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ABSTRACT

The current method of grading prostate cancer on histology uses the
Gleason system, which describes five increasingly malignant stages
of cancer according to qualitative analysis of tissue architecture. The
Gleason grading system has been shown to suffer from inter- and
intra-observer variability. In this paper we present a new method for
automated and quantitative grading of prostate biopsy specimens. A
total of 102 graph-based, morphological, and textural features are
extracted from each tissue patch in order to quantify the arrange-
ment of nuclei and glandular structures within digitized images of
histological prostate tissue specimens. A support vector machine
(SVM) is used to classify the digitized histology slides into one
of four different tissue classes: benign epithelium, benign stroma,
Gleason grade 3 adenocarcinoma, and Gleason grade 4 adenocarci-
noma. The SVM classifier was able to distinguish between all four
types of tissue patterns, achieving an accuracy of 92.8% when dis-
tinguishing between Gleason grade 3 and stroma, 92.4% between
epithelium and stroma, and 76.9% between Gleason grades 3 and 4.
Both textural and graph-based features were found to be important
in discriminating between different tissue classes. This work sug-
gests that the current Gleason grading scheme can be improved by
utilizing quantitative image analysis to aid pathologists in producing
an accurate and reproducible diagnosis.

1. INTRODUCTION

The current protocol for prostate cancer diagnosis involves manual
analysis of prostate biopsy tissue by a pathologist to determine the
presence or absence of cancer in a tissue sample, followed by Glea-
son grading to assign a number between 1 (early stage cancer) and
5 (highly infiltrative cancer) to grade the invasiveness of the cancer.
Gleason grading is currently done by visual analysis of the arrange-
ment, size, and shape of the gland structures and nuclei within the
tissue sample. Recently however a number of problems have been
identified with the Gleason system:

e Jariability: Studies have shown significant levels of inter-
and intra-observer variability in manual grading of prostate
cancer [1] with the rates of undergrading tissue patterns (as-
signing a tissue a grade lower than its actual grade) as high
as 47% [2], [3]. Figure 1 illustrates these clinical problems,
as the difference between intermediate cancer grades (grade
3 (Figure 1 (a)) and grade 4 (Figure 1 (b))) is more difficult to
distinguish than, say, between grades 1 and 5.
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e Lack of Standardization: Changes in grading methodologies
over the years and variations in the grading criteria at different
institutions make consistent grading difficult [4].

o Limited Feature Set: The Gleason system distinguishes dif-
ferent cancer grades solely on tissue architecture while other
attributes such as texture and cellular and glandular morphol-
ogy are not accounted for.

Fig. 1. Digitized histological tissue patches corresponding to (a)
Gleason grade 3 adenocarcinoma, (b) grade 4 adenocarcinoma, (c)
benign epithelium, and (d) benign stroma.

Computer-aided diagnosis (CAD) techniques for prostate can-
cer have been proposed to supplement manual visual analysis of
biopsy core specimens. At low magnification, systems have been
proposed that employ low-level image features such as color and
intensity to classify image pixels as “cancer” or “non-cancer,” i.e.
only object detection [5]. In order to distinguish cancer grades, more
detailed information at high magnification such as the arrangement
of nuclei and glands is required. Benign epithelial tissue contains
large, irregularly-shaped glands, while Gleason grades 2 and 3 have
a fewer number of organized, circular glands. Cancer of Gleason
grades 4 and 5 have a large number of nuclei in disorganized, infil-
trative sheets, with gland lumen that is almost completely occluded
and small or nonexistent stromal regions between the glands [4].

Attempts at automated prostate cancer grading have typically (i)
only addressed classification between “high-grade” and “low-grade”
cancer, which is not the most difficult clinical problem, and (ii) do
not utilize the full range of attributes that could possibly be used.
Most of the variability and error in pathologist scoring of Gleason
grades is in discriminating between intermediate grades (3 and 4)
[2].

In [6], we presented a CAD system to detect potentially cancer-
ous areas on digitized prostate histology. In this work, we describe
a system to classify prostate histology into one of four categories:
Gleason grade 3 adenocarcinoma, grade 4 adenocarcinoma, benign
epithelium, or benign stroma. Over 100 features are automatically
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computed from within a tissue patch, including 13 features describ-
ing nuclear arrangement, 32 features describing gland size and ar-
rangement, and 57 image texture features. Non-linear dimensional-
ity reduction methods are applied to the feature set and a support vec-
tor machine (SVM) is used to classify the different digitized tissue
patches into a lower-dimensional space. A Boosting algorithm [7]
is applied to find the features that contribute the most discriminating
information to the classifier. The novelty of our work is that our sys-
tem focuses on distinguishing between intermediate Gleason grades
(3 and 4), and we explore the efficacy of textural and morphological
features in addition to tissue architecture to distinguish between can-
cer classes. In addition to automated prostate cancer grading, a sec-
ond aim of this work is to integrate use of additional image features
(texture and gland morphology) into the Gleason grading paradigm.

