to lipid traits in more than 100,000 people

[21]. Here, HDL and LDL may be the

primary traits of interest or can be

considered intermediate quantitative traits

or endophenotypes for cardiovascular

disease.

Other disease traits do not have well-

established quantitative measures. In these

circumstances, individuals are usually clas-

sified as either affected or unaffected – a

binary categorical variable. Consider the

vast difference in measurement error

associated with classifying individuals as

either ‘‘case’’ or ‘‘control’’ versus precisely

measuring a quantitative trait. For exam-

ple, multiple sclerosis is a complex clinical

phenotype that is often diagnosed over a

long period of time by ruling out other

possible conditions. However, despite the

‘‘loose’’ classification of case and control,

GWAS of multiple sclerosis have been

enormously successful, implicating more

than 10 new genes for the disorder [22].

So while quantitative outcomes are pre-

ferred, they are not required for a

successful study.

5.2 Standardized Phenotype Criteria
A major component of the success with

multiple sclerosis and other well-conduct-

ed case/control studies is the definition of

rigorous phenotype criteria, usually pre-

sented as rule list based on clinical

variables. Multiple sclerosis studies often

use the McDonald criteria for establishing

case/control status and defining clinical

subtypes [23]. Standardized methods like

the McDonald criteria establish a concise,

evidence-based approach that can be

uniformly applied by multiple diagnosing

clinicians to ensure that consistent pheno-

Figure 3. Indirect Association. Genotyped SNPs often lie in a region of high linkage disequilibrium with an influential allele. The genotyped SNP
will be statistically associated with disease as a surrogate for the disease SNP through an indirect association.
doi:10.1371/journal.pcbi.1002822.g003
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type definitions are used for a genetic

study.

Standardized phenotype rules are par-

ticularly critical for multi-center studies

to prevent introducing a site-based effect

into the study. And even when estab-

lished phenotype criteria are used, there

may be variability among clinicians in

how those criteria are used to assign

case/control status. Furthermore, some

quantitative traits are susceptible to bias

in measurement. For example, with

cataract severity lens photographs are

used to assign cases to one of three types

of lens opacity. In situations where there

may be disagreement among clinicians, a

subset of study records is often examined

by clinicians at multiple centers to assess

interrater agreement as a measure of

phenotyping consistency [24]. High in-

terrater agreement means that phenotype

rules are being consistently applied across

multiple sites, whereas low agreement

suggests that criteria are not uniformly

interpreted or applied, and may indicate

a need to establish more narrow pheno-

type criteria.

5.3 Phenotype Extraction from
Electronic Medical Records

The last few years of genetic research

has seen the growth of large clinical bio-

repositories that are linked to electronic

medical records (EMRs) [25]. The devel-

opment of these resources will certainly

advance the state of human genetics

research and foster integration of genetic

information into clinical practice. From a

study design perspective, identifying phe-

notypes from EMRs can be challenging.

Electronic medical records were estab-

lished for clinical care and administrative

purposes – not for research. As such,

idiosyncrasies arise due to billing practices

and other logistical reasons, and great care

must be taken not to introduce biases into

a genetic study.

The established methodology for con-

ducting ‘‘electronic phenotyping’’ is to

devise an initial selection algorithm

(using structured EMR fields, such as

billing codes, or text mining procedures

on unstructured text), which identifies a

record subset from the bio-repository. In

cases where free text is parsed, natural

language processing (NLP) is used in

conjunction with a controlled vocabulary

such as the Unified Medical Language

System (UMLS) to relate text to more

structured and uniform medical con-

cepts. In some instances, billing codes

alone may be sufficient to accurately

identify individuals with a particular

phenotype, but often combinations of

billing and procedure codes, along with

free text are necessary. Because every

medical center has its own set of policies,

care providers, and health insurance

providers, some algorithms developed in

one clinical setting may not work as well

in another.

Once a manageable subset of records is

obtained by an algorithm, the accuracy of

the results is examined by clinicians or

other phenotype experts as gold-standard

for comparison. The positive predictive

value (PPV) of the initial algorithm is

assessed, and based on feedback from case

reviewers, the selection algorithm is re-

fined. This process of case-review followed

by algorithmic refinement is continued

until the desired PPV is reached.

This approach has been validated by

replicating established genotype-pheno-

type relationships using EMR-derived

phenotypes [16], and has been applied to

multiple clinical and pharmacogenomic

conditions [26–28].

6. Association Test
6.1 Single Locus Analysis

When a well-defined phenotype has

been selected for a study population, and

genotypes are collected using sound tech-

niques, the statistical analysis of genetic

data can begin. The de facto analysis of

genome-wide association data is a series of

single-locus statistic tests, examining each

SNP independently for association to the

phenotype. The statistical test conducted

depends on a variety of factors, but first

and foremost, statistical tests are different

for quantitative traits versus case/control

studies.

Quantitative traits are generally ana-

lyzed using generalized linear model (GLM)

approaches, most commonly the Analysis

of Variance (ANOVA), which is similar to

linear regression with a categorical pre-

dictor variable, in this case genotype

classes. The null hypothesis of an ANOVA

using a single SNP is that there is no

difference between the trait means of any

genotype group. The assumptions of GLM

and ANOVA are 1) the trait is normally

distributed; 2) the trait variance within

each group is the same (the groups are

homoskedastic); 3) the groups are inde-

pendent.

Dichotomous case/control traits are

generally analyzed using either contingen-

cy table methods or logistic regression.

Contingency table tests examine and

measure the deviation from independence

that is expected under the null hypothesis

that there is no association between the

phenotype and genotype classes. The most

ubiquitous form of this test is the popular

chi-square test (and the related Fisher’s

exact test).

Logistic regression is an extension of

linear regression where the outcome of a

linear model is transformed using a

logistic function that predicts the proba-

bility of having case status given a

genotype class. Logistic regression is often

the preferred approach because it allows

for adjustment for clinical covariates (and

other factors), and can provide adjusted

odds ratios as a measure of effect size.

Logistic regression has been extensively

developed, and numerous diagnostic pro-

cedures are available to aid interpretation

of the model.

For both quantitative and dichotomous

trait analysis (regardless of the analysis

method), there are a variety of ways that

genotype data can be encoded or shaped

for association tests. The choice of data

encoding can have implications for the

statistical power of a test, as the degrees of

freedom for the test may change depend-

ing on the number of genotype-based

groups that are formed. Allelic association

tests examine the association between one

allele of the SNP and the phenotype.

Genotypic association tests examine the

association between genotypes (or geno-

type classes) and the phenotype. The

genotypes for a SNP can also be grouped

into genotype classes or models, such as

dominant, recessive, multiplicative, or

additive models [29].

Each model makes different assump-

tions about the genetic effect in the data –

assuming two alleles for a SNP, A and a,

a dominant model (for A) assumes that

having one or more copies of the A allele

increases risk compared to a (i.e. Aa or

AA genotypes have higher risk). The

recessive model (for A) assumes that two

copies of the A allele are required to alter

risk, so individuals with the AA genotype

are compared to individuals with Aa and

aa genotypes. The multiplicative model

(for A) assumes that if there is 36 risk for

having a single A allele, there is a 96 risk

for having two copies of the A allele: in

this case if the risk for Aa is k, the risk for

AA is k2. The additive model (for A)

assumes that there is a uniform, linear

increase in risk for each copy of the A
allele, so if the risk is 36 for Aa, there is a

66 risk for AA - in this case the risk for

Aa is k and the risk for AA is 2k. A

common practice for GWAS is to exam-

ine additive models only, as the additive

model has reasonable power to detect

both additive and dominant effects, but it

is important to note that an additive

model may be underpowered to detect

some recessive effects [30]. Rather than
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choosing one model a priori, some studies

evaluate multiple genetic models coupled

with an appropriate correction for multi-

ple testing.

6.2 Covariate Adjustment and
Population Stratification

In addition to selecting an encoding

scheme, statistical tests should be adjusted

for factors that are known to influence the

trait, such as sex, age, study site, and

known clinical covariates. Covariate ad-

justment reduces spurious associations due

to sampling artifacts or biases in study

design, but adjustment comes at the price

of using additional degrees of freedom

which may impact statistical power. One

of the more important covariates to

consider in genetic analysis is a measure

of population substructure. There are

often known differences in phenotype

prevalence due to ethnicity, and allele

frequencies are highly variable across

human subpopulations, meaning that in

a sample with multiple ethnicities, ethnic-

specific SNPs will likely be associated to

the trait due to population stratification.

To prevent population stratification, the

ancestry of each sample in the dataset is

measured using STRUCTURE [31] or

EIGENSTRAT [32] methods that com-

pare genome-wide allele frequencies to

those of HapMap ethnic groups. The

results of these analyses can be used to

either exclude samples with similarity to a

non-target population, or they can be used

as a covariate in association analysis.

EIGENSTRAT is commonly used in this

circumstance, where principle component

analysis is used to generate principle

component values that could be described

as an ‘‘ethnicity score’’. When used as

covariates, these scores adjust for minute

ancestry effects in the data.

6.3 Corrections for Multiple Testing
A p-value, which is the probability of

seeing a test statistic equal to or greater

than the observed test statistic if the null

hypothesis is true, is generated for each

statistical test. This effectively means that

lower p-values indicate that if there is no

association, the chance of seeing this result

is extremely small.

Statistical tests are generally called

significant and the null hypothesis is

rejected if the p-value falls below a

predefined alpha value, which is nearly

always set to 0.05. This means that 5% of

the time, the null hypothesis is rejected

when in fact it is true and we detect a false

positive. This probability is relative to a

single statistical test; in the case of

GWAS, hundreds of thousands to mil-

lions of tests are conducted, each one with

its own false positive probability. The

cumulative likelihood of finding one or

more false positives over the entire

GWAS analysis is therefore much higher.

For a somewhat morbid analogy, consider

the probability of having a car accident. If

you drive your car today, the probability

of having an accident is fairly low.

However if you drive every day for the

next five years, the probability of you

having one or more accidents over that

time is much higher than the probability

of having one today.

One of the simplest approaches to

correct for multiple testing is the Bonfer-

roni correction. The Bonferroni correction

adjusts the alpha value from a= 0.05 to

a= (0.05/k) where k is the number of

statistical tests conducted. For a typical

GWAS using 500,000 SNPs, statistical

significance of a SNP association would

be set at 1e-7. This correction is the most

conservative, as it assumes that each

association test of the 500,000 is indepen-

dent of all other tests – an assumption that

is generally untrue due to linkage disequi-

librium among GWAS markers.

An alternative to adjusting the false

positive rate (alpha) is to determine the

false discovery rate (FDR). The false

discovery rate is an estimate of the

proportion of significant results (usually

at alpha = 0.05) that are false positives.

Under the null hypothesis that there are

no true associations in a GWAS dataset, p-

values for association tests would follow a

uniform distribution (evenly distributed

from 0 to 1). Originally developed by

Benjamini and Hochberg, FDR proce-

dures essentially correct for this number of

expected false discoveries, providing an

estimate of the number of true results

among those called significant [33]. These

techniques have been widely applied to

GWAS and extended in a variety of ways

[34].

Permutation testing is another approach

for establishing significance in GWAS.

While somewhat computationally inten-

sive, permutation testing is a straightfor-

ward way to generate the empirical

distribution of test statistics for a given

dataset when the null hypothesis is true.

This is achieved by randomly reassigning

the phenotypes of each individual to

another individual in the dataset, effec-

tively breaking the genotype-phenotype

relationship of the dataset. Each random

reassignment of the data represents one

possible sampling of individuals under the

null hypothesis, and this process is repeat-

ed a predefined number of times N to

generate an empirical distribution with

resolution N, so a permutation procedure

with an N of 1000 gives an empirical p-

value within 1/1000th of a decimal place.

Several software packages have been

developed to perform permutation testing

for GWAS studies, including the popular

PLINK software [35], PRESTO [36], and

PERMORY [37].

Another commonly used approach is to

rely on the concept of genome-wide signifi-

cance. Based on the distribution of LD in

the genome for a specific population,

there are an ‘‘effective’’ number of

independent genomic regions, and thus

an effective number of statistical tests that

should be corrected for. For European-

descent populations, this threshold has

been estimated at 7.2e-8 [38]. This

reasonable approach should be used with

caution, however, as the only scenario

where this correction is appropriate is

when hypotheses are tested on the

genome scale. Candidate gene studies or

replication studies with a focused hypoth-

esis do not require correction to this level,

as the number of effective, independent

statistical tests is much, much lower than

what is assumed for genome-wide signif-

icance.

6.4 Multi-Locus Analysis
In addition to single-locus analyses,

genome-wide association studies provide

an enormous opportunity to examine

interactions among genetic variants

throughout the genome. Multi-locus analy-

sis, however, is not nearly as straightfor-

ward as conducting single-locus tests, and

presents numerous computational, statisti-

cal, and logistical challenges [39].

Because most GWAS genotype be-

tween 500,000 and one million SNPs,

examining all pair-wise combinations of

SNPs is a computationally intractable

approach, even for highly efficient algo-

rithms. One approach to this issue is to

reduce or filter the set of genotyped SNPs,

eliminating redundant information. A

simple and common way to filter SNPs

is to select a set of results from a single-

SNP analysis based on an arbitrary

significance threshold and exhaustively

evaluate interactions in that subset. This

can be perilous, however, as selecting

SNPs to analyze based on main effects

will prevent certain multi-locus models

from being detected – so called ‘‘purely

epistatic’’ models with statistically unde-

tectable marginal effects. With these

models, a large component of the herita-

bility is concentrated in the interaction

rather than in the main effects. In other

words, a specific combination of markers
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(and only the combination of markers)

incurs a significant change in disease risk.

The benefits of this analysis are that it

performs an unbiased analysis for inter-

actions within the selected set of SNPs. It

is also far more computationally and

statistically tractable than analyzing all

possible combinations of markers.

Another strategy is to restrict examina-

tion of SNP combinations to those that

fall within an established biological con-

text, such as a biochemical pathway or a

protein family. As these techniques rely

on electronic repositories of structured

biomedical knowledge, they generally

couple a bioinformatics engine that gen-

erates SNP-SNP combinations with a

statistical method that evaluates combi-

nations in the GWAS dataset. For exam-

ple, the Biofilter approach uses a variety

of public data sources with logistic

regression and multifactor dimensionality

reduction methods [40,41]. Similarly,

INTERSNP uses logistic regression, log-

linear, and contingency table approaches

to assess SNP-SNP interaction models

[42].

7. Replication and Meta-
Analysis
7.1 Statistical Replication

The gold standard for validation of any

genetic study is replication in an additional

independent sample. That said, there are a

variety of criteria involved in defining

‘‘replication’’ of a GWAS result. This was

the subject of an NHGRI working group,

which outlined several criteria for estab-

lishing a positive replication [43]. These

criteria are discussed in the following

paragraphs.

Replication studies should have suffi-

cient sample size to detect the effect of the

susceptibility allele. Often, the effects

identified in an initial GWAS suffer from

winner’s curse, where the detected effect is

likely stronger in the GWAS sample than

in the general population [44]. This means

that replication samples should ideally be

larger to account for the over-estimation of

effect size. With replication, it is important

for the study to be well-powered to identify

spuriously associated SNPs where the null

hypothesis is most likely true – in other

words, to confidently call the initial

GWAS result a false-positive.

Replication studies should be conducted

in an independent dataset drawn from the

same population as the GWAS, in an

attempt to confirm the effect in the GWAS

target population. Once an effect is

confirmed in the target population, other

populations may be sampled to determine

if the SNP has an ethnic-specific effect.

Replication of a significant result in an

additional population is sometimes re-

ferred to as generalization, meaning the

genetic effect is of general relevance to

multiple human populations.

Identical phenotype criteria should be

used in both GWAS and replication

studies. Replication of a GWAS result

should be thought of as the replication of a

specific statistical model – a given SNP

predicts a specific phenotype effect. Using

even slightly different phenotype defini-

tions between GWAS and replication

studies can cloud the interpretation of

the final result.

A similar effect should be seen in the

replication set from the same SNP, or a

SNP in high LD with the GWAS-identi-

fied SNP. Because GWAS typically use

SNPs that are markers that were chosen

based on LD patterns, it is difficult to say

what SNP within the larger genomic

region is mechanistically influencing dis-

ease risk. With this in mind, the unit of

replication for a GWAS should be the

genomic region, and all SNPs in high LD are

potential replication candidates. However,

continuity of effect should be demonstrat-

ed across both studies, with the magnitude

and direction of effect being similar for the

genomic region in both datasets. If SNPs

in high LD are used to demonstrate the

effect in replication, the direction of effect

must be determined using a reference

panel to determine two-SNP haplotype

frequencies. For example, if allele A is

associated in the GWAS with an odds

ratio of 1.5, and allele T of a nearby SNP

is associated in the replication set with an

odds ratio of 1.46, it must be demonstrated

that allele A and allele T carry effects in

the same direction. The most straightfor-

ward way to assess this is to examine a

reference panel, such as the HapMap

data, for a relevant population. If this

panel shows that allele A from SNP 1 and

allele T from SNP 2 form a two-marker

haplotype in 90% of the sample, then this

is a reasonable assumption. If however the

panel shows that allele A from SNP 1 and

allele A from SNP 2 form the predomi-

nant two-marker haplotype, the effect has

probably flipped in the replication set.

Mapping the effect through the haplotype

would be equivalent to observing an odds

ratio of 1.5 in the GWAS and 0.685 in the

replication set.

In brief, the general strategy for a

replication study is to repeat the ascertain-

ment and design of the GWAS as closely as

possible, but examine only specific genetic

effects found significant in the GWAS.

Effects that are consistent across the two

studies can be labeled replicated effects.

7.2 Meta-Analysis of Multiple
Analysis Results

The results of multiple GWAS studies

can be pooled together to perform a meta-

analysis. Meta-analysis techniques were

originally developed to examine and refine

significance and effect size estimates from

multiple studies examining the same hypothesis

in the published literature. With the

development of large academic consortia,

meta-analysis approaches allow the syn-

thesis of results from multiple studies

without requiring the transfer of protected

genotype or clinical information to parties

who were not part of the original study

approval – only statistical results from a

study need be transferred. For example, a

recent publication examining lipid profiles

was based on a meta-analysis of 46 studies

[21]. A study of this magnitude would be

logistically difficult (if not impossible)

without meta-analysis. Several software

packages are available to facilitate meta-

analysis, including STATA products and

METAL [45,46].

A fundamental principle in meta-anal-

ysis is that all studies included examined

the same hypothesis. As such, the general

design of each included study should be

similar, and the study-level SNP analysis

should follow near-identical procedures

across all studies (see Zeggini and Ioanni-

dis [47] for an excellent review). Quality

control procedures that determine which

SNPs are included from each site should

be standardized, along with any covariate

adjustments, and the measurement of

clinical covariates and phenotypes should

be consistent across multiple sites. The

sample sets across all studies should be

independent – an assumption that should

always be examined as investigators often

contribute the same samples to multiple

studies. Also, an extremely important and

somewhat bothersome logistical matter is

ensuring that all studies report results

relative to a common genomic build and

reference allele. If one study reports its

results relative to allele A and another

relative to allele B, the meta-analysis result

for this SNP may be non-significant

because the effects of the two studies

nullify each other.

With all of these factors to consider, it is

rare to find multiple studies that match

perfectly on all criteria. Therefore, study

heterogeneity is often statistically quantified

in a meta-analysis to determine the degree

to which studies differ. The most popular

measures of study heterogeneity are the Q

statistic and the I2 index [48], with the I2

index favored in more recent studies.

Coefficients resulting from a meta-analysis

have variability (or error) associated with
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them, and the I2 index represents the

approximate proportion of this variability

that can be attributed to heterogeneity

between studies [49]. I2 values fall into low

(,25), medium (.25 and ,75), and high

(.75) heterogeneity, and have been pro-

posed as a way to identify studies that

should perhaps be removed from a meta-

analysis. It is important to note that these

statistics should be used as a guide to

identifying studies that perhaps examine a

different underlying hypothesis than others

in the meta-analysis, much like outlier

analysis is used to identify unduly influential

points. Just as with outliers, however, a

study should only be excluded if there is an

obvious reason to do so based on the

parameters of the study – not simply

because a statistic indicates that this study

increases heterogeneity. Otherwise, agnos-

tic statistical procedures designed to reduce

meta-analysis heterogeneity will increase

false discoveries.

7.3 Data Imputation
To conduct a meta-analysis properly, the

effect of the same allele across multiple distinct

studies must be assessed. This can prove

difficult if different studies use different

genotyping platforms (which use different

SNP marker sets). As this is often the case,

GWAS datasets can be imputed to generate

results for a common set of SNPs across all

studies. Genotype imputation exploits

known LD patterns and haplotype frequen-

cies from the HapMap or 1000 Genomes

project to estimate genotypes for SNPs not

directly genotyped in the study [50].

The concept is similar in principle to

haplotype phasing algorithms, where the con-

tiguous set of alleles lying on a specific

chromosome is estimated. Genotype impu-

tation methods extend this idea to human

populations. First, a collection of shared

haplotypes within the study sample is

computed to estimate haplotype frequencies

among the genotyped SNPs. Phased haplo-

types from the study sample are compared

to reference haplotypes from a panel of

much more dense SNPs, such as the

HapMap data. The matched reference

haplotypes contain genotypes for surround-

ing markers that were not genotyped in the

study sample. Because the study sample

haplotypes may match multiple reference

haplotypes, surrounding genotypes may be

given a score or probability of a match based

on the haplotype overlap. For example,

rather than assign an imputed SNP a single

allele A, the probability of possible alleles is

reported (0.85 A, 0.12 C, 0.03 T ) based on

haplotype frequencies. This information can

be used in the analysis of imputed data to

take into account uncertainty in the geno-

type estimation process, typically using

Bayesian analysis approaches [51]. Popular

algorithms for genotype imputation include

BimBam [52], IMPUTE [53], MaCH [54],

and Beagle [55].

Much like conducting a meta-analysis,

genotype imputation must be conducted

with great care. The reference panel (i.e.

the 1000 Genomes data or the HapMap

project) must contain haplotypes drawn

from the same population as the study

sample in order to facilitate a proper

haplotype match. If a study was conducted

using individuals of Asian descent, but only

European descent populations are repre-

sented in the reference panel, the genotype

imputation quality will be poor as there is a

lower probability of a haplotype match.

Also, the reference allele for each SNP must

be identical in both the study sample and

the reference panel. Finally, the analysis of

imputed genotypes should account for the

uncertainty in genotype state generated by

the imputation process.

8. The Future

Genome-wide association studies have

had a huge impact on the field of human

genetics. They have identified new genet-

ic risk factors for many common human

diseases and have forced the genetics

community to think on a genome-wide

scale. On the horizon is whole-genome

sequencing. Within the next few years we

will see the arrival of cheap sequencing

technology that will replace one million

SNPs with the entire genomic sequence of

three billion nucleotides. Challenges asso-

ciated with data storage and manipula-

tion, quality control and data analysis will

be manifold more complex, thus chal-

lenging computer science and bioinfor-

matics infrastructure and expertise. Merg-

ing sequencing data with that from other

high-throughput technology for measur-

ing the transcriptome, the proteome, the

environment and phenotypes such as the

massive amounts of data that come from

neuroimaging will only serve to compli-

cate our goal to understand the genotype-

phenotype relationship for the purpose of

improving healthcare. Integrating these

many levels of complex biomedical data

along with their coupling with experi-

mental systems is the future of human

genetics.

9. Exercises

1. True or False: Common diseases, such

as type II diabetes and lung cancer, are

likely caused by mutations to a single

gene. Explain your answer.

2. Will the genotyping platforms designed

for GWAS of European Descent pop-

ulations be of equal utility in African

Descent populations? Why or why not?

3. When conducting a genetic study, what

additional factors should be measured

and adjusted for in the statistical

analysis?

4. True or False: SNPs that are associated

to disease using GWAS design should

be immediately considered for molec-

ular studies. Explain your answer.

Answers to the Exercises can be found

in Text S1.
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GWAS: genome-wide association study; a genetic study design that attempts to identify commonly occurring genetic variants that

contribute to disease risk

Personalized Medicine: the science of providing health care informed by individual characteristics, such as genetic variation

SNP: single nucleotide polymorphism; a single base-pair change in the DNA sequence

Linkage Analysis: the attempt to statistically relate transmission of an allele within families to inheritance of a disease

Common disease/Common variant hypothesis: The hypothesis that commonly occurring diseases in a population are caused in part

by genetic variation that is common to that population

Linkage disequilibrium: the degree to which an allele of one SNP is observed with an allele of another SNP within a population

Direct association: the statistical association of a functional or influential allele with a disease

Indirect association: the statistical association of an allele to disease that is in strong linkage disequilibrium with the allele that is

functional or influential for disease
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False positive: from statistical hypothesis testing, the rejection of a null hypothesis when the null hypothesis is true
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Abstract: Humans are essentially
sterile during gestation, but during
and after birth, every body surface,
including the skin, mouth, and gut,
becomes host to an enormous
variety of microbes, bacterial, ar-
chaeal, fungal, and viral. Under
normal circumstances, these mi-
crobes help us to digest our food
and to maintain our immune sys-
tems, but dysfunction of the hu-
man microbiota has been linked to
conditions ranging from inflamma-
tory bowel disease to antibiotic-
resistant infections. Modern high-
throughput sequencing and bioin-
formatic tools provide a powerful
means of understanding the con-
tribution of the human microbiome
to health and its potential as a
target for therapeutic interven-
tions. This chapter will first discuss
the historical origins of microbiome
studies and methods for determin-
ing the ecological diversity of a
microbial community. Next, it will
introduce shotgun sequencing
technologies such as metage-
nomics and metatranscriptomics,
the computational challenges and
methods associated with these
data, and how they enable micro-
biome analysis. Finally, it will con-
clude with examples of the func-
tional genomics of the human
microbiome and its influences up-
on health and disease.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

The question of what it means to be

human is more often encountered in

metaphysics than in bioinformatics, but it

is surprisingly relevant when studying the

human microbiome. We are born consist-

ing only of our own eukaryotic human

cells, but over the first several years of life,

our skin surface, oral cavity, and gut are

colonized by a tremendous diversity of

bacteria, archaea, fungi, and viruses. The

community formed by this complement of

cells is called the human microbiome; it

contains almost ten times as many cells as

are in the rest of our bodies and accounts

for several pounds of body weight and

orders of magnitude more genes than are

contained in the human genome [1,2].

Under normal circumstances, these mi-

crobes are commensal, helping to digest

our food and to maintain our immune

systems. Although the human microbiome

has long been known to influence human

health and disease [1], we have only

recently begun to appreciate the breadth

of its involvement. This is almost entirely

due to the recent ability of high-through-

put sequencing to provide an efficient and

cost-effective tool for investigating the

members of a microbial community and

how they change. Thus, dysfunctions of

the human microbiota are increasingly

being linked to disease ranging from

inflammatory bowel disease to diabetes

to antibiotic-resistant infection, and the

potential of the human microbiome as an

early detection biomarker and target for

therapeutic intervention is a vibrant area

of current research.

2. A Brief History of Microbiome
Studies

Historically, members of a microbial

community were identified in situ by stains

that targeted their physiological character-

istics, such as the Gram stain [3]. These

could distinguish many broad clades of

bacteria but were non-specific at lower

taxonomic levels. Thus, microbiology was

almost entirely culture-dependent; it was

necessary to grow an organism in the lab

in order to study it. Specific microbial

species were detected by plating samples

on specialized media selective for the

growth of that organism, or they were

identified by features such as the morpho-

logical characteristics of colonies, their

growth on different media, and metabolic

production or consumption. This ap-

proach limited the range of organisms

that could be detected to those that would

actively grow in laboratory culture, and it

led the close study of easily-grown, now-

familiar model organisms such as Esche-

richia coli. However, E. coli as a taxonomic

unit accounts for at most 5% of the

microbes occupying the typical human

gut [2]. The vast majority of microbial

species have never been grown in the

laboratory, and options for studying and

quantifying the uncultured were severely

limited until the development of DNA-

based culture-independent methods in the

1980s [4].

Culture-independent techniques, which

analyze the DNA extracted directly from

a sample rather than from individually

cultured microbes, allow us to investigate

several aspects of microbial communities

(Figure 1). These include taxonomic

diversity, such as how many of which

microbes are present in a community,

and functional metagenomics, which at-

tempts to describe which biological tasks

the members of a community can or do

carry out. The earliest DNA-based meth-

ods probed extracted community DNA

for genes of interest by hybridization, or

amplified specifically-targeted genes by

PCR prior to sequencing. These studies

were typically able to describe diversity at
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a broad level, or detect the presence or

absence of individual biochemical func-

tions, but with few details in either case.

One of the earliest targeted metage-

nomic assays for studying uncultured

communities without prior DNA extrac-

tion was fluorescent in situ hybridization

(FISH), in which fluorescently-labeled,

specific oligonuclotide probes for marker

genes are hybridized to a microbial

community [5]. FISH probes can be

targeted to almost any level of taxonomy

from species to phylum. Although FISH

was initially limited to the 16S rRNA

marker gene and thus to diversity studies,

it has since been expanded to functional

gene probes that can be used to identify

specific enzymes in communities [6].

However, it remains a primarily low-

throughput, imaging-based technology.

To investigate microbial communities

efficiently at scale, almost all current

studies employ high-throughput DNA

sequencing, increasingly in combination

with other genome-scale platforms such as

proteomics or metabolomics. Although

DNA sequencing has existed since the

1970s [7,8], it was historically quite

expensive; sequencing environmental

DNA further required the additional time

and expense of clone library construction.

It was not until the 2005 advent of next-

generation high-throughput sequencing

[9] that it became economically feasible

for most scientists to sequence the DNA of

an entire environmental sample, and

metagenomic studies have since become

increasingly common.

3. Taxonomic Diversity

3.1 The 16S rRNA Marker Gene
Like a metazoan, a microbial commu-

nity consists fundamentally of a collection

of individual cells, each carrying a distinct

complement of genomic DNA. Commu-

nities, however, obviously differ from

multicellular organisms in that their com-

ponent cells may or may not carry

identical genomes, although substantial

subsets of these cells are typically assumed

to be clonal. One can thus assign a

frequency to each distinct genome within

the community describing either the

absolute number of cells in which it is

carried or their relative abundance within

the population. As it is impractical to fully

sequence every genome in every cell (a

statement that should remain safely true

no matter how cheap high-throughput

sequencing becomes), microbial ecology

has defined a number of molecular

markers that (more or less) uniquely tag

distinct genomes. Just as the make, model,

and year of a car identify its components

without the need to meticulously inspect

the entirety of every such car, a marker is a

DNA sequence that identifies the genome

that contains it, without the need to

sequence the entire genome.

Although different markers can be

chosen for analyzing different populations,

several properties are desirable for a good

marker. A marker should be present in

every member of a population, should

differ only and always between individuals

with distinct genomes, and, ideally, should

differ proportionally to the evolutionary

distance between distinct genomes. Sever-

al such markers have been defined,

including ribosomal protein subunits,

elongation factors, and RNA polymerase

subunits [10], but by far the most

ubiquitous (and historically significant

[11]) is the small or 16S ribosomal RNA

subunit gene [12]. This 1.5 Kbp gene is

commonly referred to as the 16S rRNA

(after transcription) or sometimes rDNA; it

satisfies the criteria of a marker by

containing both highly conserved, ubiqui-

tous sequences and regions that vary with

greater or lesser frequency over evolution-

ary time. It is relatively cheap and simple

to sequence only the 16S sequences from a

microbiome [13], thus describing the

population as a set of 16S sequences and

the number of times each was detected.

Sequences assayed in this manner have

been characterized for a wide range of

cultured species and environmental iso-

lates; these are stored and can be auto-

matically matched against several data-

bases including GreenGenes [14], the

Ribosomal Database Project [15], and

Silva [16].

3.2 Binning 16S rRNA Sequences
into OTUs

A bioinformatic challenge that arises

immediately in the analysis of rRNA genes

is the precise definition of a ‘‘unique’’

sequence. Although much of the 16S

rRNA gene is highly conserved, several

of the sequenced regions are variable or

hypervariable, so small numbers of base

pairs can change in a very short period of

evolutionary time [17]. Horizontal trans-

fer, multicopy or ambiguous rDNA mark-

ers, and other confounding factors do,

however, blur the biological meaning of

‘‘species’’ as well as our ability to resolve

them technically [17]. Finally, because

16S regions are typically sequenced using

only a single pass, there is a fair chance

that they will thus contain at least one

sequencing error. This means that requir-

ing tags to be 100% identical will be

extremely conservative and treat essential-

ly clonal genomes as different organisms.

Some degree of sequence divergence is

typically allowed - 95%, 97%, or 99% are

sequence similarity cutoffs often used in

practice [18] - and the resulting cluster of

nearly-identical tags (and thus assumedly

identical genomes) is referred to as an

Operational Taxonomic Unit (OTU) or

sometimes phylotype. OTUs take the

place of ‘‘species’’ in many microbiome

diversity analyses because named species

genomes are often unavailable for partic-

ular marker sequences. The assignment of

sequences to OTUs is referred to as

binning, and it can be performed by A)

unsupervised clustering of similar sequenc-

es [19], B) phylogenetic models incorpo-

rating mutation rates and evolutionary

relationships [20], or C) supervised meth-

ods that directly assign sequences to

taxonomic bins based on labeled training

data [21] (which also applies to whole-

genome shotgun sequences; see below).

The binning process allows a commu-

nity to be analyzed in terms of discrete

bins or OTUs, opening up a range of

computationally tractable representations

for biological analysis. If each OTU is

treated as a distinct category, or each 16S

sequence is binned into a named phylum

or other taxonomic category, a pool of

microbiome sequences can be represented

as a histogram of bin counts [22].

Alternately, this histogram can be binar-

ized into presence/absence calls for each

bin across a collection of related samples.

Because diverse, general OTUs will always

be present in related communities, and

overly-specific OTUs may not appear

outside of their sample of origin, the latter

approach is typically most useful for low-

complexity microbiomes or OTUs at an
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Figure 1. Bioinformatic methods for functional metagenomics. Studies that aim to define the composition and function of uncultured
microbial communities are often referred to collectively as ‘‘metagenomic,’’ although this refers more specifically to particular sequencing-based
assays. First, community DNA is extracted from a sample, typically uncultured, containing multiple microbial members. The bacterial taxa present in
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appropriately tuned level of specificity.

Bioinformaticians studying 16S sequences

must choose whether to analyze a collec-

tion of taxonomically-binned microbiomes

as a set of abundance histograms, or as a

set of binary presence/absence vectors.

However, either representation can be

used as input to decomposition methods

such as Principle Components Analysis or

Canonical Correlation Analysis [23] to

determine which OTUs represent the

most significant sources of population

variance and/or correlate with community

metadata such as temperature, pH, or

clinical features [24,25].

3.3 Measuring Population Diversity
An important concept when dealing

with OTUs or other taxonomic bins is that

of population diversity, the number of

distinct bins in a sample or in the

originating population. This is of critical

importance in human health, since a

number of disease conditions have been

shown to correlate with decreased micro-

biome diversity, presumably as one or a

few microbes overgrow during immune or

nutrient imbalance in a process not unlike

an algal bloom [26]. Intriguingly, recent

results have also shown that essentially no

bacterial clades are widely and consistently

shared among the human microbiome [2].

Many organisms are abundant in some

individuals, and many organisms are

prevalent among most individuals, but

none are universal. Although they can

vary over time and share some similarity

with some individuals, our intestinal con-

tents appear to be highly personalized

when considered in terms of microbial

presence, absence, and abundance.

