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Molecular genetics presents an increasiizg1.y complex picture of the genome and biological function. Evidence is 
mounting for distributedfiinction, redundancy, and conabinatorial coding in the regulation ofgenes. Satisfactory 
explanation will require the concept of a parallel processing signaling network. Here we provide an introduction 
to Boolean networks and their relevance to present-day experimental research. Boolean network models exhibit 
global complex behaviol; self-organization, stability, redundancy and periodicity, properties that deeply charac- 
terize biological systems. While the life sciences must  inevitably face the issue of complexity, we may well look to 
cybernetics for a modeling language such as Boolean izetioorlcs iuhich can manageably describe parallel process- 
ing biological systems and provide a fraineioorlc for the groLviiig accunaulation of data. We finally discuss experi- 
mental strategies and database systems that will enable mapping of genetic networks. The synthesis of these ap- 
proaches holds an immense potential for  new discoveries on the intimate nature of genetic networks, bririgirag u s  
closer to an understanding ojcomplex molecular physiological pi-ocesses like brain development, and intractable 
medical problems of inzrnediate inaportaiice, such as neurodegenerative disorders, cancer, and a variety of genetic 
diseases. 0 1996/ohri Wiley & Sons Inc. 

Key Wards: Boolean networks, attractors, genetic networks, gene expression, molecular signaling, development, 
molecular evolution, biological rhythms 

BNTRODUETIOM 
his article is written with the intention of facilitating 
communication between experimental and theoretical 
approaches to understanding complex living systems. 

Far from representing a departure from reductionism, the sys- 
tems approach to life science attempts to reduce observed 
phenomena to higher level dynamic organizational structures. 
Since the goal of science is to provide “algorithmic compres- 
sion,” we may well ask ourselves what mechanisms underlie 
order in complex living systems. 

While this general synthetic view has been held by re- 
searchers for some time [30, 31, 46, 64, 651, the paucity of ex- 
perimental data and lack of computing power to calculate 
complex models has slowed progress in this direction. Today, 
great advances in molecular biological techniques have 
opened the window to observing living organisms on their 
fundamental organizational level, the expression of genes. 
This perspective is especially important to the understand- 
ing of development, in which the information coded in the 
DNA is decompressed into the multiple molecular dimensions 
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of the phenotype. The overwhelming experimental data evi- 
dencing complex and yet opaque multigenic and pleiotropic 
regulation perhaps provides us with more new questions than 
answers. However, if we consider combining the quickly ad- 
vancing technologies of computing and molecular biology, we 
may find ourselves challenged with the unique opportunity 
of making the complexity of life more transparent. Here we 
discuss Boolean networks' as a beginning framework for cre- 
ating an abstract computational language that may allow us 
to describe the foundation of complexliving systems, genetic 
networks. The depth of description was chosen to address a 
mixed audience of theoretically and experimentally oriented 
readers. 

DEFINITIORI OF W GENETBE NETWORK 
The information for constructing and maintaining the mo- 
lecular components of a living organism essentially lies within 
its genes.' Genes directly encode the proteins which make up 
cells and synthesize all other building blocks and signaling 
molecules necessary for life. During development, while the 

receptor signaling factor 
synthesizing enzymes A and peptide hormones 

proximal network 

The Extended Genetic Network 

intercellular signaling 

hewels of signaling in the genetic network. Genes regulate the expression of genes 
through their products, i.e., mRNAs and the resulting proteins. The regulatory func- 
tions involve signaling processes at different levels within and between cells, Since 
all of these processes are dependent on the expression of their genes, the mRNA 
gene expression pattern of a cell or  system of cells defines the state of the signaling 
network. 

organism is largely isolated from environmental fluctuations, 
we observe the unfolding of a genetic program controlling 
proliferation and differentiation of cells into tissues. Consid- 
ering that protein function depends on its structure (gene se- 
quence), and on its interactions with other proteins and their 
reaction products which are in turn dependent on their struc- 
ture, the pattern of gene expression essentially determines the 
functional state of the system (Figure 1). Consequently, the 
organism could be mapped into gene expression patterns. 
Development may hence be viewed as a computational pro- 
cess governed by the structure of the genome and defined ini- 
tial conditions, i.e., the physical protein and molecular envi- 
ronment which sets the machinery of controlled gene 
expression into motion. 

omputation in genetic networks manifests itself in the 
interactions of cis acting regulatory DNA sequences of 
genes with trans acting elements, i.e., regulatory pro- 

teins (transcription factors, enhancers, suppressors, facilita- 
tors, etc.), the products of protein coding regions of genes. 

Hence, genes regulate the expression of genes, forming a 
genetic network. This is shown in the schematic Figure 
2. Gene A codes for trans A factor protein, which regu- 
lates gene B by binding to the cis B element. Gene A is 
analogously regulated by gene B, forming a simple gene 
A-gene B feedback loop, the simplest case of a network. 
A wide of range of experimental evidence shows us that 
the regulation of gene expression is combinatorial (see 
below). This is schematized in Figure 2 as interactions be- 
tween genes B and C in the regulation of A. D a m  acting 
proteins may interact which each other before binding 
to cis regulatory elements [Figure 2(b)], or may bind to 
several cis elements directly leading to combinatorial 
structures [Figure 2(c)]. In addition, signaling interactions 
also take place beyond the proximal network of cidtrans 
interactions (Figure 1); we observe the levels of the intra- 
cellular network, involving processes such as protein 
phosphorylation cascades, and the intercellular network 
based on signaling factor and receptor interactions. To- 
gether, these levels of information processing form a feed- 
back system of gene regulation (Figure 1). 

Modeling C m t k  Networks 
To better understand the outcomes of complex interac- 
tions within genetic network we need to find a symbolic 
language that reduces the network to its principal fea- 
tures. This step is facilitated by malung the following ide- 
alizations of certain properties of genetic networks. a) The 
state of each gene or element can be reduced to either 
QIZ (1) or ~ fS(0 ) .  Molecular interactions are often based 
on a sigmoidal relationship, approximating the onloff 
idealization with increasing Hill coefficient (discussed in 
[36]) .  b) As shown above (Figure 2), the combinatorial 
control of gene expression can be reduced to a wiring 
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diagram causally linking the partici- 
pating elements. c) The computation 
of these interactions can be idealized 
by combinatorial or Boolean rules, 
analogous to the observation that 
specific interactions between cis and 
t r m s  elements control the expression 
of a gene. d) As a first approximation, 
all elements update their states syn- 
chronously. The implications of this 
simplifying assumption will be dis- 
cussed below. Together, these prin- 
ciples serve as the foundation for 
Boolean networks. 

DEHMISFIOM OF A 5BIOLEWM NETWOPIK 
The basis for Boolean networks was 
introduced by Turing and Von 
Neumann in the form of automata 
theory [67,69,70]. A Boolean network 
is a system of interconnected binary 
elements; any element in the nehwork 
can be connected to a series of other 
elements. Each individual element 
uses a logical or Boolean rule to com- 
pute its value based on the values of 
the other elements it is connected to. 
The state of the system is defined by 
the pattern of states (on/off) of all of 
its elements. All the elements are up- 
dated synchronously, moving the sys- 
tem into its next state. According to 
the deterministic Boolean rules, each 
state can only have one resultant 
state. 

The system, E, is defined by the 
number, n, of elements contained 
within it, each element's array, I,  of k 
inputs and each element's Boolean 

tram Afactor oene 
mRNA 4 

Eiemental interactions of gene regulation and their representation as wiring diagrams. Genes code for 
trans-acting proteins, which in turn control the expression of genes through interactions with cis regula- 
tory sites located on the DNA molecule. The cybernetic foundations of such networks are represented by 
wiring diagrams, shown on the right, and the computational rules determining the inputioutput relation- 
ships (see text). a) Positive feedback system between genes A and B. Boolean input rules: k =  1 rule 2 (see 
Table 1)  applies to both A and B. b) and e )  Same as a), except that C inhibits and overrides the stirnulatory 
action of B on A. This is accomplished by protein-protein (b) or protein-DNA (c) interactions, which are 
computationally equivalent (identical wiring diagrams and rules). Boolean input rules: Band C, k=  1 rule 2; 
A, k =  2 rule 4 (see Tables 1 and 2). 

function or rule, B. A particular state, S ,  of the system is de- 
fined as the set of values of the n elements. The total system 
space, R, is defined as all possible N combinations of the val- 
ues of the FZ elements in S. 

n element, E, may adopt the discrete value, u, of 0 or 1. 
A particular state of the system, S, is defined by the 
values of the n elements: S = W E ,  ... uE,, I .  The total system 

space, R={S, ... S,} is composed of N number of states: 
N = Zr'. Each element receives an ordered array, I ,  of k input 
connections, where k may differ from element to element. 
Each of the input connections, I, is mapped to a selected ele- 
ment E of the n elements, as defined by the input array: 

The state defined by the values of the input elements 
I = { I l . . . I ~ } .  

represents a subset of total state space and may adopt 2"per- 
mutations. The Boolean function, B, associated with each el- 
ement maps each of these permutations to an output value 
of 0 or 1. The total number of possible Boolean functions is 
therefore 2". 

The system is computed in discrete time steps. Therefore, 
the state of the system at any t + 1 is defined as follows: 
S(t+1) = ~ ( S ( ~ ) , [  ~ ~ . . . I r ~ 1 , { ~ ~ . . . ~ , ~ I ) .  

General Boodean ~ e ~ w o P h $  
In general Boolean networks there are no constraints to the 
number of inputs, the wiring attributed to each element and 
its rules. Often they may be chosen at random [5,75, 761. 
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Bandmnly Wiped Bookm IeeTwoMs 
A simplification can be introduced by having each element 
in the network receive the same number of inputs, i.e., con- 
stant k. At this stage the network is still considered to be ran- 
dom since the inputs to a particular element may be chosen 
freely from among all elements 131,361. 

