
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 6, JUNE 2014 1729

A Nonlinear Mapping Approach to Stain
Normalization in Digital Histopathology Images

Using Image-Specific Color Deconvolution
Adnan Mujahid Khan∗, Nasir Rajpoot, Senior Member, IEEE, Darren Treanor, and Derek Magee

Abstract—Histopathology diagnosis is based on visual examina-
tion of the morphology of histological sections under a microscope.
With the increasing popularity of digital slide scanners, decision
support systems based on the analysis of digital pathology im-
ages are in high demand. However, computerized decision support
systems are fraught with problems that stem from color varia-
tions in tissue appearance due to variation in tissue preparation,
variation in stain reactivity from different manufacturers/batches,
user or protocol variation, and the use of scanners from differ-
ent manufacturers. In this paper, we present a novel approach to
stain normalization in histopathology images. The method is based
on nonlinear mapping of a source image to a target image using
a representation derived from color deconvolution. Color decon-
volution is a method to obtain stain concentration values when
the stain matrix, describing how the color is affected by the stain
concentration, is given. Rather than relying on standard stain ma-
trices, which may be inappropriate for a given image, we propose
the use of a color-based classifier that incorporates a novel stain
color descriptor to calculate image-specific stain matrix. In order
to demonstrate the efficacy of the proposed stain matrix estimation
and stain normalization methods, they are applied to the problem
of tumor segmentation in breast histopathology images. The exper-
imental results suggest that the paradigm of color normalization,
as a preprocessing step, can significantly help histological image
analysis algorithms to demonstrate stable performance which is
insensitive to imaging conditions in general and scanner variations
in particular.

Index Terms—Histopathology images analysis, nonlinear map-
ping, principal color histograms (PCH), stain color descriptor
(SCD), stain estimation, stain normalization.
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I. INTRODUCTION

H ISTOPATHOLOGY is the diagnosis of disease by visual
examination of tissue under the microscope. In order to

examine tissue sections (which are virtually transparent), tis-
sue sections are prepared using colored histochemical stains
that bind selectively to cellular components. Color variation is
a problem in histopathology based on light microscopy due
to a range of factors such as the use of different scanners,
variable chemical coloring/reactivity from different manufac-
turers/batches of stains, coloring being dependent on staining
procedure (timing, concentrations, etc.), and light transmission
being a function of section thickness. Lyon et al. [1] outline the
need for standardization of reagents and procedures in histolog-
ical practice. However, because of issues like manual sectioning
variability and stains fading over time, complete standardization
is not possible to achieve with the current technology. Current
practice is limited to physical and procedural quality-control
methods, including subjective assessment of stain quality and
interlaboratory comparisons of staining, in order to minimize
the visible variability in staining and its impact on diagnostic
quality.

With the advent of digital imaging and automatic image anal-
ysis, color variation in histopathology has become more of an
issue. For example, many commercial image analysis algorithms
require parameters defining the expected color of anatomy of in-
terest and fail if these parameters are incorrect. Although meth-
ods have been proposed for improving color constancy in images
formed via Lambertion (reflective) model of image formation
(see [2] for a good overview1), these methods are not applicable
to color images formed via light transmission through a tissue
specimen, and thus are inappropriate for histopathology image
analysis.

Consequently, a large number of methods presented in the
area of automatic image analysis of color histopathology im-
ages bypass the problem of color constancy by transforming
the images to grayscale. For example, texture analysis for tissue
type classification has been performed on grayscale images us-
ing features based on grayscale cooccurrence matrices [3], local
binary patterns [4], or the wavelet packet transform [5]. This can
be successful in cases where grayscale intensity is the primary
cue. For example, Basavanhally et al. [6] use the fact that cell
nuclei are much darker under certain stains than surrounding
anatomy. Luminance is used to classify different types of nu-
clei in their work. However, conversion to grayscale ignores the

1Please refer to the electronic version of the manuscript for color figures.
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Fig. 1. Color normalization artifacts when using Reinhard et al. [7], histogram specification [8], and Macenko et al. [9] color normalization methods. (a) Target
image, (b) source Image-1, (c) Reinhard et al. normalization output (artifacts at pixel class boundaries, bgd appearing stained), (d) source Image-2, (e) histogram
specification normalization output [color mismatch due to different proportions of stains in normalized and target image, (f) target image, and (g) source Image-1,
(h) Macenko et al. normalization output (noise/artifacts)] .

wealth of information in the color representation used routinely
by pathologists. Typically, two or three different colored stains
are used to highlight cellular and subcellular target components.
The intensity of each color is related to the concentration of the
corresponding component. Additionally, more than one target
component protein may be present in a given area, resulting in
a mix of colors. Converting images to grayscale results in an
image representing the total concentration of all tissue compo-
nents, rather than the relative amounts of each.