Two mathematically well-defined ques-

tions arise when quantifying population

diversity (Figure 2): given that x bins have

been observed in a sample of size y from a

population of size z, how many bins are

expected to exist in the population; or,

given that x bins exist in a population of

size z, how big must the sample size y be to

observe all of them at least once? In other

words, ‘‘If I’ve sequenced some amount of

diversity, how much more exists in my

microbiome?’’ and, ‘‘How much do I need

to sequence to completely characterize my

microbiome?’’ The latter is known as the

Coupon Collector’s Problem, as identical

questions can be asked if a cereal manu-

facturer has randomly hidden one of

several different possible prize coupons in

each box of cereal [27]. Within a com-

munity, several estimators including the

Chao1 [28], Abundance-based Coverage

Estimator (ACE) [29], and Jackknife [30]

measures exist for calculating alpha diver-

sity, the number (richness) and distribution

(evenness) of taxa expected within a single

population. These give rise to figures

known as collector’s or rarefaction curves,

since increasing numbers of sequenced

taxa allow increasingly precise estimates of

total population diversity [31]. Addition-

ally, when comparing multiple popula-

the community are most frequently defined by amplifying the 16S rRNA gene and sequencing it. Highly similar sequences are grouped into
Operational Taxonomic Units (OTUs), which can be compared to 16S databases such as Silva [16], Green Genes [14], and RDP [15] to identify them as
precisely as possible. The community can be described in terms of which OTUs are present, their relative abundance, and/or their phylogenetic
relationships. An alternate method of identifying community taxa is to directly metagenomically sequence community DNA and compare it to
reference genomes or gene catalogs. This is more expensive but provides improved taxonomic resolution and allows observation of single nucleotide
polymorphisms (SNPs) and other variant sequences. The functional capabilities of the community can also be determined by comparing the
sequences to functional databases (e.g. KEGG [170] or SEED [171]). This allows the community to be described as relative abundances of its genes and
pathways. Figure adapted from [172].
doi:10.1371/journal.pcbi.1002808.g001

Figure 2. Ecological representations of microbial communities: collector’s curves, alpha, and beta diversity. These examples describe
the A) sequence counts and B) relative abundances of six taxa (A, B, C, D, E, and F) detected in three samples. C) A collector’s curve, typically
generated using a richness estimator such as Chao1 [28] or ACE [29], approximates the relationship between the number of sequences drawn from
each sample and the number of taxa expected to be present based on detected abundances. D) Alpha diversity captures both the organismal
richness of a sample and the evenness of the organisms’ abundance distribution. Here, alpha diversity is defined by the Shannon index [32],

H ’~{
PS

i~1 (pi ln(pi)), where pi is the relative abundance of taxon i, although many other alpha diversity indices may be employed. E) Beta diversity
represents the similarity (or difference) in organismal composition between samples. In this example, it can be simplistically defined by the equation
b~(ni{c)z(n2{c), where n1 and n2 are the number of taxa in samples 1 and 2, respectively, and c is the number of shared taxa, but again many
metrics such as Bray-Curtis [34] or UniFrac [24] are commonly employed.
doi:10.1371/journal.pcbi.1002808.g002
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tions, beta diversity measures including

absolute or relative overlap describe how

many taxa are shared between them

(Figure 2). An alpha diversity measure

thus acts like a summary statistic of a single

population, while a beta diversity measure

acts like a similarity score between popu-

lations, allowing analysis by sample clus-

tering or, again, by dimensionality reduc-

tions such as PCA [20]. Alpha diversity is

often quantified by the Shannon Index

[32], H ’~{
PS

i~1 (pi ln(pi)), or the

Simpson Index [33], D~
PS

i~1 p2
i , where

pi is the fraction of total species comprised

by species i. Beta diversity can be mea-

sured by simple taxa overlap or quantified

by the Bray-Curtis dissimilarity [34],

BCij~
SizSj{2Cij

SizSj

, where Si and Sj are

the number of species in populations i and

j, and Cij is the total number of species at

the location with the fewest species. Like

similarity measures in expression array

analysis, many alpha- and beta-diversity

measures have been developed that each

reveal slightly different aspects of commu-

nity ecology.

Alternatively, the diversity within or

among communities can be analyzed in

terms of its phylogenetic distribution

rather than by isolating discrete bins. This

method of quantifying community diver-

sity describes it in terms of the total

breadth or depth of the phylogenetic

branches spanned by a microbiome (or

shared among two or more). For example,

consider a collection of n highly-related

16S sequences. These might be treated

either as one OTU or as n distinct taxa,

depending on how finely they are binned,

but a phylogenetic analysis will consider

them to span a small evolutionary distance

no matter how large n becomes. Con-

versely, two highly-divergent binned

OTUs are typically no different than two

similar OTUs, but a phylogenetic method

would score them as spanning a large

evolutionary distance. OTU-based and

phylogenetic methods tend to be comple-

mentary, in that each will reveal different

aspects of community structure. OTUs are

highly sensitive to the specific means by

which taxa are binned, for example,

whereas phylogenetic measures are sensi-

tive to the method of tree construction.

Like the OTU-based diversity estimators

discussed above, several standard metrics

such as UniFrac [20] exist for quantifying

phylogenetic diversity, and these can be

treated as single-sample descriptors or as

multiple-sample similarity measures.

It is critically important in any micro-

biome richness analysis to account for the

contribution that technical noise will make

to apparent diversity. As a simple example,

consider that a single base pair error in a

100 bp sequence read will create a new

OTU at the 99% similarity threshold.

Apparent diversity can thus be dramatically

modified by the choice of marker gene, the

region within it that is sequenced, the

biochemical marker extraction and ampli-

fication processes, and the read length and

noise characteristics of the sequencing

platform. Accounting for such errors com-

putationally continues to be a fruitful area

of research, particularly as 454-based

technologies have transitioned to the Illu-

mina platform, as current solutions can

discard all but the highest-quality sequence

regions [18]. A major confound in many

early molecular richness analyses was the

abundance of chimeric sequences, or reads

in which two unique marker sequences

(typically 16S regions) adhere during the

amplification process, creating an appar-

ently novel taxon. Although sequence

chimeras can now be reliably removed

computationally [13,19,35], this filtering

process is still an essential early step in any

microbiome analysis.

A final consideration in the computa-

tional analysis of community structure

assays is the use of microarray-based

methods for 16S (and other marker)

quantification within a microbiome. Just

as high-throughput RNA sequencing par-

allels gene expression microarrays, 16S

rDNA sequencing parallels phylochips,

microarrays constructed with probes com-

plementary to a variety of 16S and other

marker sequences [36]. The design and

analysis of such arrays can be challenging,

as 16S sequences (or any good genomic

markers) will be highly similar, and the

potential for extensive cross-hybridization

must be taken into account both when

determining what sequences to place on a

chip and how to quantify their abundance

after hybridization [37]. The continued

usefulness of such arrays will be dictated

by future trends in high-throughput se-

quencing costs and barcoding, but at

present phylochips are beginning to be

constructed to capture functional sequenc-

es in combination with measures of taxon

abundances in high throughput, and they

represent an interesting option for popu-

lation-level microbiome assays.

4. Shotgun Sequencing and
Metagenomics

While measures of community diversity

have dominated historical analyses, mod-

ern high-throughput methods are being

developed for a host of other ‘‘meta’’

assays from uncultured microbes. The

term metagenomics is used with some

frequency to describe the entire body of

high-throughput studies now possible with

microbial communities, although it also

refers more specifically to whole-metagen-

ome shotgun (WMS) sequencing of geno-

mic DNA fragments from a community’s

metagenome [38,39]. Metatranscrip-

tomics, a close relative, implies shotgun

sequencing of reverse-transcribed RNA

transcripts [40,41], metaproteomics

[42,43] the quantification of protein or

peptide levels, and metametabolomics (or

less awkwardly community metabolomics)

[44,45] the investigation of small-molecule

metabolites. Of these assays, the latter

three in particular are still in their infancy,

but are carried out using roughly the same

technologies as their culture-based coun-

terparts, and the resulting data can

typically be analyzed using comparable

computational methods.

As of this writing, no complete meta-

metabolomic studies from uncultured mi-

crobiomes have yet been published, al-

though their potential usefulness in

understanding e.g. the human gut micro-

biome and its role in energy harvest,

obesity, and metabolic disorders is clear

[44]. Metaproteomic and metatranscrip-

tomic studies have primarily focused on

environmental samples [46,47,48], but

human stool metatranscriptomics [41,49]

and medium-throughput human gut me-

taproteomics [42,43] have also been

successfully executed and analyzed using

bioinformatics similar to those for meta-

genomes (see below) [42]. Quantification

of the human stool metatranscriptome and

metaproteome in tandem with host bio-

molecular activities should yield fascinat-

ing insights into our relationship with our

microbial majority.

DNA extraction and WMS sequencing

from uncultured samples developed, like

many sequencing technologies, concur-

rently with the Human Genome Project

[2,50,51,52], and as with other communi-

ty genomic assays, the earliest applications

were to environmental microbes due to

the ease of isolation and extraction

[53,54]. WMS techniques are in some

ways much the same now as they were

then, modulo the need for complex Sanger

clone library construction: isolate micro-

bial cells of a target size range (e.g. viral,

bacterial, or eukaryotic), lyse the cells

(taking care not to lose DNA to native

DNAses), isolate DNA, fragment it to a

target length, and sequence the resulting

fragments [55,56]. Since this procedure

can be performed on essentially any

heterogeneous population, does not suffer

from the single-copy and evolutionary
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assumptions of marker genes, and does not

require (although can include) amplifica-

tion, it can to some degree produce a less

biased community profile than does 16S

sequencing [57].

4.1 Metagenome Data Analysis
Unlike whole-genome shotgun (WGS)

sequencing of individual organisms, in

which the end product is typically a single

fully assembled genome, metagenomes

tend not to have a single ‘‘finish line’’

and have been successfully analyzed using

a range of assembly techniques. The

simplest is no assembly at all - the short

reads produced as primary data can, after

cleaning to reduce sequencing error [18],

be treated as taxonomic markers or as

gene fragments and analyzed directly.

Since microbial genomes typically contain

few intergenic sequences, most fragments

will contain pieces of one or more genes;

these can be used to quantify enzymatic or

pathway abundances directly as described

below [1,58,59,60]. Alternatively, meta-

genome-specific assembly algorithms have

been proposed that reconstruct only the

open reading frames from a population (its

ORFeome), recruiting highly sequence-

similar fragments on an as-needed basis to

complete single gene sequences and avoid-

ing assembly of larger contigs [61,62]. The

most challenging option is to attempt full

assemblies for complete genomes present

in the community, which is rarely possible

save in very simple communities or with

extreme sequencing depth [53,54]. When

successful, this has the obvious benefit of

establishing synteny, structural variation,

and opening up the range of tools

developed for whole-genome analysis

[63], and guided assemblies using read

mapping (rather than de novo assembly) can

be used when appropriate reference ge-

nomes are available. However, care must

be taken in interpreting any such assem-

blies, since horizontal transfer and com-

munity complexity prevent unambiguous

assemblies in essentially all realistic cases

[64]. A more feasible middle ground is

emerging around maximal assemblies that

capture the largest unambiguous contigs in

a community [65], allowing e.g. local

operon structure to be studied without

introducing artificial homogeneity into the

data. In any of these cases - direct analysis

of reads, ORF assembly, maximal unam-

biguous scaffolds, or whole genomes -

subsequent analyses typically focus on the

functional aspects of the resulting genes

and pathways as detailed below.

A key bioinformatic tradeoff in analyz-

ing metagenomic WMS sequences, re-

gardless of their degree of assembly, is

whether they should be analyzed by

homology, de novo, or a combination

thereof. An illustrative example is the task

of determining which parts of each

sequence read (or ORF/contig/etc.) en-

code one or more genes, i.e. gene finding

or calling. By homology, each sequence

can be BLASTed [66] against a large

database of reference genomes, which will

retrieve any similar known reading frames;

the boundaries of these regions of similar-

ity thus become the start and stop of the

metagenomic open reading frames. This

method is robust to sequencing and

assembly errors, but it is sensitive to the

contents of the reference database. Con-

versely, de novo methods have been devel-

oped to directly bin [67,68,69] and call

genes within [61,62] metagenomic se-

quences using DNA features alone (GC

content, codon usage, etc.). As with

genome analysis for newly sequenced

single organisms, most de novo methods

rely on interpolated [70] or profile [71]

Hidden Markov Models (HMMs) or on

other machine learners that perform

classification based on encoded sequence

features [72,73]. This is a far more

challenging task, making it sensitive to

errors in the computational prediction

process, but it enables a greater range of

discovery and community characterization

efforts by relying less on prior knowledge.

Hybrid methods for e.g. taxonomic bin-

ning [69] have recently been developed

that consume both sequence similarity and

de novo sequence features as input, and for

some tasks such systems might represent a

sweet spot between computational com-

plexity, availability of prior knowledge,

and biological accuracy. This tradeoff

between knowledge transfer by homology

and de novo prediction from sequence is

even more pronounced when characteriz-

ing predicted genes, as discussed below.

5. Computational Functional
Metagenomics

Essentially any analysis of a microbial

community is ‘‘functional’’ in the sense

that it aims to determine the overall

phenotypic consequences of the commu-

nity’s composition and biomolecular ac-

tivity. For example, the Human Micro-

biome Project began to investigate what

typical human microbial community

members are doing [60], how they are

affecting their human hosts [2], what

impact they have on health or disease,

and these help to suggest how pro- or

antibiotics can be used to change commu-

nity behavior for the better [74]. The

approaches referred to as computational

functional metagenomics, however, typi-

cally focus on the function (either bio-

chemically or phenotypically) of individual

genes and gene products within a com-

munity and fall into one of two categories.

Top-down approaches screen a metagen-

ome for a functional class of interest, e.g. a

particular enzyme family, transporter or

chelator, pathway, or biological activity,

essentially asking the question, ‘‘Does this

community carry out this function and, if

so, in what way?’’ Bottom-up approaches

attempt to reconstruct profiles, either

descriptive or predictive, of overall func-

tionality within a community, typically

relying on pathway and/or metabolic

reconstructions and asking the question,

‘‘What functions are carried out by this

community?’’

Either approach relies, first, on catalog-

ing some or all of the gene products

present in a community and assigning

them molecular functions and/or biolog-

ical roles in the typical sense of protein

function predictions [53,54,59]. As with so

many bioinformatic methods, the simplest

techniques rely on BLAST [66]: a top-

down investigation can BLAST represen-

tatives of gene families of interest into the

community metagenome to determine

their presence and abundance [63], and

a bottom-up approach can BLAST reads

or contigs from a metagenome into a large

annotated reference database such as nr to

perform knowledge transfer by homology

[75,76,77]. Top-down approaches dove-

tail well with experimental screens for

individual gene product function [6], and

bottom-up approaches are more descrip-

tive of the community as a whole [78].

As each metagenomic sample can

contain millions of reads and databases

such as nr in turn contain millions of

sequences, computational efficiency is a

critical consideration in either approach.

On one hand, stricter nucleotide searches

or direct read mapping to reference

genomes [79,80] improve runtime and

specificity at the cost of sensitivity; on the

other, more flexible characterizations of

sequence function such as HMMs [72,73]

tend to simultaneously increase coverage,

accuracy, and computational expense.

Any of these sequence annotation methods

can be run directly on short reads, on

ORF assemblies, or on assembled contigs,

and statistical methods have been pro-

posed to more accurately estimate the

frequencies of functions in the underlying

community when they are under-sampled

(requiring the estimation of unobserved

values [81]) or over-sampled (correcting

for loci with greater than 16 coverage

[82]). In any of these cases, the end result
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of such an analysis is an abundance profile

for each metagenomic sample quantifying

the frequency of gene products in the

community; the profiles for several related

communities can be assembled into a

frequency matrix resembling a microarray

dataset. Gene products (rows) in such a

profile can be identified by functional

descriptors such as Gene Ontology [83]

or KEGG [84] terms, protein families

such as Pfams [73] or TIGRfams [72],

enzymatic [85], transport [86], or other

structural classes [87], or most often as

orthologous families such as Homolo-

Genes [88], COGs [89], NOGs [90], or

KOs [84].

A logical next step, given such an

abundance profile of orthologous families,

is to assemble them into profiles of

community metabolic and functional

pathways. This requires an appropriate

catalog of reference pathways such as

KEGG [84], MetaCyc [91], or GO [83],

although it should be noted that none of

these is currently optimized for modeling

communities rather than single organisms

in monoculture [90]. The pathway infer-

ence process is similar to that performed

when annotating an individual newly

sequenced genome [92] and consists of

three main steps: A) assigning each

ortholog to one or more pathways, B)

gap filling or interpolation of missing

annotations, and C) determining the

presence and/or abundance of each

pathway. The first ortholog assignment

step is necessary since many gene families

participate in multiple pathways; phospho-

enolpyruvate carboxykinase, for example,

is used in the TCA cycle, glycolysis, and in

various intercellular signaling mechanisms

[93]. The abundance mass for each

enzyme is distributed across its functions

in one or more possible pathways; meth-

ods for doing this range from the simple

assumption that it is equally active in all

reference pathways (as currently done by

KAAS [94] or MG-RAST [76]) to the

elimination of unlikely pathways and the

redistribution of associated mass in a

maximum parsimony fashion [95]. Sec-

ond, once all observed orthologs have

been assigned to pathways (when possible),

gaps or holes in the reference pathways

can be filled, using the assumption that the

enzymes necessary to operate a nearly

complete pathway should be present

somewhere in the community. Essentially

three methods have been successfully

employed for gap filling: searching for

alternative pathway fragments to explain

the discrepancy [96,97], purely mathemat-

ical smoothing to replace the missing

enzymes’ abundances with numerically

plausible values [81], and targeted search-

es of the metagenome of interest for more

distant homologues with which to fill the

hole [98]. Since we are currently able to

infer function for only a fraction of the

genes in any given complete genome, let

alone metagenome, any of these ap-

proaches should be deemed hypothetical

at best; nevertheless, like any missing value

imputation process, they can provide

numerically stable guesses that are sub-

stantially better than random [99]. Finally,

as described above for taxa, the resulting

data can be used to summarize each

reference pathway either qualitatively (i.e.

with what likelihood is it present in the

community?) or quantitatively (how abun-

dant is it in the community?), and in its

simplest form condenses the abundance

matrix of orthologous families into an

abundance (or presence/absence) matrix

of pathways. Either the ortholog or

pathway matrices can then be tested for

differentially abundant features represent-

ing diagnostic biomarkers with potential

explanatory power for the phenotype of

interest, using statistical methods devel-

oped for identical tests in expression

biomarker discovery [100] and genome-

wide association studies [101].

However, our prior knowledge of (pri-

marily) metabolic pathways can be lever-

aged to produce richer inferences from

such pathway abundance information.

Given sufficient information about the

pathways in a community, it is relatively

straightforward to predict what metabolic

compounds have the potential to be

produced. However, it is much more

difficult to infer what metabolite pools

and fluxes in the community will actually

be under a specific set of environmental

conditions [102,103]. Multi-organism flux

balance analysis (FBA) is an emerging tool

to enable such analyses [104], but given

the extreme difficulty of constructing

accurate models for even single organisms

[105] or of determining model parameters

in a multi-organism community [53], no

successful reconstructions have yet been

performed for complex microbiomes. The

area holds tremendous promise, however,

first with respect to metabolic engineering

- it is not yet clear what successes might be

achieved with respect to biofuel produc-

tion or bioremediation using synthetically

manipulated communities in place of

individual organisms [106,107]. Second,

in addition to metabolite profiling, multi-

organism growth prediction allows the

determination of mutualisms, parasitisms,

and commensalisms among taxa in the

community [108] [109,110], opening the

door to basic biological discoveries regard-

ing community dynamics [25,111,112]

and to therapeutic probiotic treatments

for dysbioses in the human microbiome

[113,114].

6. Host Interactions and
Interventions

A final but critical aspect of translation-

al metagenomics lies in understanding not

only a microbial community but also its

environment - that is, its interaction with a

human host. Our microbiota would be of

interest to basic research alone if they were

not heavily influenced by host immunity

and, in turn, a major influence on host

health and disease. The skin of humans

hosts relatively few taxa (e.g. Propionibacte-

rium [115]), the nasal cavity somewhat

more (e.g. Corynebacterium [116]), the oral

cavity (dominated by Streptococcus) several

hundred taxa (with remarkable diversity

even among saliva, tongue, teeth, and

other substrates [117,118]) and the gut

over 500 taxa with densities over 1011

cells/g [2,119]. Almost none of these

communities are yet well-understood, al-

though anecdotes abound. The skin mi-

crobiome is thought to be a key factor in

antibiotic resistant Staphylococcus aureus in-

fections [120,121]; nasal communities

have interacted with the pneumococcus

population to influence its epidemiological

carriage patterns subsequent to vaccina-

tion programs [122]; and extreme dysbio-

sis in cystic fibrosis can be a precursor to

pathogenic infection [123].

The gut, however, is currently the best-

studied human microbiome [119,124,125].

It is a dynamic community changing over

the course of days [126,127], over the

longer time scales of infant development

[112,128,129,130] and aging [131,132], in

response to natural perturbations such as

diet [59,133,134,135] and illness

[114,136], and modified in as-yet-unknown

ways by the modern prevalence of travel,

chemical additives, and antibiotics [126].

Indeed, the human gut microbiome has

proven difficult to study exactly because it is

so intimately related to the physiology of its

host; inasmuch as no two people share

identical microbiota, most microbiomes are

strikingly divergent between distinct host

species, rendering results from model

organisms difficult to interpret [137,138].

Nevertheless, studies in wild type verte-

brates such as mice [139,140] and zebrafish

[141,142] have found a number of similar-

ities in their microbiotic function and host

interactions. In particular, germ-free or-

ganisms have yielded insights into the

microbiota’s role in maturation of the host

immune system and, surprisingly, even
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anatomical development of the intestine

[143,144]. Similarly, gnotobiotic systems in

which an organism’s natural microbiota are

replaced with their human analog are a

current growth area for closer study of the

phenotypic consequences of controlled

microbiotic perturbations [145].

One of the highest-profile demonstra-

tions of this technique and of the micro-

biota’s influence on human health has

been in an ongoing study of the micro-

biome in obesity [146]. Early studies in

wild-type mice [139] demonstrated gross

taxonomic shifts in the composition and

diversity of the microbiomes of obese

individuals; follow-ups in gnotobiotic mice

confirmed that this phenotype was trans-

missible via the microbiome [147]. These

initial studies were taxonomically focused

and found that, while high-level phyla

were robustly perturbed in obesity (which

incurs a reduction in Bacteroidetes and

concomitant increase in Firmicutes [139]),

few if any specific taxa seemed to be

similarly correlated [138,140]. Subsequent

functional metagenomics, first in mouse

[148] and later a small human cohort [59],

established that the functional consistency

of these shifts operates more consistently,

enriching the microbiome’s capacity for

energy harvest and disregulating fat stor-

age and signaling within the host. While

these observations represent major de-

scriptive triumphs, further computational

and experimental work must yet be

performed to establish the underlying

biomolecular mechanisms and whether

they are correlative, causative, or may be

targeted by interventions to actively treat

obesity [59].

A similarly complex community for

which we have a greater understanding of

the functional mechanisms at play is the

formation of biofilms in the oral cavity

preceding caries (cavities) or periodontitis

[149]. While we are still investigating the

microbiota of the saliva [150] and of the

oral soft tissues [151], colonization of the

tooth enamel is somewhat better under-

stood due to the removal of significant

interaction with host tissue. Even more

strikingly, this biofilm, or physically struc-

tured consortium of multiple microbial

taxa, must reestablish itself from almost

nothing each time we brush our teeth - a

process that can be achieved within hours

[152]. Streptococci in particular possess a

number of surface adhesins and receptors

that enable them to behave as early

colonizers on bare tooth surface and to

bind together a variety of subsequent

microbes [153]. These fairly minimal

bacteria are metabolically supported by

Veillonella and Actinomyces species, and their

aggregation leads to local nutritive and

structural environments favorable to e.g.

Fusobacterium and Porphyromonas [154]. Each

of these steps is mediated by a combination

of cell surface recognition molecules, extra-

cellular physical interactions, metabolic

codependencies, and explicit intercellular

signaling, providing an excellent example

of the complexity with which structured

microbiomes can evolve. Indeed, the evol-

vability of such systems, both as a whole

[155] and at the molecular level [156], is

yet another aspect of the work remaining to

computationally characterize microbiotic

biomolecular and community function.

Finally, the microbiota clearly represent

a key component of future personalized

medicine. First, the number and diversity

of phenotypes linked to the composition of

the microbiota is immense: obesity, diabe-

tes, allergies, autism, inflammatory bowel

disease, fibromyalgia, cardiac function,

various cancers, and depression have all

been reported to correlate with micro-

biome function [157]. Even without caus-

ative or modulatory roles, there is tremen-

dous potential in the ability to use the

taxonomic or metagenomic composition

of a subject’s gut or oral flora (both easily

sampled) as a diagnostic or prognostic

biomarker for any or all of these condi-

tions. Commercial personal genomics

services such as 23andMe (Mountain

View, CA) promise to decode your disease

risk based on somatic DNA from a saliva

sample; bioinformatic techniques have yet

to be developed that will allow us to do the

same using microbial DNA.

Second, the microbiota are amazingly

plastic; they change metagenomically

within hours and metatranscriptomically

within minutes in response to perturba-

tions ranging from broad-spectrum antibi-

otics to your breakfast bacon and eggs

[41,126,127]. For any phenotype to which

they are causally linked, this opens the

possibility of pharmaceutical, prebiotic

(nutrients promoting the growth of bene-

ficial microbes [113,119]), or probiotic

treatments. Indeed, Nobel Prize winner

Ilya Mechnikov famously named Lactoba-

cillus bulgaricus, a primary yogurt-produc-

ing bacterium, for its apparent contribu-

tion to the longevity of yogurt-consuming

Bulgarians [158], and despite a degree of

unfortunate popular hype, the potential

health benefits of a variety of probiotic

organisms are indeed supported by recent

findings [125,159]. Unfortunately, we

currently understand few of the mecha-

nisms by which these interventions oper-

ate. Do the supplemented organisms

outcompete specific pathogens, do they

simply increase their own numbers, or do

they shift the overall systems-level balance

of many taxa within the community? Do

they reduce the levels of detrimental

metabolites in the host, or do they increase

the levels of beneficial compounds? Do

they change biomolecular activity being

carried out in microbial cells, adjacent

host epithelial or immune cells, or distal

cells through host signaling mechanisms?

Or, as in polygenic genetic disorders, does

a combination of many factors result in

health or disease status as an emergent

phenotype?

The human microbiome has been

referred to as a ‘‘forgotten organ’’ [160],

and the truth of both words is striking.

Our trillions of microbial passengers

account for a proportion of our metabo-

lism and signaling as least as great as that

performed by more integral body parts,

and after a century of molecular biology,

we have only begun to realize their

importance within the last few years. To

close with a success story, the popular

press [161] recently reported on the full

recovery of a patient suffering from

Clostridium difficile-associated diarrhea,

which had led her to lose over 60 pounds

in less than a year. C. difficile is often

refractory to antibiotics, with spores able

to repopulate from very low levels, and the

patient’s normal microbiota had been

decimated by the infection and subsequent

treatment. Finally, she received a simple

fecal transplant from her husband, in

which the host microbiome was replaced

with that of a donor. Within days, not only

had she begun a complete recovery, but a

metagenomic survey of her microbiota

showed that the new community was

almost completely established and had

restored normal taxonomic abundances

[162]. While this is an extreme case,

similar treatments have shown a success

rate of some 90% historically [163], all of

which occurred before modern genomic

techniques allowed us to more closely

examine the microbiota. Imagine perform-

ing any other organ transplant with such a

high rate of success - while blindfolded!

Like so many other discoveries of the

genomic era, the study of the human

microbiome has begun with amazing

achievements, and it will require contin-

ued experimental and bioinformatic efforts

to better understand the biology of these

microbial communities and to see it

translated into clinical practice.

7. Summary

The human microbiome consists of

unicellular microbes - mainly bacterial,

but also archaeal, viral, and eukaryotic -
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that occupy nearly every surface of our

bodies and have been linked to a wide

range of phenotypes in health and disease.

High-throughput assays have offered the

first comprehensive culture-free tech-

niques for surveying the members of these

communities and their biomolecular ac-

tivities at the transcript, protein, and

metabolic levels. Most current technolo-

gies rely on DNA sequencing to examine

either individual taxonomic markers in a

microbial community, typically the 16S

ribosomal subunit gene, or the composite

metagenome of the entire community.

Taxonomic analyses lend themselves to

computational techniques rooted in mi-

crobial ecology, including diversity mea-

sures within (alpha) and between (beta)

samples; these can be defined quantita-

tively (based on abundance) or qualitative-

ly (based on presence/absence), and they

may or may not take into account the

phylogenetic relatedness of the taxa being

investigated. Finally, in the absence of

information regarding specific named

species in a community, sequences are

often clustered by similarity into Opera-

tional Taxonomic Units (OTUs) as the

fundamental unit of analysis within a

sample.

In contrast, whole-genome shotgun

analyses begin with sequences sampled

from the entire community metagenome.

These can also be taxonomically binned,

or they can be assembled, partially assem-

bled into ORFeomes, or characterized

directly at the read level. Characterization

typically consists of function assignment

similar to that performed for genes during

annotation of a single organism’s genome;

once genes in the metagenome are de-

fined, they can be mapped or BLASTed to

reference sequence databases or analyzed

intrinsically using e.g. codon frequencies

or HMM profiles. Finally, the frequencies

of enzymes and other gene products so

determined can be assigned to pathways,

allowing inference of the overall metabolic

potential of the community and inference

of diagnostic and potentially explanatory

functional biomarkers. Ongoing studies

are beginning to investigate the ways in

which the microbiota can be directly

engineered using pharmaceuticals, prebio-

tics, probiotics, or diet as a preventative or

treatment for a wide range of disorders.

8. Exercises

Q1. You have a collection of 16S rRNA

gene sequencing data, which consists of an

Illumina run in which the 100 bp V6

hypervariable region has been amplified.

The error rate of Illumina sequencing has

been estimated as 1.361023 per base pair

[164], and you have 30 million Illumina

reads. Will binning your reads into OTUs

at 100% or 97% give you a more

interpretable estimation of the number of

OTUs present? Why?

Q2. You have collections of 16S rRNA

gene reads from two environmental sam-

ples, A and B. You examine 50 reads each

from sample A and sample B, which

correspond to four taxa in A and two taxa

in B. You examine 25 more reads from

each library and detect two more taxa in A

and one more in B. In total, two of these

taxa are present in both communities A

and B. Which sample has higher alpha

diversity by counting taxonomic richness?

What is the beta diversity between A and

B using simple overlap of taxa? Using

Bray-Curtis dissimilarity?

Q3. You examine 1,000 more sequenc-

es from samples A and B, detecting 10

additional taxa in A and 25 in B. Which

sample has higher alpha diversity now, as

measured by taxonomic richness? Why is

this different from your previous answer?

What statement can you make about the

ecological evenness of communities A and

B as a result?

Q4. What factors in the microbial

environment might you expect to be

reflected in metabolism, signaling, and

biomolecular function between skin bacte-

ria and oral bacteria? What impact would

you expect this to have on the pathways

carried in these community metagenomes,

or on their alpha diversities?

Q5. It is estimated that 2–5% of the

population has Clostridium difficile in their

intestines. Why is this not usually a

problem?

Q6. Consider the impact upon the

human microbiome of two perturbations:

social contact and brushing your teeth.

What short-term and long-term impact do

you expect on alpha diversity? Beta

diversity?

Q7. Calculate richness, the inverse

Simpson index, and the Shannon index

for each sample described in the table

below. Which has the highest alpha

diversity? Why is the answer different

according to which measurement you use?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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OTU Sample 1 Sample 2 Sample 3

A 20 20 30
B 20 20 30
C 1 20 30
D 1 20 0
E 1 0 1

Further Reading

It is difficult to recommend comprehensive literature in an area that is changing
so rapidly, but the bioinformatics of microbial community studies are currently
best covered by the reviews in [22,56,165]. Computational tools for metagenomic
analysis include [13,19,63,75,76,77,166]. An overview of microbial ecology from a
phylogenetic perspective is provided in [167,168], and the use of the 16S subunit
as a marker gene is reviewed in [12]. Likewise, experimental and computational
functional metagenomics are discussed in [6,25,169]. The clinical relevance of the
human microbiome is far-ranging and is comprehensively reviewed in [157].
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Glossary

alpha diversity: within-sample taxonomic diversity

beta diversity: between-sample taxonomic diversity

binning: assignment of sequences to taxonomic units

biofilm: a physically (and often temporally) structured aggregate of microorganisms, often containing multiple taxa, and often
adhered to each other and/or to a defined substrate

chimera: an artificial DNA sequence generated during amplification, consisting of a combination of two (or more) true
underlying sequences

collector’s curve: a plot in which the horizontal axis represents samples (often DNA sequences) and the vertical axis represents
diversity (e.g. number of distinct taxa)

community structure: used most commonly to refer to the taxonomic composition of a microbial community; can also refer to
the spatiotemporal distribution of taxa

diversity: a measure of the taxonomic distribution within a community, either in terms of distinct taxa or in terms of their
evolutionary/phylogenetic distance

FBA: Flux Balance Analysis, a computational method for inferring the metabolic behavior of a system given prior knowledge of
the enzymatic reactions of which it is capable

functional metagenomics: computational or experimental analysis of a microbial community with respect to the biochemical
and other biomolecular activities encoded by its composite genome

gap filling: the process of imputing missing or inaccurate gene abundances in a set of pathways

germ-free: a host animal containing no microorganisms

gnotobiotic: a host animal containing a defined set of microorganisms, either synthetically implanted or transferred from
another host; often used to refer to model organisms with humanized microbiota

holes: missing genes in a set of reference pathways; see gap filling

interpolation: see gap filling

marker: a gene or other DNA sequence that can be (ideally) unambiguously assigned to a particular taxon or function

metagenome: the total genomic DNA of all organisms within a community

metagenomics: the study of uncultured microbial communities, typically relying on high-throughput experimental data and
bioinformatic techniques

metametabolome: the total metabolite pool (and possibly fluxes) of a community

metaproteome: the total proteome of all organisms within a community

metatranscriptome: the total transcribed RNA pool of all organisms within a community

microbiome: the total microbial community and biomolecules within a defined environment

microbiota: the total collection of microbial organisms within a community, typically used in reference to an animal host

microflora: an older term used synonymously with microbiota

ORFeome: the total collection of open reading frames within a metagenome

ortholog: in strict usage, a homologous gene in two species distinguished only by a speciation event; in practice, used to
denote any gene sufficiently homologous as to represent strong evidence for conserved biological function

OTU: Operational Taxonomic Unit, a cluster of organisms similar at the sequence level beyond some threshhold (e.g. 95%) used
in place of species, genus, etc.

phylochip: a microarray containing taxonomic (and sometimes functional) marker sequences
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Chapter 13: Mining Electronic Health Records in the
Genomics Era
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Abstract: The combination of im-
proved genomic analysis methods,
decreasing genotyping costs, and
increasing computing resources has
led to an explosion of clinical geno-
mic knowledge in the last decade.
Similarly, healthcare systems are in-
creasingly adopting robust electronic
health record (EHR) systems that not
only can improve health care, but also
contain a vast repository of disease
and treatment data that could be
mined for genomic research. Indeed,
institutions are creating EHR-linked
DNA biobanks to enable genomic
and pharmacogenomic research, us-
ing EHR data for phenotypic informa-
tion. However, EHRs are designed
primarily for clinical care, not research,
so reuse of clinical EHR data for
research purposes can be challeng-
ing. Difficulties in use of EHR data
include: data availability, missing data,
incorrect data, and vast quantities of
unstructured narrative text data.
Structured information includes bill-
ing codes, most laboratory reports,
and other variables such as physio-
logic measurements and demograph-
ic information. Significant informa-
tion, however, remains locked within
EHR narrative text documents, includ-
ing clinical notes and certain catego-
ries of test results, such as pathology
and radiology reports. For relatively
rare observations, combinations of
simple free-text searches and billing
codes may prove adequate when
followed by manual chart review.
However, to extract the large cohorts
necessary for genome-wide associa-
tion studies, natural language pro-
cessing methods to process narrative
text data may be needed. Combina-
tions of structured and unstructured
textual data can be mined to gener-
ate high-validity collections of cases
and controls for a given condition.
Once high-quality cases and controls
are identified, EHR-derived cases can
be used for genomic discovery and
validation. Since EHR data includes a
broad sampling of clinically-rele-
vant phenotypic information, it may

enable multiple genomic investiga-
tions upon a single set of genotyped
individuals. This chapter reviews sev-
eral examples of phenotype extrac-
tion and their application to genetic
research, demonstrating a viable fu-
ture for genomic discovery using
EHR-linked data.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction and Motivation

Typical genetic research studies have

used purpose-built cohorts or observation-

al studies for genetic research. As of 2012,

more than 1000 genome-wide association

analyses have been performed, not to

mention a vast quantity of candidate gene

studies [1]. Many of these studies have

investigated multiple disease and pheno-

typic traits within a single patient cohort,

such as the Wellcome Trust [2] and

Framingham research cohorts [3–5]. Typ-

ically, patient questionnaires and/or re-

search staff are used to ascertain pheno-

typic traits for a patient. While these study

designs may offer high validity and

repeatability in their assessment of a given

trait, these models are typically very costly

and often represent only a cross-section of

time. In addition, rare diseases may take a

significant time to accrue in these datasets.

Another model that is gaining accep-

tance is genetic discovery based solely or

partially from phenotype information de-

rived solely from the electronic health

record (EHR) [6]. In these models, a

hospital collects DNA for research, and

maintains a linkage between the DNA

sample and the EHR data for that patient.

The primary source of phenotypic infor-

mation, therefore, is the EHR. Depending

on the design of the biobank model, some

EHR-linked biobanks have the ability to

supplement EHR-accrued data with pur-

pose-collected research data.

The EHR model for genetic research

offers several key advantages, but also faces

prominent challenges to successful imple-

mentation. A primary advantage is cost.

EHRs contain a longitudinal record of robust

clinical data that is produced as a byproduct

of routine clinical care. Thus, it is a rich, real-

world dataset that requires little additional

funding to obtain. Both study designs share

costs for obtaining and storing DNA.

