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Abstract 

A powerful and useful optimal estimation technique, the Kalman filter, 

does not seem to be widely known among physicists. In this articl~ we outline 

the derivation of the algorithm, and give three examples of its use: a) in 

estimating the value of a constant, with both system and measurement noise, b) 

in numerical differentiation of noisy data, and c) in optimally estimating the 

amplitude of a signal with arbitrary but known time dependence superimposed on 

a noisy background. 
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I. Introduction 

Sometimes it is desirable to make the best estimate possible of a set of 

parameters that describe the state of a system, under circumstances in which 

information about the state of the system can be gleaned from periodic 

measurements, and under conditions in which both the state of the system and 

the measurements are affected by the presence of noise. This is a much more 

common problem than might be thought from the description just given. 

Examples of systems in this category include the estimation of the first 

derivative of noisy data, the amplitude of a coded signal buried in noise, the 

position, velocity, and acceleration of a- moving object being tracked by 

radar, the location of an aircraft traveling under inertial navigation with 

periodic updates from another navigational system, the state of a chemical 

plant or other complex system being monitored and controlled, and the age 

distribution of the French beef cattle herd as a function of time. 1 

Au extensive body of theory has been developed to deal with problems such 

as these--the general field is called "optimal estimation theory." It deals 

with the development of optimal estimators, or algorithms, for utilizing new 

input (measurements) to provide an updated optimal estimate of the state of 

the system being observed. Pioneering work in the development of efficient, 

recursive algorithms for estimation was done in the early 1960's by Kalman 2 

and Kalman and Bucy. 3 Optimal estimation theory is extensively used in the 

fields of real-time measurement and control, but does not seem to be widely 

known among physicists. It can by applied with advantage in many 

circumstances commonly occurring in physics, however; we shall give several 

examples later in this article. 

In this article we deal with the type of estimator developed by Kalman and 

Bucy, the least-squares optimal recursive estimator for linear ·systems, which 
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has come to be known as the "Kalman filter." The use of the word "filter" 

reflects the electrical engineering origin of much of the original work with 

these algorithms. The approach is to incorporate the known or anticipated 

dynamic behavior of the system being observed into a mathematical model, then 

to obtain the optimal estimate, in a least-squares sense, of a set of 

parameters, comprising the "state vector,•• that describes the state of the 

• system. In this way, the system dynamics, as well as the measurement noise, 

can be taken into account. As an example, which we will consider in more 

detail later, suppose we have to determine as accurately as possible the 

length of a metal rod in a room within which the temperature is subject to 

random fluctuations, and we have as a measuring tool a micrometer with limited 

resolution. The system in this case is the length of the rod, which we model 

as a constant plus additive random noise; the length of the rod changes 

randomly between measurements. The measurement process also introduces 

(different) random noise. We will see later in this article how to make the 

optimal estimate of the length of the rod under these conditions. 

It is the intent of this article to outline the derivation of the Kalman 

filter algorithm and give several examples of its use, in sufficient detail 

that physicists and others can adapt this powerful tool to their particular 

applications. The development and notation used in this article generally 

follows that of the excellent book on optimal estimation edited by Gelb. 4 

II. The Recursive Estimator 

A recursive estimator is an algorithm that uses new information derived 

from measurements to update the previous estimate of the parameters describing 

the state of a system. Only the most recent estimate is needed; the previous 
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information that led to the estimate is not required. A recursive estimator 

is well suited, therefore, for analyzing data arriving in real time, but can 

also be applied to "batch" data. 

A. The Linear Recursive Estimator 

In this article we deal only with·linear systems. One might expect a 

recursive estimator for a simple linear scalar system to be of the form • 

th Here xk is the estimate of the quantity x after the k measurement, 

xk-l is the estimate of x after the (k-l)th measurement, 

Kk is the "gain" of the filter, and is a function of k, and 

zk is the kth measurement of x. 