6 e M w  Automata 
n cellular automata, the inputs are restricted to the imme- 
diate neighbors of a particular element. Much work has 
been devoted to cellular automata and the stable and meta- 

stable structures they exhibit in their space time patterns [40, 
41, 73, 74, 75, 771. However, the immediate neighbor wiring 
simplification of cellular automata cannot be considered to 
be representative for the wider variability of connections al- 
ready known to exist in genetic networks. 

Boolean Networks as a Language 
Iok Describing Genetic Networks 
In the following sections we will discuss principal macroscopic 
features of Boolean networks using simple specific examples. 
Only larger, more complex and less penetrable networks 
will show all these features in combination, such as the ran- 
dom networks studied by Kauffman 1361. However, by iden- 
tifylng essential structural features of idealized Boolean net- 
works we will gather an understanding of patterns that we 
may recognize in living genetic networks once data on com- 
plex, massively parallel processing genetic networks becomes 
available. 

G m k m  Nf?tWOPi% 
Input, output and computational rules for genetic networks 
are defined as follows: 

1. Butput. The protein encoded by a gene or its enzymatic 
product constitutes a trans-acting element or the output. 
In the furthest sense (extended genetic networks, Figure 
I), this encompasses all regulatory interactions between 
proteins and their products that result in an alteration of 
gene expression. 

2. Input. Cis acting elements (on the DNA) respond to the 
trans signal. 

3. Computation of output. Several trans and cis acting ele- 
ments are linked together resembling the input array. The 
input to a gene is then computed according to a combina- 
torial function, equivalent to the rule in Boolean networks. 
Whether this computation takes place on the cis, trans, or 
on both functional levels in a living genetic networks is ir- 
relevant for the outcome as modeled by the rule [Figure 
2(b) and (c)]. 

The simple example of h e  i z  = 3 genetic network of Figure 
2(b) or (c) will help to illustrate basic genetic network behavior. 
Let us assume that A activates B, B activates A and C, and C 

inhibits A, overriding the activation of A by B. As an arbitrarily 
chosen initial condition element A is on, while B and C are off 

$euweflbh? W E P ~ U S  Pa~a/h?d 8mnpw8afim 
By looking at this simple system sequentially, one may argue 
as follows. Since A is on, B must be turned on in the next step. 
B then turns on C. Next activated C must inhibit A. Inactive A 
will turn off B, B will then turn off C. In the final state all ele- 
ments are off and will remain off. This apparently logical se- 
quential argumentation is actually a fallacy which can easily 
be exposed by computing the network in a parallel fashion. 

To enable parallel computation we will precisely formu- 
late the n = 3 network according to Boolean network defini- 
tions below. The wiring diagram in Figure 3(a) [correspond- 
ing to the “biological” implementation shown in Figure 2(b) 
and (c)] describes the functional connections between par- 
ticipating elements. For A, B and C, the number of inputs, k,  
corresponds to 2, 1, and 1, respectively. The possibilities for 
rules are as follows. 

1. k = 1 rules. There are 2k=  2 input permutations. A total of 
22h = 4 combinations of input values with outputs define 
the k = 1 rule table (Table 1). Since each entry row of the 
rule table is expressed as a string of 1s and Os, it corresponds 
to a binary number which is generally referred to as its 
decimal or hexadecimal equivalent. For 11  [Figure 3(a)l, B 
will be on orily if A is on, and C will be on only if B is on, 
equivalent to ic = 1 rule 2. 

2. li = 2 rules. 22A = 16 combinations of outputs with 2” = 4 
inputs define all the Booleanfunctions. In the C1 example, 
A is turned oil by B and turned off by C which overrides B, 
i.e., only if B is on and C is offwill there be an activation of 
A. This corresponds to k = 2 rule 4 of Table 1. 

C1 is now completely defined [Figure 3(a)] allowing the par- 
allel computation of the time course (space time patterns may 
be hand calculated for simple cases; more complex networks 
require the appropriate software such as the outstanding 
DDLAB by Andrew Wuensche [78]). The results shown in Fig- 
ure 4a clearly differ from the fallacious, sequential attempt at 
predicting the outcome of this network. It illustrates a funda- 
mental principle of Boolean networks: all network starting 
states will reach a cycle or attractor (see below). In this case, 
we observe a dynamic attractor of period 2 also displayed 
graphically in the right panel; the system alternates between 
two states that predict each other as their outcomes. Further- 
more, the remaining states of this system lead to an alterna- 
tive, single-state or point attractor [Figure 4(b)]. 

n a system like the above simple example it is not difficult 
to calculate the behavior of the network, a’lthough the 
superficial sequentid attempt has failed to provide the cor- 

rect outcome. Genetic networks as manifested in living or- 
ganisms will be orders of magnitude more complex. Under- 
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a c1 

a s c  

A3 B3 C3 A1 Bi CI 

k 3 1 2 3 1  1 
B 76 2 14 84 2 2 

Wiring diagrams and rulesfor network examples. The lines con- 
nect the upper row of output elements (time = t )  to the lower row 
of input elements (time = t t 1). The no. of inputs ( k )  and the 
pertaining decimal rule (B) are shown underneath each wiring di- 
agram. For an explanation of rules see text and Table 1.  a) cl, 
identical to example shown in Figure 2. For element A, rule 4 is 
used in C1 and C l a ,  while rule 5 applies to 21 b. b) x4. El and 
C3 are coupled through a unidirectional, nonfeedback interaction 
to one another in this composite network, C3 controls an "exter- 
nal" input , as depicted in C2, a transitional variant. c) El& Re- 
dundant variant of 1 1  generated by complete duplication. Wiring 
and rules accommodate or crosslinks between the element and 
target pairs, as expected for functional duplication. 

I 

Selected rules. k corresponds to the input number. Inputs are counted 
from right to left in the wiring schemes (Figure 2). The rule defines the 
output for all possible input value combinations. All k =  1 rules and select- 
ed k >  1 rules corresponding to the discussed examples are listed. Large k 
= 6 rules are only shown as hexadecimals. Note the repetitive nature of the 
k >  3 rules, each of which includes several andor orgroupings. 

1 
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standing at higher le\,ela o l  complexity \? i l l  reqiiii-e cleiii tor- 
iliulations ofinodels in a language such as Boolean nc>t\voi-ks 

that are dependably computable (Figure 4 ) .  

Interacting or Coupled Genetic Networks 
One m a y  also consider the alternati\re that there are "con-  
partmerits" within a cell's genetic network which \\:ill ieecl criti- 
cal inliuts into each other that determine trajectories a i i c l  
atti-actors. 'This concept should he useful with respect to 1111- 

ders t an d i ng "genetic p rogranis" that de t e tiii i n e s peci t'ic ce I I 
types. A specific cell may stiai-e n iany  expressed genes witl I 

other cell types. One m a y  envisiori sets of genes that can be 
coexpressed in various conibinatioiis to define ii cell type. 
Could gcnes be expressed in modules, reqti iretl for certain 
functions s u c h  as basic metabolism (housekeeping genes), 
i inmune receptors, secretory apparatiis, electrical excirabil- 
ity, conti-actile apparatus, ctc.'? Attractors (see below) in ge- 
nt,tic networlts would contribute stability t o  these u n i t s  and 
may be controlled by a few regulatory inputs rncdiated bysig- 
nalingfactors. Consider cg . ,  the cell cpclc a t t i  actor (discussed 
be I ow) , \Y I1 ich is ;ic t ive i n  o t In e in\) i se i i  n ire I ;I t c ~ l  cel l  types, i . e., 

a 
iteration A B C 

'I 1 0 0  

2 0 1 0  

3 1 0 1  

4 0 1 0  

Time -space patterns and basins of attraction for network El. Time space 
patterns are shown in the left  panel. The basins of attraction of Z 1  ( Z l a )  
include all eight possible states of the system (right panel) a) two-state 
dynamic attractor (repeating pattern), basin iiicludes three states. b) point 
attractor, basin iiicludes five states. 

. 

coexists i v i t h  other cell-specific sets of genes in 21 variety O T  
unrelated stem cells a n d  other cell types that retain the c21- 
pncity for cell division. 

11 exaniple of hvpothetical iiiteractirig iiel\a.orlc c o n -  
pa 1- t m e  i i  ts i I lus t ra  tes COLI 11 I e d  bell n\,,i i ) I-. E Ic ni en t A ,  of A 1 1  of the pi-evious exartiple may receive ii rcgulatoi.\; 

input from clcirient C;, deliiiingZ2 (1-igiire 3) .  C ,  niuy bc part 

together defining system 14. Aftci- two iterations from the i n -  
tin1 state, ~ h r  ;itli.;ic'toi-s o l ~ 3  (a  two s t a ~ c  attractor, bold) aiid 
21 ( a  six stat(> :itti-actoi., i fa l ics ,  i-c:scinblcs y.1 11) liave been 
reached ( T d i l e  2 ) .  'lbgethri-, rhq, f o t n i  ;I six state atti-actor in  

of ;Inotht~l- I lclwork, c3. 23 can govern L h C  trajectol-), of 21, 

the tola1 s\istclrl 14 (l l i ldPrlinPd~. 