Another advantage of EHR-linked

DNA databanks is the potential to reuse

genetic information to investigate a broad

range of additional phenotypes beyond the

original study. This is particularly true for

dense genetic data such as generated

through genome-wide association studies

or large-scale sequencing data. For in-

stance, a patient may be genotyped once

as part of a study on diabetes, and then

later participate in another analysis for

cardiovascular disease.

Major efforts in EHR DNA biobanking

are underway at a number of institutions.

One of the major driving forces has been

the National Human Genome Research

Institute (NHGRI)-sponsored Electronic

Medical Records and Genomics

(eMERGE) network [7], which began in
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2007 and, as of 2012, consists of nine sites

that are performing genome-wide association

studies using phenotypic data derived from

EHR. The National Institutes of Health

(NIH)-sponsored Pharmacogenomics Re-

search Network (PGRN) also include sites

performing genetic research using EHR data

as their source of phenotypic data. Another

example is the Kaiser Permanente Research

Program on Genes, Environment and

Health, which has genotyped 100,000 mem-

bers with linked EHR data [8].

2. Classes of Data Available in
EHRs

EHRs are designed primarily to support

clinical care, billing, and, increasingly,

other functions such as quality improve-

ment initiatives aimed at improving the

health of a population. Thus, the types of

data and their methods of storing this data

are optimized to support these missions.

The primary types of information avail-

able from EHRs are: billing data, labora-

tory results and vital signs, provider

documentation, documentation from re-

ports and tests, and medication records.

Billing data and many laboratory results

are available in most systems as structured

‘‘name-value pair’’ data. Clinical docu-

mentation, many test results (such as

echocardiograms and radiology testing),

and medication records are often found in

narrative or semi-narrative text formats.

Researchers creating ‘‘electronic pheno-

type algorithms’’ (discussed in Section 6.2)

typically utilize multiple types of informat-

ics (e.g., billing codes, laboratory results,

medication data, and/or NLP) to achieve

high accuracy when identifying cases and

controls from the EHR.

Table 1 summarizes the types of data

available in the EHR and their strengths

and weaknesses.

2.1 Billing Data
Billing data typically consists of codes

derived from the International Classifica-

tion of Diseases (ICD) and Current

Procedural Terminology (CPT). ICD is a

hierarchical terminology of diseases, signs,

symptoms, and procedure codes main-

tained by the World Health Organization

(WHO). While the majority of the world

uses ICD version 10, the United States (as

of 2012) uses ICD version 9-CM; the

current Center for Medicare and Medi-

caid Services guidelines mandate a transi-

tion to ICD-10-CM in the United States

by October 1, 2014. Because of their

widespread use as required components

for billing, and due to their ubiquity within

EHR systems, billing codes are frequently

used for research purposes [9–14]. Prior

research has demonstrated that such

administrative data can have poor sensi-

tivity and specificity [15,16]. Despite this,

they remain an important part of more

complex phenotype algorithms that

achieve high performance [17–19].

CPT codes are created and maintained

by the American Medical Association.

They serve as the chief coding system

providers use to bill for clinical services.

Typically, CPTs are paired with ICD

codes, the latter providing the reason

(e.g., a disease or symptom) for a clinical

encounter or procedure. This satisfies the

requirements of insurers, who require

certain allowable diagnoses and symptoms

to pay for a given procedure. For example,

insurance companies will pay for a brain

magnetic resonance imaging (MRI) scan

that is ordered for a number of complaints

(such as known cancers or symptoms such

as headache), but not for unrelated

symptoms such as chest pain.

Within the context of establishing a

particular diagnosis from EHR data, CPT

codes tend to have high specificity but low

sensitivity, while ICD9 codes have com-

paratively lower specificity but higher

sensitivity. For instance, to establish the

diagnosis of coronary artery disease, one

could look for a CPT code for ‘‘coronary

artery bypass surgery’’ or ‘‘percutaneous

coronary angioplasty’’ disease, or for one

of several ICD9 codes. If the CPT code is

present, there is a high probability that the

patient has corresponding diagnosis of

coronary disease. However, many patients

without these CPT codes also have

coronary disease, but either have not

received these interventions or received

them at a different hospital. In contrast, a

clinician may bill an ICD9 code for

coronary disease based on clinical suspi-

cion without a firm diagnosis. Figure 1

shows the results of a study that compared

the use of natural language processing

(NLP) and CPT codes to detect patients

who have received colorectal cancer

screening, via a colonoscopy within the

last ten years, at one institution. In this

study, only 61% (106 out of 174 total) of

the documented completed colonoscopies

were found via CPT codes [20]. The most

common cause of false negatives was a

colonoscopy completed at another hospi-

tal. CPT codes, however, had a very high

precision (i.e., positive predictive value; see

Box 1), with only one false positive.

2.2 Laboratory and Vital Signs
Laboratory data and vital signs form a

longitudinal record of mostly structured

data in the medical record. In addition to

being stored as name-value pair data,

these fields and values can be encoded

using standard terminologies. The most

common controlled vocabulary used to

represent laboratory tests and vital signs is

the Logical Observation Identifiers Names

and Codes (LOINCH), which is a Consol-

idated Health Informatics standard for

representation of laboratory and test

names and is part of Health Language 7

(HL7) [21,22]. Despite the growing use of

LOINC, many (perhaps most) hospital lab

systems still use local dictionaries to

encode laboratory results internally. Hos-

pital laboratory systems or testing compa-

nies may change over time, resulting in

different internal codes for the same test

result. Thus, care is needed to implement

selection logic based on laboratory results.

Indeed, a 2009–2010 data standardization

effort at Vanderbilt University Medical

Center found that the concept of ‘‘weight’’

and ‘‘height’’ each had more than five

internal representations. Weights and

heights were also recorded by different

systems using different field names and

stored internally with different units (e.g.,

kilograms, grams, and pounds for weight;

What to Learn in This Chapter

N Describe the types of information available in Electronic Health Records (EHRs),
and the relative sensitivity and positive predictive value of each

N Describe the difference between unstructured and structured information in
the EHR

N Describe methods for developing accurate phenotype algorithms that integrate
structured and unstructured EHR information, and the roles played by billing
codes, laboratory values, medication data, and natural language processing

N Describe recent uses of EHR-derived phenotypes to study genome-phenome
relationships

N Describe the cost advantages unique to EHR-linked biobanks, and the ability to
reuse genetic data for many studies

N Understand the role of EHRs to enable phenome-wide association studies of
genetic variants
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Table 1. Strengths and weakness of data classes within EHRs.

ICD codes CPT codes Laboratory Data Medication records Clinical Documentation

Availability in EHR
systems

Near-universal Near-universal Near-universal Variable Variable

Recall Medium Poor Medium Inpatient: High
Outpatient: Variable

Medium

Precision Medium High High Inpatient: High
Outpatient: Variable

Medium-High

Fragmentation effect Medium High Medium-High Medium Low-Medium

Query method Structured Structured Mostly structured Structured, text
queries, and NLP

NLP, text queries, and
rarely structured

Strengths -Easy to query
-Serves as a good first
pass of disease status

-Easy to query
-High precision

-Value depends on
test
-High data validity

Can have high validity Best record of what
providers thought

Weaknesses -Disease codes often
used for screening
when disease not a
ctually present
-Accuracy hindered by
billing realities and clinic
workflow

-Most susceptible to
missing data errors
(e.g., performed at
another hospital)
-Procedure receipt
influenced by patient
and payer factors
external to disease
process

-May need to
aggregate different
variations of the
same data elements
-Normal ranges and
units may change
over time

-Often need to interface
inpatient and outpatient
records
-Medication records from
outside providers not
present
-Medications prescribed
not necessary taken

-Difficult to process
automatically
-Interpretation accuracy
depends on assessment
method
-May suffer from
significant
‘‘cut and paste’’
-Not universally
available in EHRs
-May be
self-contradictory

Summary Essential first element for
electronic phenotyping

Helpful addition if
relevant

Helpful addition if
relevant

Useful for confirmation
and a marker of severity

Useful for confirming
common diagnoses
or for finding rare ones

doi:10.1371/journal.pcbi.1002823.t001

Figure 1. Comparison of natural language processing (NLP) and CPT codes to detect completed colonoscopies in 200 patients. In
this study, more completed colonoscopies were found via NLP than with billing codes alone, and only one colonoscopy was found with billing codes
that was not found with NLP. NLP examples were reviewed for accuracy.
doi:10.1371/journal.pcbi.1002823.g001
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centimeters, meters, inches, and feet for

height).

Structured laboratory results are often

a very important component of pheno-

type algorithms, and can represent tar-

gets for genomic investigation [3,4,23].

An algorithm to identify type 2 diabetes

(T2D) cases and controls, for instance,

used laboratory values (e.g., hemoglobin

A1c and glucose values) combined with

billing codes and medication mentions

[17]. Similarly, an algorithm to deter-

mine genomic determinants of normal

cardiac conduction required normal

electrolyte (potassium, calcium, and

magnesium) values [16]. In these set-

tings, investigation of the determinants of

the values requires careful selection of

the value to be investigated. For instance,

an analysis of determinants of uric acid

or red blood cell indices would exclude

patients treated with certain antineoplas-

tic agents (which can increase uric acid

or suppression of erythrocyte produc-

tion), and, similarly, an analysis of white

blood cell indices also excludes patients

with active infections and certain medi-

cations at the time of the laboratory

measurement.

2.3 Provider Documentation
Clinical documentation represents per-

haps the richest and most diverse source of

phenotype information. Provider docu-

mentation is required for nearly all billing

of tests and clinical visits, and is frequently

found in EHR systems. To be useful for

phenotyping efforts, clinical documenta-

tion must be in the form of electronically-

available text that can be used for

subsequent manual review, text searches,

or NLP. They can be created via

computer-based documentation (CBD)

systems or dictated and transcribed. The

most common form of computable text is

in unstructured narrative text documents,

although a number of developers have

also created structured documentation

tools [24]. Narrative text documents can

be processed by text queries or by NLP

systems, as discussed in the following

section.

For some phenotypes, crucial docu-

ments may only be available as hand-

written documents, and thus not amenable

to text searching or NLP. Unavailability

may result from clinics that are slow

adopters, have very high patient volumes,

or have specific workflows not well ac-

commodated by the EHR system [25].

However, these hand-written documents

may be available electronically as scanned

copies. Recent efforts have shown that

intelligent character recognition (ICR)

software may be useful for processing

scanned documents containing hand-writ-

ten fields (Figure 2) [26,27]. This task can

be challenging, however, and works best

when the providers are completing pre-

formatted forms.

2.4 Documentation from Reports
and Tests

Provider-generated reports and test

results include radiology and pathology

reports and some procedure results such as

echocardiograms. They are often in the

form of narrative text results. Many of

these contain a mixture of structured and

unstructured results. Examples include an

electrocardiogram report, which typically

has structured interval durations and may

contain a structured field indicating

whether the test was abnormal or not.

However, most electrocardiogram (ECG)

reports also contain a narrative text

‘‘impression’’ representing the cardiolo-

gist’s interpretation of the result (e.g.,

‘‘consider anterolateral myocardial ische-

mia’’ or ‘‘Since last ECG, patient has

developed atrial fibrillation’’) [28]. For

ECGs, the structured content (e.g., the

intervals measured on the ECG) are

generated using automated algorithms

and have varying accuracy [29].

2.5 Medication Records
Medication records serve an important

role in accurate phenotype characteriza-

tion. They can be used to increase the

precision of case identification, and to help

ensure that patients believed to be controls

do not actually have the disease. Medica-

tions received by a patient serve as

confirmation that the treating physician

believed the disease was present to a

sufficient degree that they prescribed a

treating medication. It is particularly

helpful to find presence or absence of

medications highly specific or sensitive for

the disease. For instance, a patient with

diabetes will receive either oral or inject-

able hypoglycemic agents; these medica-

tions are both highly sensitive and specific

for treating diabetes, and can also be used

to help differentiate type I diabetes

(treated almost exclusively with insulin)

from T2D (which is typically a disease of

insulin resistance and thus can be treated

with a combination of oral and injectable

hypoglycemic agents).

Medication records can be in varying

forms within an electronic record. With

the increased use of computerized provid-

er order entry (CPOE) systems to manage

hospital stays, inpatient medication rec-

ords are often available in highly struc-

tured records that may be mapped to

controlled vocabularies. In addition, many

hospital systems are installing automated

bar-code medication administration rec-

ords by which hospital staff record each

individual drug administration for each

patient [30]. With this information, accu-

rate drug exposures and their times can be

Box 1. Metrics Commonly Used to Evaluate Phenotype Selection
Algorithms

Sensitivity Recallð Þ~ True Positives

Gold standard positives

Specificity~
True Negatives

Gold standard negatives

Positive Predictive Value PPV ,Precisionð Þ~ True Positives

True PositiveszFalse Positives

Negative Predictive Value NPVð Þ~ True Negatives

True NegativeszFalse Negatives

F{measure~
2|Recall|Precision

RecallzPrecision
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constructed for each inpatient. Even

without electronic medication administra-

tion records (such as bar-code systems),

research has shown that CPOE-ordered

medications are given with fairly high

reliability [31].

Outpatient medication records are often

recorded via narrative text entries within

clinical documentation, patient problem

lists, or communications with patients

through telephone calls or patient portals.

Many EHR systems have incorporated

outpatient prescribing systems, which cre-

ate structured medical records during

generation of new prescriptions and

refills. However, within many EHR

systems, electronic prescribing tools are

optional, not yet widely adopted, or have

only been used within recent history.

Thus, accurate construction of a patient’s

medication exposure history often re-

quires NLP techniques. For specific algo-

rithms, focused free-text searching for a

set of medications can be efficient and

effective [17]. This approach requires the

researcher to generate the list of brand

names, generics, combination medica-

tions, and abbreviations that would be

used, but has the advantage that it can be

easily accomplished using relational data-

base queries. The downside is that this

approach requires re-engineering for each

medication or set of medications to be

searched, and does not allow for the

retrieval of other medication data, such as

dose, frequency, and duration. A more

general-purpose approach can be

achieved with NLP, which is discussed

in greater detail in Section 3 below.

3. Natural Language Processing
to Support Clinical Knowledge
Extraction

Although many documentation tools

include structured and semi-structured

elements, the vast majority of computer

based documentation (CBD) remains in

‘‘natural language’’ narrative formats [24].

Thus, to be useful for data mining,

narrative data must be processed through

use of text-searching (e.g., keyword search-

ing) or NLP systems. Keyword searching

can effectively identify rare physical exam

findings in text [32], and extension to use

of regular expression pattern matching has

been used to extract blood pressure

readings [33]. NLP computer algorithms

scan and parse unstructured ‘‘free-text’’

documents, applying syntactic and seman-

tic rules to extract structured representa-

tions of the information content, such as

concepts recognized from a controlled

terminology [34–37]. Early NLP efforts

to extract medical concepts from clinical

text documents focused on coding in the

Systematic Nomenclature of Pathology or

the ICD for financial and billing purposes

[38], while more recent efforts often use

complete versions of the Unified Medical

Language System (UMLS) [39–41],

SNOMED-CT [16], and/or domain-spe-

cific vocabularies such as RxNorm for

medication extraction [42]. NLP systems

utilize varying approaches to ‘‘understand-

ing text,’’ including rule-based and statis-

tical approaches using syntactic and/or

semantic information. Natural language

Figure 2. Use of Intelligent Character Recognition to codify handwriting. Figure courtesy of Luke Rasmussen, Northwestern University.
doi:10.1371/journal.pcbi.1002823.g002

PLOS Computational Biology | www.ploscompbiol.org 5 December 2012 | Volume 8 | Issue 12 | e1002823



processors can achieve classification rates

similar to those of manual reviewers, and

can be superior to keyword searches. A

number of researchers have demonstrated

the effectiveness of NLP for large-scale

text-processing tasks. Melton and Hripc-

sak used MedLEE to recognize instances

of adverse events in hospital discharge

summaries [43]. Friedman and colleagues

evaluated NLP for pharmacovigilance to

discover adverse drug events from clinical

records by using statistical methods that

associate extracted UMLS disease con-

cepts with extracted medication names

[40]. These studies show the potential

for NLP to aid in specific phenotype

recognition.

Using either NLP systems or keyword

searching, the primary task in identifying a

particular phenotype is to filter out

concepts (or keywords) within a corpus of

documents that indicate statements other

than the patient having the disease.

Researchers may desire to specify partic-

ular document types (e.g., documents

within a given domain, problem lists,

etc.) or particular types of visits or

specialists (e.g., requiring a visit with an

ophthalmologist). Some common NLP

tasks needed in phenotype classification

include identifying family medical history

context and negated terms (e.g., ‘‘no

cardiac disease’’), and removing drug

allergies when searching for patients

taking a certain medication. Recognition

of sections within documents can be

handled using structured section labels,

specialized NLP systems such as SecTag

[44], or more general-purpose NLP sys-

tems such as MedLEE [45] or HITEX

[46]. A number of solutions have been

proposed for negation detection; among

the more widespread are adaptations of

the NegEx algorithm developed by Chap-

man et al., which uses a series of negation

phrases and boundary words to identify

negated text [47]. NegEx or similar

algorithms can be used as a standalone

system or be integrated within a number

of general-purpose NLP systems including

MedLEE [48], the KnowledgeMap con-

cept identifier [49], cTAKES [50], and the

National Library of Medicine’s MetaMap

[51].

Medication information extraction is

an important area for clinical applica-

tions that benefits from specialized NLP

tools. Most general-purpose NLP systems

will recognize medications by the medi-

cation ingredient mentioned in the text

but may not identify the relevant medi-

cation metadata such as dose, frequency,

and route. In addition, a general purpose

NLP system using as its vocabulary the

UMLS will likely recognize ‘‘atenolol’’

and ‘‘Tenormin’’ (a United States brand

name for atenolol) as two different

concepts, since each is represented by

separate concepts in the UMLS. Medi-

cation-specific NLP systems focus on

extracting such metadata for a medica-

tion. Sirohl and Peissig applied a com-

mercial medication NLP system to de-

rived structured medication information

[52], which was later linked to laboratory

data and used to explore the pharmaco-

dynamics of statin efficacy (a cholesterol-

lowering medication) [53]. Xu et al.

developed a similar system at Vanderbilt

called MedEx, which had recall and

precision $0.90 for discharge summaries

and clinic notes on Vanderbilt clinical

documents [42]. Additionally, the 2009

i2b2 NLP challenge focused on medica-

tion extraction using de-identified dis-

charge summaries from Partners Health-

care, and 20 teams competed to identify

medications and their signatures. The

best systems achieved F-measures $0.80

[54]. Much work remains to be done in

this area, as extraction of both medica-

tion names and associated signature

information can be challenging when

considering the full breadth of clinical

documentation formats available, includ-

ing provider-staff and provider-patient

communications, which often contain less

formal and misspelled representations of

prescribed medications.

For more information on NLP methods

and applications, please see the article on

text mining elsewhere in this collection

(submitted).

4. EHR-Associated Biobanks:
Enabling EHR-Based Genomic
Science

DNA biobanks associated with EHR

systems can be composed of either ‘‘all

comers’’ or a focused collection, and

pursue either a conventional consented

‘‘opt-in’’ or an ‘‘opt-out’’ approach. Cur-

rently, the majority of DNA biobanks

have an opt-in approach that selects

patients for particular research studies.

Two population-based models in the

eMERGE network are the Personalized

Medicine Research Population (PMRP)

project of the Marshfield Clinic (Marsh-

field, WI) [55] and Northwestern Uni-

versity’s NUgene project (Chicago, IL).

The PMRP project selected 20,000 indi-

viduals who receive care in the geograph-

ic region of the Marshfield Clinic. These

patients have been consented, surveyed,

and have given permission to the inves-

tigators for recontact in the future if

additional information is needed. The

NUgene project, which has enrolled

nearly 10,000 people through 2012, uses

a similar approach, obtaining patients’

consent during outpatient clinic visits

[56]. Another example of an EHR-

associated biobank is the Kaiser-Perma-

nente biobank, which has genotyped

100,000 individuals [57].

The alternative ‘‘opt-out’’ approach is

evidenced by Vanderbilt University’s

BioVU, which associates DNA with de-

identified EHR data [58]. In this model,

patients have the opportunity to ‘‘opt out’’

of the DNA biobank by checking a box on

the standard ‘‘Consent to Treatment’’

form signed as part of routine clinical

care. A majority of patients (.90%) do

not check this box, indicating assent to

the use of their DNA in the biobank [58].

If the patient does not opt-out, blood

that is scheduled to be discarded after

routine laboratory testing is instead sent

for DNA extraction, which is stored for

potential future use. To ensure that no

one knows with certainty if a subject’s

DNA is in BioVU, an additional small

percentage of patients are randomly

excluded.

The BioVU model requires that the

DNA and associated EHR data be de-

identified in order to assure that the model

complies with the policies of non-human

subjects research. The full-text of the EHR

undergoes a process of de-identification

with software programs that remove

Health Insurance Portability and Account-

ability Act (HIPAA) identifiers from all

clinical documentation in the medical

record. At the time of this writing, text

de-identification for BioVU is performed

using the commercial product DE-ID [59]

with additional pre- and post-processing

steps. However, a number of other clinical

text de-identification software packages

have been studied, some of which are

open source [60,61]. Multiple reviews by

both the local institutional review board

and the federal Office for Human Re-

search Protections have affirmed this

status as nonhuman subjects research

according to 45 CFR 46 [58]. Nonethe-

less, all research conducted within BioVU

and the associated de-identified EHR

(called the ‘‘Synthetic Derivative’’) is

overseen by the local Institutional Review

Board. An opt-out model similar to

BioVU is used by Partners Healthcare

for the Crimson biobank, which can

accrue patients who meet specific pheno-

type criteria as they have routine blood

draws.

An advantage of the opt-out approach is

rapid sample accrual. BioVU began col-
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lecting DNA samples in 2007, adding

about 500 new samples weekly, and has

over 150,000 subjects as of September

2012. Since it enrolls subjects prospective-

ly, investigation of rare phenotypes may be

possible with such systems. The major

disadvantage of the opt-out approach is

that it precludes recontact of the patients

since their identity has been removed.

However, the Synthetic Derivative is

continually updated as new information

is added to the EHR, such that the

amount of phenotypic information for

included patients grows over time.

5. Race and Ethnicity in EHR-
Derived Biobanks

Given that much genetic information

varies greatly within ancestral populations,

accurate knowledge of genetic ancestry

information is essential to allow for proper

genetic study design and control of

population stratification. Without it, one

can see numerous spurious genetic associ-

ations due solely to race/ethnicity [62].

Single nucleotide polymorphisms (SNPs)

common in one population may be rare in

another. In large-scale GWA analyses, one

can tolerate less accurate knowledge of

ancestry a priori, since the large amount of

genetic data allows one to calculate the

genetic ancestry of the subject using

catalogs of SNPs known to vary between

races. Alternatively, one can also adjust for

genetic ancestry using tools such as

EIGENSTRAT [63]. However, in smaller

candidate gene studies, it is important to

know the ancestry beforehand.

Self-reported race/ethnicity data is often

used in genetic studies. In contrast race/

ethnicity as recorded within an EHR may

be entered through a variety of sources.

Most commonly, administrative staff re-

cord race/ethnicity via structured data

collection tools in the EHR. Often, this

field can be ignored (left as ‘‘unknown’’),

especially in busy clinical environments,

such as emergency departments. ‘‘Un-

known’’ percentages of patients can range

between 9% and 23% of subjects [17,18].

Among those patients for whom data is

entered, a study of genetic ancestry infor-

mative markers correlated well with EHR-

reported race/ethnicities [64]. In addition,

a study within the Veterans Administration

(VA) hospital system noted that over 95%

of all EHR-derived race/ethnicity agreed

with self-reported race/ethnicity using

nearly one million records [65]. Thus,

despite concerns over EHR-derived ances-

tral information, such information, when

present, appears similar to self-report

ancestry information.

6. Phenotype-Driven Discovery
in EHRs

6.1 Measure of Phenotype Selection
Logic Performance

The evaluation of phenotype selection

logic can use metrics similar to informa-

tion retrieval tasks. Common metrics are

sensitivity (or recall), specificity, positive

predictive value (PPV, also known as

precision), and negative predictive value

(see Box 1). If a population is assessed for

case and control status, then another

useful metric is comparing the receiver

operator characteristic (ROC) curves.

ROC curves graph the sensitivity vs. false

positive rate (or, 1-specificity) given a

continuous measure of the outcome of

the algorithm. By calculating the area

under the ROC curve (AUC), one has a

single measure of the overall performance

of an algorithm that can be used to

compare two algorithms or selection

logics. Since the scale of the graph is 0 to

1 on both axes, the performance of a

perfect algorithm is 1, and random chance

is 0.5.

6.2 Creation of Phenotype Selection
Logic

Initial work in phenotype detection has

often focused on a single modality of EHR

data. A number of studies have used

billing data, some comparing directly to

other genres of data, such as NLP. Li et al.

compared the results of ICD-9 encoded

diagnoses and NLP-processed discharge

summaries for clinical trial eligibility

queries, finding that use of NLP provided

more valuable data sources for clinical trial

pre-screening than ICD-9 codes [15].

Savova et al. has used cTAKES to

discover peripheral arterial disease cases

by looking for particular key words in

radiology reports, and then aggregating

the individual instances using ‘‘AND-OR-

NOT’’ Boolean logic to classify cases into

four categories: positive, negative, proba-

ble, and unknown [66].

Phenotype algorithms can be created

multiple ways, depending of the rarity of

the phenotype, the capabilities of the EHR

system, and the desired sample size of the

study. Generally, phenotype selection logics

(algorithms) are composed of one or more

of four elements: billing code data, other

structured (coded) data such as laboratory

values and demographic data, medication

information, and NLP-derived data. Struc-

tured data can be retrieved effectively from

most EHR systems. These data can be

combined through simple Boolean logic

Figure 3. General figure for identifying cases and controls using EHR data. Application of electronic selection algorithms lead to division of
a population of patients into four groups, the largest of which comprises patients who were excluded because they lack sufficient evidence to be
either a case or control patient. Definite cases and controls cross some predefined threshold of positive predictive value (e.g., PPV$95%), and thus do
not require manual review. For very rare phenotypes or complicated case definitions, the category of ‘‘possible’’ cases may need to be reviewed
manually to increase the sample size.
doi:10.1371/journal.pcbi.1002823.g003
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[17] or through machine learning methods

such as logistic regression [18], to achieve a

predefined specificity or positive predictive

value. A drawback to the use of machine

learning data (such as logistic regression

models) is that it may not be as portable to

other EHR systems as more simple Boolean

logic, depending on how the models are

constructed. The application of many

phenotype selection logics can be thought

of partitioning individuals into four buckets

– definite cases (with sufficiently high PPV),

possible cases (which can be manually

reviewed if needed), controls (which do

not have the disease with acceptable

PPV), and individuals excluded from the

analysis due to either potentially overlap-

ping diagnoses or insufficient evidence

(Figure 3).

For many algorithms, sensitivity (or

recall) is not necessarily evaluated, assum-

ing there are an adequate number of cases.

A possible concern in not evaluating recall

(sensitivity) of a phenotype algorithm is

that there may be a systematic bias in how

patients were selected. For example,

consider a hypothetical algorithm to find

patients with T2D whose logic was to

select all patients that had at least one

billing code for T2D and also required

that cases receive an oral hypoglycemic

medication. This algorithm may be highly

specific for finding patients with T2D

(instead of type 1 diabetes), but would

miss those patients who had progressed in

disease severity such that oral hypoglyce-

mic agents no longer worked and who now

require insulin treatment. Thus, this

phenotype algorithm could miss the more

severe cases of T2D. However, for a

practical application, such assessments of

recall can be challenging given large

samples sizes of rare diseases. Certain

assumptions (e.g., that a patient should

have at least one billing code for the

disease) are reasonable and likely do not

lead to significant bias.

For other algorithms, the temporal

relationships of certain elements are very

important. Consider an algorithm to

determine whether a certain combination

of medication adversely impacted a given

lab, such as kidney function or glucose

[67]. Such an algorithm would need to

take into account the temporal sequence

and time between the particular medica-

tions and laboratory tests. For example,

glucose changes within minutes to hours

of a single administration of insulin, but

the development of glaucoma from corti-

costeroids (a known side effect) would not

be expected to happen acutely following a

single dose.

For very rare diseases or findings, one

may desire to find every case, and thus

the logic may simply be a union of

keyword text queries and billing codes

followed by manual review of all returned

cases. Examples include the rare physical

exam finding hippus (exaggerated pupil-

lary oscillations occurring in the setting of

altered mental status) [32], or potential

drug adverse events (e.g., Stevens-Johnson

syndrome), which are often very rare but

severe.

Since EHRs represent longitudinal rec-

ords of patient care, they are biased to

recording those events that are recorded as

part of medical care. Thus, they are

particularly useful for investigating dis-

ease-based phenotypes, but potentially less

efficacious for investigating non-disease

phenotypes such as hair or eye color, left

vs. right handedness, cognitive attributes,

biochemical measures (beyond routine

labs), etc. On the other hand, they may

be particularly useful for analyzing disease

progression over time.

7. Examples of Genetic
Discovery Using EHRs

The growth of ‘‘EHR-driven genomic

research’’ (EDGR) – that is, genomic

research proceeding primarily from

EHR data linked to DNA samples – is

a recent phenomenon [6]. Preceding

these most recent research initiatives,

other studies laid the groundwork for use

of EHR data to study genetic phenom-

ena. Rzhetsky et al. used billing codes

from the EHRs of 1.5 million patients to

analyze disease co-occurrence in 161

conditions as a proxy for possible genetic

overlap [68]. Chen et al. compared

laboratory measurements and age with

gene expression data to identify rates of

change that correlated with genes known

to be involved in aging [69]. A study at

Geisinger Clinic evaluated SNPs in the

9p21 region that are known to be

associated to cardiovascular disease and

early myocardial infarction [70]. They

found these SNPs were associated with

heart disease and T2D using EHR-

derived data. Several specific examples

of EDGR are detailed below.

7.1 Replicating Known Genetic
Associations for Five Diseases

An early replication study of known

genetic associations with five diseases with

known genetic associations was performed

in BioVU. The study was designed to test

the hypothesis that an EHR-linked DNA

biobank could be used for genetic associ-

ation analyses. The goal was to use only

EHR data for phenotype information.

The first 10,000 samples accrued in

BioVU were genotyped at 21 SNPs that

are known to be associated with these five

diseases (atrial fibrillation, Crohn’s disease,

multiple sclerosis, rheumatoid arthritis,

Table 2. Methods of finding cases and controls for genetic analysis of five common diseases.

Disease Methods Cases Controls Case PPV Control PPV

Atrial fibrillation NLP of ECG impressions
ICD9 codes
CPT codes

168 1695 98% 100%

Crohn’s Disease ICD9 codes
Medications (text)

116 2643 100% 100%

Type 2 Diabetes ICD9 codes
Medications (text)
Text searches (controls)

570 764 100% 100%

Multiple Sclerosis ICD9 codes or text diagnosis 66 1857 87%* 100%

Rheumatoid Arthritis ICD9 codes
Medications (text)
Text searches (exclusions)

170 701 97% 100%

*Given the small number of multiple sclerosis cases, all possible cases were manually validated to ensure high recall.
doi:10.1371/journal.pcbi.1002823.t002
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and T2D). Reported odds ratios were

1.14–2.36 in at least two previous studies

prior to the analysis. Automated pheno-

type identification algorithms were devel-

oped using NLP techniques (to identify key

findings, medication names, and family

history), billing code queries, and struc-

tured data elements (such as laboratory

results) to identify cases (n = 70–698) and

controls (n = 808–3818). Final algorithms

achieved PPV of $97% for cases and

100% for controls on randomly selected

cases and controls (Table 2) [17]. For each

of the target diseases, the phenotype

algorithms were developed iteratively,

with a proposed selection logic applied to

a set of EHR subjects, and random cases

and controls evaluated for accuracy. The

results of these reviews were used to refine

the algorithms, which were then rede-

ployed and reevaluated on a unique set of

randomly selected records to provide final

PPVs.

Used alone, ICD9 codes had PPVs of

56–89% compared to a gold standard

represented by the final algorithm. Errors

were due to coding errors (e.g., typos),

misdiagnoses from non-specialists (e.g., a

non-specialist diagnosed a patient as

having rheumatoid arthritis followed by

a rheumatologist who revised the diag-

nosis to psoriatic arthritis), and indeter-

minate diagnoses that later evolved into

well-defined ones (e.g., a patient thought

to have Crohn’s disease was later deter-

mined to have ulcerative colitis, another

type of inflammatory bowel disease).

Each of the 21 tests of association yielded

point estimates in the expected direction,

and eight of the known associations

achieved statistical significance

[17].

7.2 Demonstrating Multiethnic
Associations with Rheumatoid
Arthritis

Using a logistic regression algorithm

operating on billing data, NLP-derived

features, medication records, and labo-

ratory data, Liao et al. developed an

algorithm to accurately identify rheuma-

toid arthritis patients [18]. Kurreeman

et al. used this algorithm on EHR data

to identify a population of 1,515 cases

and 1,480 matched controls [71]. These

researchers genotyped 29 SNPs that had

been associated with RA in at least one

prior study. Sixteen of these SNPs

achieved statistical significance, and

26/29 had odds ratios in the same

direction and with similar effect sizes.

The authors also demonstrated that

these portions of these risk alleles were

associated with rheumatoid arthritis in

Table 3. eMERGE network participants.

Institution Biorepository Overview Model Size EHR Summary
Phenotyping
Methods

Group Health1

(Seattle, WA)
GHC Biobank
Alzheimer’s Disease
Patient Registry and Adult
Changes in Thought Study

Disease specific
Cohort

4000 Comprehensive
vendor-based EHR
since 2004

Structured data
extraction, NLP

Marshfield Clinic Research
Foundation1

(Marshfield, WI)

Personalized Medicine
Research Project
Marshfield Clinic, an integrated
regional health system

Population based 20,000 Comprehensive
internally developed
EHR since 1985

Structured data
extraction, NLP,
Intelligent Character
Recognition

Mayo Clinic1

(Rochester, MN)
Disease cohort
Derived from vascular laboratory &
exercise stress testing labs

Disease specific
Cohorts

16,500 Comprehensive
internally developed
EHR since 1995

Structured data
extraction, NLP

Northwestern University1

(Chicago, IL)
NUgene Project
Northwestern affiliated hospitals
and outpatient clinics

Population based .10,000 Comprehensive
vendor based
Inpatient and
Outpatient (different
systems) EHR
since 2000

Structured data
extraction, text
searches, NLP

Vanderbilt University1

(Nashville, TN)
BioVU
Primarily drawn from outpatient routine
laboratory samples

Population based 150,000 Comprehensive
internally developed
EHR since 2000

Structured data
extraction, NLP

Geisinger Health System2

(Pennsylvania)
MyCode
Enrollment of health plan participants

Population based .30,000 Comprehensive
vendor-based EHR

Structured data
extraction, NLP

Mount Sinai Medical
Center2 (New York, NY)

Institute for Personalized
Medicine Biobank
Outpatient enrollment

Population based .30,000 Comprehensive
vendor-based EHR
since 2004

Structured data
extraction, NLP

Cincinnati Children’s
Hospital3

(Cincinnati, OH)

General and disease cohorts. Population based .3,000 Comprehensive
vendor-based EHR

Structured data
extraction, NLP

Children’s Hospital of
Philadelphia3

(Philadelphia, PA)

General and disease cohorts. Population based .100,000 Comprehensive
vendor-based EHR

Structured data
extraction, NLP

Boston Children’s3

(Boston MA)
Crimson
On-demand, de-identified
phenotype-driven collection

Disease based Virtual Comprehensive
internally developed
EHR

Structured data
extraction, NLP

Sizes represent approximate sizes as of 2012; many sites are still actively recruiting. NLP = Natural Language Processing. Sites joined with 1eMERGE-I in 2007, 2eMERGE-II
in 2011, or as 3pediatric sites in 2012.
doi:10.1371/journal.pcbi.1002823.t003
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East Asian, African, and Hispanic Amer-

ican populations.

7.3 eMERGE Network
The eMERGE network is composed of

nine institutions as of 2012 (http://gwas.

org; Table 3). Each site has a DNA

biobank linked to robust, longitudinal

EHR data. The initial goal of the

eMERGE network was to investigate the

feasibility of genome-wide association

studies using EHR data as the primary

source for phenotypic information. Each

of these sites initially set out to investigate

one or two primary phenotypes (Table 3).

Network sites have currently created and

evaluated electronic phenotype algorithms

for 14 different primary and secondary

phenotypes, with nearly 30 more planned.

After defining phenotype algorithms,

each site then performed genome-wide

genotyping at one of two NIH-supported

genotyping centers.

The primary goals of an algorithm are

to perform with high precision ($95%)

and reasonable recall. Algorithms incor-

porate billing codes, laboratory and vital

signs data, test and procedure results, and

clinical documentation. NLP is used to

both increase recall (find additional cases)

and achieve greater precision (via im-

proved specificity). These phenotype algo-

rithms are available for download from

PheKB (http://phekb.org).

