Sequence Alignment

Gap Penalties, Gotoh's Algorithm and Smith/Waterman's Local Alignment

Rolf Backofen

Lehrstuhl für Bioinformatik
Institut für Informatik
Course Bioinformatics I — SS 2010

Gaps

- problem: gaps are different in nature - given a fixed number of gaps, a "small number of long gaps" is biologically likelier than a "big number of small gaps"
- solution: initiation of gaps is more expensive than extension of an existing gap
- example:

$$
\overbrace{-\overline{-}}^{\text {length }} 2 \text { length } 3
$$

\Rightarrow gap costs: $g(2)+g(3)+g(1)$

Gap Penalties

Definition

A gap penalty is a function $g(k): \mathbb{N} \rightarrow \mathbb{R}$ that is subadditive, i.e.,

$$
\forall k, l: g(k+l) \leq g(k)+g(I)
$$

A gap penalty is called affine if there are $\alpha, \beta \in \mathbb{R}$ such that

$$
g(k)=\alpha+\beta k
$$

- examples for subadditive:

$$
g(k)=\alpha+\beta k \Rightarrow \text { affine, very common }
$$

$$
g(k)=\alpha+\beta k^{2}
$$

$$
g(k)=\alpha+\beta \ln (k) b \sqrt{ }
$$

\Rightarrow biologically, the best approximation

Gap Penalty and Alignment

- now: we want to calculate optimal alignments where gaps are scored with gap penalties.
- problem: split like Needleman/Wunsch does not work

$$
\begin{array}{ll}
w\left(\begin{array}{cc}
A & A \\
-A & - \\
-
\end{array}\right) & w\left(\begin{array}{cc}
A & A \\
-A & G
\end{array}\right)+w\binom{-}{T} \\
g(1)+w(A, A)+g(2) & \neq
\end{array}(g(1)+w(a, a)+g(1))+g(1)
$$

Helps: More Distinction

(1) substitution

$$
\begin{array}{ll|l}
u^{\diamond}= & \cdots & a_{i} \\
v^{\diamond} & = & \cdots
\end{array} b_{j} \quad \Rightarrow \quad D_{i, j}=D_{i-1, j-1}+w\left(a_{i}, b_{j}\right)
$$

(2) insertion 1 :

$$
\begin{array}{lll|l}
u^{\diamond}= & \ldots & ? & a_{i} \\
v^{\diamond} & = & \ldots & \left.b_{j}\right|_{-}
\end{array} \quad \Rightarrow \quad D_{i, j}=D_{i, j}=D_{\underline{i-1, j}}+g(1)
$$

(3) insertion 2 :

$$
\begin{array}{ccc|cc}
u^{\diamond}= & \cdots & ? & a_{i-1} a_{i} \\
v^{\diamond}= & \ldots & b_{j} & - & -
\end{array} \quad \Rightarrow \quad D_{i, j}=D_{i, j}=D_{\underline{i-2, j}}+g(2)
$$

\Rightarrow Algorithm of Smith-Waterman-Beyer

Smith-Waterman-Beyer

Theorem (Waterman, Smith and Beyer)

Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a gap penalty and w be cost function on $\Sigma \times \Sigma$. Let $a=a_{1} \ldots a_{n}$ and $b=b_{1} \ldots b_{m}$ be two words in Σ^{*}. We define $\left(D_{i, j}\right)$ with $1 \leq i \leq n$ and $1 \leq j \leq m$ by

$$
\begin{aligned}
D_{0,0} & =0, \\
D_{0, j} & =g(j), \\
D_{i, 0} & =g(i), \\
D_{i, j} & =\min \left\{\begin{array}{c}
\min _{1 \leq k \leq j}\left\{D_{i, j-k}+g(k)\right\}, \\
D_{i-1, j-1}+w\left(a_{i}, b_{j}\right), \\
\left.\min _{1 \leq k \leq i}\left\{D_{i-k, j}+g(k)\right\}\right\}
\end{array}\right\} .
\end{aligned}
$$

Then $D_{i, j}=D\left(a_{1} \ldots a_{i}, b_{1} \ldots b_{j}\right)$.

