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E ver since the establishment of cell theory in the early 19th century, which recognized the
cell as the fundamental building unit of life, biologists have sought to explain the under-
lying principles. Momentous discoveries were made in the course of many decades of

research [1], but the quest to attain full understanding of cellular mechanisms and how to manip-
ulate them to improve health, continues to the present day, with bigger budgets, more minds, and
more sophisticated tools than ever before. One of the tools to which a great deal of the progress in
cell biology can be attributed is light microscopy [2]. The field has come a long way since Antoni
van Leeuwenhoek’s first steps in the 1670s toward improving and exploiting microscopic imaging
for studying life at the cellular level. Not only do biologists nowadays have a plethora of differ-
ent, complementary microscopic imaging techniques at their disposal, enabling them to visualize
phenomena even way below the classical diffraction limit of light, advanced microscope systems
also allow them to easily acquire very large numbers of images within just a matter of hours. The
abundance, heterogeneity, dimensionality, and complexity of the data generated in modern imaging
experiments rule out manual image management, processing, and analysis. Consequently, comput-
erized techniques for performing these tasks have become of key importance for further progress
in cell biology [3–6]. A central problem in many studies, and often regarded as the cornerstone
of image analysis, is image segmentation. Specifically, since cellular morphology is an impor-
tant phenotypic feature, indicative of the physiological state of a cell, and since the cell contour
is often required for subsequent analysis of intracellular processes (zooming in to nanoscale), or
of cell sociology (zooming out to millimeter scale), the problem of cell segmentation has received
increasing attention in past years [7]. Here we reflect on how the field has evolved over the years
and how past developments can be expected to extrapolate into the future.

A VERY BRIEF HISTORY OF CELL ANALYSIS
The first uses of computers for the analysis of cells date back more than half a century. Already
in the mid-1950s, systems were developed to automate the classification of smears of exfoliated
cells, with the ultimate aim to enable mass screening for cervical cancer. These systems applied
thresholding-based decision rules to serial one-dimensional (1D) microscopic line scans of a spec-
imen [8]. The 1960s witnessed the first examples of automated processing of two-dimensional
(2D) images for the purpose of differential counting of white blood cells (leukocytes) according to
their main classes based on simple colorimetric and morphological measurements [9]. Commer-
cial systems for performing this routine clinical test hit the market around the mid-1970s and even
contained multiple computer circuits to parallelize the tasks of analyzing the image of the previous
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cell, while grabbing the image of the present cell, and at the same time locating the next cell in
the specimen [10]. These were also the times when the first computer assisted microscopes were
developed for tracing and morphological analysis of neuronal cells [11]. The advent of confocal
microscope systems in the 1980s opened the door to three-dimensional (3D) cell image analysis.
But it was not until the 1990s, when computers became powerful enough to handle 3D data, or even
complex 2D data such as in histopathology [12], that the image processing and computer vision
communities really began to take up the challenge. Over the past decades, literature on the subject
has grown exponentially, with more than half of the bulk of papers appearing after the year 2000.
Published cell image analysis methods have already been the basis of numerous studies involving
cell counting (numbers), the identification of cell types or cell phases (shapes), the quantification
of cell migration and interaction (morphodynamics), cellular sociology (tissue level organization),
and intracellular structures (cell organization) [5].

COMMON CELL SEGMENTATION APPROACHES
Automated image segmentation for cell analysis is generally a difficult problem due to the large
variability (different microscopes, stains, cell types, cell densities, see Figure 1) and complexity
of the data (possibly time-lapse images, acquired at multiple wavelengths, using multiple micro-
scopes, and containing large numbers of cells). Nevertheless, screening the literature published on
the subject since 1960, we find that the vast majority of cell segmentation methods are based on
only a few basic approaches. Here we highlight the most common ones. Approaches specific to
neuron segmentation are excluded, as these usually address the quite different problem of tracing
the extensive dendritic arborizations, and have been reviewed recently [11]. Generally applicable
methods for image denoising prior to segmentation are also ignored.

INTENSITY THRESHOLDING
The first and, ironically, still one of the most predominant approaches to cell segmentation is inten-
sity thresholding [13]. The underlying assumption is that cells have significantly and consistently
different intensities than the background (Figure 2A), either globally, in which case a fixed thresh-
old would suffice, or locally, which requires adaptive thresholding. Approaches to automated
threshold selection are usually based on statistical analysis of the global or local image intensi-
ties using the histogram. In practice, however, the fundamental assumption is often violated, and
thresholding alone produces poor segmentation results. If at all, most cell segmentation methods
apply thresholding only as a first step in the pipeline.