Initial plans were for each site to

analyze their own phenotypes indepen-

dently. However, the network has realized

the benefits of synergy. Central efforts

across the network were involved in

harmonization of the collective genetic

data.

7.4 Early Genome-Wide Association
Studies from the eMERGE Network

As of 2012, the eMERGE Network has

published GWAS on atrioventricular con-

duction [72], red blood cell [23] and white

blood cell [73] traits, primary hypothyroid-

ism [74], and erythrocyte sedimentation

rate [75], with others ongoing. The first two

studies published by the network were using

single-site GWAS studies; latter studies

have realized the advantage of pooling

data across multiple sites to increase the

sample size available for a study. Impor-

tantly, several studies in eMERGE have

explicitly evaluated the portability of the

electronic phenotype algorithms by review-

ing algorithms at multiple sites. Evaluation

of the hypothyroidism algorithm at the five

eMERGE-I sites, for instance, noted an

overall weighted PPV of 92.4% and 98.5%

for cases and controls, respectively [74].

Similar results have been found with T2D

[76], cataracts [27], and rheumatoid ar-

thritis [77] algorithms.

As a case study, the GWAS for

atrioventricular conduction (as measured

by the PR interval on the ECG), conduct-

ed entirely within samples drawn from one

site, identified variants in SCN10A.

SCN10A is a sodium channel expressed in

autonomic nervous system tissue and is

now known to be involved in cardiac

regulation. The phenotype algorithm

identified patients with normal ECGs

who did not have evidence of prior heart

disease, were not on medications that

would interfere with cardiac conduction,

and had normal electrolytes. The pheno-

type algorithm used NLP and billing code

queries to search for the presence of prior

heart disease and medication use [72]. Of

note, the algorithm highlights the impor-

tance of using clinical note section tagging

and negation to exclude only those

patients with heart disease, as opposed to

patients whose records contained negated

heart disease concepts (e.g., ‘‘no myocar-

dial infarction’’) or heart disease concepts

in related individuals (e.g., ‘‘mother died of

a heart attack’’). Use of NLP improved

recall of cases by 129% compared with

simple text searching, while maintaining a

positive predictive value of 97% (Figure 4)

[78,72].

The study of RBC traits identified four

variants associated with RBC traits. One

of these, SLC17A1, had not been previ-

ously identified, and is involved in sodium-

phosphate co-transport in the kidney. The

latter study of RBC traits utilized patients

genotyped at one site as cases and controls

Figure 4. Use of NLP to identify patients without heart disease for a genome-wide analysis of normal cardiac conduction. Using
simple text searching, 1564 patients would have been eliminated unnecessarily due to negated terms, family medical history of heart disease, or low
dose medication use that would not affect measurements on the electrocardiogram. Use of NLP improves recall of these cases without sacrificing
positive predictive value. The final case cohort represented the patients used for GWAS in [71].
doi:10.1371/journal.pcbi.1002823.g004
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for their primary phenotype of peripheral

arterial disease (PAD). Thus, this repre-

sents an in silico GWAS for a new finding

that did not require new genotyping, but

instead leveraged the available data within

the EHR. The eMERGE study of primary

hypothyroidism, similarly, identified a

novel association with FOXE1, a thyroid

transcription factor, without any new

genotyping by using samples derived from

five eMERGE sites.

7.5 Phenome-Wide Association
Studies (PheWAS)

Typical genetic analyses investigate

many genetic loci against a single trait or

disease. Such analyses cannot identify

pleiotropic associations, and may miss

important confounders in an analysis.

Another approach, engender by the rich

phenotype record included in the EHR, is

to simultaneously investigate many pheno-

types associated with a given genetic locus.

A ‘‘phenome-wide association study’’

(PheWAS) is, in a sense, a ‘‘reverse

GWAS.’’ PheWAS investigations require

large representative patient populations

with definable phenotypic characteristics.

Such studies only recently became feasi-

ble, facilitated by linkage of DNA bior-

epositories to EHR systems, which can

provide a comprehensive, longitudinal

record of disease.

The first PheWAS studies were per-

formed on 6,005 patients genotyped for

five SNPs with seven previously known

disease associations [79]. This PheWAS

used ICD9 codes linked to a code-

translation table that mapped ICD9 codes

to 776 disease phenotypes. In this study,

PheWAS methods replicated four of seven

previously known associations with

p,0.011. Figure 5 shows one illustrative

PheWAS plot of phenotype associations

with an HLA-DRA SNP known to be

associated with multiple sclerosis. Of note,

this PheWAS not only demonstrates a

strong association between this SNP and

multiple sclerosis, but also highlights other

possible associations, such as Type 1

diabetes and acquired hypothyroidism.

Recent explorations into PheWAS meth-

ods using NLP have shown greater

efficacy for detecting associations: with

the same patients, NLP-based PheWAS

replicated six of the seven known associ-

ations, generally with more significant p-

values [80].

PheWAS methods may be particularly

useful for highlighting pleiotropy and

clinically associated diseases. For exam-

ple, an early GWAS for T2D identified,

among others, FTO loci as an associated

variant [81]. A later GWAS demonstrat-

ed this risk association was mediated

through the effect of FTO on increasing

body mass index, and thus increasing risk

of T2D within those individuals. Such

effects may be identified through broad

phenome scans made possible through

PheWAS.

Figure 5. A PheWAS plot for rs3135388 in HLA-DRA. This region has known associations with multiple sclerosis. The red line indicates
statistical significance at Bonferroni correction. The blue line represents p,0.05. This plot is generated from updated data from [78] and the updated
PheWAS methods as described in [73].
doi:10.1371/journal.pcbi.1002823.g005
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8. Conclusions and Future
Directions

EHRs have long been seen as a vehicle

to improve healthcare quality, cost, and

safety. However, their growing adoption

in the United States and elsewhere is

demonstrating their capability as a broad

tool for research. Enabling tools include

enterprise data warehouses and software

to process unstructured information, such

as de-identification and NLP. When

linked to biological data such as DNA

or tissue biorepositories, EHRs can be-

come a powerful tool for genomic anal-

ysis. One can imagine future repositories

also storing intermittent plasma samples

to allow for proteomic analyses.

A key advantage of EHR-based genetic

studies is that they allow for the collection

of phenotype information as a byproduct

of routine healthcare. Moreover, this

information collection grows over time

and is continually refined as new informa-

tion may confirm or refute a diagnosis for

a given individual. Through the course of

one’s life, a number of information points

concerning disease, response to treatment,

and laboratory and test data are collected.

Aggregation of this information can allow

for generation of large sample sizes of

patients with certain diseases or medica-

tion exposures. Moreover, once a subject

receives dense genotyping for one EHR-

based study, their genetic data can be

reused for many other genotypic studies,

allowing for relatively low-cost reuse of the

genetic material (once a given phenotype

can be found in the EHR).

Three major rate-limiting steps impede

utilization of EHR data for genetic

analysis. A major challenge is derivation

of accurate collections of cases and

controls for a given disease of interest,

usually achieved through creation and

validation of phenotype selection logics.

These algorithms take significant time and

effort to develop and often require adjust-

ment and a skilled team to deploy at a

secondary site. Another challenge is the

availability of phenotypic information.

Many patients may be observed at a given

healthcare facility only for certain types of

care (e.g., primary care or a certain

subspecialist), leading to fragmented

knowledge of a patient’s medical history

and medication exposures. Future growth

of Health Information Exchanges could

substantially improve these information

gaps. Finally, DNA biobanks require

significant institutional investment and

ongoing financial, ethical, and logistical

support to run effectively. Thus, they are

not ubiquitous.

As genomics move beyond discovery

into clinical practice, the future of person-

alized medicine is one in which our genetic

information could be ‘‘simply a click of the

mouse’’ away [82]. In this future, DNA-

enabled EHR systems will assist in more

accurate prescribing, risk stratification,

and diagnosis. Genomic discovery in

EHR systems provides a real-world test

bed to validate and discover clinically

meaningful genetic effects.

9. Exercises

1) Compare and contrast the basic

types of data available in an Elec-

tronic Health Records (EHR) that

are useful for mining genetic data.

What are some of the strengths and

drawbacks of each type of data?

2) Explain what a phenotype algo-

rithm is and why it is necessary. For

example, how can use of natural

language processing improve upon

use of billing codes alone?

3) Select a clinical disease and design

a phenotype algorithm for it.

4) How might a phenotype algorithm

be different for a very rare disease

(e.g., prion diseases) vs. a more

common one (e.g., Type 2 diabe-

tes)? How would a phenotype

algorithm be different for a phys-

ical exam finding (e.g., hippus or a

particular type of heart murmur) vs.

a disease?

5) Describe the differences between a

DNA biobank linked to an EHR

and one collected as part of a non-

EHR research cohort. What are the

advantages and disadvantages of a

de-identified DNA biobank vs. an

identified DNA biobank (either

linked to an EHR or not).

6) It is often harder to create algo-

rithms to find drug-response pheno-

types (such as adverse drug events)

than for a chronic disease. Give

several reasons why this might be.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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N Hristidis V, editor (2009) Information discovery on electronic health records. 1st edition. Chapman and Hall/CRC. 331 p.
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Abstract: Although there is great
promise in the benefits to be
obtained by analyzing cancer ge-
nomes, numerous challenges hin-
der different stages of the process,
from the problem of sample prep-
aration and the validation of the
experimental techniques, to the
interpretation of the results. This
chapter specifically focuses on the
technical issues associated with the
bioinformatics analysis of cancer
genome data. The main issues
addressed are the use of database
and software resources, the use of
analysis workflows and the presen-
tation of clinically relevant action
items. We attempt to aid new
developers in the field by describ-
ing the different stages of analysis
and discussing current approaches,
as well as by providing practical
advice on how to access and use
resources, and how to implement
recommendations. Real cases from
cancer genome projects are used
as examples.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Cancer is commonly defined as a

‘‘disease of the genes’’, a definition that

emphasizes the importance of cataloguing

and analyzing tumor-associated muta-

tions. The recent advances in sequencing

technology have underpinned the prog-

ress in several large-scale projects to

systematically compile genomic informa-

tion related to cancer. For example,

the Cancer Genome Atlas (http://

cancergenome.nih.gov/) and the projects

overseen by the International Cancer

Genome Consortium [1] (http://icgc.

org/) have focused on identifying links

between cancer and genomic variation.

Unsurprisingly, the analysis of genomic

mutations associated with cancer is also

making its way into clinical applications

[2–4].

Cancer may be favored by genetic

predisposition, although it is thought to

be primarily caused by mutations in

specific tissues that accumulate over time.

Genetic predisposition is represented by

germline variants and indeed, many com-

mon germline variants have been associ-

ated with specific diseases, as well as with

altered drug susceptibility and/or toxicity.

The association of germline variants with

clinical features and disease is mainly

achieved through Genome Wide Associa-

tion Studies (GWAS). GWAS use large

cohorts of cases to analyze the relationship

between the disease and thousands or

millions of mutations across the entire

genome, and they are the subject of a

separate chapter in this issue.

The study of cancer genomes differs

significantly from GWAS, as during the

lifetime of the organism variants only

accumulate in the tumor or the affected

tissues, and they are not transmitted

from generation to generation. These are

known as somatic mutations. Mutations

accumulate as the tumors progress through

processes that are not completely under-

stood and that depend on the evolution of

the different cell types in the tumor, i.e.,

clonal versus parallel evolution [5]. Re-

gardless of which model is more relevant,

the tumor genome includes mutations that

facilitate tumorigenesis or are that essential

for the generation of the tumor (known

as tumor ‘drivers’), and others that have

accumulated during the growth of the

tumor (known as ‘passengers’) [6]. Distin-

guishing ‘driver’ from ‘passenger’ muta-

tions is crucial for the interpretation of

cancer genomes [5].

Depending on the type of data and the

aim of the analysis, cancer genome

analysis may focus on the cancer type or

on the patient. The first approach consists

of examining a cohort of patients suffering

from a particular type of cancer, and is

used to identify biomarkers, characterize

cancer subtypes with clinical or therapeu-

tic implications, or to simply advance our

understanding of the tumorigenic process.

The second approach involves examining

the genome of a particular cancer patient

in the search for specific alterations that

may be susceptible to tailored therapy.

Although both approaches draw on

common experimental and bioinformatics

techniques, they analyze different types of

information, have different goals and they

require the presentation of the results in

distinct ways.

The development of Next Generation

Sequencing (NGS) has not only helped

identify genetic variants but also, it

represents an important aid in the study

of epigenetics (DNAseq and ChipSeq of

histone methylation marks), transcription-

al regulation and splicing (RNAseq). The

combined power of such genomic data

provides a more complete definition of

‘cancer genomes’.

To aid developers new to the field of

cancer genomics, this chapter will discuss

the particularities of cancer genome

analysis, as well as the main scientific

and technical challenges, and potential

solutions.

2. Overview of Cancer Genome
Analysis

The sequence of the steps in an

idealized cancer genome analysis pipeline

are presented in Figure 1. For each step

listed, the biological disciplines involved,

the bioinformatics techniques used and

some of the most salient challenges that

arise are listed.
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2.1. Sequencing, Alignment and
Variant Calling

After samples are sequenced, sequencing

reads are aligned to a reference genome

and all differences are identified through a

process known as variant calling. The output

of the variant calling is a list of genomic

variations that is organized according to

their genomic location (chromosome and

position) and the variant allele. They may

be accompanied by scores measuring the

sequencing quality over that region or the

prevalence of the variant allele in the

samples. The workflow employed for this

type of analysis is commonly known as a

primary analysis (For more information on

sequencing, alignment and variant calling,

please refer to [7,8]).

This chapter describes the subsequent

steps in the analysis of the variants

detected at the genome level. This process

is relatively well established and is the

main subject of this chapter.

2.2. Consequence, Recurrence
Analysis and Candidate Drivers

The list of somatic variants obtained

from the primary analysis of DNA se-

quences is carefully examined to identify

mutations that may alter the function of

protein products. DNA mutations are

translated into mutations in RNA tran-

scripts, and from RNA into proteins,

potentially altering their amino acid se-

quence. The impact of these amino acid

alterations on protein function can range

from largely irrelevant (if they do not affect

any region of the protein involved in cata-

lysis or binding, or if they do not signi-

ficantly alter the structure and stability of

the protein) to highly deleterious (for

example if the amino acid changes result

in the formation of a truncated protein

lacking important functional regions). The

severity of these alterations can be assessed

What to Learn in This Chapter

This chapter presents an overview of how cancer genomes can be analyzed,
discussing some of the challenges involved and providing practical advice on
how to address them. As the primary analysis of experimental data is described
elsewhere (sequencing, alignment and variant calling), we will focus on the
secondary analysis of the data, i.e., the selection of candidate driver genes,
functional interpretation and the presentation of the results. Emphasis is placed
on how to build applications that meet the needs of researchers, academics and
clinicians. The general features of such applications are laid out, along with advice
on their design and implementation. This document should serve as a starter
guide for bioinformaticians interested in the analysis of cancer genomes,
although we also hope that more experienced bioinformaticians will find
interesting solutions to some key technical issues.

Figure 1. Idealized cancer analysis pipeline. The column on the left shows a list of sequential steps. The columns on the right show the
bioinformatics and molecular biology disciplines involved at each step, the types of techniques employed and some of the current challenges faced.
doi:10.1371/journal.pcbi.1002824.g001
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using specialized software tools known as

protein mutation pathogenicity predictors.

Mutations are also examined to identify

recurrence, which may point to key genes

and mutational hotspots. The predicted

consequences of the mutations and their

recurrence are used to select potential

driver mutations that may be directly

involved in the tumorigenic process.

Note that not all mutations that have

deleterious consequences for protein func-

tion are necessarily involved in cancer as

the proteins affected may not play any

fundamental role in tumorigenesis.

2.3. Pathways and Functional
Analysis

Genes that are recurrently mutated in

cancer tend to be easily identifiable, and

obvious examples include TP53 and

KRAS that are mutated in many cancer

types. More often mutations are more

widely distributed and the probability of

finding the same gene mutated in several

cases is low, making it more difficult to

identify common functional features asso-

ciated with a given cancer.

Pathway analysis offers a means to

overcome this challenge by associating

mutated genes with known signaling path-

ways, regulatory networks, clusters in

protein interaction networks, protein com-

plexes or general functional classes, such

as those defined in the Gene Ontology

database. A number of statistical me-

thods have been developed to determine

the significance of the associations between

mutated genes and these functional classes.

Pathways analysis has now become a

fundamental component of cancer genome

analysis and it is described in almost all

cancer genome publications. In this sense,

cancer is not only a ‘disease of the genes’

but also a ‘disease of the pathways’.

2.4. Integration, Visualization and
Interpretation

Information on the mutational status of

genes can be better understood if it is

integrated with information about gene

expression and related to alterations in:

the copy number of each gene (CNVs), a

very common phenomenon in cancer;

mutations in promoters and enhancers;

variations in the affinity of transcription

factors and DNA binding proteins; or

dysregulation of epigenetic control.

The importance of the relationships

between different genome data sources is

illustrated by the case of chronic lympho-

cytic leukemia (CLL). The consequences

of mutations in the SF3B1 splicing factor,

detected by exon sequencing [9], were

investigated in studies of DNA methyla-

tion [10] and RNA sequencing in the same

patients (Ferreira et al. submitted). At the

technical level, the analysis of heteroge-

neous genomic data adds further com-

plications to analysis workflows, as the

underlying biological bases are often not

fully understood. Consequently, relatively

few published studies have effectively

combined more than a few combinations

of such data [11–13]. These studies are

usually supported by visualization tools to

analyze the results within specialist appli-

cations tailored to fit the specific set of data

generated.

Finally, in a personalized medicine

application, the results must be related to

information of clinical relevance, such as

potentially related drugs and therapies.

2.5. Current Challenges
In general terms, three key challenges

exist when analyzing cancer genomes:

(1) the heterogeneity of the data to be

analyzed, which ranges from genomic

mutations in coding regions to alterations

in gene expression or epigenetic marks; (2)

the range of databases and software

resources required to analyse and interpret

the results; and (3) the comprehensive

expertise required to understand the impli-

cations of such varied experimental data.

3. Critical Bioinformatics Tasks
in Cancer Genome Analysis

An overview of the four main tasks that

should be performed when analyzing the

cancer genome is shown in Figure 2, along

with the associated requirements. In the

first instance, the mutations initially de-

tected at the DNA level must be trimmed

to include only somatic variations, remov-

ing the germline SNPs detected in healthy

tissue of the same individuals or in the

general population. The description of the

different stages of analysis that we present

begins with this list of somatic variants and

their associated genomic locations.

3.1. Mapping between Coordinate
Systems

Translating mutational information de-

rived from genomic coordinates to other

data types is an obvious first step. Al-

though this may seem trivial, its impor-

tance should not be underestimated given

that alterations in single nucleotides can

have significant consequences.

The position of DNA mutations in

transcripts and protein products must be

obtained by translating their coordinates

across various systems. For example, point

mutations in coding regions can be map-

ped to different transcripts by finding the

exon affected, the offset of the mutation

inside that exon and the position of the

exon inside the transcript. By removing

the 59 UTR region of the transcript

sequence and dividing the rest into triplets,

the affected codon can be identified, as

well as the possible amino acid replace-

ment. Ensembl BioMart provides all the

information necessary to perform this type

of mapping, while a number of other

systems also provide this functionality (see

Table 1).

One important technical consideration

when mapping genomic variants is the

version of the genome build. It is essential

to use the correct build and many map-

ping tools support different versions of the

genome build. Moreover, the data in

Ensembl is thoroughly versioned, so that

the BioMart interface can be used to

gather all genomic information consistent-

ly for any particular build. Thus, entities

(mutations, genes, transcripts or proteins)

can be linked back to the appropriate ver-

sion using the Ensembl web site archives.

3.2. Driver Mutations and
Pathogenicity Prediction

In addition to false variants introduced

by technical errors, some variants present

in the samples may not contribute to

cancer development. The terms ‘driver’

and ‘passenger’ were first used in 1964 in

the context of viral infections that drive

cancer [6]. However, they are now used to

distinguish mutations that drive cancer

onset and progression from those that play

little or no role in such processes but that

are propagated by their co-existence with

driver mutations. The problem of distin-

guishing driver from passenger mutations

remains unsolved as yet. Experimental

assays of activity are one means of testing

the tumorigenic potential of mutations

[14], although such assays are difficult to

perform to scale. Consequently, a number

of complementary in-silico methods have

been developed to identify driver muta-

tions. Statistical approaches seek to identify

traces of mutation selection during tumor

formation by looking at the prevalence of

mutations in particular genes in sample

cohorts, or the ratios of synonymous versus

non-synonymous mutations in particular

candidate genes. However, such statistical

approaches require large sample cohorts to

achieve sufficient power. Alternatively, in-

silico predictions of pathogenicity can be

used to restrict the list of potential driver

mutations to those that are likely to alter

protein function [15].

Several tools that implement different

versions of these general concepts can be
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used to perform pathogenicity predictions

for point mutations in coding regions (see

Table 1). Prediction is far more compli-

cated for genomic aberrations and muta-

tions that affect non-coding regions of

DNA, an area of basic research that is still

in its early stages. However, the large

collections of genomic information gath-

ered by the ENCODE project [16] will

doubtless play a key role in this research.

Despite their limited scope, mutations in

coding regions are the most useful for

cancer genome analysis. This is initially

because it is still cheaper to sequence

exomes than full genomes and also,

because they are closer to actionable

medical items, given that most drugs target

proteins. Indeed, most clinical success

stories based on cancer genome analysis

have involved the analysis of point muta-

tions in proteins [3].

In particular, we have focused on the

need to analyze the consequences of

mutations in alternative isoforms of each

gene, in addition to those in the main

isoforms. Despite the potential implica-

tions of alternative splicing, this problem

remains largely overlooked by current

applications. A common solution is to

assign the genomic mutations to just one of

the several potential isoforms, without

considering their possible incidence of

other splice isoforms, and in most cases

without knowing which isoform is actually

produced in that particular tissue. The

availability of RNAseq data should solve

this problem by demonstrating which

isoforms are specifically expressed in the

cell type of interest, in which case,

additional software will be necessary to

analyze the data generated by the new

experiments.

3.3 Functional Interpretation
Some genes harbor a large number of

mutations in cancer genomes, such as TP53

and KRAS, whose importance and rele-

vance as cancer drivers have been well

established. Frequently however, genomic

data reveals the presence of mutated genes

that are far less prevalent, and the signif-

icance of these genes must be considered in

the context of the functional units they are

part of. For example, SF3B1 was mutated

in only 10 out of 105 samples of chronic

lymphocytic leukemia (CLL) in the study

conducted by the ICGC consortium [9],

and in 14 out of 96 in the study performed

in the Broad Institute [17]. While these

numbers are statistically significant, many

other components of the RNA splicing and

transport machinery are also mutated in

CLL. Even if these mutations occur at

lower frequencies they further emphasize

the importance of this gene [18].

Functional interpretation aims to iden-

tify large biological units that correlate

better with the phenotype than individual

mutated genes, and as such, it can produce

a more general interpretation of the

acquired genomic information. The in-

volvement of genes in specific biological,

metabolic and signaling pathways is the

type of functional annotation most com-

monly considered and thus, functional

analysis is often termed ‘pathway analysis’.

However, functional annotations may also

include other types of biological associa-

tions such as cellular location, protein

domain composition, and classes of cellular

or biochemical terms, such as GO terms

(Table 2 lists some useful databases along

with the relevant functional annotations).

Over the last decade, multiple statistical

approaches have been developed to iden-

tify functional annotations (also known as

‘labels’) that are significantly associated

with lists of entities, collectively known as

‘enrichment analysis’. Indeed, the current

systems for functional interpretation have

been derived from the systems previously

developed to analyze expression arrays,

and they have been adapted to analyze

lists of cancer-related genes. As this step is

critical to perform functional interpreta-

tions, special care must be taken when

selecting methods to be incorporated into

the analysis pipeline. Cases in which the

characteristics of the data challenge the

assumptions of the methods are parti-

cularly delicate. For instance, a hyper-

geometric test might be appropriate to

analyze gene lists that are differentially

expressed in gene expression arrays. How-

ever, when dealing with lists of mutated

genes this approach does not account for

factors such as the number of mutations

per gene, the size of the genes, or the presence

of genes in overlapping genomic clusters

(where one mutation may simultaneously

Figure 2. Main tasks in an analysis pipeline. Starting with the patient information derived from NGS experiments, the variants are mapped
between genes and proteins, evaluated for pathogenicity, considered systemically through functional analysis, and the resulting conclusions
translated into actionable results.
doi:10.1371/journal.pcbi.1002824.g002

Table 1. Selection of the software packages used in cancer genome analysis.

Software Functionality Availability

VEP Mutation mapping Local installation or web site

ANNOVAR Mutation mapping Local installation

VARIANT Mutation mapping Local installation, web site, and web service

Mutation Assessor, SIFT For protein variants Web site and web service

Condel Consensus prediction Web site and web service

wKinMut Kinase specific Web site and web service

Genecodis Annotation enrichment for gene lists Web site and web service

FatiGO, David Annotation enrichment for gene lists Web site

Cytoscape Network visualization and analysis Local installation. Can be embedded in browser
applications

R Statistics and plotting Local installation

Taverna Workflow enactment Local installation

Galaxy Workflow enactment Browser application

doi:10.1371/journal.pcbi.1002824.t001
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affect several genes). As none of these issues

are accommodated by the standard ap-

proaches used for gene expression analysis,

new developments are clearly required for

cancer genome analysis.

To alleviate the rigidity introduced by

the binary nature of set-based approaches,

whereby genes are either on the list or they

are not, some enrichment analysis ap-

proaches study the over-representation of

annotations/labels using rank-based statis-

tics. A common choice for rank-based

approaches is to use some variation of the

Kolmogorov-Smirnov non-parametric sta-

tistic, as employed in gene set enrichment

analysis (GSEA) [19]. Another benefit of

rank approaches is that the scores used can

be designed to account for some of the

features that are not well handled by set-

based approaches. Accordingly, consider-

ations of background mutation rates based

on gene length, sequencing quality or

heterogeneity in the initial tumor samples

can be incorporated into the scoring

scheme. However, rank statistics are still

unable to handle other issues, such as

mutations affecting clusters of genes that

are functionally related (e.g., proto-cadher-

ins), which still challenge the assumption

of independence made by most statistical

approaches. Note that from a bioinfor-

matics perspective, sets of entities are often

conceptually simpler to work with than

ranked lists when crossing information

derived from different sources. Moreover,

from an application perspective, informa-

tion summarized in terms of sets of entities

is often more actionable than ranks or scores.

A different type of analysis considers the

relationships between entities based on

their connections in protein interaction

networks. This approach has been used to

measure the proximity of groups of cancer-

related genes and other groups of genes or

functions, by labeling nodes with specific

characteristics (such as roles in biological

pathways or functional classes) [20].

Functional interpretation can therefore

be facilitated by the use of a wide array of

alternative analyses. Different approaches

can potentially uncover hidden functional

implications in genomic data, although the

integration of these results remains a key

challenge.

3.4. Applicable Results: Diagnosis,
Patient Stratification and Drug
Therapies

For clinical applications, the results of

cancer genome analysis need to be trans-

lated into practical advice for clinicians,

providing potential drug therapies, better

tumor classification or early diagnostic

markers. While bioinformatics systems can

support these decisions, it will be up to

expert users to present these findings in the

context of the relevant medical and clinical

information available at any given time. In

the case of our institution’s (CNIO) person-

alized cancer medicine approach, we use

mouse xenografts (also known as ‘avatar’

models) to test the effects of drugs on

tumors prior to considering their potential

to treat patients [4]. In turn, the results of

these xenograft studies are used as a

feedback into the system for future analyses.

Drug-related information and the tools

with which to analyze it is essential for the

analysis of personalized data (some of the

key databases linking known gene variants

to diseases and drugs are listed in Table 2).

Accessing this information and integrating

chemical informatics methodologies into

bioinformatics systems presents new chal-

lenges for bioinformaticians and system

developers.

4. Resources for Genome
Analysis in Cancer

4.1. Databases
Although complex, the data required

for genome analysis can usually be repre-

sented in a tabular format. Tab separated

values (TSV) files are the de facto standard

when sharing database resources. For a

developer, these files have several practical

advantages over other standard formats

popular in computer science (namely

XML): they are easier to read, write and

parse with scripts; they are relatively

succinct; the format is straight-forward

and the contents can be inferred from the

first line of the file, which typically holds

the names of the columns.

Some databases describe entities and

their properties, such as: proteins and the

drugs that target them; germline variations

and the diseases with which they are

associated; or genes along with the factors

that regulate their transcription. Other

databases are repositories of experimental

data, such as the Gene Expression Omnibus

and ArrayExpress, which contain data from

microarray experiments on a wide range of

Table 2. Selection of databases commonly used in our workflows.

Database Entities Properties

Ensembl Genes, proteins, transcripts, regulatory
regions, variants

Genomic positions, relationships between them,
identifiers in different formats, GO terms, PFAM
domains

Entrez Genes, articles Articles for genes, abstracts of articles, links to full text

UniProt Proteins PDBs, known variants

KEGG, Reactome, Biocarta, Gene Ontology Genes Pathways, processes, function, cell location

TFacts Genes Transcription regulation

Barcode Genes Expression by tissue

PINA, HPRD, STRING Proteins Interactions

PharmaGKB Drugs, proteins, variants Drug targets, pharmacogenetics

STITCH, Matador Drugs, proteins Drug targets

Drug clinical trials Investigational drugs Diseases or conditions in they are being tested

GEO, ArrayExpress Genes (microarray probes) Expression values

ICGC, TCGA Cancer Genomes Point mutations, methylation, CNV, structural variants

dbSNP, 1000 genomes Germline variations Association with diseases or conditions

COSMIC Somatic variations Association with cancer types

doi:10.1371/journal.pcbi.1002824.t002
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samples and under a variety of experimental

conditions. For cancer genome studies,

cancer-specific repositories will soon be the

main reference, such as those developed by

the ICGC and TCGA projects. Indeed,

these repositories contain complete geno-

types that offer a perfect opportunity to test

new approaches with real data.

Bioinformaticians know that crossing

information from different sources is not

a trivial task, as different resources use a

variety of identifiers. Even very similar

entities can have different identifiers in two

different databases (e.g., genes in Entrez

and Ensembl). Some resources borrow

identifiers for their own data, along with

HGNC gene symbols, while databases

such as KEGG have their own identifiers

for genes, and offer equivalence tables

that map them to gene symbols or other

common formats.

In addition to entities being referenced

by different identifier formats, in distinct

resources they may also adhere to slightly

different definitions (e.g., regarding what

constitutes a gene). Furthermore, as men-

tioned above the differences between

genome builds can substantially affect the

mapping between coordinate systems, and

they can also give rise to differences

between entities.

In general, translating identifiers can be

cumbersome and incompatibilities may

exist between resources. For example,

MutationAssessor, which predicts the path-

ogenicity of protein mutations [15], uses

UniProt identifiers. Analysis systems using

Ensembl data for coordinate mappings,

such as our own, render mutations using

Ensembl Protein IDs, and in some cases

there are problems in translating identifiers,

and even in assigning mutations to the

wrong isoforms. To prevent these potential

errors, MutationAssessor double checks

that the original amino acid matches the

sequence it is using and refuses to make a

prediction otherwise. Although avoiding

incorrect predictions is a valid strategy, in

practice it substantially reduces the number

of predictions that can be made.

Identifier translation is a very common

task in Bioinformatics in general, and in

cancer genome analysis in particular. In

practice, we use the Ensembl BioMart web

service to download identifier equivalence

tables (in TSV format), which map

different identifier formats between and

across genes, proteins, array probes, etc.

We build fast indexes over these equiva-

lence tables and make them ubiquitously

accessible to all our functionalities through

simple API calls, web services, or com-

mand line statements. While potentially

encumbered by semantic incompatibilities

between entity definitions in multiple

resources, a thoroughly versioned transla-

tion equivalence system is an invaluable

asset for database integration.

4.2. Software Resources
In cancer analysis pipelines, several

tasks must be performed that require

supporting software. These range from

simple database searches to cross-check

lists of germline mutations with lists of

known SNPs, to running complex compu-

tational methods to identify protein-pro-

tein interaction sub-networks affected by

mutations. Some cancer analysis work-

flows opt to develop these functionalities

in-house, while others delegate them to

third party software with the implicit

burdens of installation and configuration.

Table 1 lists some software resources that

are useful when implementing analysis

workflows, and succinctly describes their

functionality and availability.

The functionalities required in a ge-

nome analysis workflow can be divided

into four classes, depending on how they

are accessed (Table 3): via web services,

local or browser based applications, com-

mand line tools, or application program-

ming interfaces (APIs). It is not uncommon

for resources to make their data and

functionalities available in several ways, a

trend that is already evident in databases

like Ensembl, where the information can

be examined using the web interface,

downloaded via the BioMart web service,

batch downloaded from an FTP server, or

queried through the PERL API.

Bioinformaticians should strive to make

their resources widely available to allow

others to use them in the most convenient

manner. In function of the workflow’s

characteristics, some accessibility modes

(e.g., web service, local application, or API)

will be more convenient than others. For

example, if a relatively systematic work-

flow has to be applied to a batch of

datasets, then command-line tools are very

convenient as they are easy to script.

Because a cancer genome analysis pipeline

may require several connected analytical

steps, it is important to be able to script

them to avoid manual operations, thereby

guaranteeing the sustainability and repro-

ducibility of the results. Conversely, if the

user is concerned with the analysis of just

one dataset but interpretation of the results

requires more careful examination, visual

interfaces such as browser-based applica-

tions may be the most convenient end-user

interface, as these can link the results to

knowledge databases to set the context.

5. Workflow Enactment Tools
and Visual Interfaces

Given the complexity of cancer genome

analysis, it is worth discussing how to

design and execute (enact) workflows,

which may become very elaborate. Work-

flows can be thought of as analysis recipes,

whereby each analysis entails enacting

that workflow using new data. Ideally a

workflow should be comprehensive and

cover the complete analysis process from

the raw data to the final results. These

workflows may involve processing different

types of data and may require specific

Table 3. Types of third party software and their general characteristics.

Software type Installation User friendly Scriptable Reusable1

Browser app. NO YES NO2 NO

Web server NO NO YES NO

Local app YES YES NO3 NO

Command line YES NO YES YES4

API YES NO YES YES

1Reusable means that the code, in whole or in part, can be reused for some other purpose.
2May be scriptable using web scraping.
3May support some macro definitions and batch processing.
4If the source code is provided and is easy to pick apart.
doi:10.1371/journal.pcbi.1002824.t003
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adaptations for the analysis of certain types

of experiments. Often, parts of the analysis

will be repeated in a different context and

thus, one of the objectives of workflow

enactment tools is to reuse code efficiently.

A number of systems have been designed

to facilitate the construction of workflows

(e.g., Taverna [21] and Galaxy [22], which

both offer visual interfaces to orchestrate

workflows across a very wide range of

available functionalities).

Although visual workflow enactment

approaches have become reasonably pop-

ular, they still have several important

limitations. Firstly, despite recent efforts,

these approaches remain overly complex

for non-bioinformaticians. Secondly, they

are quite inflexible in terms of the pre-

sentation and exploration of the results,

and thus, understanding the results re-

quires the user to do additional work

outside of the system. Finally, the expres-

siveness of these approaches is limited

when compared with general purpose

programming languages. Experienced de-

velopers will find them of limited utility,

and prefer to have their functionalities

accessible by APIs derived from general

purpose programming languages.

The information presented to the user

needs to closely match his/her needs,

especially in more translational settings.

Too much information may mask impor-

tant conclusions, while too little may leave

the user unsure as to the validity of their

findings. This further emphasizes the need

to customize workflows and the manner in

which results are displayed, in order to

best fit these aspects to the particularities

of each user.

In a more academic setting, close col-

laboration between the researcher and the

bioinformatician facilitates the develop-

ment of custom interfaces that can better

adapt to given datasets, and answer the

very specific questions that may arise

during data exploration. In our institution,

we use a programmatic workflow enact-

ment system that orchestrates a wide

variety of tasks, ranging from coordinate

mapping to enrichment analysis. This

system is controlled via a browser appli-

cation designed to rapidly produce custom

reports using a template-based HTML

report generation system. It is a system

that was developed entirely in-house but

that makes use of third party software,

allowing us to address the requirements of

our collaborators in a timely manner.

6. Summary

Cancer genome analysis involves the

manipulation of large datasets and the

application of complex methods. The

heterogeneity of the data and the disparity

of the software implementations represent

an additional layer of complexity, which

requires the use of systems that can be

easily adapted and reconfigured. Addition-

ally, interpretation of the results in terms

of specific biological questions is more

effective if done in close collaboration

with experts in the field. This represents a

specific challenge for software development

in terms of interactivity and representation

standards. Cancer genome analysis systems

need to be capable of conveniently man-

aging this complexity and of adapting to the

specific characteristics of each analysis.