Complexity

\Rightarrow example: line $1 \Rightarrow$ always 1 diagonal +1 up

+ some left

```
column 1: }2+1\mathrm{ (left)
```

column 2: $2+2$ (left)
$D_{1,2}=\min \left\{\begin{array}{l}D_{0,1}+w\left(a_{1}, b_{2}\right) \\ D_{0,2}+g(1) \\ \min \left\{\begin{array}{l}D_{1,1}+g(1) \\ D_{1,0}+g(2)\end{array}\right.\end{array}\right.$
$\begin{array}{rr}\text { column n: } & 2+n(\text { left }) \\ \sum 2 n & +\frac{n(n+1)}{2}\end{array}$
cost per cell: $\quad \frac{2 n+\frac{n(n+1)}{2}}{n}=2+\frac{n+1}{2}=O(n)$
\Rightarrow on average a cell cost $O(n)$ for filling
\Rightarrow total: $O\left(n^{3}\right)$ time and $O\left(n^{2}\right)$ space

- example: - 2 RNA sequences with $n=30000=3 \cdot 10^{4}$
- assume: computer with 1 Ghz
+1 operation per unit
$\Rightarrow \quad \frac{27 \cdot 10^{12}}{10^{9}}=27 \cdot 10^{3} \mathrm{~s}$
$=27000 \mathrm{~s}$
$\approx 7.5 \mathrm{~h}$
- (exercise - how much time would a quadratic algorithm have taken?)

Gotoh's Algorithm for Affine Gap-Penalties

- problem in S-W-B: gaps of any lengths have to be tested in each step - therefore: using affine gap penalties $\quad g(k)=\alpha+\beta k$ analyzing $D_{i, j}$

(1) | u^{\diamond} | $=$ | \cdots |
| :--- | :--- | :--- |
| v^{\diamond} | $=$ | a_{i} |
| b_{j} | | |$\quad \Rightarrow$ cost $D_{i, j}=D_{i-1, j-1}+w\left(a_{i}, b_{j}\right)$

(2) | u^{\diamond} | $=$ | \cdots | a_{i} |
| :--- | :--- | :--- | :--- |
| v^{\diamond} | $=$ | \cdots | - |

$\Rightarrow \quad$ look at subcases

- $\begin{array}{lll}u^{\diamond}= & \ldots & \text { ? } \\ v^{\diamond}= & \ldots & \left.b_{j}\right|_{-}\end{array} \quad \Rightarrow \quad \operatorname{cost} D_{i, j}=D_{i-1, j}+g(1)$

(3) analogous for gaps in a.
- $\star=$ cost for best alignment of $a_{1} \ldots a_{i}$ and $b_{1} \ldots b_{j}$ ending with a gap
in b.
\Rightarrow the length of the gap doesn't matter, since each elongation costs β
\Rightarrow we have the following cases:
a. no gap
b. starting a new gap
c. elongate an existing gap
\Rightarrow saving time because:
- S-W-B: test with all possible gap lengths
- Gotoh: just add β if a gap is elongated
- comment: if gap penalty is not affine (e.g. $g(k)=\alpha+\beta \cdot \ln (k))$ then

$$
\begin{aligned}
D_{i, j} & =\star-g(k-1)+g(k) \\
& =\star-\alpha-\ln (k-1)+\alpha+\ln (k) \\
& =\star+\ln (k)-\ln (k-1) \\
& =\star+\ln \left(\frac{k}{k-1}\right)
\end{aligned}
$$