Some authors have included color information within texture-
based image classification in digital histopathology image anal-
ysis [10]. Kong et al. [11] use cooccurrence matrices in indi-
vidual channels of the Lab colorspace as texture descriptor, and
evaluate a range of different classifiers for grading neuroblastic
differentiation. Sertel et al. [12] cluster color vectors in the Lab
colorspace using k-means clustering and use a cooccurrence
representation based on color prototypes as a texture feature.
Considering the variation in colors within/across histopathol-
ogy sections, color texture features may be highly sensitive to
staining/scanner variations and thus may significantly affect the
performance of an automated system.

In order to overcome these limitations, Wang et al. [13] take
a different approach and normalize color distributions of source
image to those of a target image by using [7] before performing
color-based segmentation. In the remainder of this paper, we use
the term “stain or color normalization” to refer to the process of
adjusting the color values of an image on a pixel-by-pixel basis
so as to match the color distribution of the source image to that
of a target image.

In the literature, a few existing stain normalization methods
can be found [7]–[9], [14]–[16]. Histogram specification [8] is
a method closely related to histogram equalization previously
used for color normalization in oral histopathology images [17].

A major drawback of histogram-based approaches is that they
introduce considerable visual artifacts in images. This is due
to the implicit assumption that the proportion of pixels of each
stain type is same in the target and source images. This is clearly
not always correct (see Fig. 1). Kothari et al. [14] proposed a
variation on histogram normalization, where the presence of a
color, rather than frequency is used for color normalization. This
has the disadvantage that rare (potentially noise), and common,
pixel values are treated as equally important.

Reinhard et al. [7] proposed a method of color normaliza-
tion where the mean and standard deviation of each channel of
the image are matched to that of the target by means of a set
of linear transforms in Lab colorspace. However, the assump-
tion of unimodal distribution of pixels in each channel of Lab
colorspace does not hold if multiple colored stains are used.
As a result, this can result in background (bgd) areas being
mapped as colored regions, and foreground being incorrectly
mapped, as shown in Fig. 1. Magee et al. [15] proposed an au-
tomatic segmentation extension to [7]. First, Gaussian-mixture
model-based color segmentation is used to automatically iden-
tify multiple pixel classes, then linear normalization is applied
separately to each pixel class, where class membership is de-
fined by a pixel being colored by a particular chemical stain,
or bgd. A major limitation of this approach is that it introduces
artifacts near pixels that lie on the class boundary.

Color deconvolution (CD) [7] is used extensively in
histopathology image analysis for separating an RGB image
into (up to) three channels, each corresponding to the actual
colors of the stains used (see Section II for details). Magee
et al. [15] and Macenko et al. [9] simultaneously proposed meth-
ods for stain normalization based on a CD-derived representa-
tion. Both methods automatically derive image-specific CD ma-
trices. Magee et al. use a supervised pixel classification-based
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approach to estimate stain colors, whereas Macenko et al. use
an singular value decomposition (SVD)-based approach to di-
rectly estimate the matrices. Niethammer et al. [16] extend the
stain matrix estimation method in [9] using priors to estimate
stain matrices to improve stability in cases where images con-
tain uneven proportions of each stain, at the cost of abandoning
the closed-form solution in the original work—thus introduc-
ing an additional local optima failure mode. Macenko et al. use
linear per-channel normalization based on a pseudomaximum
(the 99th percentile) to map source image values to match the
target image, whereas Magee et al. use a nonlinear mapping
based on pixel classifications. Either method can fail if the stain
matrix estimation process fails, the mapping function is inap-
propriate, or the channel statistics calculations are inaccurate
due to excessive noise (e.g., saturated pixels). It can be argued
that linear normalization is always inappropriate as it treats opti-
cally and chemically saturated pixels identically to other pixels,
modifying their values (see Fig. 1). Additionally, Macenko et al.
modifies the color distribution of both source and target images,
which is sometimes not desirable if we have a reference image
with stain characteristics suitable for an automated system.

The method presented in this study is an evolution of [15]
and overcomes limitations of previous work by estimating sta-
ble stain matrices using an image-specific color descriptor and a
robust color classification framework based on a variety of train-
ing data for a particular stain. Moreover, we propose a regular-
ized nonlinear mapping of stain channels which ensures smooth
color transformation without introducing visual artifacts. The
following list accounts for our novel contributions:

1) We introduce a novel whole-image stain color descriptor
(SCD) that grossly quantifies the concentration of stains
in an image. We demonstrate that pixel classification per-
formance is robust for a wide variety of images if our SCD
descriptor is used along with R,G,B pixel information.

2) We propose the use of a color-based classifier to calculate
image-specific stain matrices.

3) We perform nonlinear mapping of source image chan-
nels to the target image channels using regularized spline-
based functions estimated from image statistics.