Finally, it is worth noting that bioinfor-

matics systems will soon have to move

beyond the current research environ-

ments and into clinical settings, a chal-

lenge that will involve more industrial

development that can better cope with

issues of sustainability, robustness and

accreditation, while still incorporating

the latest bioinformatics components that

will continue to be generated in research

laboratories. This constitutes a new and

exciting frontier for bioinformatics soft-

ware developers.

7. Exercise Questions

I. Name three general issues that

bioinformaticians face when ana-

lyzing cancer genome data?

II. What are the four main tasks in

cancer genome analysis in a

clinical setting once the primary

analysis has been performed?

III. Why is it important to use the

correct genome build?

IV. What do we mean by driver

mutation?

V. There are two key principles that

help determine driver mutations

in-silico. What are they?

VI. Give several reasons why point

mutations in coding regions are so

important.

VII. Name three issues that challenge

the assumptions made by the

standard pathway enrichment

analysis tools when applied to

genomic mutations.

VIII. Discuss the problems that arise with

identifiers when integrating infor-

mation across different databases.

IX. Why are command line tools

generally more convenient than

browser-based applications for

processing a batch analyses?

X. How would an application aimed

at researchers differ from one

aimed at clinicians in terms of

the information presented?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)
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Abstract: Disease-causing aberra-
tions in the normal function of a
gene define that gene as a disease
gene. Proving a causal link be-
tween a gene and a disease exper-
imentally is expensive and time-
consuming. Comprehensive priori-
tization of candidate genes prior to
experimental testing drastically re-
duces the associated costs. Com-
putational gene prioritization is
based on various pieces of correl-
ative evidence that associate each
gene with the given disease and
suggest possible causal links. A fair
amount of this evidence comes
from high-throughput experimen-
tation. Thus, well-developed meth-
ods are necessary to reliably deal
with the quantity of information at
hand. Existing gene prioritization
techniques already significantly im-
prove the outcomes of targeted
experimental studies. Faster and
more reliable techniques that ac-
count for novel data types are
necessary for the development of
new diagnostics, treatments, and
cure for many diseases.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

In 1904 Dr. James Herrick reported [1]

the findings of ‘‘peculiar elongated and

sickle shaped’’ red blood cells discovered

by Dr. Ernest Irons in a hospital patient

afflicted with shortness of breath, heart

palpitations, and various other aches and

pains. This was the first documented case

of sickle cell disease in the United States.

Forty years later, in 1949, sickle cell

anemia became the first disease to be

characterized on a molecular level [2,3].

Thus, implicitly, the first disease-associat-

ed gene, coding for beta-globin chain of

hemoglobin A, was discovered.

It took another thirty years before in

1983 a study of the DNA of families

afflicted with Huntington’s disease has

revealed its association with a gene on

chromosome 4 called huntigtin (HTT)

[4]. Huntington’s became the first genetic

disease mapped using polymorphism

information (G8 DNA probe/genetic

marker), closely followed by the same

year discovery of phenylketonuria associ-

ation with polymorphisms in a hepatic

enzyme phenylalanine hydroxylase [5].

These advances provided a route for

predicting the likelihood of disease devel-

opment and even stirred some worries

regarding the possibility of the rise of

‘‘medical eugenics’’ [6]. Interestingly, it

took another ten years for HTT’s se-

quence to be identified and for the

precise nature of the Huntigton’s-associ-

ated mutation to be determined [7].

The recent explosion in high-through-

put experimental techniques has contrib-

uted significantly to the identification of

disease-associated genes and mutations.

For instance, the latest release of SwissVar

[8], a variation centered view of the Swiss-

Prot database of genes and proteins [9,10],

reports nearly 20 thousand mutations in

35 hundred genes associated with over

three thousand broad disease classes.

Unfortunately, the improved efficiency in

production of association data (e.g. ge-

nome-wide association studies, GWAS)

has not been matched by its similarly

improving accuracy. Thus, the sheer

quantity of existing but yet unvalidated

data resulted in information overflow.

While association and linkage studies

provide a lot of information, incorporation

of other sources of evidence is necessary to

narrow down the candidate search space.

Computational methods - gene prioritiza-

tion techniques, are therefore necessary to

effectively translate the experimental data

into legible disease-gene associations [11].

2. Background

The Merriam-Webster dictionary de-

fines the word ‘‘disease’’ as a ‘‘a condition

of the living animal or plant body or of one

of its parts that impairs normal functioning

and is typically manifested by distinguishing

signs and symptoms.’’ Thus, disease is

defined with respect to normal function of said

body or body part. Note, that this definition

also describes the malfunction of individual

cells or cell groups. In fact, many diseases

can and should be defined on a cellular

level. Understanding a disease, and poten-

tially finding curative or preventive mea-

sures, requires answering three questions:

(1) What is the affected function? (2) What

functional activity levels are considered

normal given the environmental contexts?

(3) What is the direction and amount of

change in this activity necessary to cause

the observed phenotype?

Contrary to the view that historically

prevailed in classical genetics it is rarely

the case that one gene is responsible for

one function. Rather, an assembly of genes

constitutes a functional module or a

molecular pathway. By definition, a mo-

lecular pathway leads to some specific end

point in cellular functionality via a series of

interactions between molecules in the cell.

Alterations in any of the normally occur-

ring processes, molecular interactions, and

pathways lead to disease. For example,

folate metabolism is an important molec-

ular pathway, the disruptions in which

have been associated with many disorders

including colorectal cancer [12] and

coronary heart disease [13]. Because this

pathway involves 19 proteins interacting

via numerous cycles and feedback loops

[14], it is not surprising that there are a
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number of different ways in which it can be

broken. The changes in concentrations

and/or activity levels of any of the pathway

members directly affect the pathway end-

products (e.g. pyrimidine and/or methylat-

ed DNA). The specifics of a given change

define the severity and the type of the

resulting disease; see Box 1 for discussion

on disease types. Moreover, since the view

of a single pathway as a discrete and

independent entity (with no overlap with

other pathways) is an oversimplification, it

is increasingly evident that different diseas-

es are also interdependent.

3. Interpreting What We Know

Identifying the genetic underpinnings of

the observed disease is a major challenge

in human genetics. Since disease results

from the alteration of normal function,

identifying disease genes requires defining

molecular pathways whose disrupted func-

tionality is necessary and sufficient to

cause the observed disease. The pathway

function changes due to the (1) changes in

gene expression (i.e. quantity and concen-

tration of product), (2) changes in structure

of the gene-product (e.g. conformational

change, binding site obstruction, loss of

ligand affinity, etc.), (3) introduction

of new pathway members (e.g. activation

of previously silent genes), and (4) envi-

ronmental disruptions (e.g. increased tem-

peratures due to inflammation or de-

creased ligand concentrations due to

malnutrition). While all members of the

affected pathways can be construed as

disease genes, the identification of a subset

of the true causative culprits is difficult.

Obscuring such identification are individ-

ual genome variation (i.e. the reference

definition of ‘‘normal’’ is person-specific),

multigenic nature and complex pheno-

types of most diseases, varied influence of

environmental factors, as well as experi-

mental data heterogeneity and constraints.

Disease genes are most often identified

using: (1) genome wide association or

linkage analysis studies, (2) similarity or

linkage to and co-regulation/co-expres-

sion/co-localization with known disease

genes, and (3) participation in known

disease-associated pathways or compart-

ments. In bioinformatics, these are repre-

sented by multiple sources of evidence,

both direct, i.e. evidence coming from own

experimental work and from literature,

and indirect, i.e. ‘‘guilt-by-association’’

data. The latter means that genes that

are in any way related to already estab-

lished disease-associated genes are pro-

moted in the suspect list. Additionally,

implied gene-disease links, such as func-

tional deleteriousness of mutations affect-

ing candidate genes, contributes to estab-

lishing associations. The manner in which

each guilty association is derived varies

from tool to tool and all of them deserve

consideration. Very broadly, gene-disease

associations are inferred from (Figure 1):

1. Functional Evidence – the suspect gene is

a member of the same molecular

pathways as other disease-genes; in-

ferred from: direct molecular interac-

tions, transcriptional co-(regulation/

expression/localization), genetic link-

age, sequence/structure similarity,

and paralogy (in-species homology

resulting from a gene duplication

event)

2. Cross-species Evidence – the suspect gene

has homologues implicated in generat-

ing similar phenotypes in other organ-

isms

3. Same-compartment Evidence – the suspect

gene is active in disease-associated

pathways (e.g. ion channels), cellular

compartments (e.g. cell membrane),

and tissues (e.g. liver).

4. Mutation Evidence – suspect genes are

affected by functionally deleterious

What to Learn in This Chapter

N Identification of specific disease genes is complicated by gene pleiotropy,
polygenic nature of many diseases, varied influence of environmental factors,
and overlying genome variation.

N Gene prioritization is the process of assigning likelihood of gene involvement in
generating a disease phenotype. This approach narrows down, and arranges in
the order of likelihood in disease involvement, the set of genes to be tested
experimentally.

N The gene ‘‘priority’’ in disease is assigned by considering a set of relevant
features such as gene expression and function, pathway involvement, and
mutation effects.

N In general, disease genes tend to 1) interact with other disease genes, 2) harbor
functionally deleterious mutations, 3) code for proteins localizing to the
affected biological compartment (pathway, cellular space, or tissue), 4) have
distinct sequence properties such as longer length and a higher number of
exons, 5) have more orthologues and fewer paralogues.

N Data sources (directly experimental, extracted from knowledge-bases, or text-
mining based) and mathematical/computational models used for gene
prioritization vary widely.

Box 1. Genetic similarities of different disease types.

Diseases can be very generally classified by their associated causes: pathogenic
(caused by an infection), environmentally determined (caused by ‘‘inanimate’’
environmental stressors and deficiencies, such as physical trauma, nutrient
deficiency, radiation exposure and sleep deprivation), and genetically hereditary or
spontaneous (defined by germline mutations and spontaneous errors in DNA
transcription, respectively). Moreover, certain genotypes are more susceptible to
the effects of pathogens and environmental stress, contributing to a deadly
interplay between disease causes. Regardless of the cause of disease, its
manifestations are defined by the changes in the affected function. For example,
cancer is the result of DNA damage occurring in a normal cell and leading toward
a growth and survival advantage. The initial damage is generally limited to a fairly
small number of mutations in key genes, such as proto-oncogenes and tumor
suppressor genes [135]. The method of accumulation of these mutants is not very
important. A viral infection may cause cancer by enhancing proto-oncogene
function [136] or by inserting viral oncogenes into host cell genome. An inherited
genetic variant may disrupt or silence a single allele of a mismatch-repair gene as
in Lynch syndrome [137]. Spontaneous transcription errors and influence of
environmental factors, e.g. continued exposure to high levels of ionizing
radiation, may result in oncogene and tumor suppressor-gene mutations leading
to the development of cancer [138]. Thus, the same broad types of disease can be
caused by the disruption of the same mechanisms or pathways resulting from any
of the three types of causes.
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mutations in genomes of diseased

individuals

5. Text Evidence – there is ample co-

occurrence of gene and disease terms

in scientific texts. Note that textual co-

occurrence represents some form of

biological evidence, which does not yet

lend itself to explicit documentation.

3.1 Functional Evidence
3.1.1 Molecular interactions. Gene

prioritization tools, from the earliest field

pioneers like G2D [15,16,17] to the more

recent ENDEAVOUR [18,19] and

GeneWanderer [20,21], among many

others, have used gene-gene (protein-

protein) interaction and/or pathway

information to prioritize candidate genes.

Biologically this makes sense, because if

diseases result from pathway breakdown

then disabling any of the pathway

components can produce similar pheno-

types; i.e. genes responsible for similar

diseases often participate in the same

interaction networks [22,23]. To illustrate

this point, consider the interaction

partners of the melanocortin 4 receptor

(MC4R) in STRING [24,25] server

generated Figure 2. Note, not all known

interactions are shown – the inclusion

parameter is STRING server likelihood

.0.9.

MC4R is a hypothalamic receptor with

a primary function of energy homeostasis

and food intake regulation. Functionally

deleterious polymorphisms in this receptor

are known to be associated with severe

obesity [26,27,28]. Here, MC1R, MC3R,

and MC5R are membrane bound mela-

nocortin (1,3,5) receptors that interact

with MC4R via shared binding partners.

Syndecan-3 (SDC3), agouti signaling pro-

tein precursor (ASIP), agouti related

protein precursor (AgRP), pro-opiomela-

nocortin (POMC) and/or their processed

derivatives directly bind MC4R for varied

purposes of the MC4R signaling pathway.

Finally, the reported interactions with

Neuropeptide Y-precursor (NPY) and the

growth hormone releasing protein

(GHRL) are literature derived and may

reflect indirect, but tight connectivity. By

the token of ‘‘same pathway’’ evidence,

MC4R interactors, whether agonists or

antagonists, may be predicted to be linked

to obesity. In fact, mutations that nega-

tively affect normal POMC production or

processing have been shown to be obesity-

associated [29,30] and gene association

studies have linked AgRP with anorexia

and bulimia nervosa behavioral traits [31],

representative of food intake abnormali-

ties. Other pathway participants have also

been marked and extensively studied for

obesity association.

Figure 1. Overview of gene prioritization data flow. In order to prioritize disease-gene candidates various pieces of information about the
disease and the candidate genetic interval are collected (green layer). These describe the biological relationships and concepts (blue layer) relating
the disease to the possible causal genes. Note, the blue layer (representing the biological meaning) should ideally be blind to the content green layer
(information collection); i.e. any resource that describes the needed concepts may be used by a gene prioritization method.
doi:10.1371/journal.pcbi.1002902.g001
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3.1.2 Regulatory and genetic

linkage. Co-regulation of genes has

traditionally been thought to point to

their involvement in same molecular

pathways [32] and, by that token, to

similar disease phenotypes; e.g. [33,34].

For example, GPR30 a novel G-protein

coupled estrogen receptor is co-expressed

with the classical estrogen receptor ERb
[33]. The former (GPR30) has been linked

to endometrial carcinoma [35] so it is no

surprise that the latter (ERb) is also

associated with this type of cancer [33].

However, co-regulation doesn’t always

have to mean the same pathway – studies

have shown that consistently co-expressed

genes, while possibly genetically linked

[36,37], may also reside in distinct path-

ways [38]. Additionally, co-expressed non-

paralogous genes, independent of com-

mon pathway involvement, often cluster

together in different species and fall into

chromosomal regions with low recombi-

nation rates [39,40], suggesting genetic

linkage [39,40]. These finding suggests

that clusters of co-expressed genes are

selectively advantageous [36]. Possibly,

these clusters are groups of genes that

despite the apparent functional heteroge-

neity may be jointly involved in orches-

trating complicated cellular functionality

[41]. Evolutionary pressure works on

maintaining co-expression of these genes

and on keeping recombination rates with-

in the clusters low. Thus, the fine-tuned

cooperation of alleles is not broken by

recombination, but rather transmitted as

one entity to the next generation. De-

regulation of these clusters is therefore

likely to be deleterious to the organism and

develop into disease.

Genes co-expressed with or genetically

linked to other disease genes are also likely

to be disease-associated. However, while

genetic linkage and co-regulation are

valuable markers of disease association,

they also pose a specificity problem; i.e. a

given disease-associated gene may be co-

regulated with or linked to another

disease-associated gene, where the two

diseases are not identical. Genetic linkage

similarly poses a problem for GWAS

where it is difficult to distinguish between

‘‘driver’’ mutations, the actual causes of

disease, and ‘‘passenger’’ mutations, co-

occurring with the disease-mutations due

to genetic linkage.

3.1.3 Similar sequence/structure/

function. Reduced or absent phenotypic

effect in response to gene knockout/

inactivation is a common occurrence

[42,43], largely explained by functional

compensation, i.e. partial interchangeability

of paralogous genes. In humans, genes with

at least one paralogue, approximated by

90% sequence identity, are about three

times less likely to be associated with disease

as compared to genes with more remote

homologs [44]. However, in the cases where

paralogous functional compensation is

insufficient to restore normal function,

inactivation of any of the paralogues leads

to same or similar disease. Prioritization

tools thus often use functional similarity as

an input feature. For example, one

GeneOntology (GO, [45]) defined MC4R

function, is ‘‘melanocyte-stimulating horm-

one receptor activity’’ (GO:0004980). There

are two other human gene products sharing

this function: MSHR (MC1R, 52%

sequence identity) and MC3R (61%).

Predictors relying on functional similarity

to annotate disease association would

inevitably link both of these with obesity.

These findings are confirmed by the recent

studies for MC3R [46], but the jury still

remains out for MC1R involvement.

Quantifying functional similarity is of

utmost importance for the above approach.

Using ontology-defined functions (e.g. Gen-

eOntology) this problem reduces to finding

a distance between two ontology nodes/

subtrees (e.g. [47,48,49,50]). For un-anno-

tated genes, however, sequence and struc-

ture homology is often used to transfer

functional annotations from studied genes

and proteins [51,52]. Since functionally

similar genes are likely to produce similar

disease phenotypes, sequence/structure

similarities are good indicators of similar

disease involvement. Additionally, disease

genes are often associated with specific gene

and protein features such as higher exon

number and longer gene length, protein

length, presence of signal peptides, higher

distance to a neighboring gene and 39 UTR

length, and lower sequence divergence

from their orthologues [53,54]. Moreover,

disordered proteins are often implicated in

cancer [55].

3.2 Cross-species Evidence
Animal models exist for a broad range

of human diseases in a number of well-

studied laboratory organisms, i.e. mouse,

zebrafish, fruit fly, etc. However, straight-

forward cross-species comparisons of

orthologues and their associated pheno-

typic traits are also very useful. A high

number of orthologues (consistent pres-

ence in multiple species) generally high-

lights essential genes that are prone to

disease involvement. Orthologues general-

ly participate in similar molecular path-

ways although different levels of function

are necessary for different organisms (e.g.

human MC4R is more functional then its

polar bear orthologue [56]). Thus, cross-

species tissue-specific phenotypic differen-

tiation due to slightly varied sequences

may be useful for gene prioritization. For

example, the human MC4R and almost

Figure 2. MC4R-centered protein-protein interaction network. The figure illustrates
protein-protein interaction neighborhood of the human melanocortin 4 receptor (MC4R) as
illustrated by the confidence view of the STRING 8.3 server. The nodes of the graph represent
human proteins and the connections illustrate their known or predicted, direct and indirect
interactions. The connection between any two protein-nodes is based on the available
information mined from relevant databases and literature. The network includes all protein
interactions that have .0.9 estimated probability.
doi:10.1371/journal.pcbi.1002902.g002
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all of its close orthologues (e.g. in mouse,

rat, pig, and cow) contain a conserved

valine residue in the 95th position of the

amino acid sequence. In the polar bear

orthologue, however, this position is fre-

quently occupied by an isoleucine residue

[56]. When considering MC4R involve-

ment in generating an obesity phenotype,

it is useful to note that polar bears have a

need for increased body fat content for

thermal insulation, water buoyancy, and

energy storage requirements [56] as com-

pared to humans and to other organisms

that share a conserved V95. Thus, one can

imagine that the V95I mutation, while

deleterious to the function of the receptor,

is a polar bear specific adaptation to its

environment, and may have a similar

(increased body fat) effect in humans. In

fact, V95I does inactivate the human

receptor [57,58] and associates with obesity.

Comparing human and animal pheno-

types is not always straightforward. Wash-

ington et al [59] have shown that pheno-

type ontologies facilitate genotype-

phenotype comparisons across species.

Disease phenotypes recorded in their

ontology (OBD, ontology based database)

can be compared to the similarly built

cross-species phenotype ontologies using a

set of proposed similarity metrics. Finding

related phenotypes across species suggests

orthologous human candidate genes. For

instance, phenotypic similarities of eye

abnormalities recorded in human and fly

suggest that PAX6, a human orthologue of

the phenotype-associated fly gene ey, is a

possible disease-gene candidate. Further

investigation shows that mutations in

PAX6 may result in aniridia (absence of

iris), corneal opacity (aniridia-related ker-

atopathy), cataract (lens clouding), glauco-

ma, and long-term retinal degeneration

(Figure 3) [59].

A correlation of gene co-expression

across species is also useful for annotating

disease genes [60,61]. Genes that are part

of the same functional module are gener-

ally co-expressed. Also, there is evidence

for co-expression of visibly functionally

unrelated genes [37,62,63]. The explana-

tion of these co-expression clusters having

an evolutionary advantage only holds true

for otherwise unjustified conservation of

these clusters throughout different species;

i.e. cross-species comparison of protein co-

expression may be used for validation of

disease-gene co-expression inference. Us-

ing this assumption, Ala et al [61] had

narrowed down the initial list of 1,762

genes in the loci mapped via genetic

linkage to 850 OMIM (Online Mendelian

Inheritance in Man) [64] phenotypes to

twenty times fewer (81) possible disease-

causing genes. For example, in their

analysis a cluster of functionally unrelated

genes co-expressed in human and mouse

contained a bona fide disease-gene KCNIP4

(partial epilepsy with pericentral spikes).

3.3 Compartment Evidence
Changes in gene expression in disease-

affected tissues are associated with many

complex diseases [65]. Tissue specificity is

also important for choosing correct

protein-protein interaction networks, as

some proteins interact in some tissues,

but rarely in others [66]. Disease-associat-

ed cellular pathways (e.g. ion channels or

endocytic membrane transport) and com-

partments (e.g. membrane or nucleus)

implicate pathway/compartment-specific

gene-products in disease as well. For

example, autosomal recessive generalized

myotonia (Becker’s disease) (GM) and

autosomal dominant myotoniacongenita

(Thomsen’s disease, MC) are character-

ized by skeletal muscle stiffness [67]. This

phenotype is the result of muscle mem-

brane hyperexcitability and, in conjunc-

tion with observed alterations in muscle

chloride and sodium currents, points to

possible involvement of deficiencies of the

muscle chloride channel. In fact, studies

point to the mutations in the transmem-

brane region of CLC-1, the muscle

chloride channel coding gene, as the

culprit [67]. Another example is that of

the multiple storage diseases, such as Tay-

Sachs, Gaucher, Niemann-Pick and

Pompe disease, which are caused by the

impairment of the degradation pathways

of the intracellular vesicular transport. In

fact, many of the genes implicated in these

diseases encode for proteins localized to

endosomes (e.g. NPC1 in Neimann-Pick

[68]) or lysosomes (e.g. GBA [69] in

Gaucher, GAA in Pompe [70] and HEXA

in Tay Sachs [71]).

3.4 Mutant Evidence
By definition, every genetic disease is

associated with some sort of mutation that

alters normal functionality. In fact, prima-

ry selection of candidates for further

analysis is often largely based on observa-

tions of polymorphisms in diseased indi-

viduals, which are absent in healthy

controls (e.g. GWAS). However, not all

observed polymorphisms are associated

with deleterious effects. Note, that on

average gain and loss of function muta-

tions are considered to alter normal

functionality equally deleteriously. Most

of the observed variation does not at all

manifest phenotypically, some is weakly

deleterious with respect to normal func-

tion, and less still is weakly beneficial. In

nature strongly beneficial mutations are

very rare; they spread rapidly in the

population and cannot be considered

disease-associated. On the other hand,

strongly deleterious or inactivating muta-

tions are often incompatible with life. A

small percentage of mutations of this type,

affecting genes whose function is not life-

essential, are often associated with mono-

genic Mendelian disorders. Strongly dele-

Figure 3. Correlating cross-species phenotypes. Phenotypes of wild-type (top) and PAX6
ortholog mutations (bottom) in human, mouse, zebrafish, and fly can be described with the EQ
method suggested by Washington et al [59]. Once phenotypic descriptions are standardized
across species, genotypic variations can be assessed as well.
doi:10.1371/journal.pcbi.1002902.g003
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terious mutations in the genes whose

function may somehow be compensated

(e.g. via paralogue activity) are associated

with complex disorders, where the level of

compensation affects the observed pheno-

type. Complex disorders may also accu-

mulate weakly deleterious mutations to

generate a strongly negative phenotype.

Intuitively it is clear that a selected

candidate gene, carrying a deleterious

mutation in an affected individual is more

likely to be disease-associated than one

which contains functionally neutral mu-

tants or no variation at all.

3.4.1 Structural variation. Structural

variation (SV) is the least studied of all types

of mutations. It has long been assumed that

less than 10% of human genetic variation is

in the form of genome structural variants

(insertions and deletions, inversions,

translocations, aneuploidy, and copy

number variations - CNVs). However,

because each of the structural variants is

large (kb-Mb scale), the total number of base

pairs affected by SVs may actually be

comparable to the number of base pairs

affected by the much more common SNPs

(single nucleotide polymorphisms).

Moreover, high throughput detection of

structural variants is notoriously difficult

and is only now becoming possible with

better sequencing techniques and CNV

arrays. Thus, more SVs may be discovered

in the near future. We do not currently know

what proportion of genetic disease is caused

by SVs, but we suspect that it is high.

Due to the above mentioned constraints

on SV identification, there are only ,180

thousand structural variants reported in

one of the most complete mutation

collections – the Database of Genomic

Variants, DGV [72]. Gross changes to

genome sequence are very likely to be

disease associated, but also frequently gene

non-specific. For instance, Down’s syn-

drome, trisomy 21, is an example of a

whole extra chromosome gain and cri du

chat syndrome results from the deletion of

the short arm of chromosome 5 [73]. All

of the genes found in these regions of the

genome are, by default, associated with

the observed disease but neither can be

considered primarily causal. When the

damage is less extensive the genes involved

may be further evaluated for causation.

For instance, several epilepsy-associated

genes are known, but functionally-signifi-

cant mutations in these account for only a

small fraction of observed disease cases.

One study [74] reports that CNV mutants

found in epileptic individuals but not in the

general population account for nearly nine

percent of all cases. Among these are CNVs

resulting from deletions in AUTS2 and

CNTNAP2 genes. Both of these genes have

been implicated in other neurological

disorders [75,76] reaffirming the possible

disease link. Inversions, translocations and

large deletions and insertions have all been

implicated in different forms of disease.

Even very small indels, resulting in an open-

reading frame shift (frameshift mutations),

are often sufficient to cause disease. For

instance, one of the causes of Tay-Sachs is a

deletion of a single cytosine nucleotide in

the coding sequence of a lysosomal enzyme

beta-hexosaminidase [71].

In most cases of diseases that are

associated with SVs the prioritization of

disease-causing genes is reduced to finding

those that are directly affected by the

mutation. Lots of work has been done in

this direction, including development of

the CNVinetta package [77] for mining

and visualizing CNVs, GASV approach

for identifying structural variation bound-

aries more precisely [78], and software

created by Ritz et al for searching for

structural variants in strobe sequencing

data [79]. SV identification is still a new

field, but the advances in methodologies

will have a great impact on our under-

standing and study of many of the known

diseases.

3.4.2 Nucleotide polymorphisms. The

other ,90% of human variation exists in

the form of SNPs (single nucleotide

polymorphisms) and MNPs (multi-

nucleotide polymorphisms; consecutive

nucleotide substitutions, usually of length

two or three). A single human genome is

expected to contain roughly 10–15 million

SNPs per person [80]. As many as 93% of

all human genes contain at least one SNP

and 98% of all genes are in the vicinity

(,5 kb) of a SNP [81]. The latest release of

NCBI dbSNP database [82] (build 137)

contains nearly 43 million validated human

SNPs, 17.5 million of which have been

experimentally mapped to functionally

distinct regions of the genome (i.e. mRNA

UTR, intron, or coding regions). Non-

coding region SNPs (,17.2 million) are

trivially more prevalent than coding SNPs

(,432 thousand) as non-coding DNA

makes up the vast majority of the

genome. Coding SNPs, however, are

over-represented in disease associations;

e.g. OMIM contains 2430 non-coding

SNPs (0.0001% of all) and 5327 coding

ones (0.01% of all – 100-fold enrichment).

Due to the redundancy of the genetic code,

coding SNPs can be further subdivided into

synonymous (no effect on protein sequence)

and non-synonymous (single amino acid

substitution) SNPs. Simple statistics of the

genetic code suggest that synonymous

SNPs should account for 24% of all

coding-region SNPs. dbSNP data suggests

an even larger percentage of synonymity –

,188 thousand (44%), which is possibly

due to evolutionary pressure eliminating

functionally deleterious non-synonymous

SNPs. MNPs are rare as compared to

SNPs, but are over-represented amongst

the protein altering variants, almost always

changing the affected amino acid, or two

neighboring ones, or introducing a

nonsense mutation (stop-codon) [83].

Identifying and annotating functional

effects of SNPs and MNPs is important in

the context of gene prioritization because

genes selected for further disease-associa-

tion studies are more likely to contain a

deleterious mutation or be under the

control of one (e.g. mutations affecting

transcription factor or microRNA binding

sites). In recent years a number of methods

were created for identifying mutations as

functionally deleterious. PromoLign [84],

PupaSNP finder [85], and RAVEN [86]

look for SNPs affecting transcription,

SNPper [87] finds and annotates SNP

locations, conservation, and possible func-

tionalities so that they can be visually

assessed, and SNPselector [88] and

FASTSNP [89] assess various SNP fea-

tures such as whether it alters the binding

site of a transcription factor, affects the

promoter/regulatory region, damages the

39 UTR sequence that may affect post-

transcriptional regulation, or eliminates a

necessary splice site. Coding synonymous

SNPs have recently been shown to have

the same chance of being involved in a

disease mechanism as non-coding SNPs

[90]. This effect may be due to codon

usage bias or to changes in splicing or

miRNA binding sites [91]. However, few

(if any) computational methods are able

make predictions with regard to their

functional effects.

Non-synonymous SNPs are somewhat

more studied. Early termination of the

protein is very often associated with

disease so genes with nonsense mutants

are automatically moved up in the list of

possible suspects. Missense SNPs and

MNPs, which alter the protein sequence

without destroying it, may or may not be

disease associated. In fact, most methods

estimate that only 25–30% of the nsSNPs

negatively affect protein function [92].

Databases like OMIM [93], and more

explicitly, SNPdbe [94], SNPeffect [95],

PolyDoms [96], Mutation@A Glance [97]

and DMDM [98] map SNPs to known

structural/functional effects and diseases.

Computational tools that make predictions

about functional and disease-associated

effects of SNPs include SNAP [99,100],

SIFT [101,102], PolyPhen [103,104],
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PHD-SNP [105], SNPs3D [106], and

many others. Most of these methods are

binary in essence – that is they point to a

deficiency without suggesting specifics of

the disease or molecular mechanisms of

functional failure. Nevertheless, they are

very useful in conjunction with other data

described above. The recent trend in

mutation analysis has seen the develop-

ment of tools, like SNPNexus [107] and

SNPEffectPredictor [108] that are no

longer limited by DNA type and predict

effects for both non-coding and coding

region SNPs.

3.5 Text Evidence
The body of science that addresses gene-

disease associations has been growing in

leaps and bounds since the mapping of a

hemoglobin mutation to sickle cell anemia.

Some researchers have been proactive in

making their data computationally avail-

able from databases like dbSNP, GAD

[109], COSMIC [110], etc. Others have

contributed by depositing knowledge ob-

tained through reading and manual cura-

tion into the likes of PMD [111], GeneRIF

[112] and UniProt [9]. However, huge

amounts of data, which could potentially

improve the performance of any gene

prioritization method, remains hidden in

plain site in natural language text of

scientific publications. Consider, for exam-

ple, a scientist who is interested in priori-

tizing breast cancer genes. A casual search

in PubMed for the term combination breast

cancer generates over two hundred thousand

matches. Limiting the field to genetics of breast

cancer reduces the count to slightly fewer

than fifty thousand. The past thirty days

have brought about 46 new papers. Thus,

someone interested in getting all the genetic

information out of the PubMed collection

would need to dedicate his or her life to

reading. Fortunately, scientific text mining

tools have recently come of age

[113,114,115]. The new tools will allow

for intelligent identification of possible

gene-gene and disease-gene correlations

[116,117,118]. For example, the Informa-

tion Hyperlinked Over Proteins, IHOP

method [119] links gene/protein names in

scientific texts via associated phenotypes

and interaction information. For automat-

ed link extraction, however, the existing

gene prioritization techniques rely mostly

on term co-occurrence statistics (e.g.

PosMed [120] and GeneDistiller [121])

and gene-function annotations (e.g. EN-

DEAVOR [122] and PolySearch [123]),

which can then be related to diseases as

described above.

For a significantly oversimplified exam-

ple of this type of processing consider

searching PubMed for the terms breast

cancer and BRCA1. The initial search

returns 50 articles, as compared to 21 for

breast cancer with BRCA2, 6 with PIK3CA, 1

with TOX3, and 0 for MC4R or CLC1

associations. While the number of publi-

cations reflects many extraneous factors

such as the popularity and ‘‘research age’’

of the protein, it is also very much

reflective of the possibility of gene-disease

association. Thus, BRCA1 and BRCA2

would be the most likely candidates

for cancer association, followed by

PIK3CA and TOX3. MC4R and CLC1

would not make the cut. Note that

PubMed now defaults to a smart search

engine, which identifies all aliases of the

gene and the disease while cutting out

more promiscuous matches; i.e. turning off

the translation of terms would result in

significantly more less accurate matches.

Using specialized tools like PolySearch (or

IHOP) to perform the same queries

produces more refined and quantifiable

results (Figure 4).

4. The Inputs and Outputs

Existing disease-gene prioritization

methods vary based on the types of inputs

that they use to produce their varied

outputs. Functionality of prioritization

methods is defined by previously known

information about the disease and by

candidate search space [124], which may

be either submitted by the user or

automatically selected by the tool. Disease

information is generally limited to lists of

known disease-associated genes, affected

tissues and pathways and relevant key-

words. The candidate search space does

not have to be input at all (i.e. the entire

genome) or be defined by the suspect (for

varied experimental reasons) genomic

region. The prioritization accuracy, in

large part, depends on the accuracy and

specificity of the inputs. Thus, providing a

list of very broad keywords may reduce the

performance specificity, while incorrect

candidate search space automatically de-

creases sensitivity. Prioritization methods

generally output ranked/ordered lists of

genes, oftentimes associated with p-values,

classifier scores, etc.

Overall, input and output requirements

and formats are a very important part of

establishing a tool’s relevance for its users.

As with other bioinformatics methods, the

ease use and the steepness of learning

curve for a given gene prioritization

method often define the user base at least

as strictly as does its performance.

Figure 4. PolySearch gene-disease associations. PolySearch uses PubMed lookup results to
prioritize diseases associated with a given gene. Here, screen shots of the top two results (where
available; sorted by relevancy score metric) from PolySearch are shown. According to these,
BRCA1 and PIK3CA are associated with breast cancer, while MC4R and CLC1 are not. These results
quantitatively confirm intuitive inferences made from simple PubMed searches.
doi:10.1371/journal.pcbi.1002902.g004
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Box 2. Illustrating basic functionality of a standard (on-line fully-interconnected feed-forward
sigmoid-function back-propagating) neural network.

In Figure 5A example network there are three fully interconnected layers of neurons (input, hidden, and output layers); i.e. each
neuron in one layer is connected to every neuron in the next layer. The three input neurons encode biologically relevant pieces
of data relating a given gene G to a given disease D. For each G and D, i_neuron1 is the fraction of articles (out of 1000)
containing in-text co-occurrences of G and D and i_neuron2 represents the presence/absence of a sequence-similar gene G’
associated with D (i_neuron3 = G/G’ sequence identity). The hidden (inference) layer consists of two neurons h_neuron1 and
h_neuron2 with activation thresholds h1 and h2, respectively. The single output, o_neuron (threshold hO) represents the
involvement of G in causing D: 0 = no involvement, 1 = direct causation. The starting weights of the network (wi1-h1, wi1-h2…wh2-o)
are arbitrarily assigned random values between 0 and 1. Intuitively, the function of the network is to convert input neuron values
into output neuron values via a network of weights and hidden neurons. Mathematically, the network is described as follows:

The value (dx) of neuron x is the sum of inputs into x from the previous layer of neurons (Yi = 1Rn in general; in our example: I1R3,
H1R2). Each of the n inputs is a product of value of neuron Yi and weight of connection between Yi and x (wYiRx).

dx~
Xn

i~1

YiwYi?x

The value of the output (zx) of a neuron x based on its dx and its threshold hx is:

zx~f (dxzhx)

In our case, the function (f) is a sigmoid, where a is a real number constant (optimized for any given network, but generally
initially chosen to be between 0.5 and 2).

f (x)~
1

1ze{ax

Thus, to compute the output of every neuron in the network we need to use the formula:

zx~
1

1ze{a(dxzhx)

Note, that to compute the output of the o_neuron (zO; the prediction made by the network) we first have to compute the
outputs of all h_neurons (zHi = 1Rn).