FEATURE DETECTION
Rather than by their absolute intensities, cells may be segmented based on intensity derived fea-
tures that can be easily detected using linear image filtering. For example, at low magnifications,
cells resemble compact particles, and may be found using a blob detector such as the Gaussian or
Laplacian-of-Gaussian filter (Figure 2B). At higher magnifications, cells appear as larger regions,
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FIGURE 1: Cell images may vary widely, depending on the type of microscopy and staining used, as well
as the cell type and cell density. This makes the development of a generally applicable cell segmentation
method a huge challenge. Shown here are various illustrative examples of cell images (with cell density
increasing from left to right), acquired using bright-field microscopy (A-B), phase-contrast microscopy (C),
differential interference contrast microscopy (D), and fluorescence microscopy (E-H). In the latter case, the
use of fluorescent dyes or proteins enables biologists to selectively label virtually any target of interest in
the cell or nucleus, such as the nucleoprotein histone involved in DNA folding (E), DNA binding proteins
such as Rad18 or Rad54 (F), or cell adhesion proteins such as E-cadherin (G). The resulting additional
variability in cell appearance further complicates the development of generic cell segmentation methods.
Finally, whereas most cells are fairly spherical, some classes of cells may show quite different shape.
Especially neurons (H) may extend far beyond the compact cell body.

but if their shapes are relatively invariant, a dedicated filter template could be derived from the im-
ages. Alternatively, in more variable scenarios, edge detection (first-order differential filtering) or
ridge detection (second-order differential filtering) is often used, followed by some linking proce-
dure [13]. Similar to thresholding, such filters alone usually do not produce definitive cell outlines,
but may provide useful cues for subsequent steps in the pipeline.

MORPHOLOGICAL FILTERING
Another popular class of filters are those from the field of mathematical morphology. Being non-
linear, operators such as erosion, dilation, opening, and closing allow for the examination and
manipulation of geometrical and topological properties of objects in images, and are often used



CELL SEGMENTATION: 50 YEARS DOWN THE ROAD 4

A B C D

FIGURE 2: Examples of cell image segmentation based on the discussed approaches. The rows show, re-
spectively, the input images, the automatically found cell contours (overlaid in green), and the correspond-
ing labeled cell regions (arbitrary colors). (A) Cells that are fairly well separated and clearly brighter than
the background are easily segmented using thresholding. Binary ultimate erosion and reconstruction was
used to split the few clumped cells. (B) Scenarios with higher cell densities and intensity variations require
more sophisticated methods. The method used here involves graph-cuts based binarization, Laplacian-of-
Gaussian based cell detection (see red dots), and marker based clustering (from [14] with permission). (C)
Membrane stained images are ideally suited for watershed based segmentation. Grayscale morphological
prefiltering was used both for background estimation (opening operation) and filling imperfectly stained
segments (closing operation). (D) Studies of intracellular dynamic processes often result in images with
significant intensity variations (in both space and time) and require robust cell segmentation and tracking
methods. The method used here is based on level sets [15]. All of these methods were specifically designed
for the given application and required careful parameter tuning.

in connection with cell segmentation. More complicated filters can be easily constructed by com-
bination or successive application of such operators. A distinction must be made between binary
morphology and grayscale morphology [13]. The former is used mostly as a postprocessing step
to polish coarse segmentations (Figure 2A) while the latter is used mostly as a preprocessing step
to enhance or suppress specific image structures for segmentation (Figure 2C).
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REGION ACCUMULATION
An alternative approach to cell segmentation is to start from selected seed points in the image and to
iteratively add connected points to form labeled regions. The most straightforward implementation
of this idea is ordinary region growing, which works per neighborhood layer of connected points
and, when applied directly to the image, assumes (and suffers from) a similar image model as in
the case of intensity thresholding. Hierarchical split-and-merge schemes, operating per resolution
layer and using some uniformity predicate, have also been used occasionally. Another example
is the watershed transform [13], the main segmentation approach from mathematical morphology,
which works per intensity layer and requires an edge enhanced image (gradient magnitude), as
it is commonly desired to have the watershed lines at the edges (Figure 2C). Though by far the
most popular region accumulation approach, the watershed transform is infamous for producing
oversegmentation, and usually requires further processing.

DEFORMABLE MODEL FITTING
The final class of cell segmentation approaches mentioned here consists of procedures that fit
a deformable model to the image data (Figure 2D). Deformable models may be formulated either
explicitly, as a parametric contour (2D) or surface (3D), or implicitly, as the zero-level of a function
with dimensionality (nD) one higher than the image to be segmented. Level sets have the advantage
that they naturally handle topological changes, such as cell division, and are therefore attractive
for cell tracking [16]. Initialized by a first, coarse segmentation, a deformable model is iteratively
evolved to minimize a predefined energy functional, which typically consists of image-based and
shape-based terms, the latter of which allow the incorporation of prior knowledge to constrain the
results. The energy terms need to be carefully designed to avoid erroneous segmentation.