This equation simply states that the new estimate is the previous estimate 

plus a weight factor times the difference between the new measurement and the 

previous estimate. This weight factor Kk is called the gain of the filter. 

It is a characteristic of recursive estimators that the gain K decreases 

with the number of measurements (possibly after some initial transient 

response). Initially, the filter weights new measurements heavily, then, as 

the estimate x becomes more and more accurate, the weighting factor K either 

continually decreases or decreases and asymptotically approaches a constant 

value. so that new measurements have a relatively small effect on the estimate. 
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B. Response Time of the Filter 

We can deduce the response timeT of the filter from Eq. (1). If the 

change over a single interval of measurement (6k = 1) is small, and Kk is 

constant or very slowly varying, the discrete form given in Eq. (1) is an 

approximation to the continuous form given by 

(2) 

Suppose x changes discontinuously at k = 0 from x = 0 to x = x0, and zk is a 

good approximation to xk' so that z = x0 . Then with the substitution 

y = (xk_1-x0), it is obvious that the time constant fo.r response to change is 

( 3) 

C. An Example of a Recursive Estimator 

Let us consider a simple example of a recursive estimator. Suppose we 

have made a series of measurements z1, z
2

, ... ,zk-l of a scalar quantity x, and 

we wish an estimate for x. The least-square optimal estimate of x is just the 

mean of the set of measurements. Therefore, the (k-1)th estimate of x is 

k-1 
xk 1 = 1/(k-1) .r zi. 

- 1=1 
(4) 

If we make one more measurement, we obtain the kth estimate of x, 

k-1 
xk = (1/k) i~l zi. ( 5) 

This expression can be rewritten as 

k-1 
xk = (1/k) i;l zi + (1/k)zk = ((k-1)/k)xk-l + (1/k)zk, (6) 

and finally, as 
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(7) 

The estimator is now in the anticipated form, and we see that the gain is 

Kk = 1/k. (B) 

Since we have no prior knowlege of x, we take the initial estimate of x to 

be zero; in that case the first estimate for x, x1, is just equal to the first 

measurement z1. With increasing number of measurements the gain Kk ultimately 

becomes vanishingly small in this example, and new measurements have no effect 

on the estimate. 

III. The Optimal Recursive Estimator (Kalman Filter) 

We now broaden the concept of the recursive estimator and seek one that 

will give the optimal estimate of the state of a system in the presence of 

noise, both in the measurement and in the parameters characterizing the state 

of the system. These n parameters, which are assumed to be either constant or 

varying slowly compared with the response time of the filter, form the n 

components of the state vector~ at the time of the kth measurement. Our 

approach is to define models for the time evolution of both the system and the 

measurement, and then to find the filter gain Kk that minimizes in a least­

squares sense the errors in estimating the state of the system after each new 

measurement. 

A. The System Model 

We assume that the system is examined periodically. and that the state at 

time tk is linearly related to the state at time tk-l by a matrix ~k-l' with 

the addition of a random noise vector ~-l· We further assume that the vector 
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~ is gaussian, with zero mean, and that the values at different measurement 

times are uncorrelated. The system model is then 

(9) 

This model is general enough to describe any system that can be 

represented by an nth order linear ordinary differential equation, or by a set 

of such equations (e.g., the equations of motion of an obJect, or the behavior 

of an electrical circuit). The vector~ represents the system noise, that is, 

random uncertainties in the state of the system from one measurement time to 

the next. Examples include the noise introduced by measuring the length of a 

metal rod in a room with poor temperature control (the length of the rod 

actually varies from one measurement time to the next), the position of an 

aircraft with erratic engine performance, or subject to variable winds, or the 

price of a stock or bond subject to random market pressures. If the system 

noise ~ is zero, the system evolves in a completely deterministic fashion. 

The system model given in Eq. (9) generates a random walk in the set of 

system parameters that make up the state vector. 