In a supervised learning paradigm, experimentally established pairs of inputs and outputs are given to the network during
training (Figure 5C). After each input, the network output (zO) is compared to the observed result (R). If the network makes a
classification error its weights are adjusted to reflect that error. Establishing the best way to update weights and thresholds in
response to error is of the major challenges of neural networks. Many techniques use some form of the delta rule – a gradient
descent-based optimization algorithm that makes changes to function variables proportionate to the negative of the
approximate gradient of the function at the given point. [It’s OK if you didn’t understand that sentence – the basic idea is to
change the weights and thresholds in the direction opposite of the direction of the error]. In our example, we use the delta rule
with back-propagation. This means that to compute the error of the hidden layer, the threshold of the output layer (hO) and the
weights connecting the hidden layer to the output layer (wh1RO, wh2RO) need to be changed first.

The steps are as follows:

1. Compute the error (eO) of zO as compared to result R. Note, that the difference between the expected and the observed values
defines the gradient (g) at the output neuron.

eO~zO(1{zO)(R{zO)

2. Compute the change in the threshold of the output layer (DhO), using a variable l, the learning rate constant - a real number,
often initialized to 0.1–0.2 and optimized for each network)

DhO~leO
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5. The Processing

Gene prioritization methods use differ-

ent algorithms to make sense of all the

data they extract, including mathemati-

cal/statistical models/methods (e.g. Gene-

Prospector [125]), fuzzy logic (e.g. Topp-

Gene [126,127]), and artificial learning

devices (e.g. PROSPECTR [54]), among

others. Some methods use combinations of

the above. Objectively, there is no one

methodology that is better than the others

for all data inputs. For more details on

computational methods used in the vari-

ous approaches please refer to relevant

tool publications and method-specific

computer science/mathematics literature,

e.g. [128,129,130,131,132,133,134].

To illustrate the general concepts of

relying on the various computational tech-

niques for gene prioritization we will

consider the use of an artificial neural

network (ANN). Keep in mind that while

methods and their requirements differ, the

notion of identifying patterns in the data

that may be indicative disease-gene in-

volvement remains the same throughout.

In simplest terms, a neural network is

essentially a mathematical model that

defines a function f: XRY, where a

distribution over X (the inputs to the

network) is mapped to a distribution over

Y (the outputs/classifications). The word

‘‘network’’ in the name ‘‘artificial neural

network’’ refers to the set of connections

between the ‘‘neurons’’ (Figure 5). The

functionality of the network is defined by

the transmission of signal from activated

neurons in one layer to the neurons in

another layer via established (and weighed)

connections. Besides the choice and num-

ber of inputs and outputs, the parameters

defining a given ANN are (1) interconnec-

tion patterns, (2) the process by which the

weights of connections are selected/updat-

ed (learning function), and (3) the activation

thresholds (functions) of any one given

neuron. ‘‘Training’’ a network means

optimizing these parameters using an

existing set of inputs (and, possibly, out-

puts). Ultimately, a trained network could

then relatively accurately recognize learned

patterns in previously unseen data. For

more details regarding the possible types

and parameters of neural networks see

[132,134]. For an illustration of network

application see Box 2 and Figure 5.

6. Summary

The development of high throughput

technologies has augmented our abilities to

identify genetic deficiencies and inconsis-

tencies that lead to the development of

diseases. However, a large portion of

information in the heaps of data that these

methods produce is incomprehensible to

the naked eye. Moreover, inferences that

could potentially be made from combining

3. Compute the change in the weights connecting the hidden layer to the output, wHiRO.

DWHi?O~DhOHi

4. Compute the gradient (gi) at hidden neurons

gi~eOwHi?O

Note, from here all steps are the same as above

5. Compute the error at zHi

eHi
~zHi

(1{zHi
)gi

6. Compute the change in hHi

DhHi
~leHi

7. Compute the change in wIjRHi

DWIj?Hi
~DhHi

Ij

In on-line updating mode of our example, weights and thresholds are altered after each set of input transmissions. Once the
network has ‘‘seen’’ the full set of input/output pairs (one epoch/iteration), training continues re-using the same set until the
performance is satisfactory. Note that neural networks are sensitive to dataset imbalance. I.e. it is preferable to ‘‘balance’’ the
training data, such that the number of instances of each class is presented a roughly equal number of times.

In testing, updating of the weights no longer takes place; i.e. the zO for any given set of inputs is constant over time. See
Exercise 8 for an experience with testing. Note, there are many variations on the type and parameters of network learning
(propagation mode and direction, weight update rules, thresholds for stopping, etc.) Please consult the necessary literature for
more information, e.g. [134].
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different studies and existing research

results are beyond reach for anyone of

human (not cyborg) descent. Gene priori-

tization methods (Table 1) have been

developed to make sense of this data by

extracting and combining the various

pieces necessary to link genes to diseases.

These methods rely on experimental work

such as disease gene linkage analysis and

genome wide studies to establish the search

space of candidate genes that may possibly

be involved in generating the observed

phenotype. Further, they utilize mathemat-

ical and computational models of disease to

filter the original set of genes based on gene

and protein sequence, structure, function,

interaction, expression, and tissue and

cellular localization information. Data re-

positories that contain the necessary infor-

mation are diverse in both content and

format and require deep knowledge of the

stored information to be properly inter-

preted. Moreover, the models utilizing the

various sources assign different weights to

the information they extract based on

perceived quality and importance of each

piece of data available in the context of the

entire set of descriptors – a function

unlikely to be reproduced in manual data

interpretation. Thus, computational gene

prioritization techniques serve as interpret-

ers of both of newly retrieved data and of

information contained in previous studies.

They also are the bridge that connects

seemingly unrelated inferences creating an

easily comprehensible outlook on an im-

portant problem of disease gene annota-

tion.

7. Exercises

1. Search the GAD (http://geneticassociationdb.

nih.gov/) database for all genes report-

ed to be associated with diabetes. Refine

this set to find only the positively

associated genes. How many are there?

Why was the total data set reduced?

Count the number of unique diabetes

associated genes or explain why this is

not feasible. How many SNPs associate

these genes with diabetes? Is it realisti-

cally possible to experimentally evaluate

individual effects of each SNP in this

set?

2. Using STRING (http://string-db.org/),

find all genes (hint: use limit of 50)

interacting with insulin (confidence

.0.99). Note, this confidence limit is extremely

high – computational techniques would normally

deal with lower limits and thus larger data sets.

What is the insulin gene name used by

STRING? How many interaction part-

ners does your query return? Switch to

STRING evidence view. Pick three

genes connected to insulin via text

mining, but without ‘‘insulin’’ in their

full name, and find one reference for

each in PubMed (http://www.ncbi.nlm.

nih.gov/pubmed/) suggesting that these

genes are involved with diabetes. Report

Gene IDs (e.g. MC4R), PubMed IDs and

publication citations. Use PolySearch

Figure 5. Predicting gene-disease involvement using artificial neural networks (ANNs). In a supervised learning paradigm, the neural
networks are trained using experimental data correlating inputs (descriptive features relating genes to diseases) to outputs (likelihood of gene-
disease involvement). The training and testing procedures for the generalized network (Panel A) are described in text. In our example, the WEKA
[129,130,131,139] ANN (Panel B; a = 0.5, l= 0.2) is trained using the training set (Panel C) repeated 500 times (epochs). The network ‘‘memorizes’’
(Predictions in Panel C) the patterns in the training set and is capable of making accurate predictions for four out of seven instances it has not seen
before (test set, Panel D). It is important to note here that the erroneously assigned instances (yellow highlight) in the test set are, for the most part,
unlike the training. The first one has very little literature correlation (0.01), while sequence similarity to another disease-involved gene is fairly high
0.55). The second maps an unlikely candidate gene (very low literature, no homology) to disease, and the third has barely enough literature mapping
and borderline homology. Representation of neither of these instances was consistently present in the training set. This example highlights the
importance of training using a representative training set, while testing on a set that is not equivalent to training.
doi:10.1371/journal.pcbi.1002902.g005

PLOS Computational Biology | www.ploscompbiol.org 10 January 2013 | Volume 9 | Issue 4 | e1002902



(http://wishart.biology.ualberta.ca/

polysearch) gene to disease mapping

with your gene IDs to do the same. Does

your experience confirm that the func-

tional ‘‘molecular interaction’’ evidence

works? Why?

3. In AmiGO (GO term browser, http://

www.geneontology.org), find the hu-

man insulin record (hint: use the insulin

ID obtained above). What is the Swiss-

Prot ID for insulin? Go to the term

view. How many GO term associations

does insulin have? Reduce the view to

‘‘molecular function’’ terms. How

many terms are left? Create a tree

view of these terms (hint: use the

‘‘Perform an action’’ dropdown).

Which of the terms is the most exact

in defining the likely molecular function

of insulin (lowest term in a tree

hierarchy)? Display gene products in

‘‘GO:0005158: insulin receptor bind-

ing’’, reduce the set to human proteins,

and look at the inferred tree. How many

gene products are in this term? Pick a set

of three gene products (report IDs) and

use them to search PolySearch for

diabetes associations. In question 3 we

used the ‘‘common pathway’’ evidence

to show the relationship of genes to

diabetes. What type of predictive evi-

dence is used here?

4. Search the Mammalian Phenotype

Ontology for keyword ‘‘diabetes’’ and

select increased susceptibility (MPO,

http://www.informatics. jax.org/

searches/MP_form.shtml). How many

genotypes are returned? Display

the genotypes and click on the

Airetm1Mand/Aire+ genotype for fur-

ther exploration. What is the affected

gene? Click on gene title (Gene link in

Nomenclature section) to display fur-

ther information. What is an ortholo-

gue? What is the human orthologue of

your mouse gene? Look up this gene in

OMIM (http://www.ncbi.nlm.nih.

gov/omim) for association with diabe-

tes. Copy/paste the citation from

OMIM, describing the gene relation-

ship to diabetes in humans. Do your

Table 1. The available data sources and gene prioritization tools.

Data Type Data Content Possible Sources Tools

Experiment, observation Linkage, association, pedigree, relevant
texts and other data

User provided CAESAR [140], CANDID [141],
ENDEAVOR [122], G2D [15,16,17],
Gentrepid [142], GeneDistiller [121],
PGMapper [143], PRINCE [144],
Prioritizer [145], SUSPECTS [146],
ToppGene [126,127]

Sequence, structure, meta-data Sequence conservation, exon number,
coding region length, known structural
domains and sequence motifs, chromosomal
location, protein localization, and other
gene-centered information and predictions

SCOP [147], PFam [148,149],
ProSite [150], UniProt,
Entrez Gene [151], ENSEMBL
[152], InterPro [153], LocDB
[154], GeneCards [155],
PredictProtein [156]

CAESAR, CANDID, ENDEAVOR, G2D,
Gentrepid, GeneDistiller,
GeneProspector [125], MedSim [157],
MimMiner [158], PGMapper,
PhenoPred [159], Prioritizer,
PROSPECTR [54], SNPs3D [106],
SUSPECTS, ToppGene

Pathway, protein-protein
interaction, genetic linkage,
expression

Disease-gene associations, pathways and
gene-gene/protein-protein interactions/
interaction predictions, and gene expression
data

KEGG [160,161], STRING,
Reactome [162,163], DIP [164],
BioGRID [165], GEO [166,167],
ArrayExpress [168], ReLiance
[169]

CAESAR, CANDID, DiseaseNet [170],
ENDEAVOR, G2D, Gentrepid,
GeneDistiller, GeneWanderer [20],
MaxLink [171], MedSim, PGMapper,
PhenoPred, PRINCE, Prioritizer,
SNPs3D, SUSPECTS, ToppGene

Non-human data Information about related genes and
phenotypes in other species

OrthoDisease [172], OrthoMCL
[173], MGD [174],
Pathbase [175]

CAESAR, CANDID, ENDEAVOR,
GeneDistiller, GeneProspector,
GeneWanderer, MedSim, Prioritizer,
PROSPECTR, SNPs3D, SUSPECTS,
ToppGene

Ontologies Gene, disease, phenotype, and anatomic
ontologies

GO, DO [176], MPO
[177,178], HPO [179],
eVOC [180]

CAESAR, ENDEAVOR, G2D,
GeneDistiller, MedSim, PhenoPred,
Prioritizer, SNPs3D, ToppGene

Mutation associations and effects Information about existing mutations, their
functional and structural effects and their
association with diseases, predictions of
functional or structural effects for the
mutations in the gene in question

dbSNP, PMD [111], GAD,
DMDM, SNAP, PolyDoms,
SNPdbe, SNPselector, RAVEN,
SNPeffect, PHD-SNP,
Mutation@A Glance,
PromoLign, SIFT, PolyPhen,
PupaSNP finder, FASTSNP

CAESAR, CANDID, GeneProspector,
GeneWanderer, PROSPECTR, SNPs3D,
SUSPECTS

Literature Mixed information of all types extracted
from literature references (e.g. disease-gene
correlation and non-ontology based
gene-function assignment)

PubMed, PubMed Central,
HGMD [181], GeneRIF, OMIM

CAESAR, CANDID, DiseaseNet,
ENDEAVOR, G2D, Gentrepid,
GeneDistiller, GeneProspector,
GeneWanderer, MedSim, MimMiner,
PGMapper, PolySearch [123], PRINCE,
Prioritizer, PROSPECTR, SNPs3D,
SUSPECTS, ToppGene

There is a wide range of data sources that can be used to infer the above-described pieces of evidence. The existing tools try to take advantage of many (if not all) of
them. This table summarizes the collections and methodologies that make current state of the art in gene prioritization possible. Note, not all resources mentioned here
are utilized by all gene prioritization tools nor are all data sources available listed. Moreover, some resources may be classified as more than one data-type. Many of the
resources reported here are available electronically through the gene prioritization portal [124].
doi:10.1371/journal.pcbi.1002902.t001
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results confirm the ‘‘cross-species’’

evidence?

5. Search GeneCards (http://www.

genecards.org, utilize advanced search)

for genes expressing in the pancreas

(hint: pancreatic tissue is often affected

in diabetes). How many are there?

Explore the GeneCard for CCKBR for

diabetes association. Do you find that

this gene confirms the ‘‘disease com-

partment’’ evidence? What database,

referenced in GeneCards, contains the

CCKBR-diabetes association? Now

look at the GeneCard of PLEKHG4.

Is there evidence for this gene being

associated with diabetes (whether in the

GeneCards record or otherwise)? Ex-

plain your ideas in detail, paying

special attention to the ‘‘disease com-

partment’’ line of evidence.

6. Search UniProt (http://www.uniprot.

org) for all reviewed [reviewed:yes]

human [organism:‘‘Homo sapiens

[9606]’’] protein entries that contain

natural variants with reference to

diabetes [annotation:(type:natural_var-

iations diabetes)]. Use advanced search

with specific limits (i.e. sequence anno-

tation, natural_variations, term diabe-

tes). How many proteins fit this de-

scription? Locate the entry for insulin

(identifier from question 3) and find the

total number of known coding variants

of this sequence. How many are

annotated as associated with any form

of diabetes? (hint: read the general

annotation section for correspondence

of abbreviations to types of diabetes).

Run SNAP (http://www.rostlab.org/

services/snap/) to predict functional

effects of all variants. (hint: use comma

separated batch submit). How many

are predicted to be functionally non-

neutral? Do SNAP predictions of

functional effect correlate with anno-

tated disease associations? Does this

result confirm the ‘‘mutant implica-

tion’’ for nsSNPs?

7. Search PolySearch for all genes associ-

ated with diabetes. How many results

are returned? Look at the PubMed

articles that associate ‘‘hemoglobin’’

with diabetes (follow the link from

PolySearch). How many are there?

Do you find this number large enough

to convince you of hemoglobin-diabe-

tes association and why? From reading

article titles/extracted sentences, can

you identify a biological reason for

connecting hemoglobin to diabetes? If

one looks especially convincing, cite

that article (hint: its OK to not find

one). For the first three articles, can

you identify a biological reason for

connecting hemoglobin to diabetes?

Go back to the list of diabetes related

genes and look at TCF7L2 articles. Are

the biological reasons for matching

TCF7L2 to diabetes clearly defined?

Cite the most convincing article. Why

do you think TCF7L2 is ranked lower

in association than hemoglobin? Is

there significant evidence for calcium

channel (CACNA1E) involvement in

diabetes? Consider the PubMed cita-

tions. Do you agree with PolySearch

classification of this gene-disease asso-

ciation? Does your experience with

PolySearch confirm the ‘‘text evi-

dence’’ function of gene prioritization

methods?

8. WEKA exercises (choose one).

8. Download and install WEKA ( http://

www.cs.waikato.ac.nz/,ml/weka/).

Using a text-editor (or Microsoft Excel)

create comma delimited values (CSV)

files identical to the ones described in

Figure 5C–D (i.e. copy over the train-

ing and testing files and replace spaces

with commas). Save the files and open

the training file in WEKA’s Explorer

GUI. Open the training file in

WEKA’s Explorer GUI. You should

have four columns of data (Text,

Homology, ID, Disease) corresponding

to four attributes of each data instance.

8.1. Defined Questions: Run the Mul-

tiLayer Perceptron with parame-

ters (momentum = 0.5, learn-

ing = 0.2, trained using the

training set, Figure 5C, repeated

500 times/epochs). Test with the

test set (Figure 5D) and output

predictions for each test entry

(make a screenshot). Assuming that

everything predicted below 0 is 0,

and everything above is 1. What is

your performance (number of true/

false positives/negatives, positive/

negative accuracy/coverage, over-

all accuracy)? Try using the Deci-

sion Stump classifier with default

parameters (take screenshot of out-

put). If everything below 0.5 is 0,

and everything above is 1, what is

your performance? Is it better or

worse than the neural net?

8.2. Open ended: Experiment with dif-

ferent tools available from WEKA’s

Classify section setting the testing set

to your test-file’s location. First, run

the MultiLayer Perceptron with

parameters as descr ibed in

Figure 5, then try to alter the

parameters (momentum term,

learning rate, and number of ep-

ochs). Try using Linear Regression,

Decision Table, or Decision Stump

classifiers with default parameters.

Is your performance on the test set

better or worse? Close the WEKA

Explorer, reformat your train/test

files in the text editor to replace

Disease column values by Booleans

(True/False) values, and re-open

the training file. Use BayesianNet

and RandomForest classifiers to test

on the testing file. Does you perfor-

mance improve? Note, that without

further understanding of each of the

tools, it is nearly impossible to

determine which method is applica-

ble to your data.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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Glossary

N Annotation – any additional information about a genetic sequence. Annotation types are extremely varied, including
functional, structural, regulatory, location-related, organism-specific, experimentally derived, predicted, etc.

N CNV, copy number variation – an alteration of the genome, which results in an individual having a non-standard number of
copies of one or more DNA sections.

N Gene prioritization – the process of arranging possible disease causing genes in order of their likelihood in disease
involvement.

N GWAS, genome wide association studies – the examination of all genes in the genome to correlate their variation to
phenotypic trait variation across individuals in a given population.

N Genetic linkage – tendency of certain genetic regions on the same chromosome to be inherited together more often than
expected due to limited recombination between them.

N Genetic marker – a DNA sequence variant with a known location that can be used to identify specific subsets of individuals
(cells, species, individual organisms, etc.).

N Homologue – a gene derived from a common ancestor with the reference gene. Generally, gene A is a homologue of gene B
if both are derived from a common ancestor.

N Linkage disequilibrium – tendency of certain genetic regions (not necessarily on the same chromosome) to be inherited
together more often that expected from considering their population frequencies. In reference to gene prioritization, this
phenomenon may complicate establishment of causal genes due to their consistent inheritance in complex with non-causal
genetic regions.

N Orthologues – homologous genes separated by a speciation event. Generally, gene A is an orthologue of gene B if A and B
are homologous, but reside in different species. Orthologues often perform the same general function in different organisms.

N Paralogues – homologous genes separated by a duplication event (often followed by copy differentiation). Generally, gene
A is a paralogue of gene B if A and B are homologous and reside in the same species. A and B can be functionally identical or,
on contraire, very different, but are often only slightly dissimilar.

N Pleiotropy – the influence of a single gene on a number of phenotypic traits.
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Chapter 16: Text Mining for Translational Bioinformatics
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Abstract: Text mining for transla-
tional bioinformatics is a new field
with tremendous research poten-
tial. It is a subfield of biomedical
natural language processing that
concerns itself directly with the
problem of relating basic biomed-
ical research to clinical practice,
and vice versa. Applications of text
mining fall both into the category
of T1 translational research—trans-
lating basic science results into
new interventions—and T2 transla-
tional research, or translational
research for public health. Potential
use cases include better phenotyp-
ing of research subjects, and phar-
macogenomic research. A variety of
methods for evaluating text mining
applications exist, including corpo-
ra, structured test suites, and post
hoc judging. Two basic principles
of linguistic structure are relevant
for building text mining applica-
tions. One is that linguistic struc-
ture consists of multiple levels. The
other is that every level of linguistic
structure is characterized by ambi-
guity. There are two basic ap-
proaches to text mining: rule-
based, also known as knowledge-
based; and machine-learning-
based, also known as statistical.
Many systems are hybrids of the
two approaches. Shared tasks have
had a strong effect on the direction
of the field. Like all translational
bioinformatics software, text min-
ing software for translational bioin-
formatics can be considered
health-critical and should be sub-
ject to the strictest standards of
quality assurance and software
testing.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Text mining for translational bioinfor-

matics is a new field with enormous

research potential. It is a subfield of

biomedical natural language processing

(BioNLP) that concerns itself directly with

the problem of relating basic biomedical

research to clinical practice, and vice

versa.

1.1 Use Cases
The foundational question in text min-

ing for translational bioinformatics is what

the use cases are. It is not immediately

obvious how the questions that text mining

for translational bioinformatics should try

to answer are different from the questions

that are approached in BioNLP in general.

The answer lies at least in part in the

nature of the specific kinds of information

that text mining should try to gather, and

in the uses to which that information is

intended to be put. However, these

probably only scratch the surface of the

domain of text mining for translational

bioinformatics, and the latter has yet to be

clearly defined.

One step in the direction of a definition

for use cases for text mining for transla-

tional bioinformatics is to determine

classes of information found in clinical

text that would be useful for basic

biological scientists, and classes of infor-

mation found in the basic science litera-

ture that would be of use to clinicians. This

in itself would be a step away from the

usual task definitions of BioNLP, which

tend to focus either on finding biological

information for biologists, or on finding

clinical information for clinicians. Howev-

er, it is likely that there is no single set of

data that would fit the needs of biological

scientists on the one hand or clinicians on

the other, and that information needs will

have to be defined on a bespoke basis for

any given translational bioinformatics task.

One potential application is better

phenotyping. Experimental experience in-

dicates that strict phenotyping of patients

improves the ability to find disease genes.

When phenotyping is too broad, the

genetic association may be obscured by

variability in the patient population. An

example of the advantage of strict pheno-

typing comes from the work of [1,2]. They

worked with patients with diagnoses of

pulmonary fibrosis. However, having a

diagnosis of pulmonary fibrosis in the

medical record was not, in itself, a strict

enough definition of the phenotype for

their work [1]. They defined strict criteria

for study inclusion and ensured that

patients met the criteria through a number

of methods, including manual review of

the medical record. With their sharpened

definition of the phenotype, they were able

to identify 102 genes that were up-

regulated and 89 genes that were down-

regulated in the study group. This includ-

ed Plunc (palate, lung and nasal epitheli-

um associated), a gene not previously

associated with pulmonary fibrosis. Auto-

mation of the step of manually reviewing

medical records would potentially allow

for the inclusion or exclusion of much

larger populations of patients in similar

studies.

Another use for text mining in transla-

tional bioinformatics is aiding in the

preparation of Cochrane reviews and

other meta-analyses of experimental stud-

ies. Again, text mining could be used to

identify cohorts that should be included in

the meta-analysis, as well as to determine

P-values and other indicators of signifi-

cance levels.
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Most of the applications discussed here

fall into the category of T1 translational

research—translating basic science results

into new interventions (http://grants.nih.

gov/grants/guide/notice-files/NOT-AG-

08-003.html). There are also applications

in translational research for public health,

also known as T2 translational research (op.

cit.). This is true both in the case of mining

information for public health experts and

for the general public. For public health

experts, there is a growing body of work

on various factors affecting disease moni-

toring in electronic medical records, such

as work by Chapman and colleagues on

biosurveillance and disease and syndrome

outbreak detection (e.g., [3,4], among

others). For the general public, simplifying

technical texts can be helpful. [5] describes

work in this area.

1.1.1 The pharmacogenomics

perspective. One area of research that

has made some steps towards defining a use

case for text mining is pharmacogenomics.

An example of this is the PharmGKB

database. Essential elements of their

definition of pharmacogenomics text

mining include finding relationships

between genotypes, phenotypes, and drugs.

As in the case of other applications that we

will examine in this chapter, mining this

information requires as a first step the ability

to find mentions of the semantic types of

interest when they are mentioned in text.

These will be of increasing utility if they can

be mapped to concepts in a controlled

vocabulary. Each semantic type presents

unique challenges. For example, finding

information about genotypes requires

finding mentions of genes (see Section 4.3

below), finding mentions of mutations and

alleles, and mapping these to each other;

finding mentions of drugs, which is more

difficult than it is often assumed to be [6];

and finding mentions of phenotypes. The

latter is especially difficult, since so many

things can fit within the definition of

‘‘phenotype.’’ A phenotype is the entirety

of observable characteristics of an organism

[7]. The wide range and rapidly changing

technologies for measuring observable

features of patient phenotypes require the

text mining user to be very specific about

what observables they want to capture. For

example, phenotypes can include any

behavior, ranging from duration of mating

dances in flies to alcohol-seeking in humans.

They can also include any measurable

physical characteristic, ranging from very

‘‘macro’’ characteristics such as hair color to

very granular ones such as specific values for

any of the myriad laboratory assays used in

modern clinical medicine.

There is some evidence from the

PharmGKB and the Comparative Tox-

icogenomics Database experiences that

text mining can scale up processing in

terms of the number of diseases studied

and the number of gene-disease, drug-

disease, and drug-gene associations dis-

covered [8]. Furthermore, experiments

with the PharmGKB database suggest

that pharmacogenomics is currently more

powerful than genomics for finding such

associations and has reached the point of

being ready for translation of research

results to clinical practice [9].

1.1.2 The i2b2 perspective. Informatics

for Integrating Biology and the Bedside (i2b2) is a

National Center for Biomedical Computing

devoted to translational bioinformatics. It has

included text mining within its scope of

research areas. Towards this end, it has

sponsored a number of shared tasks (see

Section 5 below) on the subject of text

mining. These give us some insight into

i2b2’s definition of use cases for text mining

for translational bioinformatics. i2b2’s focus

has been on extracting information from free

text in clinical records. Towards this end,

i2b2 has sponsored shared tasks on

deidentification of clinical documents,

determining smoking status, detecting

obesity and its comorbidities, medical

problems, treatments, and tests. Note that

there are no genomic components to this data.

1.2 Text Mining, Natural Language
Processing, and Computational
Linguistics

Text mining, natural language process-

ing, and computational linguistics are

often used more or less interchangeably,

and indeed one can find papers on text

mining and natural language processing at

the annual meeting of the Association for

Computational Linguistics, and papers

from any of these categories at meetings

for any of the other categories. However,

technically speaking, some differences exist

between them. Computational linguistics

strictly defined deals with building com-

putationally testable models of human

linguistic behavior. Natural language pro-

cessing has to do with building a wide

range of applications that take natural

language as their input. Text mining is

more narrow than natural language pro-

cessing, and deals with the construction of

applications that provide a solution to a

specific information need. For example, a

syntactic analyzer would be an example of

a natural language processing application;

a text mining application might use that

syntactic analyzer as part of the process for

filling the very specific information need of

finding information about protein-protein

interactions. This chapter will include

information about both natural language

processing and text mining [10–12].

1.3 Evaluation Techniques and
Evaluation Metrics in Text Mining

A variety of methods for evaluating text

mining applications exist. They typically

apply the same small family of metrics as

figures of merit.

1.3.1 Corpora. One paradigm of

evaluation in text mining is based on the

assumption that all evaluation should take

place on naturally occurring texts. These

texts are annotated with data or metadata

about what constitutes the right answers

for some task. For example, if the intended

application to be tested is designed to

locate mentions of gene names in free text,

then the occurrence of every gene name in

the text would be marked. The mark-up is

known as annotation. (Note that this is a

very different use of the word

‘‘annotation’’ from its use in the model

organism database construction

community.) The resulting set of

What to Learn in This Chapter

Text mining is an established field, but its application to translational
bioinformatics is quite new and it presents myriad research opportunities. It is
made difficult by the fact that natural (human) language, unlike computer
language, is characterized at all levels by rampant ambiguity and variability.
Important sub-tasks include gene name recognition, or finding mentions of gene
names in text; gene normalization, or mapping mentions of genes in text to
standard database identifiers; phenotype recognition, or finding mentions of
phenotypes in text; and phenotype normalization, or mapping mentions of
phenotypes to concepts in ontologies. Text mining for translational bioinfor-
matics can necessitate dealing with two widely varying genres of text—published
journal articles, and prose fields in electronic medical records. Research into the
latter has been impeded for years by lack of public availability of data sets, but
this has very recently changed and the field is poised for rapid advances. Like all
translational bioinformatics software, text mining software for translational
bioinformatics can be considered health-critical and should be subject to the
strictest standards of quality assurance and software testing.
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annotated documents is known as a corpus

(plural corpora). Given a corpus, an

application is judged by its ability to

replicate the set of annotations in the

corpus. Some types of corpora are best

built by linguists, e.g., those involving

syntactic analysis, but there is abundant

evidence that biomedical scientists can

build good corpora if they follow best

practices in corpus design (see e.g., [13]).

1.3.2 Structured test suites. Stru-

ctured test suites are built on the principles

of software testing. They contain groups of

inputs that are classified according to

aspects of the input. For example, a test

suite for applications that recognize gene

names might contain sentences with gene

names that end with numbers, that do not

end with numbers, that consist of common

English words, or that are identical to the

names of diseases. Unlike a standard

corpus, test suites may contain data that is

manufactured for the purposes of the test

suite. For example, a test suite for

recognizing Gene Ontology terms [14]

contains the term cell migration, but also the

manufactured variant migration of cells. (Note

that being manufactured does not imply

being unrealistic.) Structured test suites

have the major advantage of making it

much more straightforward to evaluate

both the strengths and the weaknesses of

an application. For example, application of

a structured test suite to an application for

recognizing Gene Ontology terms made it

clear that the application was incapable of

recognizing terms that contain the word in.

This was immediately obvious because the

test suite contained sets of terms that

contain function words, including a set of

terms that all contain the word in. To

duplicate this insight with a corpus would

require assembling all errors, then hoping

that the fact that no terms containing the

word in were recognized jumped out at the

analyst. In general, structured test suites

should not be reflective of performance as

measured by the standard metrics using a

corpus, since the distribution of types of

inputs in the test suite does not reflect the

distribution of those types of inputs in

naturally occurring data. However, it has

been shown that structured test suites can be

used to predict values of metrics for specific

equivalence classes of data (inputs that should

all be expected to test the same condition and

produce the same result) [15]. We return to

the use of test suites in Section 6.

1.3.3 Post hoc judging. Sometimes

preparation of corpora is impractical. For

example, there may be too many inputs that

need to be annotated. In these cases, post hoc

judging is sometimes applied. That is, a

program produces outputs, and then a

human judges whether or not they are

correct. This is especially commonly used

when a large number of systems are being

evaluated. In this case, the outputs of the

systems can be pooled, and the most

common outputs (i.e., the ones produced

by the most systems) are selected for judging.

1.3.4 Metrics. A small family of

related metrics is usually used to evaluate

text mining systems. Accuracy, or the

number of correct answers divided by the

total number of answers, is rarely used.

Precision. Precision is defined as the

number of correct system outputs (‘‘true

positives,’’ or TP) divided by the total

number of system outputs (the count of TP

plus the ‘‘false positives’’ (FP) —erroneous

system outputs). It is often compared

loosely to specificity, but is actually more

analogous to positive predictive value.

Precision~
TP

TPzFP

Recall. Recall is defined as the number

of true positives divided by the total

number of potential system outputs, i.e.

true positives plus ‘‘false negatives’’ (FN)

—things that should have been output by

the system, but were not. This will differ

from task type to task type. For example,

in information retrieval (Section 4.1), it is

the number of documents judged relevant

divided by the total number of actual

relevant documents. In named entity

recognition of genes (Section 4.3), it is

defined as the total number of correct gene

names output by the system divided by the

total number of gene names in the corpus.

Recall~
TP

TPzFN

Balanced F-measure. The balanced F-

measure attempts to reduce precision and

recall to a single measure. It is calculated as

the harmonic mean of precision and recall.

It includes a parameter b that is usually set

to one, giving precision and recall equal

weight. Setting b greater than one weights

precision more heavily. Setting b less than

one weights recall more heavily.

F~
(b2z1)PR

b2PzR

2. Linguistic Fundamentals

Building applications for text mining for

translational bioinformatics is made easier

by some understanding of the nature of

linguistic structure. Two basic principles

are relevant. One is that linguistic struc-

ture consists of multiple layers. The other

is that every layer of linguistic structure is

characterized by ambiguity.

All linguistic analyses in text mining are

descriptive in nature. That is, they seek only

to describe the nature of human linguistic

productions, much as one might attempt

to describe the multi-dimensional structure

of a protein. Linguistic analyses are not

prescriptive—that is, they do not attempt

to prescribe or enforce standards for

language use.

2.1 Layers of Linguistic Structure
The layers of linguistic structure vary

somewhat between written and spoken

language (although many are shared). We

focus here on the layers that are relevant

to written language, focusing particularly

on scientific journal articles and on clinical

documents.

2.1.1 Document structure. The first

layer of the structure of written documents

that is relevant to text mining for

translational bioinformatics is the

structure of individual documents. In the

case of journal articles, this consists first of

all of the division of the document into

discrete sections, typically in what is

known as the IMRD model—an

abstract, introduction, methods section,

results section, discussion, and

bibliography. Acknowledgments may be

present, as well.

The ability to segment a document into

these sections is important because differ-

ent sections often require different pro-

cessing techniques and because different

sections should be focused on for different

types of information. For example, meth-

ods sections are frequent sources of false

positives for various semantic classes,

which led researchers to ignore them in

much early research. However, they are

also fruitful sections for finding informa-

tion about experimental methods, and as it

has become clear that mining information

about experimental methods is important

to biologists [16], it has become clear that

methods must be developed for dealing

with methods sections. Abstracts have

been shown to have different structural

and content characteristics from article

bodies [17]; most research to date has

focused on abstracts, and it is clear that

new approaches will be required to fully

exploit the information in article bodies.

Segmenting and labeling document

sections can be simple when documents

are provided in XML and a DTD is

available. However, this is often not the
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case; for instance, many documents are

available for processing only in HTML

format. In this situation, two topics exist:

finding the boundaries of the sections,

and labelling the sections. The latter is

made more complicated by the fact that

a surprising range of phrases are used to

label the different sections of a scientific

document. For example, the methods

section may be called Methods, Methods

and Materials, Materials and Methods, Exper-

imental Procedures, Patients and Methods,

Study Design, etc. Similar issues exist for

structured abstracts; in the case of

unstructured abstracts, it has been dem-

onstrated that they can be segmented

into sections using a generative tech-

nique [18].

Clinical documents present a far more

complex set of challenges than even

scientific journal articles. For one thing,

there is a much wider range of clinical

document types—admission notes, dis-

charge summaries, radiology reports, pa-

thology reports, office visit notes, etc.

Hospitals frequently differ from each other

in the types of documents that they use, as

do individual physicians’ practices. Fur-

thermore, even within a given hospital,

different physicians may structure the

same document type differently. For

example, just in the case of emergency

room visit reports, one of the authors built

a classification system that determined, for

a given document, what specialty it would

belong to (e.g., cardiology or pediatrics) if

it had been generated by a specialist. He

found that not only did each hospital

require a different classification system,

but different doctors within the same

emergency room required different classi-

fiers. [19] describes an iterative procedure

for building a segmenter for a range of

clinical document types.

Once the document has been segment-

ed into sections, paragraphs must be

identified. Here the segmentation task is

typically easy, but ordering may present a

problem. For example, it may not be clear

where figure and table captions should be

placed.

2.1.2 Sentences. Once the document

has been segmented into paragraphs, the

paragraphs must be further segmented

into sentences. Sentence segmentation is a

surprisingly difficult task. Even for

newswire text, it is difficult enough to

constitute a substantial homework

problem. For biomedical text, it is

considerably more difficult. Two main

difficulties arise. One is the fact that the

function of periods is ambiguous—that is,

a period may serve more than one

function in a written text, such as

marking the end of an abbreviation (Dr.),

marking the individual letters of an

abbreviation (p.r.n.), indicating the

rational parts of real numbers (3.14), and

so on. A period may even serve two

functions, as for example when etc. is at the

end of a sentence, in which case the period

marks both the end of the abbreviation

and the end of the sentence. Furthermore,

some of the expected cues to sentence

boundaries are absent in biomedical text.

For example, in texts about molecular

biology, it is possible for a sentence to

begin with a lower-case letter when a

mutant form of a gene is being mentioned.

