
Sequence Alignment
Gap Penalties, Gotoh’s Algorithm and Smith/Waterman’s Local

Alignment

Rolf Backofen

Lehrstuhl für Bioinformatik
Institut für Informatik

Course Bioinformatics I — SS 2010

Gaps

problem: gaps are different in nature - given a fixed number of gaps, a
”small number of long gaps” is biologically likelier than a ”big number
of small gaps”
solution: initiation of gaps is more expensive than extension of an
existing gap
example: length 2 length 3︷︸︸︷ ︷ ︸︸ ︷

– – A – – – G T A
A A A T T T G T –︸︷︷︸

length 1
⇒ gap costs: g(2) + g(3) + g(1)

Gap Penalties

Definition

A gap penalty is a function g(k) : N→ R that is subadditive, i.e.,

∀k , l : g(k + l) ≤ g(k) + g(l).

A gap penalty is called affine if there are α, β ∈ R such that

g(k) = α + βk

examples for subadditive:
g(k) = α + βk ⇒ affine, very common

g(k) = α + βk2

g(k) = α + β ln(k)b
⇒ biologically, the best approximation

Gap Penalty and Alignment

now: we want to calculate optimal alignments where gaps are scored
with gap penalties.
problem: split like Needleman/Wunsch does not work

w

(
A A – –
– A G T

)
w

(
A A –
– A G

)
+ w

(
–
T

)
g(1) + w(A,A) + g(2) 6=

(
g(1) + w(a, a) + g(1)

)
+ g(1)

Helps: More Distinction

1 substitution

u� = . . . ai

v� = . . . bj
⇒ Di ,j = Di−1,j−1 + w(ai , bj)

2 insertion 1:

u� = . . . ? ai

v� = . . . bj –
⇒ Di ,j = Di ,j = Di−1,j + g(1)

3 insertion 2:

u� = . . . ? ai−1 ai

v� = . . . bj – –
⇒ Di ,j = Di ,j = Di−2,j +g(2)

⇒ Algorithm of Smith-Waterman-Beyer

Smith-Waterman-Beyer

Theorem (Waterman, Smith and Beyer)

Let g : N→ R be a gap penalty and w be cost function on Σ× Σ.
Let a = a1 . . . an and b = b1 . . . bm be two words in Σ∗. We define
(Di ,j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m by

D0,0 = 0,

D0,j = g(j),

Di ,0 = g(i),

Di ,j = min

min

1≤k≤j
{Di ,j−k + g(k)},

Di−1,j−1 + w(ai , bj),
min

1≤k≤i
{Di−k,j + g(k)}}

 .

Then Di ,j = D(a1 . . . ai , b1 . . . bj).

Complexity

⇒ on average a cell cost O(n) for filling
⇒ total: O(n3) time and O(n2) space

example: 2 RNA sequences with n = 30 000 = 3 · 104

assume: computer with 1 Ghz
+ 1 operation per unit

⇒ 27·1012

109 = 27 · 103 s
= 27 000 s
≈ 7.5 h

(exercise - how much time would a quadratic algorithm have taken?)

Gotoh’s Algorithm for Affine Gap-Penalties

problem in S–W–B: gaps of any lengths have to be tested in each step
therefore: using affine gap penalties g(k) = α + βk

analyzing Di ,j

1
u� = . . . ai

v� = . . . bj
⇒ cost Di ,j = Di−1,j−1 + w(ai , bj)

2
u� = . . . ai

v� = . . . –
⇒ look at subcases

a
u� = . . . ? ai

v� = . . . bj –
⇒ cost Di,j = Di−1,j + g(1)

b
u� = . . . aj ai

v� = . . . – –︸ ︷︷ ︸
k gaps

⇒ cost Di,j = ?− g(k − 1) + g(k)
= ?− α− (k − 1)β + α + kβ
= ?+ β

3 analogous for gaps in a.

? = cost for best alignment of a1 . . . ai and b1 . . . bj ending with a gap
in b.