\Rightarrow depends on $k \Rightarrow$ Gotoh's idea doesn't work

Gotoh Matrices

\Rightarrow further matrices needed

- $\left(D_{i, j}\right)$ cost for alignment of prefixes $\left(a_{1} \ldots a_{i}, b_{1} \ldots b_{j}\right)$
- $\left(P_{i, j}\right)$ cost for alignment of prefixes $\left(a_{1} \ldots a_{i}, b_{1} \ldots b_{j}\right)$ that ends with a gap in b (i.e., last column is $\binom{a_{i}}{-}$)
- $\left(Q_{i, j}\right)$ cost for alignment of prefixes $\left(a_{1} \ldots a_{i}, b_{1} \ldots b_{j}\right)$ that ends with a gap in a (i.e., last column is $\binom{-}{b_{j}}$)

Gotoh - 1982

- let $g(k)=\alpha+k \beta$ be an affine gap penalty, and let $w: \Sigma \times \Sigma \rightarrow \mathbb{R}$ be a cost function.
- recursive definition of matrices $\left(D_{i, j}\right),\left(P_{i, j}\right)$, and $\left(Q_{i, j}\right)$:

$$
D_{i, j}=\min \left\{\begin{array}{l}
D_{i-1, j-1}+w\left(a_{i}, b_{j}\right) \\
P_{i, j} \\
Q_{i, j}
\end{array}\right\}
$$

with $i, j \geq 1$, where for $1 \leq i \leq|a|$ and $1 \leq j \leq|b|$,

$$
\begin{aligned}
P_{i, j} & =\min \left\{\begin{array}{l}
D_{i-1, j}+g(1) \\
P_{i-1, j}+\beta
\end{array}\right\} \\
Q_{i, j} & =\min \left\{\begin{array}{l}
D_{i, j-1}+g(1) \\
Q_{i, j-1}+\beta
\end{array}\right\}
\end{aligned}
$$

Initialization

- Initialization: $D_{i, j}$ as usual: $D_{0,0}=0, D_{0, j}=g(j)$ and $D_{i, 0}=g(i)$
- for $P_{i, j}$: - recursion only on the first index $\left(P_{i, j} \rightarrow P_{i-1, j} \rightarrow \ldots \rightarrow P_{0, j}\right)$
- hence: only initialization for $P_{0, j}$.
- but: $P_{0, j}$ is best alignment of ϵ and $b_{1} \ldots b_{j}$ that ends with gap in $b \Rightarrow$ the only possible alignment would be:
$\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{j-1} \\ b_{j}-\end{array}$
disallowed in alignments!
- Thus:

$$
\begin{aligned}
P_{j, 0} & =\text { not used } \\
P_{0, j} & =\infty \\
Q_{j, 0} & =\infty \\
Q_{0, j} & =\text { not used }
\end{aligned}
$$

- order of calculation:

$$
\begin{aligned}
& \text { initialization } \\
& \text { for } i=1 \text { to } n \\
& \text { for } j=1 \text { to } n \\
& \text { calculate } P_{i, j} \\
& \text { calculate } Q_{i, j} \\
& \text { calculate } D_{i, j} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Traceback Matrices $\left(\operatorname{tr}^{D}\right),\left(\operatorname{tr}^{P}\right)$ and $\left(\operatorname{tr}^{Q}\right)$

- simple arrows are not enough (because of jumping between the matrices)
- $\operatorname{tr}^{D} \in\left\{D_{\nwarrow}, Q_{\bullet} \bullet{ }^{P} \bullet\right\}$.

$$
\begin{aligned}
\forall i, j>0: \quad & D_{\nwarrow}
\end{aligned} \in \operatorname{tr}_{i, j}^{D} \quad \Leftrightarrow \quad D_{i, j}=D_{i-1, j-1}+w\left(a_{i}, b_{j}\right),
$$

- $\operatorname{tr}^{P} \in\left\{{ }^{D} \uparrow,{ }^{P} \uparrow\right\}$.

$$
\begin{aligned}
\forall i, j>0: & P \uparrow \in \operatorname{tr}_{i, j}^{P} \Leftrightarrow P_{i, j}=P_{i-1, j}+\beta \\
& D \uparrow \in \operatorname{tr}_{i, j}^{P} \Leftrightarrow P_{i, j}=D_{i-1, j}+g(1)
\end{aligned}
$$