Various approaches have been taken to

the sentence segmentation task. The

KeX/PROPER system [20] uses a rule-

based approach. The LingPipe system

provides a popular machine-learning-

based approach through its LingPipe

API. Its model is built on PubMed/

MEDLINE documents and works well

for journal articles, but it is not likely to

work well for clinical text (although this

has not been evaluated). In clinical

documents, it is often difficult to define

any notion of ‘‘sentence’’ at all.

2.1.3 Tokens. Written sentences are

built up of tokens. Tokens include words,

but also punctuation marks, in cases where

those punctuation marks should be

separated from words that they are

attached to. The process of segmenting a

sentence into tokens is known as

tokenization. For example, consider the

simple case of periods. When a period

marks the end of a sentence, it should be

separated from the word that it is attached

to. regulation. will not be found in any

biomedical dictionary, but regulation will.

However, in many other instances, such as

when it is part of an abbreviation or a

number, it should not be separated. The

case of hyphens is even more difficult.

Hyphens may have several functions in

biomedical text. If they indicate the

absence of a symptom (e.g., -fever), they

should probably be separated, since they

have their own meaning, indicating the

absence of the symptom. On the other

hand, they should remain in place when

separating parts of a word, such as up-

regulate.

The status of tokenization in building

pipelines of text mining applications is

complicated. It may be the case that a

component early in the pipeline requires

tokenized text, while a component later in

the pipeline requires untokenized text.

Also, many applications have a built-in

tokenizer, and conflicts between different

tokenization strategies may cause conflicts

in later analytical strategies.

2.1.4 Stems and lemmata. For

some applications, it is advantageous to

reduce words to stems or lemmata. Stems

are normalized forms of words that reduce

all inflected forms to the same string. They

are not necessarily actual words

themselves—for example, the stem of city

and cities is citi, which is not a word in the

English language. Their utility comes in

applications that benefit from this kind of

normalization without needing to know

exactly which words are the roots—

primarily machine-learning-based

applications.

The term lemma (plural lemmata) is

overloaded. It can mean the root word

that represents a set of related words. For

example, the lemma of the set {phosophor-

ylate, phosphorylates, phosphorylated, phosphory-

lating} is phosphorylate. Note that in this case,

we have an actual word. Lemma can also

mean the set of words that can instantiate

a particular root word form; on this

meaning, the lemma of phosphorylate is

{phosphorylate, phosphorylates, phosphorylated,

phosphorylating}. Lemmas have a clear

advantage of stems for some applications.

However, while it is always possible to

determine the stem of a word (typically

using a rule-based approach, such as the

Porter stemmer [21], it is not always

possible to determine the lemma of a

word automatically. The BioLemmatizer

[22] is a recently released tool that shows

high performance on the lemmatization

task.

2.1.5 Part of speech. It is often

useful to know the part of speech,

technically known as lexical category, of the

tokens in a sentence. However, the notion

of part of speech is very different in

linguistic analysis than in the elementary

school conception, and text mining

systems typically make use of about

eighty parts of speech, rather than the

eight or so that are taught in school. We

go from eight to eighty primarily by

subdividing parts of speech further than

the traditional categories, but also by

adding new ones, such as parts of speech

of sentence-medial and sentence-final

punctuation. Parts of speech are typically

assigned to tokens by applications called

part of speech taggers. Part of speech tagging

is made difficult by the fact that many

words are ambiguous as to their part of

speech. For example, in medical text, the

word cold can be an adjective or it can be a

reference to a medical condition. A word

can have several parts of speech, e.g., still.

A variety of part of speech taggers that are

specialized for biomedical text exist,

including MedPOST [23], LingPipe, and

the GENIA tagger [24].
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2.1.6 Syntactic structure. The

syntactic structure of a sentence is the way

in which the phrases of the sentence relate

to each other. For example, in the article

title Visualization of bacterial glycocalyx with a

scanning electron microscope (PMID 9520897),

the phrase with a scanning electron microscope is

associated with visualization, not with

bacterial glycocalyx. Automatic syntactic

analysis is made difficult by the existence

of massive ambiguity. For example, while

one possible interpretation of that title is

that the visualization is done with a

scanning electron microscope, another

possible interpretation is that the

bacterial glycocalyx has a scanning

electron microscope. (Consider the

analogous famous example I saw the man

with the binoculars, where one possible

interpretation is that I used the

bionoculars to visualize the man, whereas

another possible interpretation is that I

saw a man and that man had some

binoculars.) It is very easy for humans to

determine which interpretation of the

article title is correct. However, it is very

difficult for computers to make this

determination. There are many varieties

of syntactic ambiguity, and it is likely that

any nontrivial sentence contains at least

one.

Syntactic analysis is known as parsing.

The traditional approach to automated

syntactic analysis attempts to discover the

phrasal structure of a sentence, as de-

scribed above. A new approach called

dependency parsing focuses instead on rela-

tionships between individual words. It is

thought to better reflect the semantics of a

sentence, and is currently popular in

BioNLP.

Along with determining the phrasal or

dependency structure of a sentence, some

parsers also make limited attempts to label

the syntactic functions, such as subject and

object, of parts of a sentence.

2.2 The Nature of Linguistic Rules
When we think of linguistic rules, we

are most likely to think of the rules that we

learn in school that impose arbitrary

norms on language usage, such as Say

‘‘you and I’’, not ‘‘you and me’’, or a preposition

is a bad thing with which to end a sentence.

These are known as prescriptive rules. Text

mining never deals with prescriptive rules.

Rather, it always deals with descriptive rules.

Descriptive rules describe the parts of the

language and the ways in which they can

combine, without any implied judgement

as to whether they are ‘‘good’’ or ‘‘bad.’’

For example, a linguistic rule might specify

that certain classes of verbs can be

converted to nouns by adding -tion to their

end, or that when a passive form of a verb

is used, the subject can be omitted.

3. The Two Families of
Approaches: Rule-Based and
Learning-Based

There are two basic approaches to text

mining: rule-based, also known as knowl-

edge-based, and machine-learning-based,

also known as statistical.

Rule-based approaches to text mining are

based on the application of rules, typically

manually constructed, to linguistic inputs.

For example, a rule-based approach to

syntactic analysis might postulate that

given a string like phosphorylation of MAPK

by MAPKK, the phrase that follows the

word by is the doer of the phosphorylation,

and the phrase that follows the word of is

the undergoer of the phosphorylation. Or,

a rule-based approach might specify that

in the pattern A X noun the X is an

adjective, while in the pattern The adjective

X verb the X is a noun, allowing us to

differentiate between the word cold as an

adjective in the former case and as a

medical condition in the latter case. Rule-

based solutions can be constructed for all

levels of linguistic analysis.

Machine-learning-based approaches to text

mining are based on an initial step of

feeding the system a set of data that is

labelled with the correct answers, be they

parts of speech for tokens or the locations

of gene names in text. The job of the

system is then to figure out cues that

indicate which of the ambiguous analyses

should be applied. For instance, a system

for document classification may learn that

if a document contains the word murine,

then it is likely to be of interest to

researchers who are interested in mice.

Many different algorithms for machine

learning exist, but the key to a successful

system is the set of features that are used to

perform the classification. For example, a

part of speech tagger may use the

apparent parts of speech of the two

preceding words as a feature for deciding

the part of speech of a third word.

It is often claimed that machine learn-

ing systems can be built more quickly than

rule-based systems due to the time that it

takes to build rules manually. However,

building feature extractors is time-con-

suming, and building the labelled ‘‘train-

ing’’ data with the right answers is much

more so. There is no empirical support for

the claim that learning-based systems can

be built more quickly than rule-based

systems. Furthermore, it is frequently the

case that putative learning-based systems

actually apply rules in pre- or post-

processing steps, making them hybrid

systems.

4. Text Mining Tasks

In Section 2.1, we discussed elements of

linguistic analysis. These analytical tasks

are carried out in support of some higher-

level text mining tasks. Many types of text

mining tasks exist. We will discuss only the

most common ones here, but a partial list

includes:

N Information retrieval

N Document classification

N Named entity recognition

N Named entity normalization

N Relation or information extraction

N Question-answering

N Summarization

4.1 Information Retrieval
Information retrieval is the task of, given an

information need and a set of documents,

finding the documents that are relevant to

filling that information need. PubMed/

MEDLINE is an example of a biomedical

information retrieval system for scientific

journal articles; Google is an information

retrieval system for web pages. Early

information retrieval assumed that all

documents were classified with some code

and typically required the assistance of a

librarian to determine the appropriate

code of interest. Keyword-based retrieval,

in which the user enters a set of words that

a relevant text would be expected to

contain and the content of the texts in

the set of documents are searched for those

words, was a revolution made possible by

the introduction of computers and elec-

tronic forms of documents in the hospital

or research environment. The naive ap-

proach to keyword-based retrieval simply

checks for the presence or absence of the

words in the query, known as boolean

search. Modern approaches use relatively

simple mathematical techniques to deter-

mine (a) the relative importance of words

in the query in deciding whether or not a

document is relevant—the assumption

here is that not all words are equally

important—and (b) how well a given word

reflects the actual relevance of a given

document to the query. For example, we

can determine, given a count of how often

the words hypoperfusion and kidney occur in

the set of documents as a whole, that if we

are looking for documents about kidney

hypoperfusion, we should give more

weight to the rarer of the two words;

given a count of how often the words kidney
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and hypoperfusion occur in two documents,

we can determine which of the two

documents is most relevant to the query.

4.2 Document Classification
Document classification is the task of

classifying a document as a member of

one or more categories. In a typical

document classification workflow, one is

supplied with a stream of documents, and

each one requires classification. This

differs from the information retrieval

situation, in which information needs are

typically ad hoc. For example, curators of

a model organism database may require

journal articles to be classified as to

whether or not they are relevant for

further examination. Other classification

tasks motivated by curation have been

classifying journal articles as to whether or

not they are about embryogenesis. Docu-

ment classification typically uses very

simple feature sets, such as the presence

or absence of the words from the training

data. When this is the only feature, it is

known as a ‘‘bag of words’’ representation.

However, it has also been found useful to

use more abstract, conceptual features.

For example, [25] found the presence or

absence of mentions of mouse strains to be

a useful feature, regardless of the identity

of the particular strain.

4.3 Named Entity Recognition
Named entity recognition is the task of

finding mentions of specific semantic

classes in a text. In general language

processing, the most heavily studied se-

mantic classes have been persons, places,

and organizations—thus, the term

‘‘named entity.’’ In genomic BioNLP, the

most heavily studied semantic class has

been gene and protein names. However,

other semantic classes have been studied

as well, including cell lines and cell types.

In clinical NLP, the range of semantic

classes is wider, encompassing a large

number of types included in the Unified

Medical Language System [26]. The

UMLS includes a ‘‘Metathesaurus’’ which

combines a large number of clinically and

biologically relevant controlled vocabular-

ies, comprising many semantic classes. In

the clinical domain, there is an ‘‘industry

standard’’ tool for named entity recogni-

tion, called MetaMap [27,28]. Biological

named entity recognition remains a sub-

ject of current research. Machine learning

methods predominate. Feature sets gener-

ally include typographical features of a

token—e.g., having mixed-case letters or

not, containing a hyphen or not, ending

with a numeral or not, etc. —as well as

features of the surrounding tokens.

Early results in named entity recogni-

tion were consistent with the hypothesis

that this task could not be achieved by

simply starting with a ‘‘dictionary’’ of gene

names and looking for those gene names

in text. At least three problems were

immediately evident with this ap-

proach—the fact that new gene names

are coined constantly, the fact that a

number of gene names are homographs

of common English words, and the fact

that many genes have names or synonyms

that are unhelpful, such as putative oxidore-

ductase (Entrez Gene ID 6393330). How-

ever, recent evidence has suggested that

dictionary-based approaches can achieve

moderate success if the dictionary and the

data to be processed are subjected to

extensive preprocessing [29] or post-hoc

filtering, e.g., by the success or failure of a

subsequent gene normalization step (see

Section 4.4 [30]).

4.4 Named Entity Normalization
Named entity normalization is the process of

taking a mention of a named entity in

free text and returning a specific data-

base identifier that it refers to. In the

biological domain, this has been studied

most extensively in the case of genes and

proteins, and the corresponding task is

known as gene normalization. In the clinical

domain, it has been approached simul-

taneously with named entity recognition,

again using the MetaMap application

(see Section 4.3). There are two major

problems in gene normalization. The

first is that many species have genes with

the same name. For example, the

BRCA1 gene is found in an enormous

number of animals. Thus, finding the

appropriate gene identifier requires

knowing the species under discussion,

which is a research problem in itself. The

other problem is that a single species

may have multiple genes with the same

name. For example, humans have five

genes named TRP-1. Gene normaliza-

tion is often approached as a problem in

word sense disambiguation, the task of

deciding which dictionary entry a given

text string refers to (e.g., the cold example

referred to above). A popular approach

to this utilizes knowledge about the gene

and the context in which the gene is

mentioned. For example, the SUMMA-

RY fields of the candidate genes might

be used as a source of words that indicate

what we know about the gene. Then, if

we see the words cation and channel in the

text surrounding the gene name, we

should expect that we have an instance

of the TRP1 with Entrez Gene ID 7220,

while if we see the word proline, we should

suspect that we have an instance of the

TRP1 with Entrez Gene ID 189930.

Approaches might vary with respect to

what they use as the knowledge source

(e.g., Entrez Gene SUMMARY fields,

Entrez Gene PRODUCT fields, the

contents of publications linked to the

Entrez Gene entry), and what they

consider the context of the gene mention,

e.g., the sentence, the surrounding sen-

tences, the entire abstract, etc.

4.5 Relation or Information
Extraction

Information extraction, or more recently

relation extraction, is the process of mining

very specific types of facts from text.

Information extraction systems are by

definition restricted to a very specific

type of information. For example, a

typical genomic information extraction

system might extract assertions about

protein-protein interactions, or a clinical

information extraction system might

mine assertions about relationships be-

tween diseases and their treatments.

Most systems target binary relations,

such as the ones just described. However,

more ambitious systems have extracted

relationships with as many as four

participants. One system [31] targeted

protein transport relations, with a four-

way relationship that included the trans-

porting protein, the transported protein,

the beginning location of the transported

protein, and the destination.

Rule-based approaches use typical sen-

tence patterns. These may consist of text

literals or may involve syntactic analyses

[32]. Learning-based approaches have

classically used bag-of-words representa-

tions (see Section 4.2), but more recent

approaches have had success using fea-

tures taken from syntactic analysis, partic-

ularly dependency parsing [33].

4.6 Question-Answering
Question-answering is the task of taking a

question and a source of information as

input and returning an answer. Early

approaches to question-answering as-

sumed that the source of information was

a database, but modern approaches as-

sume that the answer exists in some

PubMed/MEDLINE document or (for

non-biomedical applications) in some

web page. Question-answering differs

from information retrieval in that the goal

is to return a specific answer, not a

document containing the answer. It differs

from information extraction in that it is

meant to allow for ad hoc queries, while

information extraction focuses on very

specific information needs. Question-an-
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swering typically involves determining the

type of answer that is expected (a time? a

location? a person?), formulating a query

that will return documents containing the

answer, and then finding the answer

within the documents that are returned.

Various types of questions have varying

degrees of difficulty. The best results are

achieved for so-called ‘‘factoid’’ questions,

such as where are lipid rafts located?, while

‘‘why’’ questions are very difficult. In the

biomedical domain, definition questions

have been extensively studied [34–36].

The medical domain presents some

unique challenges. For example, questions

beginning with when might require times as

their answer (e.g., when does blastocyst

formation occur in humans?, but also may

require very different sorts of answers,

e.g.,when should antibiotics be given for a sore

throat? [37]. A shared task in 2005 involved

a variety of types of genomic questions

adhering to specific templates (and thus

overlapping with information extraction),

such as what is the biological impact of a

mutation in the gene X?.

4.7 Summarization
Summarization is the task of taking a

document or set of documents as input

and returning a shorter text that conveys

the information in the longer text(s). There

is a great need for this capability in the

biomedical domain—a search in

PubMed/MEDLINE for the gene p53

returns 56,464 publications as of the date

of writing.

In the medical domain, summarization

has been applied to clinical notes, journal

articles, and a variety of other input types.

For example, one system, MITRE’S

MiTAP, does multi-document summari-

zation of epidemiological reports, news-

wire feeds, email, online news, television

news, and radio news to detect disease

outbreaks.

In the genomics domain, there have

been three major areas of summarization

research. One has been the automatic

generation of GeneRIFs. GeneRIFs are

short text snippets, less than 255 charac-

ters in length, associated with specific

Entrez Gene entries. Typically they are

manually cut-and-pasted from article ab-

stracts. Lu et al. developed a method for

finding them automatically using a variant

of the Edmundsonian paradigm, a classic

approach to single-document summariza-

tion [38,39]. In the Edmundsonian para-

digm, sentences in a document are given

points according to a relatively simple set

of features, including position in the

document, presence of ‘‘cue words’’

(words that indicate that a document is a

good summary sentence), and absence of

‘‘stigma words’’ (words that indicate that a

sentence is not likely to be a good

summary sentence).

Another summarization problem is find-

ing the best sentence for asserting a protein-

protein interaction. This task was made

popular by the BioCreative shared task.

The idea is to boil down a set of articles to

the single sentence that best gives evidence

that the interaction occurs. Again, simple

features work well, such as looking for

references to figures or tables [40].

Finally, a small body of work on the

generation of SUMMARY fields has been

seen. More sophisticated measures have

been applied here, such as the PageRank

algorithm [41].

5. Shared Tasks

The natural language processing com-

munity has a long history of evaluating

applications through the shared task

paradigm. Similar to CASP, a shared task

involves agreeing on a task definition, a

data set, and a scoring mechanism. In

biomedical text mining, shared tasks have

had a strong effect on the direction of the

field. There have been both clinically

oriented and genomically oriented shared

tasks.

In the clinical domain, the 2007 NLP

Challenge [42] involved assigning ICD9-

CM codes to radiology reports of chest x-

rays and renal procedures. Also in the

clinical domain, i2b2 has sponsored a

number of shared tasks, described in

Section 1.1.2. (At the time of writing, the

National Institute of Standards and

Technology is preparing a shared task

involving electronic medical records un-

der the aegis of the annual Text Retriev-

al Conference. The task definition is not

yet defined.)

In the genomics domain, the predomi-

nant shared tasks have been the BioCrea-

tive shared tasks and a five-year series of

tasks in a special genomics track of the

Text Retrieval Conference [43]. Some of

the tasks were directly relevant to transla-

tional bioinformatics. The tasks varied

from year to year and included informa-

tion retrieval (Section 4.1), production of

GeneRIFs (Section 4.7), document classi-

fication (Section 4.2), and question-an-

swering (Section 4.6). A topic that was

frequently investigated by participants was

the contribution of controlled vocabularies

to performance on text mining tasks.

Results were equivocal; it was found that

Table 1. Some knowledge sources for biomedical natural language processing.

Informatics for Integrating Biology and the Bedside
(i2b2 - https://www.i2b2.org/)

National Center for Biomedical Computing with focus on translational research that
facilitates and proves data sets for clinical natural language processing research

Gene Ontology (https://www.geneontology.org) Controlled vocabulary with relationships including partonymy and inheritance,
designed for describing gene functions, broadly construed

Entrez Gene (https://www.ncbi.nlm.nih.gov/gene) Source for gene names, symbols, and synonyms; also the source for GeneRIFs and
SUMMARY fields

PubMed/MEDLINE (https://www.ncbi.nlm.nih.gov/pubmed) The National Library of Medicine’s database of abstracts of biomedical publications
(MEDLINE) and search interface for accessing them (PubMed)

Unified Medical Language System (https://www.nlm.nih.gov/research/umls/) Large lexical and conceptual resource, including the UMLS Metathesaurus, which
aggregates a large number of biomedical and some genomic vocabularies

SWISSPROT (https://www.uniprot.org/) Database of information about proteins with literature references, useful as a gold
standard

PharmGKB (https://www.pharmgkb.org/) Database of relationships between a number of clinical, genomic, and other entities
with literature references, useful as a gold standard

Comparative Toxicogenomics Database (https://ctdbase.org/) Database of relationships between genes, diseases, and chemicals, with literature
references, useful as a gold standard

Various terminological resources, data sources, and gold-standard databases for biomedical natural language processing.
doi:10.1371/journal.pcbi.1003044.t001
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they could occasionally increase perfor-

mance, but only when used intelligently,

e.g., with appropriate preprocessing or

filtering of items in the terminologies—

blind use of vocabulary resources does not

improve performance.

The BioCreative series of shared tasks

has been oriented more towards model

organism database curation than towards

translational bioinformatics, but some of

the subtasks that were involved are of

utility in translational bioinformatics. Bio-

Creative tasks have included gene name

recognition in text (Section 4.3), mining

information about relationships between

genes and their functions (Section 4.5),

mining information about protein-protein

interactions (Section 4.5), information

retrieval (Section 4.1), and relating men-

tions of genes in text to database entries in

Entrez Gene and SWISSPROT (Section

4.4).

6. Software Engineering for
Text Mining

Like all translational bioinformatics

software, text mining software for transla-

tional bioinformatics can be considered

health-critical and should be subject to the

strictest standards of quality assurance and

software testing. General software testing

is covered in such standard books as [44].

The special requirements of software

testing for natural language processing

applications are not covered in the stan-

dard books on software testing, but a small

but growing body of literature discusses

the special issues that arise here. There are

two basic paradigms for evaluating text

mining applications. The standard para-

digm involves running large corpora

through the application and determining

the F-measure achieved. However, this

approach is not satisfactory for quality

assurance and software testing. It is good

for achieving overall estimates of perfor-

mance, but does a poor job of indicating

what the application is good at and what it

is bad at. For this task, structured test

suites and application of the general

principles of software testing are much

more appropriate. Structured test suites

are discussed in Section 1.3.2. It is helpful

to consult with a descriptive linguist when

designing test suites for assessing an

application’s ability to handle linguistic

phenomena. [15] and [14] describe basic

principles for constructing test suites for

linguistic phenomena by applying the

techniques of software testing and of

descriptive linguistics. The former includes

a methodology for the automatic genera-

tion of test suites of arbitrary size and

complexity. [45] presents a quantitative

examination of the effectiveness of corpora

versus structured test suites for software

testing, and demonstrates that structured

test suites achieve better code coverage

(percentage of code that is executed during

the test phase—bugs cannot be discovered

in code that is not executed) than corpora,

and also offer a significant advantage in

terms of time and efficiency. They found

that a structured test suite that achieved

higher code coverage than a 3.9 million

word corpus could be run in about

11 seconds, while it took about four and

a half hours to process the corpus. [46]

discusses the application of the software

engineering concept of the ‘‘fault model,’’

informed by insights from linguistics, to

discovering a serious error in their ontol-

ogy linking tool.

User interface assessment requires spe-

cial techniques not found in other areas of

software testing for natural language

processing. User interface testing has been

most heavily studied in the case of

literature search interfaces. Here the work

of [47,48] is most useful, and can serve as

a tutorial on interface evaluation.

7. Exercises

1. Obtain a copy of a patient record

collection from the i2b2 National

Center for Biomedical Computing

(see e.g., [49]). Download the Meta-

Map application or API and run it over

a set of ten discharge summaries. Use

Google to find the current links for the

i2b2 data sets and for downloading

MetaMap. Note that using the Meta-

Map application will require writing

code to extract results from the Meta-

Map output file, while using the API

will require writing your own applica-

tion. Which outputs might you consid-

er to identify phenotypes that could be

relevant for your research interests?

2. Obtain a collection of 1,000 PubMed

abstracts by querying with the terms

gene and mutation and downloading the

1,000 most recent. Run the EMU

mutation extractor (http://bioinf.

umbc.edu/EMU/ftp) or a similar tool

on them. What genotypes can you

identify in the output?

3. A researcher has a collection of 10,000

documents. She wants to retrieve all

documents relevant to pulmonary hy-

pertension. The collection contains 250

documents that are relevant to pulmo-

nary hypertension. An information

retrieval program written by a col-

league returns 100 documents. 80 of

these are actually relevant to pulmo-

nary hypertension. What is the preci-

sion, recall, and F-measure for this

system?

4. Explain the difference between descrip-

tive linguistic rules and prescriptive linguistic

rules. Be sure to say which type text

mining is concerned with.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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Abstract: Recent advances in auto-
mated high-resolution fluorescence
microscopy and robotic handling
have made the systematic and cost
effective study of diverse morpho-
logical changes within a large pop-
ulation of cells possible under a
variety of perturbations, e.g., drugs,
compounds, metal catalysts, RNA
interference (RNAi). Cell population-
based studies deviate from conven-
tional microscopy studies on a few
cells, and could provide stronger
statistical power for drawing exper-
imental observations and conclu-
sions. However, it is challenging to
manually extract and quantify phe-
notypic changes from the large
amounts of complex image data
generated. Thus, bioimage informat-
ics approaches are needed to rapidly
and objectively quantify and analyze
the image data. This paper provides
an overview of the bioimage infor-
matics challenges and approaches in
image-based studies for drug and
target discovery. The concepts and
capabilities of image-based screen-
ing are first illustrated by a few
practical examples investigating dif-
ferent kinds of phenotypic changes
caused by drugs, compounds, or
RNAi. The bioimage analysis ap-
proaches, including object detection,
segmentation, and tracking, are then
described. Subsequently, the quanti-
tative features, phenotype identifica-
tion, and multidimensional profile
analysis for profiling the effects of
drugs and targets are summarized.
Moreover, a number of publicly
available software packages for bio-
image informatics are listed for
further reference. It is expected that
this review will help readers, includ-
ing those without bioimage infor-
matics expertise, understand the
capabilities, approaches, and tools
of bioimage informatics and apply
them to advance their own studies.

1. Introduction

The old adage that a picture is worth a

thousand words certainly applies to the

identification of phenotypic variations in

biomedical studies. Bright field microsco-

py, by detecting light transmitted through

thin and transparent specimens, has been

widely used to investigate cell size, shape,

and movement. The recent development

of fluorescent proteins, e.g., green fluores-

cent protein and its derivatives [1],

enabled the investigation of the phenotyp-

ic changes of subcellular protein struc-

tures, e.g., chromosomes and microtu-

bules, revolutionizing optical imaging in

biomedical studies. Fluorescent proteins

are bound to specific proteins that are

uniformly located in relevant cellular

structures, e.g., chromosomes, and emit

longer wavelength light, e.g., green light,

after exposure to shorter wavelength light,

e.g., blue light. Thus, the spatial morphol-

ogy and temporal dynamic activities of

subcellular protein structures can be

imaged with a fluorescence microscope -

an optical microscope that can specifically

detect emitted fluorescence of a specific

wavelength [2]. In current image-based

studies, five-dimensional (5D) image data

of thousands of cells (cell populations) can

be acquired: spatial (3D), time lapse (1D),

and multiple fluorescent probes (1D).

With advances to automated high-

resolution microscopy, fluorescent label-

ing, and robotic handling, image-based

studies have become popular in drug and

target discovery. These image-based stud-

ies are often referred to as the High

Content Analysis (HCA) [3], which focus-

es on extracting and analyzing quantita-

tive phenotypic data automatically from

large amounts of cell images with ap-

proaches in image analysis, computation

vision and machine learning [3,4]. Appli-

cations of HCA for screening drugs and

targets are referred to as High Content

Screening (HCS), which focuses on iden-

tifying compounds or genes that cause

desired phenotypic changes [5–7]. The

image data contain rich information

content for understanding biological pro-

cesses and drug effects, indicate diverse

and heterogeneous behaviors of individual

cells, and provide stronger statistical power

in drawing experimental observations and

conclusions, compared to conventional

microscopy studies on a few cells. Howev-

er, extracting and mining the phenotypic

changes from the large scale, complex

image data is daunting. It is not feasible to

manually analyze these data. Hence, bio-

image informatics approaches were need-

ed to automatically and objectively ana-

lyze large scale image data, extract and

quantify the phenotypic changes to profile

the effects of drugs and targets.

Bioimage informatics in image-based

studies usually consists of multiple analysis

modules [3,8,9], as shown in Figure 1.

Each of the analysis tasks is challenging,

and different approaches are often re-

quired for the analysis of different types of

images. To facilitate image-based screen-

ing studies, a number of bioimage infor-

matics software packages have been de-

veloped and are publicly available [9].

This chapter provides an overview of the

bioimage informatics approaches in im-
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age-based studies for drug and target

discovery to help readers, including those

without bioimage informatics expertise,

understand the capabilities, approaches,

and tools of bioimage informatics and

apply them to advance their own studies.

The remainder of this chapter is organized

as follows. Section 2 introduces a number

of practical screening applications for

discovery of potential drugs and targets.

Section 3 describes the challenges and

approaches for quantitative image analy-

sis, e.g., object detection, segmentation,

and tracking. Section 4 introduces tech-

niques for quantification of segmented

objectives, including feature extraction,

phenotype classification, and clustering.

Section 5 reviews a number of prevalent

approaches for profiling drug effects based

on the quantitative phenotypic data.

Section 6 lists major, publicly available

software packages of bioimage informatics

analysis, and finally, a brief summary is

provided in Section 7.

2. Example Image-based
Studies for Drug and Target
Discovery

There are a variety of image-based

studies for discovery of drugs, targets, and

mechanisms of biological processes. A good

starting point for learning about bioimage

informatics approaches is to study practical

image-based studies, and a number of

examples are summarized below.

2.1 Multicolor Cell Imaging-based
Studies for Drug and Target
Discovery

Fixed cell images with multiple fluores-

cent markers have been widely used for

drug and target screening in scientific

research. For example, the effects of

hundreds of compounds were profiled for

phenotypic changes using multicolor cell

images in [10–12]. Hundreds of quantita-

tive features were extracted to indicate the

phenotypic changes caused by these com-

pounds, and then computational ap-

proaches were proposed to identify the

effective compounds, categorize them,

characterize their dose-dependent re-

sponse, and suggest novel targets and

mechanisms for these compounds [10–

12]. Moreover, phenotypic heterogeneity

was investigated by using a subpopulation

based approach to characterize drug

effects in [13], and distinguish cell popu-

lations with distinct drug sensitivities in

[14]. Also in [15,16], the phenotypic

changes of proteins inside individual

Drosophila Kc167 cells treated with RNAi

libraries were investigated by using high

resolution fluorescent microscopy, and

bioimage informatics analysis was applied

to quantify these images to identify genes

regulating the phenotypic changes of

interest. Figure 2 shows an image of

Drosophila Kc167 cells, which were treated

with RNAi and stained to visualize the

nuclear DNA (red), F-actin (green), and a-

tubulin (blue). Freely available software

packages, such as CellProfiler [17], Fiji

What to Learn in This Chapter

N What automated approaches are necessary for analysis of phenotypic changes,
especially for drug and target discovery?

N What quantitative features and machine learning approaches are commonly
used for quantifying phenotypic changes?

N What resources are available for bioimage informatics studies?

Figure 1. The flowchart of bioimage informatics for drug and target discovery.
doi:10.1371/journal.pcbi.1003043.g001
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[18], Icy [19], GCELLIQ [20], and Phe-

noRipper [21] can be used for the

multicolor cell image analysis.

2.2 Live-cell Imaging-based Studies
for Cell Cycle and Migration
Regulator Discovery

Two hallmarks of cancer cells are

uncontrolled cell proliferation and migra-

tion. These are also good phenotypes for

screening drugs and targets that regulate cell

cycle progression and cell migration in time-

lapse images. For example, out of 22,000

human genes, about 600 were identified as

related to mitosis by using live cell (time-

lapse) imaging and RNAi treatment in the

MitoCheck project (www.mitocheck.org)

[22,23]. The project is now being expanded

to study how these identified genes work

together to regulate cell mitosis, in which

mistakes can lead to cancer, in the MitoSys

(systems biology of mitosis) project (http://

www.mitosys.org/). Also, live cell imaging of

Hela cells was used to discover drugs and

compounds that regulate cell mitosis in

[24,25]. Moreover, the time-lapse images

of live cells were used to study the dynamic

behaviors of stem cells in [26,27] and predict

cell fates of neural progenitor cells using

their dynamic behaviors in [28]. Figure 3

shows a single frame of live HeLa cell images

and the images of four cell cycle phases:

interphase, prophase, metaphase, and ana-

phase [25]. The publicly available software

packages for time-lapse image analysis

include, for example, the plugins of Cell-

Profiler [17], Fiji [18], BioimageXD [29],

Icy [19], CellCognition [23], DCELLIQ

[30], and TLM-Tracker [31].

2.3 Neuron Imaging-based Studies
for Neurodegenerative Disease Drug
and Target Discovery

Neuronal morphology is illustrative of

neuronal function and can be instructive

toward the dysfunctions seen in neurode-

generative diseases, such as Alzheimer’s

and Parkinson’s disease [32,33]. For

example, the 3D neuron synaptic mor-

phological and structural changes were

investigated by using super-resolution mi-

croscopy, e.g., STED microscopy, to study

brain functions and disorders under dif-

ferent stimulations [34–36]. Also other

advanced optical techniques were pro-

posed in [37,38] to image and reconstruct

the 3D structure of live neurons. Figure 4

shows an example of 2D neuron image

used in [39]. In [40], neuronal degenera-

tion was mimicked by treating mice with

different dosages of Ab peptide, which

may cause the loss of neuritis, and drugs

that rescue the loss of neurites were

identified as candidates for AD therapy.

Figure 5 shows an example of neurites and

nuclei images acquired in [40]. To quan-

titatively analyze neuron images, a num-

ber of publicly available software packages

have been developed, for example, Neur-

phologyJ [41], NeuronJ [42], NeuriteTra-

cer (Fiji plugin) [43], NeuriteIQ [44],

NeuronMetrics [45], NeuronStudio

Figure 2. A representative image of Drosophila Kc167 cells treated with RNAi. The red, green, and blue colors are the DNA, F-actin, and a-
tubulin channels.
doi:10.1371/journal.pcbi.1003043.g002
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[46,47], NeuronJ [42], NeuronIQ [39,48],

and Vaa3D [49,50]. A review of software

packages for neuron image analysis was

also reported in [51].

2.4 Caenorhabditis elegans Imaging-
based Studies for Drug and Target
Discovery

Caenorhabditis elegans (C. elegans) is a

common animal model for drug and target

discovery. Consisting of only hundreds of

cells, it is an excellent model to study

cellular development and organization. For

example, the invariant embryonic develop-

ment of C. elegans was recorded by time-

lapse imaging, and the embryonic lineages

of each cell were then reconstructed by cell

tracking to study the functions of genes

underpinning the development process

[52–54]. Moreover, an atlas of C. elegans,

which quantified the nuclear locations and

statistics on their spatial patterns in devel-

opment, was built based on the confocal

image stacks via the software, CellExplorer

[55,56]. In addition, CellProfiler provides

an image analysis pipeline for delineating

bodies, and quantifying the expression

changes of specific proteins, e.g., clec-60

and pharynx, of individual C. elegans under

different treatments [57].

These examples have demonstrated

diverse cellular phenotypes in different

image-based studies. To quantify and

analyze the complex phenotypic changes

of cells and sub-cellular components from

large scale image data, bioimage infor-

matics approaches are needed.

3. Quantitative Bioimage
Analysis

After image acquisition, phenotypic

changes need to be quantified for charac-

terizing functions of drugs and targets.

Due to the large amounts of images

generated, it is not feasible to quantify

the images manually. Therefore, automat-

ed image analysis is essential for the

quantification of phenotypic changes. In

general, the challenges of quantitative

image analysis include object detection,

segmentation, tracking, and visualization.

The word ‘object’ in this context means

the object captured in the bioimages, e.g.,

the nucleus and cell. The following

sections will introduce techniques used to

address these challenges.

3.1 Object Detection
Object detection is to detect the loca-

tions of individual objects. It is important,

especially when the objects cluster togeth-

er, to facilitate the segmentation task by

providing the position and initial bound-

ary information of individual objects.

Based on the shape of objects, two

Figure 3. Examples of HeLa cell nuclei and cell cycle phase images. (A) A frame of HeLa cell nuclei time-lapse image sequence; (B) Example
images of four cell cycle phases.
doi:10.1371/journal.pcbi.1003043.g003
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categories of object detection techniques

are developed: blob structure detection,

e.g., particles and cell nuclei, and tube

structure detection, e.g., neurons, blood

vessels.

The shape information of blob objects

can be used to detect the centers of objects

using distance transformation [58]. The

concavity of two touching objects would

cause two local maxima in the distance

image, such that thresholding or seeded

watershed can be employed to the distance

image to detect and separate the touching

blob objects [59]. The intensity informa-

tion is also often used for blob detection.

Blob objects usually have relatively high

intensity in the center, and relatively low

intensity in the peripheral regions. For

example, the Laplacian-of-Gaussian

(LOG) filter is effective [60–63] to detect

blob objects based on the intensity infor-

mation. After LOG filtering, local maxi-

mum response points often correspond to

centers of blob objects, as shown in

Figure 6. Moreover, the intensity gradient

information is also used for blob detection.