In Section 2, we describe our methodology to distinguish be-
tween prostate cancer grades, and in Section 3 we present the results
of our computational model. Concluding remarks are presented in
Section 4.

2. METHODS
2.1. Materials

Hematoxylin and eosin stained prostate biopsy cores are scanned
into a computer using a high resolution whole slide scanner at 40x
optical magnification at the Hospital at the University of Pennsylva-
nia, Department of Surgical Pathology. An expert pathologist labels
regions of tissue within each image as Gleason grades 3 adenocarci-
noma, grade 4 adenocarcinoma, benign stroma, or benign epithelial
tissue. A total of 54 labeled tissue patches were considered in this
study, comprising 11 Gleason grade 3, 7 Gleason grade 4, 17 benign
epithelial, and 12 benign stromal regions.

Fig. 2. (a) A region of benign epithelium comprising 6 glands, (b) a
gland from (a) magnified, and (c) one of the nuclei surrounding the
gland in (b), also magnified.

2.2. Feature Extraction

The feature set includes graph-based, morphological, and global tex-
tural features to capture the architectural tissue patterns and arrange-
ment of glands and nuclei in the sample. A listing of the features
considered in this work are given in Table 1.

2.2.1. Architectural Features

Figure 2 (a) illustrates a region of benign epithelial tissue made up
of six glands, and a single gland is shown in Figure 2 (b). Each
region also contains several nuclei, one of which has been magnified
in Figure 2 (c). An image region R is made up of pixels ¢, containing
m nuclei with centroids c},cZ,---,¢”. In addition R may contain k
glands with corresponding centroids c;,, cg,, ek

The shape and arrangement of glandular and nuclear structures
within a histological image region is related to tissue type [4]. Quan-
tifying these structural arrangements into phenotypic signatures al-
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lows for efficient classification between Gleason grades. In this
study 4 separate graphs are constructed and features based on these
graphs are extracted. Graphs (A)-(C) describe the spatial arrange-
ment of the nuclei, while graph (D) describes the spatial arrangement
of glands. Graphs (A)-(C) were not constructed for gland structures
because the low number of glands per region does not yield infor-
mative graphs. Figure 3 illustrates these graphs for Gleason grade 3
(Figure 3 (a)-(f)), grade 4 (Figure 3 (g)-(1)), benign epithelium (Fig-
ure 3 (m)-(r)), and benign stroma (Figure 3 (s)-(x)) tissues.

A. Voronoi Diagram - The Voronoi diagram V [8] comprises a set
of polygons P = {Py,P,,---,Py}. Any pixel ¢ € R is included in
polygon P, if d(c,¢%) = min;{||c — ¢}||} where a,j € {1,2,--- ,m}
and d(c,d) is the Euclidean distance between any two pixels ¢,d € R.
The following features are computed from V. The area .‘7\[’4(Pj) of
a polygon P; is given as |P;| which is the cardinality of set P;. The

average area is computed as A(4 = 1 I AC4(P;). The disorder of
the area is defined as D4 = 1/(1+ %) where 6 is the standard de-

viation over A(4(P;) for j € {1,2,--- ,m} [9]. The roundness factor
AL"(Pj) of polygon P; is calculated as 47 divided by the sum of the

lengths of each side of P;. Average roundness factor 3\2’ and disor-

der D" are computed similar to A0 and D*.

B. Delaunay Triangulation - The Delaunay graph D is constructed
such that any two unique nuclear centroids ¢? and 2, where a,b €
{1,2,---,m}, are connected by an edge E“vg’ if P, and P, share a
side in V. The following features are computed from D. The aver-
age edge length E and the maximum edge length E™* are computed
over all edges in D. Each ¢/ is connected to B other nuclear centroids
o0 a0 L 408 by corresponding edges B0 E402 ... Fa%s
inD, where 0,0, -+, 03 € {1,2,--- ,m}. The average length of the
edges E4M E4% ... E®%5 ig calculated for eacha € {1,2,--- ,m}.
C. Minimum Spanning Tree - Given a connected, undirected graph,
a spanning tree S of that graph is a subgraph which is a tree and con-
nects all the vertices together. A single graph can have many differ-
ent S. Weights m’s’: are assigned to each edge E in each S based on the
length of £ in S. The sum of all weights (ng in each S is determined
to give the weight ®g assigned to each S. The minimum spanning
tree (MST) denoted by S has a weight (T)ZSW less than or equal to g
for every other spanning tree S. The features computed from SM are
(i) average length of all edges in $™ and (ii) edge length disorder
computed as for D4 and D’