- $\operatorname{tr}^{Q} \in\left\{{ }^{D} \leftarrow, Q^{Q} \leftarrow\right\}$.

$$
\begin{aligned}
\forall i, j>0: & Q_{\leftarrow \in \operatorname{tr}_{i, j}^{Q}} \Leftrightarrow Q_{i, j}=Q_{i, j-1}+\beta \\
& D_{\leftarrow \in \operatorname{tr}_{i, j}} \Leftrightarrow
\end{aligned} \Leftrightarrow Q_{i, j}=D_{i, j-1}+g(1) .
$$

- finding alignments:
- arrows (no matter which matrix) as before:

$$
\begin{array}{lll}
a: & \nwarrow, \uparrow \Leftrightarrow \text { symbol } a_{i} & \leftarrow \Leftrightarrow-. \\
b: & \leftarrow, \nwarrow \Leftrightarrow \text { symbol } b_{j} & \uparrow \Leftrightarrow-
\end{array}
$$

- points $=$ change of matrix, nothing more

Example

- given: $a=C C$ and $b=A C C C T$.
- cost functions:
- substitutions: $w(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { else }\end{cases}$
- gap penalty: $g(k)=4+k(\beta=1)$.
- wanted: optimal alignment using Gotoh

Matrix and Traceback

| $\left(D_{i, j}\right)=$ A C C T
 0 5 6 7 8
 C 5 1 5 6 8
 C 6 6 1 5 7$\quad\left(Q_{i, j}\right)=$\begin{tabular}{l\|l|l|l|l|}
\hline
\end{tabular}

complete filled

 matrices
one of the two possible final traceback

$\left(P_{i, j}\right)=$| | | A | C | C | T |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | ∞ | ∞ | ∞ | ∞ |
| C | - | 10 | 11 | 12 | 13 |
| C | - | 6 | 10 | 11 | 13 |

- tracebacks:

$$
\begin{array}{lllll}
\text { 1. } & D_{\nwarrow} & D_{\nwarrow} & D_{\leftarrow} & Q_{\leftarrow} Q_{\bullet} \\
& \mathrm{C} & \mathrm{C} & - & - \\
\mathrm{A} & \mathrm{C} & \mathrm{C} & \mathrm{~T} \\
\text { 2. } & D_{\leftarrow} D_{\leftarrow} \leftarrow & D_{\nwarrow} & D_{\nwarrow} \\
& - & - & \mathrm{C} & \mathrm{C} \\
& \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~T}
\end{array}
$$

Needleman-Wunsch with Similarity

- up to now:
- minimal alignment distance wanted $w(x, x)=0 \Rightarrow$ low costs for identical symbols
- matrix $\left(D_{i, j}\right)$, where $D_{i, j}$ lowest distance of $a_{1} . . a_{i}, b_{1} . . b_{j}$
- now:
- maximal similarity wanted

$$
s(x, x) \text { high } \Rightarrow \text { high similarity for identical symbols }
$$

- matrix $\left(S_{i, j}\right)$, where
$S_{i, j}$ best similarity for prefixes $a_{1} \ldots a_{i}$ and $b_{1} \ldots b_{j}$
\Rightarrow recursion: $\quad S_{i, j}=\max$

$$
S_{i, j}=\max \left\{\begin{array}{ll}
S_{i, j-1} & +s\left(-, b_{j}\right) \\
S_{i-1, j-1} & +s\left(a_{i}, b_{j}\right), \\
S_{i-1, j} & +s\left(a_{i},-\right)
\end{array}\right\}
$$

- main usage:
- local alignment \Rightarrow search for motifs that are locally similar,

$$
\begin{aligned}
\text { e.g. } & a=\text { ACAVIACAIALAGACG } \\
b & =\text { VVAIVAIALAGYY }
\end{aligned}
$$