4) We demonstrate that a tumor segmentation algorithm for
breast histopathology images [18] demonstrates stable
performance if preceded by a stain normalization step
especially if data are coming from different scanners.

The remainder of this paper is organized as follows. Section II
outlines the details of CD model which is essential to our pro-
posed stain normalization framework. In Section III, we propose
a novel method for automatic derivation of stain matrices by in-
corporating global image-specific stain information with local
RGB pixel information in a supervised classification frame-
work [19]. We use the estimated stain matrix to develop a novel
stain normalization method that automatically adjusts the RGB
color distribution of a source image to that of a target image.
Finally, we demonstrate in Section IV that stain normalization
can play a critical role in stability of automatic histopathology
image analysis algorithms especially when there is variation in
the staining protocol or tissue, or the data come from different
scanners.

II. CD MODEL

In 2001, Ruifrok and Johnston [20] proposed a CD framework
with potential application in histopathology image analysis. This
method has been used in a variety of applications: quantification
of immunohistochemical (IHC) stains [21] and nuclei detection
[22] to name but a few. The CD framework transforms the RGB
colorspace Ψ to a new colorspace Ψ̂ defined by the stains used
for staining the tissue section. If imageI = (C,Ψ) is defined as a
two-dimensional (2D) set of pixels C with associated colorspace
function Ψ assigning red, green, and blue intensities to each
pixel, the relationship between colorspaces Ψ and Ψ̂ is defined
by Lambert–Beers law as follows:

Ψ = exp(−SΨ̂) (1)

where S is the stain matrix that defines the stain vectors (ab-
sorption factors) associated with each stain used on the tissue,

S =

⎡
⎢⎣

s̄r,1 s̄g ,1 s̄b,1

s̄r,2 s̄g ,2 s̄b,2

s̄r,3 s̄g ,3 s̄b,3

⎤
⎥⎦ (2)

where s̄r,1 , s̄g ,1 , and s̄b,1 denote the predefined, normalized red,
green, and blue values for s1 channel. Similarly, the second and
third rows of S are defined for s2 and s3 channels, respectively.
Ruifrok and Johnston [20] provided a closed-form solution to
the inversion of (1), in which they demonstrated that the intensity
of a pixel c ∈ C in the new colorspace Ψ̂ is defined as

Ψ̂(c) = DΦ(c) (3)

where D = S−1 (4)

and Φ(c) = − log(Ψ(c)). (5)

Here, D is the CD matrix obtained by calculating the inverse
of the stain matrix S, Φ is the so-called optical density (OD)
space where a linear combination of stains results in a linear
combination of OD values, and Ψ̂(c) represents the amount of
each stain (s1 , s2 , and s3) corresponding to the pixel c.

CD requires accurate estimation of S (the stain matrix). Al-
though Ruifrok and Johnston [20] provide standard stain ma-
trices for a variety of stain combinations, image-specific stain
matrix is usually more optimal for stain separation and is recom-
mended to be estimated from control tissue stained with single
stains by a laborious manual process.

III. STAIN NORMALIZATION ALGORITHM

The proposed algorithm (see Fig. 2) consists of four mod-
ules: stain matrix estimation, CD, nonlinear mapping of channel
statistics, and reconstruction. Broadly, we first map both target
�(C,Ψ) and sourceX (C,Ψ) images to a representation �̂(C, Ψ̂)
and X̂ (C, Ψ̂), where each channel relates to a separate chemi-
cal stain (see Section II). Next, we apply a nonlinear correction
(mapping) to normalize each channel of X̂ separately (based on
the statistics calculated from the corresponding channel of �̂).
Finally, we reconstruct the normalized source image X norm us-
ing the normalized stain channels of X̂ . The following sections
present the details of each of these modules.
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Fig. 2. Overview of the proposed stain normalization algorithm: 1) Deconvolution of both target and source images to constituent stain channels by estimating
image-specific stain matrix (see Fig. 3); 2) Nonlinear mapping of the statistics of each channel of deconvolved source image to those of the statistics of the
corresponding channel in deconvolved target image (see Fig. 7); 3) Channel recombination to obtain the normalized source image. Note that θm ,n represents the
mth statistic associated with nth deconvolved channel of corresponding source or target image, where m ∈ {1, 2, . . . , 9} and n ∈ {1, 2, 3}.

Fig. 3. Stain matrix estimation using color classification: During learning, color palette for quantization, PCHs for low-dimensional embedding, and classification
models for pixel-level color classification are learned from training images. During evaluation, the input image is quantized using the prelearned color palette,
SCD is obtained by projecting the quantized image histogram on the precalculated PCH, and pixel classification is performed using the pretrained classification
models that generate a probability map for each stain. Probability maps are used to define mean colors for each stain.