Salient Features of Boolean Networks 

Attractors, Stability and Redundancy 
One of the key leatures oF 13oole~un i ietwoi-ks is that all states, 
i.e., on/ojf"piitterii of its elenienls at ii p a r i i c i i l a i -  t ime point, 
lead to or x c  part  o l  an  attractor. A n  a t i i - a c ~ ( i i  i:; ;I clisti-ibutctl 
sti-iictiire, based 011 ii state (a point attractor) (it  series ofstates 
(a  d\miimic attractor) \chich repeats o i l  itself; i t  can be coii- 
side red ;I t i  in e - sp ace ni ap w I1 i c h j o i 11 t I y describes the o sci I I :I - 

t i o n s  o l  s ta tes of all pertinent \xi-ialile~, I'hr~re is :I siniplr r:~- 
tionalc for explaining this pi-operty 131 1 ,  11s ;~ l i -e~~d~~irnpl ied  by 
the above examples. A lkmlenn network occupies a limited 
iiiinibcr of states, N ,  contained iii the total s!'stein space (L. 
'1 hr systein niust w e n t i i a l l y  1-cach ii state i t  has occupied be- 

Iteration A, B, C, A, B: C, 

1 1 0 0 0 0 0  
2 0 1 0 0 0 0  
3 1 0 l _ o O O  
4 0 1 1 1 0 0  
5 1 0 1 1 1 0  
6 0 1 1 1 1 1  
7 1 0 1 0 1 1  

~ 

Trajectory of coupled network 1 4  The table follows one trajectory 
of C4 frorn the totality shown in Figure 5 (follow outlined states for 
this example). After two iterations the six-state attractor of the sys- 
tem has been reached (underlined). The main attractor is foi-rned 
by coupling the attractors of subsystems 33 and XI (see Figtile 3 
for breakdown) V 3  falls into a two-state attractor (bold). while X 1  
reaches the six-slate attractor (italics) of rtile variant 1 1  b (Figures 
3 and 5). Essentially, systems 2 1  and 23, originally only capable 
of producing two-state attractors, liave united to yield a six-state 
attractor. 
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fore since i t  cannot Ieach moi-e 
than c\i states. The numbei~ of  
steps required to rcar:h ;I ire- 
peating state can thei-rfoi.e b e  
no inoi-c than 1%'. Since each 
state, S ( 1 ) ,  iineqiiivocally de- 
t c 1-mi ncs t l i  e fol lowi rig s t a t e 
S ( I  + I ) ,  o n w  thc s)~steir i  has 
rcached a repeating s t a t e  a11 
fol lo\ving s t a t c s  r r i r is t  I - ~ C I I I -  

a lso  i n  t he  siiiiie order, loi-m- 
ing t h e  attractor. All the states 
leading to o r  part of this 
attractor coiistitute the basin 
of attraction. 

Tlic basins of attraction for 
all possible states of X I ,  Z:?, 
and 1 4  are shown in Figure 5. 
' rhree of all possilile eight 
states of 1 1  (saine as 11 a )  fall 
into the two element attractor 
(1 2)  \vhile the reinaining lic-c 
states lall into the 5 = (0, 0, 0; 
point attractor ( 1 . 1 ) .  I f  i -an-  
domly altered by a single 
bittlip, the system e x h i b i h  a 
propensity for I'alling into the 
"all o f '  point a r t l a c t o r  siricc 
this basin o f  a t t r ac t ion  iii- 

altt:riiig the k = 2 rulc 3 1  ( 1 l a )  
govei-ning eleltierit A lo rule 5 
(A being constitutively oil uii- 

less inhibitory C, is also O H ;  

C lb] ,  we obtain a six eleinciit 
attractor (1  3 1 ,  and retain the 
two element attractor (1.2).  
which lost one state in its ba- 
sin of attraction (not shown; 
hee table for basil) of attraction 
characteristics). 'fhis deinon- 
strates that not all attractors 
of a system are affectcd by a 

rule variation. 1 3  has three 
basins of attraction, two point 
attractors each limitcd to i t s e l f  
(3.1 and 3.2) ,  and a t\vo state 
a t  t ra c to r which in c l  I i d es the 
remaining six eleiiie'r;ts in  its 
basin (3.3). 

Tlic uni direr t i on al , nor1 - 
l'ccdbacli connection bctwcen 
13 and C1 (IFigui-e 31 leads to 
hybrid attractors in x 4  (Figure 

cludcs f3%1 of Q (T:I~I~c 3 ) .  Hy 

~ 
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Basins of attraction and subattractor composition of the coupled network x4. All basins of attraction of 24 cover- 
ing the 64 possible states arc shown. Each attractor of 24 IS a hybrid [indicated by arrovvs) of the attractors of 1 1  
(dotted outline i i i  center) atid X3 (dotled peripheral outlines), clemonstrating conselnotion of subnetwork character- 
istics. Attractor pairs 4.5 & 4 6 and 4 7 & 4.8 exl i i l i i i  tlie same iespective subattractor compositions. See Table 3 for 
attractor distributions. Note. attractors 1 1 aiicl 1.2  comprise original 1 1  Attracior 1.3 is derived form z 1  b (r i l le  5 
loi eleiiietii A, Figure 3) 

System 
'1 a 

Lib  

n N attractoi 
3 3  1 1  

1 2  
1.3 
1.4 

3 3  3.1 
3.2 
3 3  

6 64 4 1  
______-~  ~ 

4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 

states in attractor 

total of N 
~~ 

1 13% 
2 2541 
6 7 5 'in 

2 25% 
1 13O6 

~ 

1 13% 
2 2596 
-1 2% 
2 3 Yo 
2 3% 
6 9% 

2 3 0 0  
6 9 "10 
6 9 4 0  

~ 

2 3 yo 

states in attractor basin 
~ 

~~ su battractor 
total % of N composition 

~ ~~ -~ 
5 639'0 
3 3 El Y" 
6 7 5 4/0 

2 25% 
1 13yo 
1 1300 
6 75% 
5 ao,'o 1.1, 3.1 
3 5 "b 1.2. 3.1 
2 3 'i0 1.2, 3.2 
6 9 Yo 1.3, 3.2 
3 13% 1.2, 3.3 
7 1 1 % 1.2.  3.3 
1 4  2 2 % 1.3, 3.3 
19 30"h 1.3, 3.3 

______ 

~~ ~ ~~ 

Attractor aiitl basin 01 attraction composition of networks 11-24. The i n m b e r  of states ancl percentage of total 
state space occupied by each of the attractors and its basin are s h o w  for all systems (attractor numbering as in 
Figures 4-6). For coupled systems the subattractors, i.e., attractors of component systems. are listed. 2 1  is divided 
into Xla and 21 b, characterized by k =  2 rules 4 arid 5 for eleinent A. respectively (see Figlire 3). It is clear that 
attractors vary largely in the fraction of the total states that they capture in their basin. Furthermore. individual 
attractors i i i  24 caii share the saine subattractor makeup (compare to Figure 5)  hi such cases the size of total state 
space occupied by these coinpound attractor basins incteases accordingly. e.g.. 4.7 and 4 El (529/0) 
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5 ,  Table 31. All o f  the eight atrraciors of 1 4  are combinations 
of the attractors 1 . 1 - 1 3  with 3.1-33, as also pointed out lq, 
tlie ari-o\vs in Figiii-e 5. Fut-thei-inore, the attractoi- pairs 4.5 & 
4.6. and 4.7 & 4.8 are each equivalent to a single hybrid (1.2 & 
3.3, and 1.3 & 3.3, respectively), due to as)/nctii.onizution phase 
shift (exatnine attractor bit-patterns in Figure 5). 'This moclcl 
shows Iio\~v srnall systerrts of elenients can [orin a \vliole while 
retaining some or their individuality, e.g., inoclules o l  gcwes 
united i n  a system of coupled ;ittractoi-s. 

VVe see how each network must reach oiic of several pos- 
sible attractors depending on the initial conditioiis. B u t  this 
has important implications, since attractors confer stability 
and resistance to perturbation, qualities fundamental to bio- 
logical systems. Any state within a particular basin of attrac- 
tion can be switched to any other state within this basin, wi th-  
out changing the global characteristics or the system, besides 
nrcrely "resetting" the clock. Radical perttirbations, such as 
I-andomly switching all elements ofa state will cause the sys- 
tern to find an  attractor with a probability that is solely deter- 
mined by the pi-opoi-tion of the states lying in the basin of at-  
traction to the total number ofsystcin states. 

Despite the general resistance of attractors to point alter- 
ations in  states oi- "hittlips," the boundaries of cach basin ol 
iitti-;iction must have a t  least one state i n  \,vhicli :i singlr bitflip 
will determine which basin the system \ \ r i l l  fa l l  into. Considci- 
that each state can rcach any other state by ;I s e k s  o f  point 
al tera t io 11 s 136 I . ' I l  t e re To ire, I I o I )  asi i t of ;it t mc t i o n co 111 1) iris i n g 

fe\\e!- siates than :V can include ail poilit alterations ot each 
state. 1 lence, no bnsiri of'cifrrricrioii  of ;I systcin having niow 
than one attractor can be complrrely resistant to point alter- 
a t  io ns i i i  principle. Ho\veve r, ci r t r m  or's in se I ec t ed s ys ten1 s 
i i u v  exhibit such resistance. 