B. The Measurement Model 

Now suppose that we make a set of 1 measurements at time k, forming the 

1 components of the measurement vector~· and that these measurements are 

linearly related to the state vector~ by the measurement matrix Hk. The 

measurements are also corrupted by noise~· which we assume to be gaussian 

with zero mean. This gives us the measurement model 

( 1 0) 

The measurement matrix Hk can be an arbitrary function of time or k, but must, 

of course, be known or measurable at the time of each measurement. We will 
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use this to advantage in an example of signal processing later in this article. 

C. Derivation of the Equations for the Optimal Linear Estimator 
(Kalman Filter) 

In this section we outline, without going into detail, the arguments 

followed in deriving the optimal recursive estimator. For the omitted 

details, see Gelb, 4 whose derivation and notation we generally follow. 

We seek a new estimate for the state of the system immediately following 

the kth measurement, denoted by~(+), that is a linear combination of the 

th estimate immediately preceeding the. k measurement, denoted by~(-), 

and the new measurement~· 

( 11) 

Here Kk' and Kk are time-varying matrices to be determined. 
th We define the error~(~) in the estimate after the k measurement to be 

~(+) = ~(+) - ~· (12) 

with a similar definition for~(-). Here~ is the true value of the 

state vector at the time of the kth measurement. When we substitute these 

-error definitions into Eq. (11), and require that the new error estimate ~k(+) 

be unbiased (expectation value equal to zero), we find that 

( 13) 

where I is the identity matrix. This expression, when substituted into 

Eq. (11), gives an estimator of the form 

- 8 ~ 
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~(+) = ~(-) + Kk (~- Hk ~(-)), ( 14) 

which shows how the estimate of the state of the system~(-) just before 

the measurement is modified by the new measurement. The corresponding change 

in the error estimate is given by 

We are unlikely ever to know the actual error~· Statistically speaking, 

we can only determine the root mean square error in the components of the 

state vector. As the first step in calculating these quantities, we define 

the covariance matrix associated with any vector~ to be the matrix E[~ ~T], 

where the symbol E denotes the expectation value, or mean, of the elements of 

T the matrix, and the ~ denotes the transpose of the vector ~· We then define 

the error covariance matrix after the kth measurement to be 

- - T Pk = E [~(+) ~(+) ]. (16) 

The diagonal elements of this matrix are the expectation values of the squares 
th of the errors in the estimate of the components of ! after the k 

measurement. Shortly we will choose Kk to minimize the "square of the length 

of the error vector", the sum of the diagonal elements (the trace) of Pk. 

Next we substitute the expression for~(+) given by Eq. (15) into 

Eq. (16). We define 

pk• = Pk(-) = E[~(-) ~(-) ] , 

Rk = E [Yk Yk T], 

assume that the measurement errors and the errors in the state vector are 
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uncorrelated, and find ·that 

pk =(I- Kk Hk)(Pk•) (I- Kk Hk)T + Kk Rk Kk T. (19) 

This expression shows how the error covariance matrix just before the kth 

measurement, pk•, is modified by the new measurement. 

We are now ready to minimize the error estimates. We need to 

differentiate the trace of Pk with respect to the matrix Kk (this is not 

trivial), set the result equal to zero, and solve for Kk. This provides us 

with an expression for the filter gain Kk that minimizes in a least-squares 

sense the estimate of the error in the state vector~ after the kth 

measurement; the result is 

This choice of the filter gain Kk gives the optimal linear recursive 

estimator. From this point on, Kk will be assumed to have this form. 

(20) 

The Kalman filter is an optimal least-squares estimator, and gives exactly 

the same answer as other least-squares estimators that use the same 

information. 

So far we have only concerned ourselves with how various quantities change 

instantaneously when new information becomes available--the change from just 

before the new measurement , (-),to just after the measurement, (+). To 

complete the picture, we need to know how the estimate of the state vector and 

how the error covariance matrix propagate between measurements (from just 

after the last measurement to just before the new measurement). One can 

easily show that these propagate as 

(21) 
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where we have defined 
T 

Qk = E[~ ~ ] 

Qk is the covariance matrix for the system noise, as defined in Eq. (9). 