A. Stain Matrix Generation and CD

We use the CD framework to convert both � and X im-
ages from RGB colorspace to a new colorspace defined by con-
stituent stains. This requires estimation of image-specific stain
matrix S each for � and X images. We estimate image-specific
stain matrices (S� and SX ) using a global (perimage) SCD (see
Section III-A1) and local pixel-level color information in a su-
pervised color classification framework (see Section III-A2).
Fig. 3 gives an overview of the stain matrix estimation method
that consists of two phases: learning and evaluation. Learn-
ing, which is performed offline, essentially involves two steps:
1) deriving principal color histograms (PCH) from a training
set of quantized image histograms to obtain SCDs; 2) learning
classification models by utilizing RGB (pixel information) and
SCD (whole-image color information) in a supervised classi-
fication framework to generate stain-specific probability maps

(one for each stain and bgd). These probability maps are used
to estimate the color of each stain for a particular image. In the
following sections, we further elaborate on this method.

1) Image-Specific SCD (SCD): Given a training set of k
RGB histopathology images I = {I1 , I2 , . . . , Ik}, we calculate
a set of image-associated SCDs Ĥ = {Ĥ1 , Ĥ2 , . . . , Ĥk}. For
this purpose, each image Ii (where i = {1, . . . , k}) is color
quantized using Oct-tree quantization [23] to generate a set of
histograms of 255 color prototypes H = {H1 ,H2 , . . . , Hk}.
Oct-tree quantization [23] is a very efficient color to prototype
mapping algorithm. The method works by iteratively partition-
ing a 3-D colorspace into eight equal-sized regions to form a
tree of regions of increasingly small size. The number of leaves
can be reduced by subsuming multiple leaves of tree by their
common parent node (which then becomes a leaf). In our im-
plementation, subsumption is based on the node with the fewest
associated pixels until there are only 255 prototypes.
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Fig. 4. Boxplots represent the range of SCDs before (left) and after (right)
stain normalization on five batches of training images (used in experiment 1).
Note that the SCDs are dispersed for batches of unnormalized images compared
to the SCDs of normalized images.

Next, mean H̄ and covariance Σh of the training set of his-
tograms are computed to perform linear dimensionality reduc-
tion. Let Er

h be the matrix whose columns are the first r eigen-
vectors of Σh , where the eigenvectors stand for the principal
components of the training color prototype histograms and are
orthonormal to each other. Low-dimensional projection of each
training prototype histogram Hi into r-dimensional truncated
eigenspace is performed using

Ĥi = Er
h(Hi − H̄) (6)

where Ĥi is the r-dimensional embedding of the training set
color histogram Hi .

This low-dimensional representation of color prototypes is
what we call PCHs. Once the PCH are computed, we project
each quantized image histogram on the PCH to compute the
SCD, which is a very compact, efficient, and resolution-invariant
representation of color distribution in a histopathology image.

Fig. 4 demonstrates the idea of SCD as global image-specific
color descriptor for RGB histopathology images, grossly de-
scribing the stain color of each image. SCDs are calculated for
five batches of 12 images each, before and after stain normal-
ization. It is worth noting that there exists significant variation
in SCDs within a single batch (e.g., batch 1, 3, and 4) and be-
tween the different batches before stain normalization. It can
also be observed from this figure that the SCDs are relatively
more homogenous within a single batch and across different
batches after stain normalization.

2) Color Classification: In order to generate the stain ma-
trix S, we exploit pixel-level (local) RGB information present in
training image set I = {I1 , I2 , . . . , Ik} and image-level SCDs
Ĥ = {Ĥ1 , Ĥ2 , . . . , Ĥk}, generated for each image in I us-
ing the procedure outlined in Section III-A1, to learn pixel
classes belonging to s1 , s2 , and bgd in a supervised pixel
classification-based learning framework. For supervised classi-
fication, the computationally efficient relevance vector machine
(RVM) method [24] is selected as it is a sparse kernel machine
that results in a model with several orders of magnitude fewer
support vectors (and thus runtime) than the related support vec-
tor machine method [25]. Random forests [26] (of various sizes)
were also evaluated, but their performance was inferior as they
tended to overfit the data. Additionally, the RVM provides a
probabilistic (rather than binary) output. As we have a three-
class problem, and RVM is a two-class classifier, classification
is implemented using the one-against-all approach.

TABLE I
RULES FOR CATEGORIZING AN IMAGE INTO THREE CLASSES (SEE

SECTION III-B1 FOR DETAILS)

Given a feature vector F = [R,G,B, Ĥ] (generated by
concatenating RGB pixels values with corresponding image-
specific SCD Ĥ) and pixel-level class labels A, we perform
supervised machine learning to produce a probabilistic output
that provides the probability of association of each pixel to a par-
ticular class. Probabilistic output of each RVM for each pixel is
computed as follows:

P (sn |F) =
Psn

(sn |F)
Ps1 (s1 |F) + Ps2 (s2 |F) + Pbgd(bgd|F)

(7)

where sn ∈ {s1 , s2 , bgd}, Psn
(sn |F) is the probabilistic output

of the RVM model.
P (sn |F) is used to define the pixels of interest for each stain.

