Sequence Alignment

Gap Penalties, Gotoh's Algorithm and Smith/Waterman'’s Local
Alignment

Rolf Backofen

Lehrstuhl fiir Bioinformatik
Institut fiir Informatik

Course Bioinformatics | — SS 2010

Gaps

o problem: gaps are different in nature - given a fixed number of gaps, a
"small number of long gaps” is biologically likelier than a " big number
of small gaps”

o solution: initiation of gaps is more expensive than extension of an

existing gap
o example: length 2 length 3
P eng eng
- —-—A---GTA
AAATTTGT -
—~—
length 1

= gap costs: g(2) +g(3) +&(1)

Gap Penalties

Definition
A gap penalty is a function g(k) : N — R that is subadditive, i.e.,

Vk,l:glk+1)<g(k)+g(l).
A gap penalty is called affine if there are «, § € R such that
g(k) = a+ Bk
g(k)A

o examples for subadditive:
g(k) = a + Bk = affine, very common

g(k) = a+ Bk? é

>»
%A

Gap Penalty and Alignment

@ now: we want to calculate optimal alignments where gaps are scored
with gap penalties.
o problem: split like Needleman/Wunsch does not work

*(“ad) (25e) (5

g(1) + w(A A) +2(2) # (e(1)+w(aa) +g(1) +&(1)

Helps: More Distinction

@ substitution \/

u® = a;

<

o= .. b = Dij=Dj1j-1+w(aiby)

@ insertion 1:

u® = .7 aj
o_ , = Dij=Dij=Di1j+g(1)
vy = [N bj -
© insertion 2:
u® = . ?laj—1 a;
o . i—1dj = D/,J:DIJ:DE’J+g(2)
vy = bjl - -

= Algorithm of Smith-Waterman-Beyer

Smith-Waterman-Beyer

Theorem (Waterman, Smith and Beyer)

Let g: N — R be a gap penalty and w be cost function on ~ X ¥.
Leta=ay...a, and b= by ...b, be two words in ~*. We define
(Djj) with1<i<nand1l<j<mby

Doo = 0,
DO,j = g(,/)a
Dio = g(i),

IQLQJ{DI',J'—k-Fg(k)},
Dij = min¢ Di_1j-1+ w(aj, b)),

lgir%i{Dika +g(k)}}

Then D,'J = D(al...a,-,bl...bj).

Complexity

= example: line 1 = always 1 diagonal
+ 1 up
+ some left
column 1: 2 + 1 (left)
column 2: 2 + 2 (left)

Do +9(1)
D11 +g(1)
Dio+9(2)

min

column n: 2 + n (left)

n(n+1)
Z 2n + 3

n(n+1)
| = =/
cost per cell: 2

n 2

= on average a cell cost O(n) for filling
= total: O(n%) time and O(n?) space

e example: o 2 RNA sequences with n = 30000 = 3 - 10*
o assume: computer with 1 Ghz
+ 1 operation per unit
= ZT —27.10%s
= 27000 s
~75h

o (exercise - how much time would a quadratic algorithm have taken?)

22

Gotoh's Algorithm for Affine Gap-Penalties

@ problem in S-W-B: gaps of any lengths have to be tested in each step
o therefore: using affine gap penalties g(k) =a+ Bk

analyzing D; ;
<&

u® = aj
Qo o = bl' = cost D,‘J = Di—l,j—l =+ W(a;, bj)
= j
u® = U ET
(2 Lo _ = look at subcases
u® = A T
Q Vo — b l- = cost D,'J = D,‘_17j +g(1)
= ... b
u® = <. djja;
o o_ Y1 = cost Djj=+*—g(k—1)+ g(k)
=x—a—(k—1)8+a+ k03
~—— _
k gaps =*x+0

© analogous for gaps in a.

@ * = cost for best alignment of a;...a; and by ... b; ending with a gapy
in b. 1

the length of the gap doesn’t matter, since each elongation costs (3

we have the following cases: a. no gap
b. starting a new gap
c. elongate an existing gap

saving time because:

o S-W-B: test with all possible gap lengths
o Gotoh: just add 3 if a gap is elongated

comment: if gap penalty is not affine (e.g. g(k) = a+ - In(k)) then
Dijj=x—g(k—1)+g(k)
=*—a—In(k—1)+ a+In(k)
=x+In(k) — In(k — 1)
=%+ |n(ﬁ)
= depends on k = Gotoh's idea doesn't work

Gotoh Matrices

= further matrices needed

cost for alignment of prefixes (a1 ...aj, by ...bj)

cost for alignment of prefixes (a1 ...aj, b1 ... b;) that ends

with a gap in b (i.e., last column is (i’))

cost for alignment of prefixes (a;...aj, b1 ... bj) that ends

with a gap in a (i.e., last column is (;))
d

Gotoh — 1982

o let g(k) = o+ k3 be an affine gap penalty, and let w : ¥ x ¥ — R be
a cost function.
o recursive definition of matrices (D;), (P;;), and (Q;):

Di_1j-1+ w(ai, b))
D;J = min P,"J'
Qi

with 7,j > 1, where for 1 </ <|ajand 1 <j <|b

.| Di—1j+g(1)
P = J
/ mm{ Pi—1j+p

. Di,j—1+g(1)}
Qij = m|n{ Qijr +

Initialization

o Initialization: D;; as usual: Dyg =0, Do = g(j) and D;o = g(i)

o for P;j: e recursion only on the first index (Pjj — Pi—1j — ... — Po)
o hence: only initialization for Py ;.
o but: Py is best alignment of € and b, ... b; that ends with
gap in b = the only possible alignment would be:

b1 b2 e bj,1 bj -
~—~
disallowed in alignments!
o Thus: o order of calculation:
Pj,O — not used initialization
Pyi = o0 for i=1 to n
7./ - .
for j=1 ton
Qo = o calculate P;;
’ calculate ;;
Qo = not used @iy

calculate D;;

end y
T

end

Traceback Matrices (tr?), (trF) and (tr?)