⇒ the length of the gap doesn’t matter, since each elongation costs β

⇒ we have the following cases: a. no gap
b. starting a new gap
c. elongate an existing gap

⇒ saving time because:
S-W-B: test with all possible gap lengths
Gotoh: just add β if a gap is elongated

comment: if gap penalty is not affine (e.g. g(k) = α + β · ln(k)) then
Di ,j = ?− g(k − 1) + g(k)

= ?− α− ln(k − 1) + α + ln(k)
= ?+ ln(k)− ln(k − 1)

= ?+ ln(k
k−1)

⇒ depends on k ⇒ Gotoh’s idea doesn’t work

Gotoh Matrices

⇒ further matrices needed

(Di ,j) cost for alignment of prefixes (a1 . . . ai , b1 . . . bj)

(Pi ,j) cost for alignment of prefixes (a1 . . . ai , b1 . . . bj) that ends

with a gap in b (i.e., last column is

(
ai

–

)
)

(Qi ,j) cost for alignment of prefixes (a1 . . . ai , b1 . . . bj) that ends

with a gap in a (i.e., last column is

(
–
bj

)
)

Gotoh – 1982

let g(k) = α+ kβ be an affine gap penalty, and let w : Σ×Σ→ R be
a cost function.
recursive definition of matrices (Di ,j), (Pi ,j), and (Qi ,j):

Di ,j = min

Di−1,j−1 + w(ai , bj)
Pi ,j

Qi ,j

 ,

with i , j ≥ 1, where for 1 ≤ i ≤ |a| and 1 ≤ j ≤ |b|,

Pi ,j = min

{
Di−1,j + g(1)
Pi−1,j + β

}

Qi ,j = min

{
Di ,j−1 + g(1)
Qi ,j−1 + β

}

Initialization

Initialization: Di ,j as usual: D0,0 = 0, D0,j = g(j) and Di ,0 = g(i)

for Pi ,j : recursion only on the first index (Pi,j → Pi−1,j → . . .→ P0,j)
hence: only initialization for P0,j .
but: P0,j is best alignment of ε and b1 . . . bj that ends with
gap in b ⇒ the only possible alignment would be:

– – . . . – – –
b1 b2 . . . bj−1 bj –︸︷︷︸

disallowed in alignments!

Thus: order of calculation:

Pj ,0 = not used

P0,j = ∞

Qj ,0 = ∞
Q0,j = not used

initialization
for i=1 to n

for j=1 to n
calculate Pi ,j

calculate Qi ,j

calculate Di ,j

end
end

Traceback Matrices (trD), (trP) and (trQ)

simple arrows are not enough (because of jumping between the matrices)

trD ∈ {D↖,Q•, P•}.
∀i , j > 0 : D↖ ∈ trDi ,j ⇔ Di ,j = Di−1,j−1 + w(ai , bj),

Q• ∈ trDi ,j ⇔ Di ,j = Qi ,j ,
P• ∈ trDi ,j ⇔ Di ,j = Pi ,j ;

trP ∈ {D ↑ , P ↑ }.
∀i , j > 0 : P ↑ ∈ trPi ,j ⇔ Pi ,j = Pi−1,j + β,

D ↑ ∈ trPi ,j ⇔ Pi ,j = Di−1,j + g(1);

trQ ∈ {D←,Q←}.
∀i , j > 0 : Q← ∈ trQi ,j ⇔ Qi ,j = Qi ,j−1 + β,

D← ∈ trQi ,j ⇔ Qi ,j = Di ,j−1 + g(1).

finding
alignments:

arrows (no matter which matrix) as before:
a : ↖, ↑ ⇔ symbol ai ← ⇔ –.
b : ←, ↖ ⇔ symbol bj ↑ ⇔ –.

points = change of matrix, nothing more

Example

given: a = CC and b = ACCCT .

cost functions:

substitutions: w(x , y) =

{
0 if x = y

1 else

gap penalty: g(k) = 4 + k (β = 1).