D. Co-Adjacency Matrix - To describe the arrangement of glands
in the image, a co-adjacency matrix W is constructed where for the
value of row u, column v, W (u,v) = ||cg — cgll, u,v € {1,2,--- ,k},
and W € RF¥_ This diagonally symmetric matrix describes the spa-
tial relationships between each pair of glands in R analogous to the
manner in which Haralick’s co-occurrence matrix describes the re-
lationship between pixel intensity values. We calculate 13 of Haral-
ick’s second-order features from W: angular second moment, con-
trast, correlation, variance, entropy, sum average, sum variance, sum
entropy, difference variance, difference entropy, difference moment,
and two measurements of correlation [10].

2.2.2. Nuclear Density and Gland Morphology

Nuclear density IT? is computed as [1? = %, where |R| is the car-

dinality of R. For each nuclear centroid ¢%, N(u,c?) is the set of

pixels ¢ € R contained within a circle with its center at ¢ and radius
u. We compute the number of ¢}, j # a, j,a € {1,2,--- ,m} which
are in set N(u,c?). The disorder of this feature DV is calculated

Authorized licensed use limited to: Rutgers University. Downloaded on November 14, 2008 at 15:27 from |IEEE Xplore. Restrictions apply.



Fig. 3. Comparison of ((a)-(f)) Gleason grade 3 tissue, ((g)-(1)) grade 4 tissue, ((m)-(r)) benign epithelium, and ((s)-(x)) benign stroma.
Superimposed on ((a), (g), (m), (s)) the original images are ((b), (h), (n), (t)) the Voronoi diagram, ((c), (i), (0), (u)) the Delaunay triangulation,
((d), () (p), (v)) the minimum spanning trees, ((e), (k), (q), (W)) pixel entropy texture feature, and ((f), (1), (r), (x)) Gabor filter (s =3, 6 = My,

as described in section 2.2.1 A. The size and shape of the structures
within a set of glands are also important in discriminating tissue type
[4]. These characteristics are quantified by calculating the average
and standard deviation of the following 8 features within an image:
total gland area, gland perimeter length, lumen area, ratio of lumen
area to gland area, ratio of gland area to perimeter, number of nuclei
surrounding the lumen, ratio of nuclei to gland perimeter, and the
number of visible nuclei layers around the gland. In addition, we
calculated the total area of non-stromal tissue in the image, the total
lumen area in the image, and the ratio of these two values to mea-
sure the amount of the total region area that was taken up by gland
structures. These bring the total number of tissue-based architectural
features to 45.

2.2.3. Global Texture Features

The proliferation of nuclei and changes in gland morphology in can-
cerous tissue suggest that textural characteristics can distinguish be-
tween low- and high-grade cancer regions [11]. The following fea-
tures are extracted from each region [6]:

A. First-Order Statistical Features - The average, median, stan-
dard deviation, and range of the pixel values f(c), for ¢ € R, are
calculated to quantify first-order statistics.

B. Second-Order Statistical Features - Second-order co-occurrence
texture features are described by the 13 Haralick features described
in section 2.2.1 D, using a co-occurrence matrix Z € R *™ | where
M is the maximum pixel intensity of all ¢ € R, in place of the co-
adjacency matrix. The value in Z(f(c), f(d)) is given by the number
of times intensities f(c), f(d) appear within a fixed displacement of
each other and at a specified orientation. The 13 Haralick features
are calculated from Z [10].

C. Steerable Filters - Gabor filters provide varying responses to tex-

tural differences in an image. The filter kernel G is constructed based
on a scale and an orientation parameters as

G(x,»,0,5) = ei%((;7)2+(‘y’7)2)cos(2nsx'),

where (x,y) are the 2D Cartesian coordinates for pixel ¢ € R, ' =
xcos@+1sinb, )’ =ycosO+xsin6, 0 € {0, %, -, %"} is an orienta-
tion parameter, s € {0,1,---,4} is a scale parameter, and o, and G,
are the standard deviations along the X and Y axes, respectively. For
this study, 40 Gabor filters are constructed by varying 6 and s. Thus
a total of 57 texture-based features are obtained for each R.