esides stability these systems can demon.;trate redun- 
dancy, i.e., renioval o l an  eleinent n iay  not greatlyalfect 
the global behavior of the systerri. 'l'his is anothei- im- 

poi-tant characteristic w e  expect from biological systems. Re- 
d uiid a 11 cy Iicco nics p a I-t i c ti I a 1-1 y app a re t i  t fo I I a I-ge i- sys te nis 
t I1 ;I t :ire t I I o 1-c i i h  ti t i  da n L I y \vi I-cd I I1 21 11 the exa 111 p I es disc tissed 
aliove [:+$j. Thc 111 ice olrcciundancy is that the size ol'the t iel- 
w o r k  iiiiist inci-t:;is(: ovri- thc, niiniinril numbci- of eleinents re- 
(1 tii red to "co 111 p ii t ?'' a p a  i t  i (:I I I a I 111 11 c t i on, anio ti n t i ng to a re - 
c l  tic t io 11 i II s h  o r t - te r i n  eltici P n cy. I'ra (: t i ca l  I y, this m ay be 
achieved b y  the parallel, intiepentlent woliition of clcineilts 
overlappiitg i i t  ftiiictioii arid \\wing [:MI, o r  simply by gene 
dLiplication. Thc latter ritecltartisrri occurs abtindantly in the 
genome and is the primar!. evetit \ 'b l i ic l i  Ir:itis to tlie rvolu- 

tion of gene families (discussecl helo\\/). ' 1 ' 1 1 1 ~  is exemplified 
for 1 1  by doubling each element and its cvrring, aitd conibin- 
iiig the original rules using t he  or operation to guarantee ftinc- 

t ional  overlap I I lS ;  Figure 3(cjl.'I'lie attractors for t h i s  I I  = 6 
systein are identical to X I ,  except that tlie basin of attractioii 
lias increxed due to ii larger numher of initial states (corn- 
p x e  basin 1.3 ;!I I-igiire 5 to basin ;I in Figurc 6 ) .  By eliminat- 

Atlractor stability in the redundant network 116, a duplication variant of 1 1 .  a) six-state basin of attraction of X I 8  ( n  = G see Figure 3) b) The attractoi 
is unaffected by the deletion of elements A, and B, ( n  = 4) c) Breakdown of attractor by removal of 6, and B' (one of the three possible detrimental, 
homogenous deletions) 
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ing any one element the global be- 
havior of this system will not 
change. Eliminating two elements 
will not lead to a change in the 
attractor (Figure 6, basin b) except 
in the relatively unlikely event that 
a homologous pair is targeted (Fig- 
ure 6, basin c). In sum, for 1, 2, 3, 
and 4 random deletions (which also 
decreases the system size!), the 
attractorwill remain stable in loo%, 
80%, 40%, and 0% of cases, respec- 
tively. 

Networks may exhibit second 
order stability, manifested in the 
partitioning of frozen regions, akin 
to structural and housekeeping 
genes. These may be treated as de- 
pendent modules situated down- 
stream offluctuating feedback net- 
works, either as the result of forcing 
structures (see below; [31]) ,  or 
through radial wiring combined 
with homogenous rules (x7,  Figure 
7). Gene duplication could gener- 
ate such structures. In example C7, 
the feedback networks C3,Z;1, and 

c4 

k j 3 3 3 3 3 3 3 1 2 6 6 6 6 6 6 3 1 1 6 5 4 3 3 3 3 3 3  
~ C O C O C O C O  9 9 $ N 0 0 0 0  0 0 0 -  N N m a) m g  2 2 2 2 2 

N C O m  
m C O m  
N C O m  m o o  
N C O  

m 

0 0 0  0 0 o m  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

m a m a ,  

g g g g g g  :s! 
0 0 0 0 0 0  N 2 2 2 2 2 s  
2 2 2 2 2 2  9 

$! 2 2 2 2 2 2  

Modular network of regulatory and dependent elements, c7. Radially, nonfeedback wired elements with 
redundant rules behave as dependents of regulatory elements, resembling structural or "housekeeping" genes. 
The no. of inputs (k) and the pertaining hexadecimal rules (B) are shown underneath each element. C4 (wiring 
shown in bold) forms the regulatory feedback module (identical to Figure 3 c). Elements P, Q, and R constitute 
C 6  (wiring shown as thin, black lines) as a dependent feedback network, i.e., each element receives inputs 
from A,-C, (connected by andoperators) in addition to connections within this module. Dependent non-feed- 
back modules S, T, and U (elements S1-6, Ti-6, and U1-6, respectively; wiring shown as gray lines): S and T 
are radially wired to all elements of 13 and C6, respectively. 13 projects onto S with a rule equivalent to "at 
least two elements of three must be on". The rule "at least one element of three must be on" mediates activa- 
tion of T by 1 6 .  U is analogously wired to both 1 3  and C6 using a rule which combines the rules governing S 
and T with an andfunction. 

a 4.1 b 4.4 6 4.6 d 4.8 
S C 3  U C1 C6 T S 13 U C l C 6  T S 23 U C 1 C 6  T S C 3  ks Z l C 6  T 

Selected trajectories of c7. Four different initial states were chosen, leading to attractors 4.1, 4.4,4.6, and 4.8 of 1 4 ,  respectively (compare to Figs. 5, 9). 
In each case, all elements of S, T, and U are initially off. The examples show that the states of S, T, and U strictly depend on the x4 attractors and their 
subattractor composition with regard to X i  and C3. S, T, and U result in the either all off, (4.1), all on (4.8), only T is on (4.4) or only S is on (4.6). U is only 
on if S and T are on by definition (see text). 
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76 - are hierarchically coupled to coiitrol [lie clcpendent mod-  
(iles S ,  -1, and U. We (loosely) t lef int~ t l e /x~/ /de /r~  nct\uorks (l3, 
S, T, and [ J )  as those highly controlled by inputs froin anothrr 
iietworl;, Ji.ecll)ocli networlts as those with intcbriial crosslinks 
embedded in their s t ructures  ( 2  I. 13,  and  X G ) ,  a n t l  

rior/ji.rdDnc/i networlts as those which solely receive i l l p i i t s  b r i  t 
do not project 10 other internal components (S,T, a i r t l  U). E a c ! ~  
elonicnt oftlie dependent nerworlts CG, S, and  T is wired to all  
three elements of the corresponding controlling net\vorlc (see 
Figure 7 for rules). Control of dependent network U is esseii- 
tially an m i d  combination of S and '1, 'The simple or and c i r i t l  

rules ai-c reflected in the repetitive binary and hexadecimal 
code for the complete /i = 4,  5, and  G rules ('l'able 1; Figure 7). 
2 6 ,  withorit receiving a rccurring regenerative input from X I ,  
will fall into t h e  all o~j'attractor, a s  exemplified by tlie trajec- 
tories in Figure 83 and c. Alternatively, the all 017 inputs o l X l  
will regenerarively activate 16, transducing tlie signal t o  de- 
pendent iictworlts T and U [Figure 8(b) and ([I)]. Essentially, 

-~ ~~ ~~ - . .. 

tlic attractors of13  and X1 determine tlie states of S, T, ar id  U. 
either directly or a s  mediated b y I 6 .  This serves as an analogy 
for the generation of different cell types during de \dopment .  
Depending on the initial gene expression state of regulatoi-y 
gcncs (23  and E l ) ,  analogous to n pi-ogcnitor cell, the systeni 
tollo\vs a transient pattern leading i t  to a cell-type specific 
attract o 1, c h a irac tc I- i zed by co in b i 11 at i o 11 s 01  st 1-iic t iiral genes 
(S, T, and U). Figure 9 s h o w s  a selected trajectory ofL.7 and its 
position in the total basin ofattraction. Al l  states in  this basin 
will lead to permanent activation o l S ,  T, and U lcoinpnre to 
Figurr 8(il)l. N o l e  tha t  e ~ e i i  l'or I-elatively large n u n i b e r s  of in- 
piits (/<= 6) ,  a selwiion ofsiinplc 1-irlcs ti-om the vast iule space 
('Table 1 )  r a n  lead to easily predictahlc, nonchaotic behavior. 
\Wi e t h er s ti cli s t ru ct ti res l i e  ge t ie I-n t ed by 3)  radial wiring w i t h 
redundaiit rilles due to gene duplicxtion, 13) random rules and 
\y i ring \v i t h L I ie ac L io 1 I o I' canal izi n g fu 11 (:ti o n s o r  Iiom ogene - 
i ty  clusters 1361, or c) a cornbination thewof,  may h e  dcter- 
mi net1 once da t :I on  parallel 11 I-ocess i ng genetic n t' tworks b e - 

comes nvailable 

Example basin of attraction for 27. For clarity, the dependent modules S ,  T, and U are 
limited to a single representative elemeni. The inset shows the trajectory following a se- 
lected initial state (purple = on, green = off), corresponding to ihe marked nodes in the 
basin oiattraction graph. This tree reaches the attractor after eight iterations. Note that S ,  
T, and U are permanently on once the attractor is reached (compare to attractor 4.8. 
Figure 8). 

Spontaneous Order and Evolvaliility 
in Randoni Boolean Networks 
A iiuiiiber o f  studies by I iauffmnn antl others have 
investigated U o o I can  iie two rlts' self- orga 11 i z i I ig b c- 
Iiavior and di-awn suggestive parallels to tlie behav- 
ioi of biological systems (reviewed in 1721). Order ill 
Boolem rietworlcs can lie measured in t e r m  of the 
sni;iIIiicss and stability of the stnle space, i.e., the 
at tractors , that t lie sys tern n a t u  rally boxes itself into 
outol'thc\~ast array ofstates available to it. Attractor 

les c m  h e  intcrpi-ctccl a s  the coordinabd pattern 
of gene expi-ession of a distinct cell type 1321. h i t ,  

not all Boolean networks rxiiibit this I t i d  of order. 
I<auflnian's wvorlt invesligates several characteristics 
of Boolcan nets that correlate with (tic appearance 
of spun ta tieoiis order, and t he mechan is iiis by  which 
they \*Vork. 

k = 2 Networks 
l 'he first of these characteristics i . ,  I onnectivity. This 
has been analyzed in  ;I number of networlts o f  vari- 
ous connectivities in which each element receives a 
constant number of /k inpiits. Specific wiring and 
functions are assigned rmdotnly. The results show 
that for networlts of high connectivity (li > 51, order 
does not emerge: the number of attractors increases 
proportionally with the size of tlie network (N), and 
;ittrachr lengths increase exponentially with N. For 
networlts ofconnecti\iiiy k =  I ,  the number and size 
of attractors are also unmanageably large. For I; = 2 
networlts, however, the average attractor number 
and size are sui-pi-isingly circumscribed: both vary 
with the square root of the nen,vcirlt size 1351. Inter- 
estingly, in a wide variety of organisms the number 
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of distinct cell types similarly varies with genome size 1311. 
k = 2 networks also show stronger resistance to perturba- 

tion than either more highly-connected or k = 1 nets [33,34]. 
Such behavior parallels biological systems’ undeniable sta- 
bility in the face of random environmental noise. Addition- 
ally, when a perturbation does push a Ic = 2 system into a new 
basin of attraction, the number of other basins which it can 
fall into is fairly small. This phenomenon is suggestive of 
branching patterns observed in development. 