CELL SEGMENTATION APPROACHES ANALYZED
It is interesting to analyze the usage of the different approaches to cell segmentation over the years
(consult Figure 3 for the following discussion). Intensity thresholding, being the conceptually
simplest and computationally cheapest of all, was the first approach to be used since the 1960s.
Soon after, it was realized that differential features (in particular edges) could also be computed
relatively easily, and might provide useful information. The field of mathematical morphology
started to develop around the same time, and its basic operators were first used in the late 1970s
for refining the results of thresholding based cell segmentation. During that same decade, all
mentioned region accumulation approaches were conceived, and first examples of their usage in the
context of cell image analysis appeared around the mid-1980s. Finally, the first deformable model
fitting approaches for image segmentation were introduced in the second half of the 1980s, and
were first applied to cell images in the early 1990s. Since then, miscellaneous other segmentation
approaches found their way into the field, with as yet limited usage. Examples include dynamic
programming, graph cuts, active masks, support vector machines, tensor voting schemes, neural
networks, Markov random fields, and other concepts.
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FIGURE 3: Literature on cell image analysis shows an exponentially increasing interest in cell segmen-
tation and the emergence of new approaches for this purpose. In total 250 journal papers describing cell
segmentation methods were analyzed for the present article. The top panel shows their time histogram
using lustrum bins (the last bin obviously contains only partial data, up to March 2012, as indicated by the
asterisk). The distribution is representative of that of the total numbers of papers published on the subject
in the various periods. The bottom panel shows the breakdown of published methods per lustrum into six
main classes of approaches (explained in the main text): intensity thresholding (blue), feature detection
(red), morphological filtering (green), region accumulation (yellow), deformable model fitting (violet), and
miscellaneous approaches (magenta) that could not be classified as any of the former. Most methods use a
combination of several approaches.

Several observations follow from the analysis of the literature on cell segmentation in the
past 50 years. First, most of the different approaches were originally developed for applications
in other fields (computer vision, robotics, materials science, medical imaging), and were later
adopted for cell segmentation. This is remarkable, given the unique and unparalleled challenges
in cell image analysis, which should provoke the development of original ideas. Second, even
though new approaches are introduced once in a while, they seem to never fully replace old ones.
Apparently, while none of them alone produces satisfactory results, they all continue to be useful
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to some extent. Third, as a consequence, methods proposed in recent times are rarely based on a
single new concept, but are often merely new combinations of the discussed approaches, tailored
to a specific application. Rather than converging to a robust, unified solution, it thus seems that
the field is diverging, and by now almost as many cell segmentation methods have been developed
as there exist cell analysis problems [7]. However, the explosion of technical papers in the past
decade suggests that the performance and applicability of these methods remain limited, and more
powerful methods will need to be developed.

THE FUTURE OF CELL SEGMENTATION?
Reflecting on the developments in the field in the past 50 years, one wonders what to expect from
the next 50 years of research. As early as 1966, researchers already exclaimed that “automation of
the acquisition and interpretation of data in microscopy has been a focus of biomedical research
for almost a decade”, and they concluded that “many facets of the problem appear to be well within
the grasp of present-day technology”, leading them to anticipate that “modern large capacity, high
speed data facilities at last provide the ability to manipulate the hitherto unmanageable quantities
of optical information contained within all but the simplest images” [9]. On one hand, it may feel
embarrassing to admit that today, half a century down the road, very similar remarks still apply. It
seems as if from the very beginning, the “grasp of present-day technology” in the field of image
analysis has held a firm position a few years ahead in the future, barely able to keep up with the
rate of progress in its application areas. While microscopic imaging, biological experimentation,
and computer hardware development all underwent major revolutions in the past decades, most
cell image analysis methods are still based on textbook ingredients [13] from the early days. On
the other hand, perhaps this is just a testimony to the fact that the ease with which humans can
see things in images is very deceptive, and computerizing this capacity is actually a notoriously
difficult problem. The provisional solution has thus far been to isolate applications and to develop
a dedicated method for each. But the real challenge remains to design methods that are sufficiently
generic to be easily trainable for a wide range of applications while consistently achieving high
sensitivity and specificity in each case. Perhaps the rapidly increasing market share of alternative
segmentation approaches (Figure 3) signifies the beginning of a new era. Important catalysts for the
development of more powerful methods will be improved availability and testability. The technical
literature is full of alleged great methods, which were claimed to beat all previous methods for a
given application, but subsequently disappeared into oblivion because no one was able to use or
reproduce them. Their availability in popular (open-source) image analysis platforms will alleviate
this problem and should be increasingly enforced before publication. But even then, methods may
be easily abused by others to “prove” superiority of their own methods. The organization of open
challenges based on standardized test data and criteria should suppress this practice and can be
expected to further accelerate progress in the field in the near future.
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