wanted: optimal alignment using Gotoh

Matrix and Traceback

D

D

D D D D D

D

D

D

D

D

D D D D D

D

D

D

complete filled
matrices

complete filled
matrices

one of the two
possible final
traceback

tracebacks:
1. D↖ D↖ D← Q← Q•

C C – –
A C C T

2. D← D← D↖ D↖

– – C C
A C C T

Needleman-Wunsch with Similarity

up to now: minimal alignment distance wanted
w(x , x) = 0 ⇒ low costs for identical symbols

matrix (Di,j), where Di,j lowest distance of a1..ai , b1..bj

now: maximal similarity wanted
s(x , x) high ⇒ high similarity for identical symbols

matrix (Si,j), where
Si,j best similarity for prefixes a1 . . . ai and b1 . . . bj

⇒ recursion: Si ,j = max

Si ,j−1 +s(−, bj),
Si−1,j−1 +s(ai , bj),
Si−1,j +s(ai ,−)

main usage: local alignment ⇒ search for motifs that are locally

similar,

e.g. a = ACAVIAC AIALAG ACG

b = VVAIV AIALAG YY

Distance vs. Similarity

why is distance not useful here?

(a) a = XX AA CIXX

b = YY AA YYG
D = 0
S = 10

(b) a = XX AAAA YY

b = YY AAAA YY
D = 0
S = 20

Dist w(x , y) =

{
0 if x = y

5 else

Sim s(x , y) =

{
5 if x = y

0 else

⇒ using distances, (a) and (b) are
equally good

⇒ but (b) is better local motif
⇒ is represented best by similarity

Needleman-Wunsch with similarities instead of distances
w(x , y) ⇒ s(x , y), which can be positive or negative

no metric
positive means similar

Local Alignment

Smith-Waterman local alignment
recursion still working on alignments of prefixes

⇒ matrix H(i , j), which is the best local alignment of prefixes a1 . . . ai

and b1 . . . bj , where initial gaps (but not final) are free

example: a = AAC
3

GG
5

TAC

b = GGGAA
5

GG
7

TGG

two types of gaps: – = gap which is scored
◦ = initial or final gap (unscored)

Then:
◦ ◦ ◦ A A C G G
G G G A A – G G

∈ H(5, 7)

But:
◦ ◦ ◦ A A C
G G G A A ◦ 6∈ H(3, 5) albeit

◦ ◦ ◦ A A C
G G G A A –

∈ H(3, 5)

Remark 1: in which cell does one find the final optimal,
local alignment?

assume is optimal, local alignment

recall: H considers alignments of the form
a�

b�
⇒ ∈ H(i , j)

concrete example: a = GGAAATT and b = CCAAAGG

⇒ optimum:
G G ◦ ◦ A A A ◦ ◦ T T
◦ ◦ C C A A A G G ◦ ◦︸ ︷︷ ︸

S = H(5, 5) + 0

⇒ search all H(i , j) for maximal value

Smith-Waterman Recursion

recursion: Hi ,j = max

Hi−1,j−1 + s(ai , bj)

Hi−1,j + s(ai , –)

Hi ,j−1 + s(–, bj)

0

when other entries < 0 then

gap out prefixes a1 . . . ai

and b1 . . . bj for free
Initialitation:

H0,0 = 0,
H0,j = 0,
Hi ,0 = 0

how to do traceback:
start with H(i , j) that is maximal
follow directions (maximal entries in DP)

like Needleman-Wunsch
stop when a H(i , j) = 0 is reached.

Example

scoring: s(x , y) =

{
+2 if x = y

−1 else
⇒ s(–, x) = s(x , –) = −1

similarity can be extended to gap penalties (negative values !)
matrix for a = CCC and b = ACACCTT

A C A C C T T

0 0 0 0 0 0 0 0
C 0 0 2 1 2 2 1 0
C 0 0 2 1 3 4 3 2
C 0 0 2 1 3 5 4 3

best value (= end of traceback): cell (3, 5) with H3,5 = 5
⇒ traceback: ↖←↖↖
associated alignment: C C C

C A C C
⇒ Wert:5 = 2− 1 + 2 + 2