CnaIiz&g Wt?s and F O P E ~ B ~  S ~ P M E ~ M P ~ S  
Although k 2 2 Boolean networks may show strong self-orga- 
nizing capacity, actual biological networks demand models 
with higher connectivity (see below). There are two basic 
mechanisms, both operating in similar fashion, which suffice 
to extend orderly behavior into networks of higher li through 
forcing structures and homogeneity clusters [16,31,71]. Forc- 
ing structures result from canalizing rules, defined as Bool- 
ean functions in which at least one particular value of at least 
one input location suffices to completely determine the 
function’s output, regardless of what values any of the other 
inputs may receive. The Boolean rule or serves as an example: 
this function is canalizing to an output of 1 for an input value 
of 1 at any input location. (One should note that of the 16 pos- 
sible k = 2 Boolean rules, 12 of them are canalizing, a greater 
proportion than at any other level of connectivity.) 

network with a high proportion of canalizing rules is 
very likely to develop forcing structures. A forcing struc- 
ture has a strong tendency to fall into a state in which 

each of its elements permanently takes on its canalized value. 
Large blocks of elements thus appear which are permanently 
frozeninto the onor ofstate [33]. Fixed into the 017 state, these 
may correspond to permanently active “housekeeping” genes 
in the cell. The frozen blocks effectively partition the system 
into smaller, functionally isolated areas consisting of active, 
fluctuating elements. This model suggests that cell types may 
differ through distinct patterns of activation of whole gene 
packets. Such an architecture has been shown to strongly cor- 
relate with the orderly dynamics that k= 2 nets exhibit: namely, 
small attractor sizes and resistance to perturbation. 

H@m@gemiby Ckmws,  P > Pc 
Homogeneity clusters [31] provide a second mechanism 
which suffices to create orderly dynamics in higher connec- 
tivity networks. As we have seen, an element with IC inputs 
has an associated Boolean function with 2’‘ positions. A cer- 
tain fraction of these positions in any given function takes on 
a 1 response. The internal homogeneity of a network, P, mea- 
sures the amount that this fraction deviates from 0.5 ( P  as- 
sumes that each function in the networkhas the same level of 
homogeneity). Various studies on lattice networks with near- 
est-neighbor connectivity (cellular automata) show that if the 
internal homogeneity P is greater than some critical value, F‘, 

frozen blocks of elements similar to those created by forcing 
structures appear. Order emerges by the same basic mecha- 
nism as above. 

Bvlolvadiiliry 
Evolution through natural selection presupposes two basic 
phenomena. Clearly, there must be competing systems ofvari- 
ous fitness levels from which to select, and the systems must 
be such that the mechanism of selection can increase their 
fitness. The theoretical results from Boolean network studies 
suggests a powerful potential source of initial order 1311. Given 
a system consisting of combinatorially acting input-output 
elements, such as the one implemented in genetic networks, 
order simply emerges for free. It need not be the infinitesi- 
mally rare product of eons of chance events. Order can occur 
quite easily, and, in fact, quite inevitably. 

he extent to which selection modifies the spontaneous 
order of a Boolean network depends on how strong 
selectional forces are, determining to which degree bio- 

logical genetic networks will resemble the random networks 
described above. The means by which genetic networks 
evolve, e.g., through gene duplication and point mutation, 
should also have a strong effect on the appearance of the fi- 
nal products as we see them today. 

R@gi-~ht@~y k W c  0% cis aml tkans d@me~a%s 
To a great extent, current research in experimental biology has 
been devoted to understanding the mechanisms of gene r e p -  
lation, underlying the critical phenomena of cell growth and 
differentiation. A model of tram acting proteins which inter- 
act with cis regulatory DNA elements is now established to 
explain the most proximal events in gene expression control 
(see Figure 2). Protein trans elements are referred to as tran- 
scription factors acting as activators (enhancers, facilitators) 
or inhibitors (suppressors, silencers). Cis elements of DNA 
begin with short trans-factor binding seqiirnce motifs on the 
promoter and have been extended to include enhancer, 
suppyesser or silencer regions, often far removed from the 
promoter on the DNA molecule. Transcription factors have 
evolved into large families based on conserved structural pro- 
tein motifs able to interact with specific segments of DNA or 
other regulatory proteins (reviewed in 1261). While several in- 
puts may be required to regulate one gene (miiltigeraic regu- 
lation), a particular gene may also be able to affect the ex- 
pression of a wide variety of downstream genes (pleiotropic 
regulation; for a general overview of cisltratzs mechanisms see 
[l]). Some examples of higher vertebrate genes allow estimates 
of minimum number of functional inputs, equivalent to kin 
network terminology, and outputs: minimum inputs - kera- 
tin, 5 [48], c-fos, 4 [54]; minimum outputs - NRSF, 10 [56]. 

The combinatorial nature of gene regulation as modeled 
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by Boolean networks has been confirmed in experiments char- 
acterizing multi-input control of gene expression in bacteria 
132,361 and, in a pertinent example, fruit fly development [ 11. 
Further examples of this phenomenon are now being seen in 
higher vertebrates, such as the multigenic control of the im- 
mediate early gene, c-fos. C-fos, itself a transcription factor 
connecting to a wide variety of downstream genes [3], has 
been mapped for some of its inputs and rules in a transgenic 
mouse model [54]. Constructs were prepared in which four 
different promoter elements, SIE, SRE, FAP, and CRE have 
been expressed individually and in combination. The results 
demonstrated, contrary to previous assumptions, that these 
elements do not act independently. Mutation of any single 
element resulted in a loss of tissue specific and stimulus- 
evoked gene expression. IE, SRE, FAP, and CRE therefore 
appear to be linked by the and operator, leading the authors 
to propose the ITC (interdependent transcription complex) 
hypothesis. Whereas the or function could be computed by 
elements acting in isolation, a molecular complex is required 
to calculate the and function. In general, ITCs could be re- 
sponsible for the physical computation of rules beyond or for 
Boolean networks. 

n example for an inhibitory gene which outputs to a 
group or module of genes (pleiotropic control; com- 
pare to radial wiring of 27, Figure 6) is found in the 

regulation of neural development. The (trans) neuron- 
restrictive silencer factor (NRSF) suppresses transcription 
of neuronal genes (neuron-specific ion channels and trans- 
porters, synaptic proteins etc.) by interacting with the (cis) 
neuron-restrictive silencer element (NRSE; [56]). NRSF is 
expressed in many nonneuronal tissues, glia and neuronal 
progenitors. The latter lose NRSF while maturing to neu- 
rons, concomitant to the induction of neuron-specific genes. 
The authors have proposed the role of NRSF as a “master 
gene,” we prefer the term focal gene, overriding stimulatory 
inputs to neuron-specific genes and thereby inhibiting their 
expression. Inhibition of such an inhibitor, constituting ac- 
tivation, should then facilitate neuronal differentiation. The 
role of such an activator has been attributed to Hel-N1, a 
necessary gene for the development of the nervous system. 
Hel-N1 protein binds to the 3’ untranslated region of the 
Id mRNA, which encodes a transcriptional repressor that 
is expressed in undifferentiated neural precursors 1381. It is 
interesting to note that the regulatory mechanism involved 
here is not based on a DNA-protein, or protein-protein (as 
shown in Figure 21, but on a protein-RNA interaction re- 
sulting in either inhibition of translation or degradation of 
the mRNA. From the structural network perspective, NRSF 
and Id provide examples of how a canalizing function 
“if on, then downstream element will be ofl independent 
of other input states,” radially wired, can control a larger 
module of genes. Furthermore, there are copious examples 
for canalyzing rules in addition to those discussed here, 

suggesting that this ordering principle is abundantly utilized 
in higher vertebrate gene regulatory  architecture^.^ 

ther conceivable regulatory mechanisms would satisfy 
feedback and control requirements for building a ge- 0 netic network. When considering the basic principle that 

a sequence of nucleotides in DNA determine the structure of 
the macromolecules that in turn regulate DNA, one is led to 
wonder why the RNA macromolecule is excluded from directly 
interacting with DNA and modulating gene activity by this 
straightforward means. Aside from its role as an information 
carrying molecule, RNA can fold into complex structures such 
as rRNAs which make up ribosomes and tRNAs. Could mRNA 
or mRNA-protein complexes, analogous to ribosomes, also 
reasonably play a role in transcriptional regulation? RNAs 
should have an advantage over proteins for this function since 
they are also capable of base-pairing with DNA. This could 
provide immediate specificity for regulatory interactions. Lim- 
ited experimental evidence for RNAs playing a direct regula- 
tory role is only available on the level of translational control 
and in determining mRNA stability [38, 421. Will the future 
show examples for more intricate RNA-gene expression in- 
teractions? 