Pixels assigned a probability greater than some threshold Tp are
used to calculate the exemplar color for each stain. We use the
mean colors (r̄n , ḡn , b̄n ) of pixels classified as belonging to each
class to define stain color [as shown in (8)]. If only two stains are
used, the cross product of [s̄r,1 , s̄g ,1 , s̄b,1 ] and [s̄r,2 , s̄g ,2 , s̄b,2 ] is
used to complete the 3 × 3 S matrix,
⎡
⎢⎣

s̄r,n

s̄g ,n

s̄b,n

⎤
⎥⎦ =

⎡
⎢⎣
− log(rn + 1)/256

− log(gn + 1)/256

− log(bn + 1)/256

⎤
⎥⎦

/∣∣∣∣∣∣∣

− log((rn + 1)/256

− log(gn + 1)/256

− log(bn + 1)/256

∣∣∣∣∣∣∣
.

(8)
Fig. 5 shows examples of the probability maps produced by

the stain matrix estimation method (data taken from [19]). It can
be seen that if no SCD [r = 0 in (6)] is used (see Fig. 5, columns
2 and 5), significant probability is assigned to each class for
weakly stained pixels and bgd pixels with very minor staining.
These are the pixels where classification is context specific (i.e.,
it depends whether the overall staining is strong or weak). We
showed in [19] that there was no statistical improvement (or
degradation) in classification accuracy when using more than
one dimension for the SCD.

B. Nonlinear Mapping of Channel Statistics

For each channel of deconvolved target and source images
(�̂ and X̂ ), we calculate a set of statistics (see Section III-
B1) and smoothly map the statistics of each source image
channel to those of the statistics of corresponding target im-
age channel using a spline-based nonlinear mapping (see Sec-
tion III-B2). Following two sections outline the details of these
steps:

1) Computed Statistics of Deconvolved Channels: Given
the probability map for each stain and bgd, OD intensities
in each deconvolved channel are divided into three classes
ζ (where ζ ∈ [STAINED, BACKGROUND, OTHER]) using
the rules stated in Table I. For each channel of � and X ,
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Fig. 5. Probability maps P(sn ) for typical H&E (columns 2 and 3) and H&DAB (columns 5 and 6)-stained images using classifiers with no SCD [r = 0 in (6)]
(columns 2 and 5) and 1-D SCD [r = 1 in (6)] (columns 3 and 6). Top row: Haematoxylin (blue/purple). Bottom: Eosin (columns 2 and 3—pink)/DAB(columns
5 and 6—brown). (White shows high probability of belonging to the stain channel and vice versa.)

Fig. 6. Marginal distributions of three classes (STAINED, OTHER, BACK-
GROUND) in ζ from a single channel of a deconvolved image. Optically satu-
rated pixels and chemically saturated pixels are excluded from these distributions
to ensure percentiles are representative of the width of the distribution.

three statistics (mean, 5th percentile, and 95th percentile) are
computed for each class in ζ, producing a vector of length
9 (i.e., 3 statistics × 3 classes). The three statistics are in-
tuitively chosen to represent the distribution associated with
each class in a compact and comparable manner (see Fig. 6).
Optically saturated (white) and chemically saturated pixels
(black) are excluded from this process in all channels to
make the percentiles more representative of the width of the
distribution.

2) Nonlinear Mapping of Deconvolved Channels: The prin-
ciple behind the transform function is to map the statistics of
the source image channel X̂n to those of the statistics of the
corresponding channel in the target image �̂n . A B-spline is
used to ensure a smooth mapping function. The spline param-
eters are estimated from the nine input–output pairs of values
plus identity pairs at the extremes of the representation to ensure
black (chemically saturated) and white (optically saturated) pix-
els remain unchanged. The B-spline parameters (knot values)
are estimated by solving a linear system using Tikhonov regu-
larization [27] with an identity mapping prior. This process is
illustrated in Fig. 7.

Fig. 7. Estimation of B-Spline mapping function from image statis-
tics. Such a mapping is estimated and applied to each stain channel.
Here, identity data is introduced at the extremes of the representation
([0, 10, 20, 30, 40, 50, 240, 250, 500]) to ensure black (chemically saturated)
and white (optically saturated) pixels remain unchanged. Please note that in
our implementation of [20], we clip the pixel intensities of deconvolved image
channels in [0, 500] range.