Distance vs. Similarity

- why is distance not useful here?
(a) $a=X X A A C I X X$
$b=\mathrm{YYAA} Y Y G$
$D=0$
$S=10$

$$
\begin{aligned}
& \text { Dist } w(x, y)= \begin{cases}0 & \text { if } x=y \\
5 & \text { else }\end{cases} \\
& \operatorname{Sim} s(x, y)= \begin{cases}5 & \text { if } x=y \\
0 & \text { else }\end{cases}
\end{aligned}
$$

(b) $a=X X$ AAAA $Y Y$
$\begin{aligned} & \quad \begin{aligned} \text { YYAAAA YY } \\ D=0\end{aligned} \Rightarrow \text { using distances, (a) and (b) } \\ & \\ & \\ & \\ & \text { equally good }\end{aligned}$
\Rightarrow is represented best by similarity

- Needleman-Wunsch with similarities instead of distances

$$
\begin{aligned}
& w(x, y) \Rightarrow \quad s(x, y) \text {, which can be positive or negative } \\
& \text { - no metric } \\
& \text { - positive means similar }
\end{aligned}
$$

Local Alignment

- Smith-Waterman local alignment
- recursion still working on alignments of prefixes
\Rightarrow matrix $H(i, j)$, which is the best local alignment of prefixes $a_{1} \ldots a_{i}$ and $b_{1} \ldots b_{j}$, where initial gaps (but not final) are free
- example: $a=$ ARC $G^{3} G^{5} T^{5}$ AC

$$
b=\text { GGGAA }{ }^{5}{ }^{5} \mathrm{G}^{7} G G
$$

- two types of gaps: - = gap which is scored
- = initial or final gap (unscored)
- Then: $\begin{aligned} & \circ \circ \circ A A C G G \\ & G G G A A-G G\end{aligned} \in H(5,7)$
- But:

$$
\begin{array}{ll}
\circ \circ \circ A A C \\
G G G A A \circ
\end{array} \notin H(3,5) \text { albeit } \quad \circ \circ \circ A A C \in H(3,5)
$$

- Remark 1: in which cell does one find the final optimal, local alignment?

is optimal, local alignment
- recall: H considers alignments of the form

- concrete example: $a=$ GGAAATT and $b=$ CCAAAGG
\Rightarrow optimum: $\quad \underbrace{\left.\begin{array}{lll}G G \circ \circ \circ A A A A \\ \circ \circ C C A A A \\ G & \circ & \circ \\ G & \circ & \circ \\ & \end{array}\right)}_{S=H(5,5)+0}$
\Rightarrow search all $H(i, j)$ for maximal value

Smith-Waterman Recursion

- recursion: $H_{i, j}=\max \left\{\begin{array}{l}H_{i-1, j-1}+s\left(a_{i}, b_{j}\right) \\ H_{i-1, j}+s\left(a_{i},-\right) \\ H_{i, j-1}+s\left(-, b_{j}\right) \\ 0- \\ \text { when other entries }<0 \text { then }\end{array}\right.$

$$
H_{0,0}=0
$$

- Initialitation: $H_{0, j}=0, \quad$ and $b_{1} \ldots b_{j}$ for free

$$
H_{i, 0}=0
$$

- how to do traceback:
- start with $H(i, j)$ that is maximal
- follow directions (maximal entries in DP)
like Needleman-Wunsch
- stop when a $H(i, j)=0$ is reached.

Example

- scoring: $s(x, y)=\left\{\begin{array}{ll}+2 & \text { if } x=y \\ -1 & \text { else }\end{array} \Rightarrow s(-, x)=s(x,-)=-1\right.$
- similarity can be extended to gap penalties (negative values !)
- matrix for $a=$ CCC and $b=A C A C C T T$

		A	C	A	C	C	T	T
	0	0	0	0	0	0	0	0
C	0	0	2	1	2	2	1	0
C	0	0	2	1	3	4	3	2
C	0	0	2	1	3	5	4	3

- best value ($=$ end of traceback): cell $(3,5)$ with $H_{3,5}=5$ \Rightarrow traceback:
- associated alignment: $\mathrm{C}-\mathrm{C} \mathrm{C} \Rightarrow$ Wert:5 $=2-1+2+2$

CA C C