The Exx8ended Genetic Network hma- and lntrcellular 
!&wiling Netwwks Bunmling Into the Genetic Network 
Genetic networks extend beyond a single cell in the control of 
proliferation and differentiation during development and in 
the coordination of cellular activity in the organism’s interac- 
tion with the environment. These functions require regula- 
tory mechanisms beyond direct cis-trms interactions. Pro- 
teins produce intercellular messenger molecules, which are 
in turn received by other cells and transduced into intracellu- 
lar biochemical responses (Figure 1 ) .  Typically, a signal recep- 
tor protein either directly or via intracellular messenger mol- 
ecules (Ca?’, CAMP) changes the phosphorylation states of 
regulatory target proteins. A cascade of phosphorylation me- 
diated protein activation and inactivation in turn causes genes 
to switch on and ofs Signaling interactions mediated by mes- 
senger molecules and protein phosphorylation show interest- 
ing dynamic behavior, such as Ca2+ oscillations, which have 
been studied extensively as a paradigm for the application of 
theoretical systems analysis in biological signaling ([59]; re- 
viewed in [61]). However, the dynamic behavior of e.g., Ca2+ 
oscillations is embedded in a general network based on 
crosstalk between a variety of biochemical signal transduc- 
tion components 1591. This line of research is presented with 
the acute problem that models explaining the dynamics of 
these parameters will be difficult to test. The necessary ex- 
perimental techniques for the massively parallel measure- 
ments of biochemical parameters are neither available nor 
within reach in the foreseeable future. 

However, it is an arbitrary choice whether to look at bio- 
logical systems as their projection in intercellular signal space, 
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protein activity space or gene expression space. Once the vari- 
ables have been defined in a particular parameter space, other 
elements can be folded into the functions governing these 
parameters. From the view of genetic networks, all events on 
the level of production of signaling molecules, protein phos- 
phorylation etc. will end up in determining which genes are 
activated or inactivated [27]. Based on cooperativity and 
threshold behavior, the binary simplification may also be ex- 
tended to these biochemical interactions [4]. Therefore, the 
computation of extended networks could be achieved by in- 
cluding all higher level molecular functions in the formula- 
tion ofwiring diagrams and Boolean rules. For instance, a gene 
encoding a signal molecule synthesizing enzyme may exert a 
positive feedback on its own production, provided the genes 
for its receptor and the necessary intracellular signal trans- 
duction molecules are active. This would correspond to and 
connections between the involved elements. Such a feedback 
mechanism has been considered for the regulation of GAD 
(glutamic acid decarboxylase; catalyzes the synthesis of the 
neurotransmitter GABA) in the developing rat spinal cord [62]. 
GAD acts through the diffusible intercellular signal GABA 
(y amino butyric acid), and signaling mechanisms involving 
GABA receptor operated C1- channels, possibly Ca2+ channels, 
CaZ+ dependent protein kinases and phosphorylation acti- 
vated transcriptional regulators. This signaling chain could 
lead to the activation of GAD mRNA expression. From a Bool- 
ean network standpoint it would suffice to simplify this 
scheme into a rule that incorporates the exact combination 
of expressed genes; the expression of a gene is reduced to a 
function of the expression of genes (Figure 1). Relative to the 
genetic network perspective, proteins will inadvertently ex- 
ecute their fcnction, no matter how intricate, and are only 
relevant from the standpoint of the computation of the state 
as defined by the gene expression pattern. 

Re&miancy and Erne Knocka~Ps 
iscoveries in the molecular genetic bases of cell func- 
tion has spurred the desire to reduce each function of a 
cell to anunderlying gene and attribute a functional role 

to each newly discovered gene. It is compellingly argued that 
if a gene has been carried and conserved through millions of 
years of evolution it should fulfill an irreplaceable role in the 
organism. To this effect the approach of single-gene knock- 
out animals, presently restricted to mice, has been introduced. 
This technique makes it possible to routinely introduce dis- 
rupted gene constructs into the germline to create homozy- 
gous offspring deficient for the expression of aparticular gene 
(reviewed in [ 181). Indeed, several of these mutations prevent 
full development of the animal (reviewed in [9]), as expected 
for essential genes. 

However, in many instances it has been demonstrated that 
elimination of certain genes leads to a fully functional animal 
with no easily identifiable change in phenotype. Functional 
deletion of c-fos, discussed above as a transcription factor with 

far reaching implications for differentiation and proliferation, 
has not produced significant changes in the behavior of em- 
bryonic stem cells [151. These cells were able to differentiate 
into a wide range of cell types in tissue culture and also in 
chimaeric mice. In Boolean network language c-fos, an im- 
mediate early gene which is transiently expressed during sig- 
naling [3], resembles a redundant regulatory element located 
in a tree leading to an attractor. 

Structural genes can be viewed as generally redundant 
from a narrowly construed network perspective, since they 
receive inputs but provide no immediate regulatory outputs 
(compare to S, T, andU, Figure 7). However, they may provide 
an output in the context of the extended network by permit- 
ting aspects of cell function necessary for survival or further 
development. In the case of glial fibrillary acidic protein, a 
highly conserved intermediate cytoskeletal filament of astro- 
cytes (a glial cell of the central nervous system), no dysfunc- 
tions in animals lacking this gene, whether in the nervous sys- 
tems or otherwise, could be observed [22]. Apparently the role 
of this protein in organizing the glial cytoskeleton must be 
covered by other filaments, suggesting complete redundancy 
of cell and genetic network function. 

nother means by which redundancy has been achieved 
is demonstrated in the study of the inyf-5 and myoD 
transcription factors in muscle development [55]. While 

deletion of either of these genes leads to no apparent changes 
in phenotype, the dual knockout results in a complete loss of 
skeletal muscle and skeletal muscle specific genes. It appears 
that myf-5 and inyoD are effectively linked by an or function 
as they form inputs to other genes that control skeletal muscle 
development. 

Interestingly, certain genes, although active in a wide vari- 
ety of cell types, appear to be necessary for only a few special- 
ized functions limited to small systems of cells. A much stud- 
ied signaling protein, Ca?*/calmodulin-dependent protein 
kinase I1 (CamKII), which has been implicated in mediating 
many of the general effects of the ubiquitous intracellular sec- 
ond messenger, Ca2+ [as], including transcriptional regulation 
1241, was targeted in a gene knockout experiment. Unexpect- 
edly, despite this protein's centrality to signaling, the mutant 
animals developed and survived normally and showed no di- 
rect physical abnormalities 181. However, learning ability was 
slightly curtailed, and they behaved more aggressively than 
controls. Apparently, while the function of CamKII is redun- 
dant in most cells in which it is expressed, certain cell sys- 
tems depend on it for fine-tuning of function. This example 
for limited redundancy can be incorporated into the genetic 
networkmodel, in that an element may be redundant in trees 
leading to some attractors, but not to others. For example, in 
C7 (Figures 7 and 81, element A, is not necessary for control- 
ling the stimulation of C1 by C3, but is required for activation 
of S and U. In summary, a true understanding of function on 
a molecular level must incorporate multigenic causes and 
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pleiotropic effects [ lo ,  571. Only through a network perspec- 
tive can this deeper insight be found. 

Gene BupHcation and the Esnera%ior of Wed~ndan~y: 
“WaHat~om on a Theme” and frozen Ri?g,Joirg 
Stability and redundancy are a characteristic feature of genetic 
networks. The experimental evidence suggests varying degrees 
of redundancy for functions of specific genes as deduced from 
knockouts (discussed above). Redundancy at its most basic 
level is already observed in random Boolean networks within 
certain bounds of connectivity and rules [34]. Such a network 
will by chance have overlapping functions as defined by the 
or operator connecting elements with shared inputs. We have 
shown an example in which redundancy is simply generated 
by identical duplications of elements [Figures 2(d) and 61. Al- 
though the experimental evidence suggests that purely ran- 
dom general redundancy in living genetic networks may be 
limited (discussed above; gene knockouts), ample evidence 
exists for gene duplication in various contexts [42]. Funda- 
mentally, example ClS [Figures 2(d) and 61 corresponds to a 
diploid organism carrying two copies of the genome. Usually 
diploidy is discussed in terms of sexual reproduction and gen- 
erating variability during meiotic chromosome crossover, but 
this is relevant only to the germ line. For somatic cells, dip- 
loidy plainly offers a spare gene copy in case of a single failure 
due to mutation. 

urther redundancy in the haploid genome is offered by 
gene duplication. Abundant evidence exists for the pres- 
ence of identical, active copies of genes, altered gene cop- 

ies which form the foundation for gene families, and nonfunc- 
tional pseudogenes (for an overview see [42]). Duplications 
may also result in partial copies of genes, providing opportu- 
nity for independent spreading of regulatory and protein cod- 
ing domains. The significance of partial gene duplication is 
underlined by the high expression of retrotransposons (10% 
of the total genome, [l]), which are responsible for copying 
and transferring DNA segments. Not surprisingly, 
retrotransposon-mediated genetic alterations are also asso- 
ciated with tumors and genetic diseases [2]. 

A particularly interesting example for an evolving dupli- 
cation has been discovered in the dual, nonallelic rat insulin I 
and I1 genes, both generating an identical protein form in the 
rat. These are regulated in parallel in the pancreas, reflecting 
true functional redundancy [ZO]. However, insulin expression 
in the brain is exclusively derived from the insulin I1 gene 1111, 
suggesting that the inputs to both genes overlap onlypartially. 
Could this be the beginning of the evolution of a brain-spe- 
cific insulin gene? 