For example, in [64] the intensity gradient

vectors were smoothed by using the

gradient vector flow approach [65] so that

the smoothed gradient vectors continuous-

ly point to the object centers. Consequent-

ly, the blob object centers can be detected

by following the gradient vectors [64]. In

addition, the boundary points of blob

objects with high gradient amplitude can

be used to detect their centers, based on

the idea of Hough Transform [66]. For

example, in [67] an iterative radial voting

method was developed to detect such

object centers based on the boundary

points. In brief, the detected boundary

points vote the blob center with oriented

kernels iteratively, and the orientation and

size of the kernels are updated based on

the voting results. Finally, the maximum

response points in the voting image are

selected as the centers of objects. The

advantage of this method is that it can

detect the centers of objects with noise

appearance [67]. The distance transform

and the intensity gradient information also

can be combined for the object detection

[68]. For other blob objects with complex

appearances, the machine learning ap-

proaches based on local features [69,70]

can also be used for object detection

[71,72], as in the Fiji (trainable segmenta-

tion plugin) [18] and Ilastik [73].

Tubular structure detection is based

on the premise that the intensity re-

mains constant in the direction along

the tube, and varies dramatically in the

direction perpendicular to the tube. To

find the local direction of tube center

lines, the eigenvector corresponding to

the minimum and negative eigenvalue

of Hessian matrix was proposed in

[44,74]. Center line points can be

characterized by their local geometric

attributes, i.e., the first derivative is

close to zero and the magnitude of

second derivatives is large in a direction

perpendicular to tube center line

[42,44,74]. After the center line point

Figure 4. A representative 2D neuron images. The bright spots near the backbones of
neurons are the dendritic spines.
doi:10.1371/journal.pcbi.1003043.g004

Figure 5. A representative image of neurites. Red indicates nuclei and green represents
neurites.
doi:10.1371/journal.pcbi.1003043.g005
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detection, a linking process is needed to

connect these center line points into

continuous center lines based on their

direction and distance. For example, in

NeuronJ, Dijkstra’s shortest-path was

used based on the Gaussian derivative

features to detect the neuron’s center-

line between two given points on the

neuron [42]. Figure 7 provides an

example of neurite images, and

Figure 8 shows the corresponding cen-

terline detection results [44] based on

the local Gaussian derivative features.

In addition to the approaches based on

Gaussian derivatives, there are other

tubular structure detection approaches.

For example, four sets of kernels (edge

detectors) were designed to detect the

neuron edges and centerlines [75], and

super-ellipsoid modeling was designed

to fit the local geometry of blood vessels

[76].

Moreover, machine learning-based

tubular structure detection is a widely

used method. For example, blood vessel

detection in retinal images is a repre-

sentative tubular structure detection

task with the supervised learning ap-

proaches [77,78]. In these methods, the

local features, e.g., intensity and wavelet

features, of an image patch containing a

given pixel are calculated, and then a

classifier is trained using these local

features based on a set of training points

[77,78]. A good survey of blood vessel

(tube structure) detection approaches in

retinal images was reported in [79]. For

more approaches and details of tubular

structure detection, readers should refer

to the aforementioned neuron image

analysis software packages.

In summary, blobs and tubes are the

dominating structures in bioimages. The

detection results provide the position and

initial boundary information for the quan-

tification and segmentation processes. In

other words, the segmentation process

tries to delineate boundaries of objects

starting from the detected centers or

centerlines of objects. Without the guid-

ance of detection results, object segmen-

tation would be more challenging.

3.2 Object Segmentation

The goal of object segmentation is to

delineate boundaries of individual objects

of interest in images. Segmentation is the

basis for quantifying phenotypic changes.

Although a number of image segmenta-

tion methods have been reported, this

remains an open challenge due to the

complexity of morphological appearances

of objects. This section introduces a

number of widely used segmentation

methods.

Threshold segmentation [80] is the sim-

plest method: T(I)~
1; t2wI(x,y)wt1

0; otherwise

�
,

where I(x,y) is the image, and t1 and t2 are

the intensity thresholds. As an extension

of the thresholding method, Fuzzy-C-

Figure 6. An example of blob-structure (HeLa cell nuclei) detection. The red spots indicate the detected centers of objects.
doi:10.1371/journal.pcbi.1003043.g006
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Means [81] can be used to separate images

into more regions based on intensity

information. These methods could di-

vide the image into objects and back-

ground, but fail to separate the object

clumps (i.e., multiple objects touching

together). Watershed segmentation and

its derivatives are widely used segmen-

tation methods. They build object

boundaries between objects on the

pixels with local maximum intensity,

which act like dams to avoid flooding

from different basins (object regions)

[82]. To avoid the over-segmentation

problem of the watershed approach, the

marker-controlled watershed (or seeded

watershed) approach, in which the

floods are from the ‘marker’ or ‘seed’

points (the object detection results), was

proposed [68,83–85]. Figure 9 illus-

trates the segmentation result of HeLa

cell nuclei using the seeded watershed

method based on the cell detection

results.

Active contour models are another set

of widely used segmentation methods [86–

90]. Generally, there are two kinds of

active contour models: boundary-driven

and region-competition models. In the

boundary-driven model, the contours’

(boundaries of objects) evolution is deter-

mined by the local gradient. In other

words, the boundary fronts move toward

the outside (or inside) quickly in the

regions with low intensity variation (gra-

dient), and slowly in the regions with high

gradient (where the boundaries are). When

great intensity variation appears inside

cells, or the boundary is weak, this method

often fails [91]. Instead of using gradient

information, the region-competition mod-

el makes use of the intensity similarity

Figure 7. A representative neurite image for centerline detection.
doi:10.1371/journal.pcbi.1003043.g007

Figure 8. An example of neurite centerline detection. (A) The centerline confidence image obtained by using the local Gaussian derivative
features. Higher intensity indicates higher confidence of pixels on the centerlines. (B) The neurite centerline detection result image. Different colors
indicate the disconnected branches.
doi:10.1371/journal.pcbi.1003043.g008
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information to separate the image into

regions with similar intensity. Region

competition-based active contour models

could solve the weak boundary problem;

however, they require that the intensity of

touching objects is separable [87]. To

implement these active contour models,

level set representation is widely used [92].

Level set is an n+1 dimensional function

that can easily represent any n dimensional

shape without parameters. The inside

regions of objects are indicated by using

positive levels, and outside regions are

represented using negative levels. For this

implementation, the initial boundary (zero

level) is required, and the signed distance

function is often used to initialize the level

set function [92,93]. To evolve the level set

functions (grow the boundaries of objects),

the following two equations are classical

models. The first equation is often called

geodesic active contour (GAC) [86], and

the second one is often named the Chan

and Vese active contour (CV) [87].

d

dt
y~a +g:+yð Þzg kzcð Þ +yj j

GAC level set evolution equationð Þ,

d

dt
y~

de yð Þ m:k{n{l1 I{c1ð Þ2zl2 I{c2ð Þ2
h i

CV level set evolution equationð Þ,

where y denotes the level-set function, and

g indicates the gradient function, + is the

gradient operator, c, c1, and c2 are constant

variables. de xð Þ~ 1

p

e

e2zx2
is an approxi-

mation of the Dirac function to indicate

the boundary bands), which is the deriv-

ative function of Heaviside function de-

noting inside/outside regions of objects:

H(x)~
1

2
1z

2

p
arg tan (

x

e
)

� �
, and the

curvature term, k~div
+y

+yj j

� �
~

yxxy2
y{2yxyxyyyzy2

xyyy

y2
xzy2

y

� �3=2
indicates the

local smoothness of boundaries, and ‘div’ is

the divergence operation. Figure 10 dem-

onstrates the segmentation result using

GAC level set approach. An additional

segmentation method, Voronoi segmenta-

tion [94], first defines the centers of objects

and then constructs the boundaries be-

tween two objects on the pixels, from

which the distances are the same to the

two centers. In CellProfiler, the Voronoi

segmentation method was extended by

considering the local intensity variations in

the distance metric to achieve better

segmentation results [95]. This method is

fast and generates level set comparable

Figure 9. An example of HeLa nuclei segmentation using the seeded watershed algorithm. The green contours are the boundaries of
nuclei.
doi:10.1371/journal.pcbi.1003043.g009
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results. Graph cut segmentation method

views the image as a graph, in which each

pixel is a vertex and adjacent pixels are

connected [63,96,97]. It ‘cuts’ the graph

into several small graphs from the regions

where adjacent pixels have the most

different properties, e.g., intensity.

Different from the aforementioned seg-

mentation approaches, local feature and

machine learning-based segmentation ap-

proaches are implemented, for example, in

Fiji (trainable segmentation plugin) [18]

and Ilastik [73]. Users can interactively

select the training sample pixels/voxels or

small image patches conveniently, and then

classifiers are automatically trained based

on the features of the training pixels or

voxels (or patches) to predict the classes,

e.g., cells or background, of the pixels or

voxels (or patches) in a new image. The

image patches could be a circle or square

neighbor regions of a given point, and also

could be regions (superpixel) obtained by

the clustering analysis. For example, Simple

Linear Iterative Clustering (SLIC) made

use of the intensity and coordinate infor-

mation of pixels to separate the image into

uniformly sized and biologically meaning-

ful regions [98,99], and then the machine

learning approaches were used to identify

the regions of interest, e.g., boundary

superpixels, for object segmentation [99].

3.3 Object Tracking
To study the dynamic behaviors and

phenotypic changes of objects over time

(e.g., cell cycle progression and migration),

object tracking using time lapse image

sequences is necessary. Figure 11 shows a

Hela cell’s division process in four frames

at different time points, and Figures 12

and 13 show the examples of cell migra-

tion trajectories and cell lineages recon-

structed from the time-lapse images of

Hela cells [30]. Object tracking is a

challenging task due to the complex

dynamic behaviors of objects over time.

In general, cell tracking approaches can be

classified into three categories: model

evolution-based tracking, spatial-temporal

volume segmentation-based tracking, and

segmentation-based tracking.

In the model evolution based tracking

approaches, cells or nuclei are initially

detected and segmented in the first frame,

and then their boundaries and positions

evolve frame by frame. Some tracking

techniques in this category are mean-shift

[100] and parametric active contours

[88,101]. However, neither mean-shift

nor parametric active contours can cope

well with cell division and nuclei clusters.

Though the level set method enables

topological change, e.g., cell division, it

also allows the fusion of overlapping cells.

Extending these methods to cope with

Figure 10. An example of segmentation of Drosophila cell images using the level set approach.
doi:10.1371/journal.pcbi.1003043.g010
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these tracking challenges is nontrivial and

increases computation time [90,102–104].

For example, the coupled geometric active

contours model was proposed to prevent

object fusion by representing each object

with an independent level set in [105], and

this was further extended to the 3D cell

tracking in [90]. The other approach

explicitly blocking the cell merging is to

introduce the topology constraints, i.e.,

labeling objects regions with different

numbers or colors. For example, the

region labeling map was employed in

[27,106] to deal with the cell merging,

and planar graph–vertex coloring was

employed to separate the neighboring

contours. From that four separate level

set functions could easily deal with cell

merging [107] based on the four-color

theorem [108,109]. For the spatial-tempo-

ral volume segmentation based tracking,

2D image sequences were viewed as 3D

volume data (2D spatial+temporal), and

the shape and size constrained level set

segmentation approaches were applied to

segment the traces of objects, and recon-

struct the cell lineage in [110–112].

For detection and segmentation-based

tracking, objects are first detected and

segmented, and then these objects are

associated between two consecutive

frames, based on their morphology, posi-

tion, and motion [30,113–115]. The

tracking approaches are usually done fast,

but their accuracy is closely related to

detection and segmentation results, simi-

larity measurements, and association strat-

egies. The cell center position, shape,

intensity, migration distance, and spatial

context information were used as similar-

ity measurements in [113,115]. For the

association approaches, the overlap region

and distance based method was employed

in [114], in which objects in the current

frame were associated with the nearest

objects in the next frame. Then the false

matches, e.g., many-to-one or one-to-

many, were further corrected through

the post processing. Different from the

individual object association above, all

segmented objects were simultaneously

associated by using the integer program-

ming optimization in [113,116]:

x�~ max
x[f0,1gN

Sx, s.t. Axƒ1, where Axƒ1

restricts that one object can be associated

to one object at most, A is an (m+n)6N
matrix, and the first m rows correspond to

m objects in frame t, and the last n rows

denote objects in frame t+1. N is the

Figure 11. Time-lapse images indicating cell cycle progression. The cell in the red square in the first frame (A) divided into two cells in frame
60 (B). The descendent cells divided again in frame 152 and 156 respectively as shown in the red squares in (C) and (D).
doi:10.1371/journal.pcbi.1003043.g011
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number of all possible associations among

objects in frame t and frame t+1. S is a

16N similarity matrix, and S jð Þ
~S cktz1 citjð Þ. For the unmatched cells,

e.g., the new born or new entered cells, a

linking process is usually needed to link

them to the parent cells or as a new

trajectory. This optimal matching strategy

was also used to link the object trajectory

segments in [27] to link the broken or

newly appearing trajectories.

As an alternative to frame-by-frame

association strategies, Bayesian filters,

e.g., Particle filter and Interacting Multiple

Model (IMM) filters [117,118], are also

used for object tracking. The goal of these

filters is to recursively estimate a model of

object migration in an image sequence.

Generally, in the Bayesian methods, a

state vector, xt, is defined to indicate

the characters of objects, e.g., position,

velocity, and intensity. Then, two models

are defined based on the state vector. The

first is the state evolution model, xt =

ft (xt21)+et, where ft is the state evolution

function at time point, t, and et is a noise,

e.g., Gaussian noise, which describes the

evolution of the state. The other is the

observation model, zt = ht (xt21)+gt, where

ht is the map function, and gt is the noise,

which maps the state vector into observa-

tions that are measurable in the image.

Based on the two models and Bayes’ rule,

the posterior density of the object state is

estimated as follows: p xtDz1:tð Þ!p ztDxtð Þ
p xtDz1:t{1ð Þ, and p xtjz1:t{1ð Þ~

Ð
p

xtjxt{1ð Þp xt{1jzt{1ð Þdxt{1 where the

p(zt |xt) is defined based on the observation

model, and the p xtDxt{1ð Þ is defined based

on the state evolution model. The basic

principle of particle filter is to approximate

the posterior density by a set of samples

(particles) being stochastically drawn, and it

had been employed for object tracking in

fluorescent images in [119–121]. In some

biological studies, the motion dynamics of

objects are complex. Therefore, one motion

model might not be able to describe object

motion dynamics well. The IMM filter is

employed to incorporate multiple motion

models, and the motion model of objects can

be transitioned from one to another in the

next frame with certain probabilities. For

example, the IMM filter with three motion

models, i.e., random walk, first-order, and

second-order linear extrapolation, was used

for 3D object tracking in [118], and for 2D

cell tracking in [27].

3.4 Image Visualization
Most of the aforementioned software

packages provide functions to visualize 2D

images and the analysis results. However,

Figure 12. Examples of cell migration trajectories. Different colors represent different trajectories.
doi:10.1371/journal.pcbi.1003043.g012
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for higher dimensional images, e.g., 3D, 4D

(including time), and 5D (including multi-

ple color channels), visualization is chal-

lenging. Fiji [18], Icy [19], and Bioima-

geXD [29], for example, are the widely

used bioimage analysis and visualization

software packages for higher dimensional

images. In addition, NeuronStudio [46,47]

is a software package tailored for neuron

image analysis and visualization. Farsight

[122] and vaa3D [123] are also developed

for analysis and visualization of 3D, 4D,

and 5D microscopy images. For developing

customized visualization tools, the Visual-

ization Toolkit (VTK) is a favorite choice

(http://www.vtk.org/) as it is open source

and developed specifically for 3D visuali-

zation. ParaView (http://www.paraview.

org/) and ITK-SNAP (http://www.

itksnap.org/) are the popular Insight

Toolkit (ITK) (http://www.itk.org/) and

VTK based 3D image analysis and visual-

ization software packages.

This section has introduced a number of

major methods for object detection, seg-

mentation, tracking, and visualization in

bioimage analysis. These analyses are essen-

tial and provide a basis for the following

quantification of morphological changes.

4. Numerical Features and
Morphological Phenotypes

4.1 Numerical Features
To quantitatively measure the pheno-

typic changes of segmented objects, a set

of descriptive numerical features are

needed. For example, four categories of

quantitative features, measuring morpho-

logical appearances of segmented objects,

are widely used in imaging informatics

studies for object classification and identi-

fication, i.e., wavelets features [124,125],

geometry features [126], Zernike moment

features [127], and Haralick texture fea-

tures [128]. In brief, Discrete Wavelet

Transformation (DWT) features charac-

terize images in both scale and frequency

domains. Two important DWT feature

sets are the Gabor wavelet [129] and the

Cohen–Daubechies–Feauveau wavelet

(CDF9/7) [130] features. Geometry fea-

tures describe the shape and texture

features of the individual cells, e.g., the

maximum value, mean value, and stan-

dard deviation of the intensity, the lengths

of the longest axis, the shortest axis, and

their ratio, the area of the cell, the

perimeter, the compactness of the cell

(compactness = perimeter‘2/4p*area), the area

of the minimum convex image, and the

roughness (area of cell/area of convex shape).

The calculation of Zernike moments

features was introduced in [131]. First,

the center of mass of the cell image was

calculated, then the average radius for

each cell was computed, and the pixel p(x,

y) of the cell image was mapped to a unit

circle to obtain the projected pixel as p(x9,

y9). Then Zernike moment features were

calculated based on the projected image

I(x9, y9). The Haralick texture features are

extracted from the gray-level spatial-de-

pendence matrices, including the angular

second moment, contrast, correlation, sum

of the squares, inverse difference moment,

sum of the average, sum of the variance,

sum of entropy, entropy, difference of the

variance, difference of entropy, informa-

tion measures of correlation, and maximal

correlation coefficient [132]. More de-

scriptions and calculation programs about

these Subcellular Location Features (SLF)

and SLF-based machine learning ap-

proaches for image classification can be

found at: http://murphylab.web.cmu.

edu/services/SLF/features.html.

4.2 Phenotype Identification
Although these numerical features are

informative to describe the phenotypic

changes, it can be difficult to understand

these changes in terms of visual and

understandable phenotypic changes. For

example, the increase or decrease of cell

size can be understood; however, it is not

clear what the physical meaning of the

increase or decrease is for certain wavelet

features. Therefore, transforming the nu-

merical features into biologically meaning-

ful features (phenotypes) is important. This

section introduces a number of widely

used phenotype identification approaches.

4.2.1. Cell cycle phase

identification. In cell cycle studies,

drug and target effects are indicated by

the dwelling time of cell cycle phases, e.g.,

interphase, prophase, metaphase and

anaphase. Additional cell cycle phases,

e.g., Prometa-, Ana 1-, Ana 2-, and Telo-

phases, were also investigated in [133] and

[23,134]. After object segmentation and

tracking, cell motion traces can be

extracted, as shown in Figure 14, and

then the automated cell cycle phase

identification is needed to calculate the

dwelling time of individual cells on

different phases.

Figure 13. Examples of cell lineages constructed by the tracking algorithm. The black
numbers are the time of cell division (hours). The bottom red numbers indicate the number of
traces, and the numbers inside circles are the labels of cells in that frame.
doi:10.1371/journal.pcbi.1003043.g013
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Cell cycle phase identification can be

viewed as a pattern classification prob-

lem. The aforementioned numerical fea-

tures, and a number of classifiers can be

used to identify the corresponding phases

of individual segmented cells, e.g., sup-

port vector machine (SVM)

[115,133,135], K-nearest neighbors

(KNN), and naı̈ve Bayesian classifiers

[114]. However, the classification accu-

racy is often poor for cell cycle phases

appearing for a short time, e.g., prophase

and metaphase, due to the unbalance of

sample size compared to interphase, and

the segmentation bias. Fortunately, the

cell cycle phase transition rules, e.g., from

interphase to prophase, and from pro-

phase to metaphase, can be used to

reduce identification errors. Thus, a set

of cell cycle phase identification ap-

proaches based on the cell tracking

results were proposed to achieve high

identification accuracy. This problem is

often formulized as follows, and as shown

in Figure 15. Let x = (x1, x2, …, xT)

denote a cell image sequence of length T.

Each cell image is represented by a

numerical feature vector Q(xi)[Rd (using

the aforementioned numerical features).

Let y = (y1, y2, …, yT) represent the

corresponding cell cycle phase sequence

that needs to be predicted. Based on the

cell cycle progression rules, for example,

the variation of nuclei size and intensity

were used as an index to identify the

mitosis phases of cells in [25], and

Hidden Markov Modeling (HMM) was

used to identify the cell cycle phases in

CellCognition [23]. In brief, the transi-

tion possibility from one phase to the

other was learned from the training data

of cell cycle progressions, which could

improve the accuracy of cell cycle phase

identification. As an extension of HMM,

Temporally Constrained Combinatorial

Clustering (TC3), which is an unsuper-

vised learning approach for cell cycle

phase identification, was designed and

combined with Gaussian Mixture Model

(GMM) and HMM to achieve robust and

accurate cell cycle identification results in

[134]. Also, in [133] Finite State Ma-

chine (FSM) was employed to check the

phase transition consistency and make

corrections to the error cell cycle phases

predicted by using SVM classifier [115].

Moreover, the cell cycle phases could be

identified during the segmentation and

linking process in the spatiotemporal

volumetric segmentation-based tracking

methods [110–112].

4.2.2 User defined phenotype,

identification, and classification. In

certain image-based studies, cells may not

have an intrinsic phenotype, e.g., cell

cycle phases, but may exhibit unpredicted

and novel phenotypes caused by

experimental perturbations, e.g., drugs

or RNAi treatments. These phenotypes

are often defined by well-trained

biologists to characterize drug and target

effects [16]. Figure 16 shows images of

Drosophila cells with three defined

phenotypes: Normal, Ruffling and Spiky

[136].

In large scale screening studies, how-

ever, it is subjective and time-consuming

for biologists to uncover novel pheno-

types from millions of cells. Thus, auto-

mated discovery of novel phenotypes is

important. For example, an automated

phenotype discovery method was pro-

posed in [20]. In brief, a GMM was

constructed first for the existing pheno-

types. Then the quantitative cellular data

from new cellular images were combined

with samples generated from the GMM,

and the cluster number of the combined

data was estimated using gap statistics

[137]. Then, clustering analysis was

performed on the combined data set, in

which some of the cells from the new

cellular images were merged into the

existing phenotypes, and the clusters that

could not be merged by any existing

phenotype classes were considered as new

phenotype candidates. After the pheno-

types are defined, classifiers can be built

conveniently based on the training data

and the numerical features for classifying

cells into one of the predefined pheno-

types. However, it is tedious to manually

collect enough training samples of the

rare and unusual phenotypes. To solve

this challenge, an iterative machine

learning based approach was proposed

in [138]. First, a tentative rule (classifier)

was determined based on a few samples

of a given phenotype, and then the

classifier presented users a set of cells

that were classified into the phenotype

based on the tentative rule. Users would

then manually correct the classification

errors, and the corrections are used to

refine the rule. This method could collect

plenty of training samples after several

rounds of error correction and rule

refinement [138].

This section introduced numerical fea-

ture extraction, phenotype identification,

and classification. These analyses provide

quantitative phenotypic change data for

identifying candidate targets and drug hits

that cause desirable phenotypic changes.

The following section will describe ap-

proaches to analyze the quantitative phe-

notypic profile data for drug and target

identification.

5. Multidimensional Profiling
Analysis

The aim of profiling analysis is to

characterize the functions of drugs and

targets, divide them into groups with

similar phenotypic changes, and identify

the candidates causing desired phenotypic

changes. To help analyze and organize

these multidimensional phenotypic profile

data, some publicly available software

packages have been designed, for example,

CellProfiler Analyst (http://www.

cellprofiler.org/) and PhenoRipper

(http://www.phenoripper.org). In addi-

tion, KNIME (http://www.knime.org/)

is a publicly available pipeline and work-

flow system to help organize different data

flows. It also provides connections to

bioimage analysis software packages, e.g.,

Fiji [18] and CellProfiler [9], and enables

users to conveniently build specific data

analysis pipelines in KNIME. This section

describes some prevalent approaches in

analyzing quantitative phenotypic profile

data.

5.1 Clustering Analysis
Clustering analysis is to divide experi-

mental perturbations, e.g., drugs, RNAis,

into groups that have similar phenotypic

changes. As clustering analysis approach-

es, e.g., Hierarchical Clustering [139] and

Consensus Clustering [140], are well

established, their technical details will not

be discussed here. In addition to the

aforementioned software, Cluster 3.0

(http://www.falw.vu/,huik/cluster.htm)

and Java TreeView (http://jtreeview.

sourceforge.net/) are two additional easy-

to-use clustering analysis software packag-

es available in public domain.

5.2 SVM-based Multivariate Profiling
Analysis

SVM classifier was employed for ana-

lyzing the multivariate drug profiles in

[141]. To measure the phenotypic change

caused by drug treatments, the cell

populations harvested from the drug-

treated wells were compared with cells

collected from the control wells (no drug

treatment). The difference between the

control and drug treatment was indicated

by two factors that are the outputs of the

SVM classifier. One is the accuracy of

classification, which indicates the magni-

tude of the drug effect. The other is the

normal vector (d-profile) of the hyperplane

separating the two cell populations, which

indicates the phenotypic changes caused

by the drug. Figure 17 illustrates the idea;

the yellow arrow is the d-profile indicating

the direction of drug effects in the
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phenotypic feature space. Drugs with

similar d-profiles were found to have the

same functional targets, and thus it could

be used to predict functions of new drugs

or compounds.

5.3 Factor-based Multidimensional
Profiling Analysis

In the set of numerical features, some

are highly correlated within groups but

poorly correlated with features in other

groups. One possible explanation is that

the features in one group measure a

common biological process, such as in-

crease or decrease of nuclei size. The

challenge using these numerical features

directly is that biological meanings of

certain phenotypic features are often

vague. It is thus difficult to explain the

phenotypic changes represented by these

numerical features as aforementioned. To

remove the redundant features and make

the biological meanings of numerical

features explicitly clear, factor analysis

was employed in [12]. The basic principle

of factor analysis is to determine the

independent common ‘traits’ (factors).

Mathematically it is formulated by the

following equation.

x11,x12,:::,x1n

x21,x22,:::,x2n

:::

xm1,xm2,:::,xmn

2

666664

3

777775
~Xmn

~mmnzLmkFknzemn

where mmn is the mean value of each row,

Fkn denotes the k factor, and the Lmk is the

loading matrix, which is the coordinates of

the n samples in the new k-dimensional

space. In other words, k factors are

independent and are the underlying bio-

logical processes that regulate the pheno-

typic changes. For example, six factors

representing nuclei size, DNA replication,

chromosome condensation, nuclei mor-

phology, Edu texture, and nuclei elliptic-

ity, were obtained through factor analysis

in [12].

5.4 Subpopulation-based
Heterogeneity Profiling Analysis

In image-based screening studies, het-

erogeneous phenotypes often appeared

within a cell population, as shown in

Figures 2 and 16, which indicated that

individual cells responded to perturbations

differently [142]. However, the heteroge-

neity information was ignored in most

screening studies. To better make use of

the heterogeneous phenotypic responses, a

subpopulation based approach was pro-

posed to study the phenotypic heteroge-

neity for characterizing drug effects in

[13], and distinguishing cell populations

with distinct drug sensitivities in [14]. The

basic principle of the subpopulation based

Figure 15. The graphical representation of cell cycle phase identification.
doi:10.1371/journal.pcbi.1003043.g015

Figure 14. A segment of cell cycle procession sequence. Four cell cycle phases, interphase, prophase, metaphase, and anaphase, appear in order.
doi:10.1371/journal.pcbi.1003043.g014
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method is to characterize the phenotypic

heterogeneity with a mixture of phenotyp-

ically distinct subpopulations. This idea

was implemented by fitting a GMM in the

numerical space, and each model compo-

nent of the GMM represents a distinct

subpopulation. To profile the effects of

perturbations, cells collected from pertur-

bation conditions were first classified into

Figure 16. A representative image of Drosophila cells with three phenotypes: (A) Normal, (B) Ruffling and (C) Spiky phenotypes.
doi:10.1371/journal.pcbi.1003043.g016

Figure 17. An illustration of drug profiling using the normal vector of hyperplane of SVM. The red and blue spots indicate the spatial
distribution of cells in the numeric feature space. The yellow arrow represents the normal vector of the hyperplane (the blue plane). The top left and
bottom right (MB231 cell) images are from drug treated and control conditions respectively.
doi:10.1371/journal.pcbi.1003043.g017
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one of the subpopulations, and then the

portions of cells belonging to each sub-

population were calculated as features to

further characterize the effects of pertur-

bations. For more details, please refer to

[13,14].

6. Publicly Available Bioimage
Informatics Software Packages

A number of commercial bioimage

informatics software tools e.g., GE-InCel-

lAnalyzer [143], Cellomics [144], Cellumen

[145], MetaXpress [146], BD Pathway

[147] have been developed and are widely

used in pharmaceutical companies, and

academic institutions. In addition to the

commercially available software packages,

there are a number of publicly available

bioimage informatics software packages [9],

which provide even more powerful func-

tions with cutting-edge algorithms and

screening-specific analysis pipelines. For

the convenience of finding these popular

software packages, they are listed in Table 1.

It is difficult to summarize all of their

capabilities and functions because many of

them are designed for flexible bioimage

analysis with a set of diverse plugins and

function modules, e.g., Fiji, CellProfiler, Icy,

and BioimageXD. The software selection

for specific applications is also non-trivial,

and the best way might be to check their

websites and online documents. In addition

to the bioimage informatics software pack-

ages, there are other software

packages, including the microscope control

software for image acquisition (mManager

and ScanImage) and image database soft-

ware (OME, Bisque and OMERO.-

searcher). Also, certain cellular image

simulation software packages, e.g., CellOr-

ganizer and SimuCell, provide useful in-

sights into the organizations of proteins of

interest within individual cells. These soft-

ware packages represent the prevalent

directions of bioimage informatics research,

thus their websites and features are worth

checking.

7. Summary

With the advances of fluorescent mi-

croscopy and robotic handling, image-

Table 1. List of publicly available bioimage informatics software packages.

Name Link Basic Functions

ImageJ http://rsb.info.nih.gov/ij/ General image analysis with rich plugins

Fiji (A distribution of ImageJ) http://fiji.sc/ Bioimage analysis with rich plugins

CellProfiler http://www.cellprofiler.org/ Bioimage analysis with rich analysis pipelines

CellProfiler Analyst http://www.cellprofiler.org/ Screening data analysis with machine learning approaches

Icy http://icy.bioimageanalysis.org/index.php Bioimage analysis

BioimageXD http://www.bioimagexd.net/ 3D Bioimage analysis and Visualization

PhenoRipper http://www.phenoripper.org Bioimage analysis for rapid exploration and interpretation of
bioimage data in drug screening

FarSight http://www.farsight-toolkit.org/wiki/Main_Page Dynamic Biological Microenvironments from 4D/5D Microscopy
Data

Vaa3D http://penglab.janelia.org/proj/v3d/V3D/About_V3D.html Bioimage visualization and analysis

Cell Analyzer http://penglab.janelia.org/proj/cellexplorer/cellexplorer/
What_is_Cell_Explorer.html

C. elegans image analysis

AceTree and StarryNite http://starrynite.sourceforge.net/ C. elegans’ embryo cell tracking and lineage reconstruction

Ilastik http://www.ilastik.org/ Image classification and segmentation

Image Quantitators (ZFIQ,
DCELLIQ, GCELLIQ, NeuriteIQ,
NeuronIQ)

http://www.methodisthealth.com/bbpsoftware A set of image analysis software packages for cell tracking in time-
lapse images, and RNAi cell, neuron, neurite and Zebrafish image
analysis

CellCognition http://cellcognition.org/software/cecoganalyzer Cell tracking in time-lapse image analysis

TLMTracker http://www.tlmtracker.tu-bs.de/index.php/Main_Page Cell tracking in time-lapse image analysis

NeuronJ http://www.imagescience.org/meijering/software/neuronj/ Neurite Tracing and Quantification

NeurphologyJ http://life.nctu.edu.tw/,microtubule/neurphologyJ.html Neuron image analysis

NeuronStudio http://research.mssm.edu/cnic/tools-ns.html Neuron image analysis

CellOrganizer http://cellorganizer.org/ Synthetically model and simulate fluorescent microscopic cell
images

SimuCell http://www.simucell.org Synthetically model and simulate fluorescent microscopic cell
images

PatternUnmixer http://murphylab.web.cmu.edu/software/PatternUnmixer2.0/ Model fundamental sub-cellular patterns

mManager http://valelab.ucsf.edu/,MM/MMwiki/ Control of automated microscopes

ScanImage http://openwiki.janelia.org/wiki/display/ephus/
ScanImage%2C+Ephus%2C+and+other+DAQ+software

Control of automated microscopes

OME http://www.openmicroscopy.org/site Image Database Software

Bisque http://www.bioimage.ucsb.edu/bisque Image Database Software

OMERO.searcher http://murphylab.web.cmu.edu/software/searcher/ Content-based bioimage search

KNIME http://www.knime.org/example-workflows Workflow system for data analytics, reporting and integration

doi:10.1371/journal.pcbi.1003043.t001
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based screening has been widely used for

drug and target discovery by systematical-

ly investigating morphological changes

within cell populations. The bioimage

informatics approaches to automatically

detect, quantify, and profile the phenotyp-

ic changes caused by various perturba-

tions, e.g., drug compounds and RNAi,

are essential to the success of these image-

based screening studies. In this chapter, an

overview of the current bioimage infor-

matics approaches for systematic drug

discovery was provided. A number of

practical examples were first described to

illustrate the concepts and capabilities of

image-based screening for drug and target

discovery. Then, the prevalent bioimage

informatics techniques, e.g., object detec-

tion, segmentation, tracking and visualiza-

tion, were discussed. Subsequently, the

widely used numerical features, pheno-

types identification, classification, and

profiling analysis were introduced to

characterize the effects of drugs and

targets. Finally, the major publicly avail-

able bioimage informatics software pack-

ages were listed for future reference. We

hope that this review provided sufficient

information and insights for readers to

apply the approaches and techniques of

bioimage informatics to advance their

research projects.

8. Exercises

Q1. Understand the principle of using

green fluorescent protein (GFP) to label

the chromosome of HeLa cells.

Q2. Download a cellular image pro-

cessing software package, then download

some cell images, and use them as

examples to perform the cell detection,

segmentation, and feature extraction, and

provide the analysis results.

Q3. Download a time-lapse image

analysis software package, then download

some time-lapse images, and use them as

examples to perform cell tracking, and cell

cycle phase classification, and provide the

analysis results.

Q4. Download a neuron image analysis

software package, then download some

neuron images, and use them as examples

to perform dendrite and spine detection,

and provide the analysis results.

Q5. Implement the watershed and level

set segmentation methods by using ITK

functions (http://www.itk.org/) and test

them on some cell images.

Answers to the Exercises can be found

in Text S1.
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Glossary

N Cellular phenotype: A cellular phenotype refers to a distinct morphological appearance or behavior of cells as observed
under fluorescent, phase contrast, or bright field microscopy.

N Green fluorescent protein (GFP): GFP is used as a protein reporter by attaching to specific proteins, and exhibiting bright
green fluorescence when exposed to light in the blue to ultraviolet range.

N Fluorescence microscope: A fluorescence microscope is an optical microscope that uses higher intensity light source to
excite a fluorescent species in a sample of interest.

N High content analysis (HCA): HCA focuses on extracting and analyzing quantitative phenotypic data automatically from
large amounts of cell images with automated image analysis, computer vision and machine learning approaches.

N High content screening (HCS): Applications of HCA for screening drugs and targets are referred to as HCS that aims to
identify compounds or genes that cause desired phenotypic changes.

N RNA interference (RNAi): RNAi is a biological process, in which RNA molecules inhibit gene expression, typically by causing
the destruction of specific mRNA molecules.

N Automated image analysis: Automated image analysis aims to quantitatively analyze images automatically by computer
programs with minimal human interventions.

N Object detection: Object detection is to automatically detect locations of objects of interest in images.

N Blob structure detection: Blob structure detection is to detect positions of objects of interest that have circle, sphere like
structures, e.g., nuclei and particles.

N Tube structure detection: Tube structure is to detect centerlines of objects that have long tube like structures, e.g., neuron
dendrite and blood vessel.

N Object segmentation: Object segmentation is to automatically delineate boundaries of objects of interest in images.

N Object tracking: Object tracking is to identify the motion traces of objects of interest in time-lapse images.

N Feature extraction: Feature extraction is to quantify the morphological appearances of segmented objects by calculating a
set of numerical features.

N Phenotype classification: Phenotype classification is to assign each segmented object into a sub-group that has distinct
phenotypes from other sub-groups.

N Cell cycle phase identification: Cell cycle phase identification is to automatically identify the corresponding cell cycle
phase that a given cell is in according to its morphological appearances.
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