Feature Type Number of Features Representative Features
Nuclear Architecture 13 Voronoi, Delaunay, MST
Glandular Architecture 32 Gland area, lumen area
Global Textural 57 Haralick, greylevel, Gabor filter

Table 1. Summary of feature types, the number of each feature type,
and representative features from each type.

2.3. Classification

An SVM uses the above features to discriminate between each pair
of tissue types used in this study: Gleason grade 3 vs. grade 4, grade
3 vs. benign epithelium, grade 3 vs. benign stroma, grade 4 vs. be-
nign epithelium, grade 4 vs. benign stroma, and benign epithelium
vs. benign stroma. A third of the data from each group was used for
training the classifier and the rest was used for testing. Since SVMs
perform classification in a high-dimensional space, local linear em-
bedding (LLE) [12] was applied to reduce the dimensionality of the
feature space prior to classification. Cross-validation was used to
obtain optimal parameters for the classifier.
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Fig. 4. Scatter plots of tissue regions represented in reduced three dimensional space. Tissue regions belong to (a) Gleason grade 3 (circles),
Gleason grade 4 (squares) and benign stromal tissue (downward-pointing triangles) are distinguished by textural and graph-based features,
and (b) Gleason grades 3 and 4 with benign epithelium (upward-pointing triangles) are distinguished by textural and graph-based features.
Also shown are the subset of tissue regions containing glandular features distinguished by graph-based, textural, and glandular morphological
features (c). Superimposed ellipses indicate the clusters of similar tissue types.

3. RESULTS AND DISCUSSION

We generate phenotypic signatures for 54 regions consisting of 11
of Gleason grade 3 tissue, 7 of Gleason grade 4, 17 of benign ep-
ithelium, and 12 of benign stroma. Table 2 lists classification re-
sults for each paired comparison of the four classes. The accuracy
and standard deviation ¢ over six trials are given for each classi-
fication task, where the training data is randomized for each trial.
Automated classification yields approximately 77% accuracy when
comparing between Gleason grade 3 and grade 4 adenocarcinoma,
which is clinically a very difficult problem. Studies on agreement
and reproducibility in clinical practice show that consensus grad-
ing among pathologists rarely approaches 70%, and agreement on
a Gleason score of 4 or 3 is particularly low [2], [3]. In this con-
text, classification accuracy greater than 75% is an improvement on
existing grading methods. The standard deviation for all paired com-
parisons is less than or equal to 0.05, indicating the reproducibility
of the classification results with respect to training data.

Figure 4 plots each tissue region in a low-dimensional space ob-
tained by LLE. In Figure 4 (a) Gleason grade 3 (circles), grade 4
(squares), and benign stroma (downward triangles) are shown, and
Figure 4 (b) shows grade 3 and grade 4 regions along with benign
epithelium (upward triangles). The graphs illustrate the inter-class
relationships between the data using this feature set. Because not all
tissue regions contain glands, only graph-based and textural features
were used to generate the graphs in Figure 4 (a) and (b). Figure 4
(c) plots the tissue regions for which morphological gland features
could be calculated. The separation between grade 3 and grade 4
tissues improves with the inclusion of these features, indicating that
their addition to the classifier improves accuracy.

Implicit feature selection via the AdaBoost algorithm [7] re-
vealed that texture features are weighted heavily, particularly in dis-
criminating the adenocarcinoma tissues from benign epithelium and
in discriminating epithelium from stroma.

4. CONCLUDING REMARKS

In this paper, we have demonstrated a system that can quantify graph-
based, textural, and morphological features in tissue patterns to ac-
curately classify histological images according to Gleason grade. By
developing quantitative phenotypic signatures for tissue patterns, we
can begin to resolve some of the issues currently seen in practice,
such as inter- and intra-observer variability, under- and over-grading,
and subjective analysis of qualitative image features. Our analysis in
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Class Distinction
Grade 3 vs. Grade 4
Grade 3 vs. Epithelium

Accuracy c
76.9% 0.049
85.4% 0.051
92.8% 0.026
88.9% 0.025
89.7% 0.040
92.4% 0.017

Highest Weighted Feature
Delaunay Nearest Neighbor

Haralick Difference Variance
MST Average Edge Length

Haralick Variance

Grade 3 vs. Stroma
Grade 4 vs. Epithelium

Grade 4 vs. Stroma Voronoi Nearest Neighbor

Epithelium vs. Stroma Haralick Difference Moment

Table 2. SVM classification accuracy, standard deviation, and the
feature assigned the highest weight by the AdaBoost algorithm.

determining feature importance revealed that texture features are ca-
pable of discriminating between tissue patterns and can extend the
Gleason criteria for grading tissue patterns.
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