Regulation of the keratin gene family demonstrates how 
variations in the regulatory and protein coding regions of the 
gene have led to epithelial cell type-specific expression pat- 
terns through combinatorial computations of inputs. While 
common cis elements assure that keratins are only expressed 

in epithelia, variable cis elements direct cell-specific keratins 
associatedwiththe diversity of epithelial phenotypes [481. This 
regulatory constellation may be viewed as analogous to a di- 
versified variant of the S, T, and U structural element clusters 
of 2 7  (Figure 7). The evolution of gene families analogous to 
keratins has been generally implied in tissue evolution [45], 
providing further evidence for genetic network growth by du- 
plication and variation as an underlying mechanism in the 
evolution of higher organisms. 

n summary, theoretical studies have shown that order and 
complexity in genetic networks confined by small numbers 
of inputs, canalizing and P > Pc rules, may resemble ran- 

dom genetic networks, especially in phylogenetically early or- 
ganisms (see above; [31, 351). However, more highly evolved 
networks reflect overlapping wiring and rule patterns based 
on element kinships. The high number of inputs and expan- 
sion of rule space, all potentially driving the system to disor- 
der, may effectively be reigned in by the principle of “varia- 
tions on a theme” (see above; discussed in [37]). Future studies 
in Boolean networks may be inspired by this interpretation. 

It should be reemphasized that “redundancy” in the above 
context is to be understood not as “nonbeneficial,” “useless” 
or “superfluous,” but more akin to functional overlap and 
backup (see [lo, 571). If redundancy confers stability, it may 
increase the fitness of an organism and may therefore repre- 
sent a selective advantage. There is nothing excessive about 
having a spare copy of an important functional component. 
Although the molecular and evolutionary mechanisms that 
are responsible for redundancy, gene duplication and emer- 
gence of gene families are still being debated [29,37], the evi- 
dence for the wide-spread existence of these phenomena is 
compelling. 

Oscillatws and Abbrrctws 
We have discussed an important property of Boolean networks 
above: each state inexorably leads to an attractor, conferring 
stability to the system. Ln terms of genetic networks, dynamic 
or point attractors correspond to fully differentiated cells in 
which the expression of the cell type specific genes has 
reached its final stable state(s) (Figure 8; [36]). The detail of 
our knowledge on dynamic gene expression patterns in cells 
does not yet allow us to distinguish between attractor types. 
One may conjecture that dynamic attractors should be abun- 
dant in a wide variety of cell types, because point attractors 
occupy a much smaller region of attractor state space and thus 
are simply that much less likely to occur. Since there are no 
apparent functional benefits of point attractors over dynamic 
attractors, there is no reason to postulate special selection 
pressure for the elimination of dynamic attractors. However, 
dynamic attractors have been studied in cases in which they 
represent an integral functional property, the cell division 
cycle and biological rhythms. 

The cell cycle attractor encompasses elements of genetic 
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and protein activity networks. In higher vertebrates the anal- 
ogy to genetic networks is particularly useful since the regu- 
lation of gene expression plays important roles in entering and 
maintaining the cycle. Cells must pass the G1 /S checkpoint 
in order to irreversibly enter the cell division program (for a 
general overview see [I ,  42, 501). This step requires that the 
network enters a state which is part of the basin of the cell 
cycle attractor. It is strictly regulated by positive (e.g., growth 
factors; [52]) and negative (e.g., retinoblastoma protein, a tu- 
mor suppresser) modulators to guard against uncontrolled 
growth leading to tumors. A group of genes which are induced 
by growth factor inputs are the D cyclins [58], stronglyimpli- 
cated as regulators of G l / S  progression and as oncogenes 
(cancer-causing genes) when mutated 1471. They are part of 
the delayed earlyresponse to growth factors following the in- 
duction of early response genes like jun  and fos [ 1,471, analo- 
gous to an attractor tree. Most importantly, mRNAs coding 
for cyclins D1, D2 and D3 oscillate during the cell cycle [7]. D 
cyclins and their role in the cell cycle correspond to the gen- 
eral predicted behavior of elements in a dynamic genetic net- 
work attractor. 

ecent work on the genetic network components under- 
lying circadian rhythms suggests that dynamic attractor 

,concepts will need to be invoked to gain insight into 
these phenomena. Although multigenic control is implied by 
the paucity of single gene effects in screens of circadian 
rhythm mutant populations, the per gene in Drosophila (fruit 
fly) andfrq in Neurospora (a mold) satisfy the requirements 
for an element -which lies in the attractor and is necessary for 
its progression (reviewed in [13]): a) the perandfrcltranscripts 
oscillate with the daily cycle, b) deletion of these genes re- 
sults in mutants that loose their circadian rhythmicity, c) con- 
stitutive overexpression eliminates cycling, suggesting that the 
regulatory mechanism is on the level of gene expression rather 
than protein activity by posttranslational modification [49]. 
Furthermore, mutations in per usually either shorten or 
lengthen the cycle period, suggesting that altered protein 
forms only affect how quickly per completes its part in com- 
puting the next state in the attractor. Although little is under- 
stood of the number of elements, wiring and rules that par- 
ticipate in the circadian attractor, it has been suggested that 
per and frq exert a negative feedback on their transcription, 
either directly or through follow-up steps in the attractor [13, 
23, 491. 

The circadian cycle has been suggested to be the result of 
coupling of shorter attractors by per [12]. Such ultradian 
attractors exhibiting 5-15 h periods remain after deletion of 
per and are also present in normal flies. One may invoke prin- 
ciples similar to the coupling of xl to C3 in C4, resulting in 
the transformation of a pair of two state attractors into a six 
state attractor (Table 2; Figure 5). Could per, analogous to ele- 
ment C, of x4  (Figure 2), play a role in coupling attractors to 
increase their state cycle lengths? Moreover, per has the abil- 

ity of resetting the clock, analogous to the control of C1 over 
C6 (Figures 7-9), except that per acts alone and not through a 
combinatorial function. This is experimentally manifested in 
per’s control over the phase of the circadian oscillator [14]. 

Probably more cell and tissue autonomous clocks exist 
than are now known.These may share some genetic elements, 
since alterations in the circadian clock in Drosophila are 
known to affect the periodicity of short ultradian rhythms [13], 
such as the male courtship song (- 1 min) and timing of lutein- 
izing hormone pulses (-30 min). Perhaps the biological 
rhythms examined so far, rather than representing unusual 
and highly specialized functions, reflect the inherent prop- 
erty of deterministic genetic networks to form attractors. As 
more molecular components of the circadian attractor be- 
come known, combinatorial genetic network models maypro- 
vide an opportunity to clearly explain how these interact to 
form a highly regulated and stable timing mechanism. 

Binary Stat@$ and 8ynchronization in 66?m?Bic NI?~WQP& 
Two main idealizations in the design of Boolean networks are 
the assumption of binary states, and the synchronous updat- 
ing of element states in unitary time steps across the network. 
These simplifications allow the model to provide a transpar- 
ent demonstration of the salient features of complex systems, 
without becoming lost in the mechanistic details and quirks 
of individual interactions. We have turned to Boolean net- 
works to find answers to how a living system can coordinate 
the action of large numbers of genes in parallel, unerringly 
reaching the same result in ontogeny and maintaining order 
in the face of an ever fluctuating environment. Can living sys- 
tems accomplish this because they have evolved features akin 
to the simplifications that allow Boolean networks to exhibit 
complex rather that chaotic behavior? Do Boolean networks, 
by crystallizing state and time values into discrete elements, 
capture essential features of living systems without oversim- 
plifylng them beyond recognition? 

or one, cooperative molecular interactions with increas- 
ing Hill coefficients or in combination with positive feed- 
backs provide a close approximation to binary behavior 

(discussed in [4, 21, 28, 361). While one may observe grada- 
tions in temporally changing parameter values with sensitive 
experimental techniques, the resulting threshold behavior will 
create avirtual onloflswitching network. However, there is no 
experimental evidence, pro or contra, for tightly synchronous 
processing. While the discrete progression of time may be ac- 
ceptable depending on the resolution provided by the time 
“binning” interval, absolute synchronicity is a different issue. 
First of all, it is not clear how large kinetic variations are in 
gene regulatory processes [39]. Also, since one causal link be- 
tween elements may involve several steps (e.g., transcription, 
translation, protein phosphorylation, protein complexforma- 
tion, activation of downstream genes), while another parallel 
interaction may operate more quickly, it would not be accu- 
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rate to calculate both steps in the same iteration. From a bio- 
logical standpoint, there should be no advantage for gene 
regulation processes to march in lock-step. As long as the du- 
ration of these processes is largely reproducible, timing could 
be reasonably coordinated. However, considering the intro- 
duction ofvarious levels of noise, one may seriously question 
how the apparent temporal coordination of genetic network 
processes such as ontogeny, biological clocks etc., is achieved. 