C. Reconstruction

Once each of the stain channels of X̂ is normalized indepen-
dently, they are recombined on a per-pixel basis as follows:

⎡
⎢⎣

Xnorm
r (c)

Xnorm
g (c)

Xnorm
b (c)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

255 ×
3∏

n=1

e−X̂ n o rm
n (c)s�

r , n

255 ×
3∏

n=1

e−X̂ n o rm
n (c)s�

g , n

255 ×
3∏

n=1

e−X̂ n o rm
n (c)s�

b , n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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Fig. 8. Stain vectors (for two stains H&E) estimated for a tissue specimen us-
ing seven different values of Tp (0.7,0.75,0.8,0.85,0.9,0.95,0.99) represented
with increasingly big size of circle. The color of each symbol corresponds to
what would be produced by the stain vector. The stars represent the standard
stain vectors [20]. Diamonds represent stain vectors estimated using [9].

where c ∈ C refers to a pixel on a 2-D grid C, X̂ norm
n refers to

the normalized stain channel n, and s�α,n (where α ∈ {r, g, b})
is the stain vector associated with nth channel of stain matrix
S�.

IV. VALIDATION EXPERIMENTS

Two sets of experiments were performed to evaluate the utility
of our proposed method. In the first experiment, an RVM classi-
fier is trained on RGB data from each target image and tested on
images from different tissue batches that are stain normalized
using variety of stain normalization methods. The main aim of
this experiment is to determine the color consistency of images
with the target before and after stain normalization. In the sec-
ond experiment, we demonstrate that stain normalization can
improve the performance of histopathology image analysis al-
gorithms, especially when data come from different scanners. In
addition to the proposed method, a range of color-normalization
approaches is evaluated within these experiments.

Model Parameter Selection: We build PCH and classification
models from manually annotated training data which consists
of five batches (four liver and one oesophagus) of 12 images
each, with about 1000–3000 pixels. So, the total number of
pixels used for training is about 48 × 1500 × 3 = 220K pixels.
Training images are manually annotated by DM and verified by
an expert pathologist (DT) and care is taken to ensure that only
those pixels are marked which actually belong to the stain in
question. Weakly stained pixels are deliberately avoided to keep
the training data as clean as possible.

Using cross-validation experiments, we observed a significant
increase (≈ 16%) in classification accuracy if 1-D SCD is used
along with RGB pixel information. It was further observed that
the results do not show any statistically significant improvement
in classification accuracy if 2-D or 3-D SCDs are used (see [19]
for further validation). Therefore, in all of our experiments, we
used 1-D SCD.

Fig. 8 demonstrates the sensitivity of the threshold value Tp

used to estimate stain matrix. Stain vectors (for two stains H&E)
are estimated and plotted for a tissue specimen using differ-
ent values of Tp . Notice that all the recovered stain vectors

form tight clusters which lead us to conclude that the proposed
method is not sensitive to the value of Tp . Moreover, it can
also be observed that the stain vectors estimated using [9] and
the proposed method are relatively closer to one another than
the standard stain vectors. In all of our experiments, we used
Tp = 0.99.

Tbgd , Tf gd , and parameters for excluding optically and chem-
ically saturated pixels were determined to be relatively insensi-
tive to threshold values (within sensible ranges) by cross vali-
dation on the training set. In all of our experiments, we used the
value of 0.75 for both parameters.

A. Experiment 1: Per-Pixel Classification Following Color
Normalization

Dataset: The dataset for this experiment consists of five
batches of 12 images each (60 images, ≈ 0.5 Million labeled
pixels). Pixel classes (s1 , s2 , and bgd) are annotated for approx-
imately 1000–3000 pixels of each class in each image using an
interactive tool. Four batches contain liver tissues, with the fifth
containing oesophageal tissue. These batches were prepared
at different times using different chemical batches by a range
of technicians within our laboratories. All tissues are formalin
fixed, paraffin embedded, H&E counterstained, and scanned at
20/40× magnification using an Aperio (AP) XT scanner.

Design: For each fold of a five-fold cross validation,
two RVM-based classifiers were generated (as described in
Section III-A2). One—used for color normalization—was
trained on four-folds of training data (48 images) with a 1-D
SCD (r = 1). The other RVM was used to test for color consis-
tency in the normalized images and was thus only trained on a
single target image with no SCD. Test images were classified
by the second RVM classifier and the results were compared to
the ground truth (GT) annotations to determine the color con-
sistency of normalized images with the target image. Images
were color normalized to the target image using six different
methods: NN (no stain normalization), ER [7], HS [8], SK [14],
MM [9], and our proposed stain normalization method. Classifi-
cation accuracy is determined by assigning each classified pixel
to the class with the highest probability. The kernel bandwidth
parameter for RVM classifier (0.005 in all experiments) is de-
termined by cross validation on a small training set consisting
of one image from each batch.