@ simple arrows are not enough (because of jumping between the matrices)
o trP € {Px_, Qe,Pel.

Vi,j >0: D'\ € tI"I-D- = D,',j = Di—l,j—l + W(a,', bj),

Q.Etrgj & D,',J'ZQ,',J',
P.Etl‘id- = D,',j:P,"J';

o trP e {P1,P1}.

Vi,j>0: Prewlt o Pjj=P_1;+5,
DT Gtrfjj = P,-J:D,-_Lj%—g(l);
o tr? e {Pe Q.

Vij>0: Qe-ectr® o Qj=Qj1+4

b ¢ tl“,d’j = Q,"j = D;J_l —I—g(].).
e finding o arrows (no matter which matrix) as before:
alignments: a: N\, 1 ¢ symbol a — -
b: «,\\ & symbol b; T & -

e points = change of matrix, nothing more ﬁ

Example

e given: a= CC and b= ACCCT.

@ cost functions:
0 ifx=y

o substitutions: w(x,y) = L
else

o gap penalty: g(k) =4+ k (B=1).

e wanted: optimal alignment using Gotoh

Matrix and Traceback

(Ds,5) =

(Qij) =

(Pij) =

Alc|lc | T
5 |6 [7 |8
N\
1|5 |6 |8
6 Th 5 | 7y
Alcl\c|T
10 | 6 \7 8
1

11 |11 641-7
Alc |c|T
oo oo
10 |11 |12 |13
6 |10 |11 |13

complete filled
matrices

one of the two
possible final
traceback

o tracebacks:
1.

D"\ D\ D{; Q. Q.

c ¢ - -
A C C T
D_ D__ Dr\ Dr\
- - C C
A C C T

Needleman-Wunsch with Similarity

@ up to now: °
]
® now: °
]
= recursion: Sij
@ main usage: o

minimal alignment distance wanted
w(x, x) = 0 = low costs for identical symbols
matrix (D;;), where D; j lowest distance of a;..a;, b;..b;

maximal similarity wanted

s(x, x) high = high similarity for identical symbols
matrix (S;;), where

S; j best similarity for prefixes a;...a; and by ... b;

Sij-1 +s(=, b)),
= max 5,',1,‘,',1 +s(aj, bj)a
Siciy +s(ai,—)

local alignment = search for motifs that are locally
similar,

e.g. a= ACAVIACAIALAGIACG

b= VVAIVAIALAGYY v

Distance vs. Similarity

@ why is distance not useful here?

.
(a) a= XXAACIXX Dist W(X7y)—{0 =y

b= YYAANYG > else

D=0 5 ifx=y
p— S- b =
5=10 im s(x,¥) {O else
(b) a= XXAAAANY

b= YYAAAANYY = using distances, (a) and (b) are
D=0 equally good
$=20 = but (b) is better local motif

= is represented best by similarity

@ Needleman-Wunsch with similarities instead of distances
w(x,y) = s(x,y), which can be positive or negative
@ no metric
o positive means similar
B

Local Alignment

@ Smith-Waterman local alignment
o recursion still working on alignments of prefixes
= matrix H(/,J), which is the best local alignment of prefixes a; ... a;
and by ... bj, where initial gaps (but not final) are free

3 5
example: a= AAC'GGIT/-\C
5 |7

b= GGGAALSGLFGG

(7]

@ two types of gaps: — = gap which is scored
o = initial or final gap (unscored)
ocoo0AACGG
e Then: GCGCCAA-GCG € H(5,7)
ocooAAC . oooAAC
o But: GGCAAo ¢ H(3,5) albeit GGGAA—EH(3’5)

22

Remark 1: in which cell does one find the final optimal,

local alignment?
free gaps

J R \; last char: a;
assume a J is optimal, local alignment

W last char: b;

recall: H considers alignments of the form

a<> . .

___ . = €H(>))

concrete example: a = GGAAATT and b = CCAAAGG
GGooAAA|looTT

co CCAAA|GGo o
| ——
S =H(5,5)+0

= optimum:

search all H(/,j) for maximal value ﬁ

Smith-Waterman Recursion

Hi_1j-1+ s(ai, bj)

Hi_1; .

@ recursion: HI,J = max i—1j + 5(3,7)
Hij-1+s(= by)
0‘)

when other entries < 0 then

gap out prefixes a;p ... a;

floo = O and by... by for f
o Initialitation: Hp; = 0, "¢ PL---PTOrIree
Hio = 0

@ how to do traceback:

o start with H(/,j) that is maximal

o follow directions (maximal entries in DP)
like Needleman-Wunsch

o stop when a H(i,) = 0 is reached.

Example

2 ifx=
scoring: s(x,y) = * Y s(=x) =s(x,-) =-1

—1 else

similarity can be extended to gap penalties (negative values !)
matrix for a = CCC and b = ACACCTT

| ACACCTT
0 0 0o 0o 00 0 O
cio 0 2 1 2 2 1 0
c/i0o 0 2 1 3 4 3 2
c/io 0 2 1 3 5 4 3
best value (= end of traceback): cell (3,5) with H35 =5

= traceback: \ N\ "\
associated alignment: C

_ C C =>Wertb=2-1+2+2
C A C C