A possible answer may lie in a judicious choice of network 
wiring and rules with respect to phase sensitivity. The 
attractors ofClb (Figure 5, attractor 1.2 and 1.3, rule 5 for ele- 
ment A) demonstrate the role of synchronization. If the ele- 
ments ofthe 2 state attractor, 1.2 (Figure 5), are not processed 
exactly in parallel-say, if in the (1,0,1} state, element B were 
to be turned on (due to A) before either A or C were turned ojJ 
resulting in states {I, 1, l}, {O ,  1, 11 or (1, 1, 0}-attractor 1.2 
will be abandoned for attractor 1.3. However, in case of the 
sixstate attractor, 1.3, the elements do not need to be updated 
simultaneously; they can be calculated at leisure in any or- 
der. Slight variations in timing, easily imaginable in biologi- 
cal systems due to noise, would not affect the sixstate attractor, 
but would drop the states of the two state attractor into the 
six state attractor basin. This process would be irreversible, 
clearly demonstrating how noise in Boolean networks could 
actually be used to stabilize the system or drive it into a fa- 
vored conformation 13 11. Could self-synchronizing rules and 
wiring underlie observations such as checkpoints in the cell 
cycle, and the stability of biological rhythms and genetic net- 
work structures in general? 

nlonger time scales, phase insensitivity may be granted 
in specialized cases, but would become absurd if taken 
too far. Coordination in ontogeny is required in the sense 

that an activator must appear while the receptor window is 
open. This may not always involve feedbacks and therefore 
requires accurate internal timing or inputs from a central time- 
keeper. Again, in Drosophila the per gene has also been im- 
plied in controlling developmental timing, but is not clear 
whether its function is more centralized or local in nature 1131. 
On the other hand, as discussed above, per can reset the clock, 
thereby overriding other clock components, and making it 
phase independent. One should also differentiate between 
phase independent inputs (coupling of 1 3  to C6, discussed 
above) and self-synchronizing rules and wiring, although both 
may be required for coordination and stability to noise. These 
features together offer a solution to the synchronous updat- 
ing problem. If the system cannot progress to the next state 
without the critical update, if noise sensitive attractors fall into 
noise-insensitive ones, if outside inputs override internal 
states and become phase insensitive, the system is self-syn- 
chronizing and should essentially be modelable by Boolean 
networks that exhibit these features in wiring and rules. An 
immediate undertaking in Boolean network research would 
be to define such rules and wiring and test to which degree 

they improve the robustness of the network. Complementa- 
rily, these reflections on synchronization in Boolean network 
behavior have suggested interesting and potentially useful 
structural features that may be sought out by experimental 
genetic network researchers. 

hese conclusions will still hold up if the definition of a 
Boolean network were to be extended to include deter- 
ministic timing parameters in order to enable more re- 

alistic simulations of living genetic networks [53, 66, 681. It 
would not be difficult to introduce a phase shift parameter in 
genetic network models; e.g., i fA = on and B = on at t = 0, and 
C =  on at t = 1, then D = on at t = 2. Or, taking an extended half 
life of e.g., C into account, the following relationship could be 
defined; ifA = on and B = on at t = 0, then C =  on between t = 1 
and t = 4. Since these modifications could be achieved in a 
discrete manner, the essential characteristics of Boolean net- 
works, i.e., determinism and attractor formation will not be 
affected. Alternatively, phase and time lags could be modeled 
by introducing virtual “carrier” elements that would uphold 
or delay a function beyond a direct causal link. After all, Bool- 
ean networks are capable of universal computation. But this 
approach would disrupt the direct correlation between ele- 
ment and expressed gene, important for a consistent analogy 
between theoretical and experimental networks. The state 
space opened up by the introduction ofphase and lagparam- 
eters is even m x e  vast than what has been considered so far, 
again leading to the question of how order and complexity 
can be sought out of so many possibilities. However, arguing 
as before that original order could plausibly have been formed 
in small, random networks [3 1,361, duplication and variations 
of a theme may serve as a sure foundation for network order 
as parameter space is increased. 

Experinemtal Design l o r  Extkasteeeg 
%he AFE%li%eEtWP% of G%iUetiE !btW@kk$ 
Genetic networks offer an extraordinary opportunity for the 
exploration of biological systems for what they are, parallel 
processing molecular systems. Boolean networks as they now 
stand provide us with a concise description of essential quali- 
tative features of combinatorial networks.While we anticipate 
that the language of Boolean networks will evolve further as a 
direct means of modeling aspects of living genetic networks, 
much territory in experimental science may be explored now 
with emerging technologies for the massively parallel mea- 
surement of gene expression. On the cellular level, the sensi- 
tivity of RTPCR (reverse transcription polymerase chain reac- 
tion) combined with a fluorescent endpoint could be used to 
measure gene expression in single cells with FACS (fluores- 
cent activated cell sorter) analysis [39,63]. Distribution of the 
expression level of a constitutive or induced gene in a ho- 
mogenous cell population will provide insight into the quan- 
tal or continuous nature of mRNA expression and the kinet- 
ics of induction, two important questions regarding the nature 
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of gene regulatory mechanisms. If dynamic attractors are 
prevalent, more genes that fluctuate on the individual cell level 
should be found. In an RTPCRlFACS scan, such genes would 
produce a ratio of expressinglnon-expressing cells that cor- 
responds to the attractor time interval during which the gene 
is active. 

The expression level of a gene is the elementary state vari- 
able in a genetic network. In the extended interpretation of 
the network (Figure 1) all regulatory functions funnel into a 
combinatorial code that determines whether a gene will be 
turned on or 08 The genetic network as formulated here can 
be experimentally accessed by measuring the expression of 
genes on the level of  their mRNAs. While the parallel mea- 
surement of large numbers of biochemical or physiological 
system variables generally represents a formidable challenge, 
the characterization of mRNA levels is now possible and only 
depends on the automation of existing technologies such as 
the ultrasensitive RTPCR. It has been shown that quantitative 
RTPCR of a small gene family can provide data of sufficient 
quality to allow mathematical modeling of a developmental 
gene expression regulatory process ([GZ]; also discussed 
above). The same experimental strategy in combination with 
robotics could be used to measure the expression of gene fami- 
lies. Assays could realistically be conducted in sets of 100, e.g., 
a combination of 10 genes with 10 mRNA samples, requiring 
only ten sets of reactions for the characterization of the ex- 
pression of 100 genes. Further increase in scale following im- 
proved automation and anticipating the sequencing of new 
genes could begin to approximate an expression fingerprint 
covering the total number of genes possibly expressed by a 
cell type (-10,000; see [I]) .  The contribution of robotics tech- 
nology in making this approach economical would have to 
be matched by an equal gain in reagent efficiency, especially 
gene specific PCR primer oligonucleotides. This could be ac- 
complished by creating a primer databaselrepositorywith the 
purpose of cataloging and synthesizing gene-specific prim- 
ers in bulk. These would be made available to individual re- 
search programs in order to reduce the cost per sequence and 
facilitate the establishment of a standardized protocol that 
would be shared by many laboratories. 

ene expression maps would be beneficial for the study 
of paradigms that have already been shown to be inter- 
esting from the genetic network perspective, such as the 

cell cycle and biological rhythms. But foremost in ontogeny 
we find a need for systematic gene expression maps, in order 
that we may open a window onto the most complex genetic 
programs in nature. While this approach may appear mostly 
descriptive at first hand, a precise characterization of the natu- 
ral state, where cause and effect are generated within the sys- 
tem, must precede any experiments designed to test an hy- 
pothesis through targeted perturbations. Starting from such 
maps, correlations between genes could be established to 
define expression groups in gene space and along the tempo- 

ral dimension. Groups of genes systematically expressed in 
parallel could give us a clue to wiring and rules, i.e., shared cis 
and trans mechanisms. Time series of expressed genes, i.e., 
temporal groups, will help to identify causal interactions and 
series that could be described as attractor or tree structures. 
The combination of both may be modeled by Boolean net- 
works or modified variants, leading to the formulation of com- 
peting network hypotheses. Efforts in computational reverse 
engineering of genetic networks are now under way.4 

The management of these data together with results ob- 
tained from other studies of general and specific cisltrans regu- 
lation of gene expression would benefit by the establishment 
of a genetic network database akin to or associated with 
GenBank [ G ]  or the Transcription Factor Database [19]. Here 
our knowledge of cis structures of genes, their combinatorial 
regulation, and output wiring of trans acting genes, could be 
systematically cataloged and compared to parallel gene ex- 
pression maps. Such a database of gene connectivity could 
follow efforts that are now being undertaking in implement- 
ing a Gene Expression Database (GXD).' 

odeling the complete genetic network should not be 
a prerequisite for significant insight, since consider- 
ations of redundancy and overlap may allow a gradual 

approach to characterizing the whole system once a minimal 
number of regulatory elements has been identified to form a 
regulatory core. Once plausible wiring and rule propositions 
have been established by correlation and network analysis, 
targeted perturbations (e.g., manipulation of intercellular sig- 
naling factors, combinatorial transgenic knockouts, 
overexpression of genes etc.) of the network would be appro- 
priate to test model predictions. While such a research pro- 
gram may seem ambitious at first glance, the fundamental 
genetic, robotics, computer and database technologies exist 
now and will most likely improve significantly in the near fu- 
ture. Considering the on-going, immense developments in 
molecular biological and information processing technolo- 
gies, would the marriage of the two in the exploration of ge- 
netic networks not provide an unprecedented opportunity for 
insight into complex systems? If only a small part of this po- 
tential were realized, the implications for discovering and 
treating the underlying causes of multigenic dysfunctions 
such as cancer, genetic, autoimmune and degenerative dis- 
orders could be revolutionary [17,44, 511. Also in the field of 
regeneration, precise knowledge on the systems level will be 
the foundation for the controlled recapitulation of develop- 
mental programs of tissues that have a naturally limited re- 
generative potential, such as nerve and muscle. 
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For computation of Boolean network trajectories and basins of attrac- 
tion (as shown in the figures) the authors have relied on the outstand- 
ing Discrete Dynamics Lab (DDLAB) software by A. Wuensche [75], 
available on the internet (http://aIife.santafe.edu/aIife/software/ 
ddlab.html). 
The authors would like to emphasize that genetic determinism as 
stated here reflects a conceptual approach for simplifying basic 
physical aspects of life, and not a philosophical conviction that an 
organism can be explained in such terms from the level of higher order 
structures which are created in an interaction with the environment, 
such as nervous system functions governing behavior (for a detailed 
discussion, see [43]). 
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ration. 
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