Results and Discussion: Statistical summaries of these exper-
iments are shown in Table II. It can be seen that color normaliza-
tion improves overall classification performance for the H&E
stained data in general (except when using the SK method). This
indicates pixels of corresponding stain types are more similar to
the target images after normalization than before. The best per-
forming method is the proposed method. Results without SCD
are not presented as the method fails to estimate CD matrices
in approximately 19% of cases. This is because of insufficient
number of pixels of high probability for each stain class.

B. Experiment 2: Stain Normalization as a Preprocessing Step
in Histopathology Image Analysis

Segmentation of areas containing tumor cells in standard
H&E histopathology images of breast (and several other tissues)
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TABLE II
INTERBATCH NORMALIZATION RESULTS: FIVE-FOLD CROSS VALIDATION

ACCURACY STATISTICS FOR THE RVM CLASSIFIER TRAINED ON A SINGLE

IMAGE AND TESTED ON 48 IMAGES FROM DIFFERENT TISSUE BATCHES

is a key task for detection and quantification of mitotic cells from
the standard H&E slides with a high degree of accuracy, with-
out need for special stains [22], [28]. Tumor segmentation is
also vital for automated scoring of IHC-stained slides to restrict
the scoring or analysis to areas containing tumor cells only and
avoid potentially misleading results from analysis of stromal
regions. We demonstrate how the performance of a tumor seg-
mentation algorithm [18] varies when it is preceded by different
stain normalization methods as a preprocessing step especially
when data come from different scanners.

Dataset: We use the public MITOS dataset of breast histol-
ogy images [29]. The dataset is composed of 50 breast histology
high power field (HPF) images from five patients scanned at 40×
magnification using two different scanners: AP and Hamamatsu
(HM). Since same tissue sample is scanned using two different
scanners, there are in total 100 HPF images. In order to account
for interobserver variability, all images are hand segmented by
two expert pathologists to mark the boundary of tumor areas
in each HPF. The average degree of disagreement (interob-
server variability) between the two pathologists on GT images
is 11.55% ± 0.05. We generate all experimental results on two
criteria: 1) considering pathologist-1’s markings (AP/HM-1) as
GT; 2) considering pathologist-2’s markings (AP/HM-2) as GT.

Design: All images in the dataset were color normalized by
a range of methods in the same way as experiment 1 using a
target image scanned using an AP scanner. The segmentation
was performed using [18] and evaluated by comparing against
the manual annotations of two expert pathologists using Dice
coefficient. The classifier for color normalization using the pre-
sented method was trained on the data from experiment 1.

Evaluation and Discussion: Segmentation performance was
evaluated using the Dice coefficient; a widely used pixel-wise
accuracy measure. Given a segmented image (X) and pathol-
ogist’s marked GT image (Y ), Dice coefficient is defined by
2|X∩Y |
|X |+ |Y | . The measure provides values between 0.0 to 1.0 (1.0
indicates identical segmentations).

Fig. 9 provides illustration of different stain normalization
methods considered in this study. It can be seen that when ER
stain normalization is applied (on both AP and HM HPF im-
ages), output image quality degrades significantly particularly
in areas where we have fat tissue (white regions) and flat stromal

structures of the tissue. For HM HPF images, the effect of stain
normalization is almost invisible in the case of ER and SK. With
MM, the effect of image normalization is relatively discernible,
however there are two problems: 1) the color distribution of nor-
malized image is different from the target image as the method
normalized both source and target images; 2) for an HM HPF
image, it introduces significant visual artifacts in white regions
(see electronic version for better visibility). The reason being the
linear transformation function which do not faithfully normalize
extremely white and extremely dark pixels. With the proposed
method, we obtain visually superior color normalization: stain-
ing of both Eosin- and Hematoxylin-rich regions normalized to
the target image without introducing visual artifacts.

Fig. 10 presents tumor segmentation performance in terms of
the Dice coefficient for different stain normalization methods.
The results of AP HPF images as expected are fairly consistent
as the algorithm is trained on data from this variation. However,
for HM HPF images, the effect of stain normalization using
our method can be seen clearly. The proposed algorithm out-
performs all other methods for HM HPF images. This result
suggests that color normalization could be used to build meth-
ods that work across different tissue types scanned with scanners
from different manufacturers.

C. Computational Efficiency

To quantitatively evaluate the computational efficiency of the
proposed method compared to ER, SK, and MM, we run all
of these algorithms on a set of 100 images, and the average
time is reported in Table III. All timings are calculated on a
3.1 GHz Windows 7 machine running MATLAB 2013b with
8GB of RAM.