D. Recursion Relations for the Optimal Linear Estimator (Kalman filter) 

(22) 

(23) 

We can now combine the above calculations into four matrix equations that 

tell us how to calculate the error covariance just prior to the new 

measurement, and how to use the new information provided by the kth 

measurement to calculate the optimal filter gain, the new estimate of the 

system state vector, and the error covariance of the state vector just after 

the new measurement. These four equations comprise a complete algorithm for 

updating the estimate of the system state vector in a stepwise, recursive, 

f1shion; they constitute the optimal linear recursive estimator, or Kalman 

filter. The equations are 
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Error covariance matrix prior to measurement: 
T 

pk• = tk-1 pk-1 tk-1 + Qk-1 

Optimal (Kalman) filter gain: 

New estimate of the system state vector: 

Updated error covariance matrix: 

pk = [I - Kk Hk] p I 

k 0 

By definition, 

Qk E 
T 

(system noise covariance) • and = [~ ~ ] 

Rk E 
T 

(measurement noise covariance) = [.Y.k ~ ] 

E. Initial Conditions 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

(24f) 

To start off the filter, we need to know the system and measurement error 

covariance matrices R and Q, and we need intial guesses for the state vector ~ 

and for the error covariance matrix P. After each measurement, the filter can 

then be advanced one step by using the Kalman filter algorithm summarized in 

Eqs. (24a) through (24d). 

F. General Observations on Pk 

The heart of the Kalman filter is in the error covariance matrix Pk. which 

provides the estimate of the errors in the state vector at each step. 

- 12 -
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Inspection of the Kalman filter algorithm shows that the error covariance 

matrix Pk depends on the intial conditions, the description of the system (t), 

the description of the measurements (H), the system noise (Q), and the 

measurement noise (R), but not at all on the measurements zk~ This means that 

the estimated actual (not relative) errors in the components of the state 

vector (the square roots of the diagonal elements of P) can be calculated as a 

function of k in advance of any measurements, provided that t, H, Q, and R 

are either constant or have known dependence on time or k. In fact, to save 

time in real-time data processing, once the dependence of Pk on k has been 

determined, Pk can be approximated by an algebraic function of k or by a 

step-wise varying function. Except in very simple cases, the functional 

dependences of Pk on k cannot be determined. 

IV. Advantages of the Kalman Filter 

Before giving examples of the use of the Kalman filter, we list some of 

the advantages its use affords, although some of these are not yet obvious 

from the discussion given so far: 

1. The Kalman filter is recursive, which minimizes memory requirements and 

makes the filter well suited to deal with data in real time. 

2. It provides after each measurement the optimal estimate of the state of a 

linear system--it can be shown that the Kalman filter is the optimal 

estimator for linear systems. 

3. It provides after each measurement an estimate of the errors in the 

parameters characterizing the state of the system. 

4. In many cases the time response of the filter is fast enough to follow the 

evolution of physical systems in real time. 
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5. The filter responds gracefully to discontinuous changes (steps) in the 

measurements, without erratic transients. 

6. The filter is flexible, and can be used with many physical systems, such 

as those that can be represented by a set of linear ordinary differential 

equations, and so is broadly applicable to problems arising in physics. 

7. The filter uses knowledge of the system dynamics in the estimation 

process, which acts as a constraint against estimates based on occasional 

implausible measurements. 

B. While the Kalman filter is equivalent to other least squares estimators 

that use the same information, it is often easier to implement in complex 

situations. 

V. Examples 

In this section we discuss three examples of the use of the Kalman filter 

in the optimal estimation of 

1. A constant, with both system and measurement noise, 

2. The first derivative of a set of noisy data, and 

3. The amplitude of a time-dependent signal superimposed on a constant 

background, with both signal and measurement noise. 