V. DISCUSSION AND FUTURE WORK

Color inconsistency between tissue sections within and be-
tween laboratories, or between different scanners is a significant
issue in histopathology. We have demonstrated the importance
of color consistency in two application areas (per-pixel color-
based segmentation and texture-based tumor segmentation), and
presented a method for ensuring consistency by color normal-
ization to a target image. The presented method is qualitatively
superior to the state of the art in both application areas. Ad-
ditionally, the presented method results in less image artifacts
than existing approaches due to its robustness (at estimating
deconvolution vectors) and appropriateness (using a nonlinear
transform regularized to identity at the extremes). From both
experiments, it is clear that RGB-histogram-based methods do
not perform well at this task if source and target images are
significantly different in content. The method of Reinhard et al.,
based on linear normalization in Lab colorspace, is attractive
in its simplicity but is based on the false assumption of uni-
modal color distribution in each channel. This can result in bgd
appearing stained after normalization and poor normalization
of the least dominant channel(s). CD-based approaches come
out the best in both experiments presented, with the proposed
method outperforming Macenko’s method in both cases. The
appropriateness of CD-based approaches should be obvious, as
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Fig. 9. Illustration of different stain normalization methods: Top row (left to right): target image, source AP HPF image, results of normalization using ER [7],
SK [14], MM [9], and the proposed methods, respectively. Bottom row (left to right): the same HPF scanned using HM scanner, results of normalization using
ER, SK, MM, and the proposed methods, respectively. HPF, AP, and HM.

Fig. 10. Dice coefficient representing the agreement between algorithm’s out-
put and pathologist’s markings of AP and HM HPF images, when each image
is preprocessed using different stain normalization methods. Path-1 and Path-2
refers to the GT marking by pathologist-1 and pathologist-2, respectively; NN;
ER Reinhard [7]; SK [14]; MM [9].

TABLE III
RUN TIMES FOR STAIN NORMALIZATION OF IMAGES OF VARIOUS SIZES

chemical processes are largely independent for each stain, and
CD separates out the effect of variation of each stain so it can
be corrected independently. Of the two CD-based approaches
evaluated, the method presented herein is significantly the su-
perior. This could be for two reasons: 1) Better, or more robust,
deconvolution matrix estimation, and/or 2) a more appropriate
mapping function. An investigation on a small number of im-
ages revealed that both the proposed (supervised classification
based) method and Macenko et al.’s (unsupervised) method gen-
erally produced more appropriate deconvolution matrices than

Fig. 11. Demonstration of the need for the image-specific stain matrix: (top
left) RGB image; (top right) channel-3 obtained by performing CD using stan-
dard stain matrix [20]; and (bottom row) using image-specific stain matrices
estimated using [9] and the proposed method in Section III-A2, respectively.
Amount of information content in each channel is measured in terms of entropy
(bits per pixel). Ideally the third channel should be empty as only two stains are
used in the image.

simply using standard matrices, with little data leaking into the
third channel (see Fig. 11). The proposed method performed
marginally better under this criterion than the approach of Ma-
cenko et al., with consistent performance over all images. How-
ever, we speculate that the inappropriateness of the simple linear
mapping function used in the study (especially at the extremes
of distributions) is the main reason for the superior performance
of our approach, as our method seems reasonably invariant to
choice of thresholds (and thus slight variation in deconvolution
matrices), and the matrices produced by Macenko et al. are not
radically different in most cases.

It is worth pointing out that in experiment 2, the tissue type
(breast tissue) was significantly different to the tissue used for
training the classifier for our method (liver and oesophagus).
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However, the performance on this new set was nonetheless
accurate and robust. This suggests that the proposed method is
potentially appropriate for a wide variety of applications without
re-training.

One important point to raise about the use of any color nor-
malization method which is based on a target image is the choice
of an appropriate target image. The choice of target image in
our experiments was either random (Experiment-1), or based
on manual selection (Experiment-2). In practice, however, care-
ful choice of the target image based on quantitative measures
(e.g., cross validation accuracy of some method) applied to a
set of normalized images may be required, as performance of a
method on a single target image is not necessarily indicative of
performance on a normalized image set.

It remains true that often the best way of estimating CD vec-
tors is to apply a single stain to control tissue [20]. This is the
method used to estimate the standard matrices supplied with the
publicly available implementations of [20]. However, it is often
hard to ensure that this control tissue is representative of tissue
being analyzed (especially over time, or if analysis involves tis-
sue from multiple labs/technicians). Color normalization meth-
ods, such as those presented in this paper, offer an opportunity
to utilize such carefully estimated stain matrices over a wider
range of tissues. We anticipate application of these techniques
to a wide range of problems in histopathology image analysis
in the near future. In addition to our success in increasing color
consistency, the building blocks of our color normalization (the
classifier and SCD) could be used for a wide variety of tasks in
histopathology image analysis from segmentation to similarity-
based retrieval, content filtering, and visualization applications.
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