We begin with 

A. A constant, with both system and measurement noise 

We now return to the problem of optimally estimating the length of the 

metal rod in the room with poor temperature control. This example illustrates 

the use of a Kalman filter to optimally estimate the value of a constant (the 

length of the metal rod) subject to system noise (the room temperature 
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fluctuates randomly, and so does the length of the rod, correspondingly) and 

to measurement noise (the micrometer has limited resolution). 

In this example, the state vector is just the length of the rod. 

State Vector: 

x = x a scalar. - ' 

System Model: 

xk = xk-l + wk-l (the new length is the previous length plus a random 

component). 
2 2 therefore t = l, Q = E [w] =as= q. 

Measurement Model: 

zk = xk + vk' 

therefore H = 1, R = E [v2] 

We determine the recursion relations for the Kalman filter by working 

our way through one step of the filter algorithm: 

Kk = (Pk-l + q)/(Pk-l + q + r), and 

pk = [l - (Pk-1 + q)/(Pk-1 + q + r)] (Pk-1 + q) 

= r(Pk~l+ q)/(Pk-1 + q + r) 

After running a number of cycles, the filter will reach a steady state, 

with constant values for Kk and Pk. The steady-state value for P, P , can in 
~ 

the case of this simple example be found by setting Pk = Pk-l = P~ in the 

above expression and solving for P · the solution is 
~· 

2 P = 1/2 (q + 4qr - q]. 
~ 
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The square root of this expression is the minimal error in estimating x 

that can be achieved even with an unlimited number of measurements. 

Next we consider two special cases: first, systems with no system noise 

and second, those with no measurement noise. 

1. No System Noise 

If there is no system noise (q = 0), then from the system model given by 

Eq. (9), the value of x cannot change (t = 1). The only way that x can change 

is through the random variable w. This is an important point--if the physics 

of the system dictates that the system state vector can change randomly with 

time, then there must be system noise (Q f 0). In the alternative case 

(Q = 0), the system can only evolve deterministically. 

In this case, for q = 0, we can find Pk in closed form as a function of 

k. The only uncertainty in the problem is that of the mea5urement noise. 

Therefore, we set P1 = r. By successive invocations of the filter algorithm 

we find that 

P2 = r/2, P3 = r/3, .... ,Pk = r/k. 

This means that the error in the estimate of x after k measurements is 

a ;VI(, in agreement with the usual result for the error in the mean of a set m 
of measurements. Since the value of x is truly constant, we can reduce the 

error in the estimate of x to any desired value by making a sufficient number 

of measurements. 

2. No Measurement Noise 

If there is no measurement noise (r = 0). then Pk = 0 for all k. The 

state of the system can be determined exactly at each measurement. In this 
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case the Kalman gain is Kk = 1, so the estimate after the kth measurement, 

from Eq. (24c), is 

the new measurement is the optimal estimate of x which is, in fact, determined 

exactly at the instant of the measurement. 

B. The First Derivative of Noisy Data 

Occasionally we have to practice numerical differentiation of noisy 

numerical data. We can use the Kalman filter to generate an optimal estimate 

of the first derivative and the amplitude of a measured signal. 

State Vector: 

x1 =the amplitude of the signal, and 

x2 = dx1/dk, the change in x1 between measurements. 

System Model: 

The system model generates a straight line with x1 changing by an amount 

x2 at every step, plus noise in both the amplitude and the slope. We see that 

= a constant matrix. 
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We assume the noises associated with x1 and x2 are uncorrelated, 

C:l 
2 

0 

) ( :1 
0 

) Q = E [~ ~T] = = 
2 

O's2 q2 

Measurement Model: 

We can only measure the amplitude of the signal, a scalar: 

zk = x1,k + vk' so H = (1 0). Assume 
T 

R = E [Yt Yt ] = r. 

pl2 

so 

Define pk-1 
= ( pll ) ; after substitution into Eqs 24a 

p21 p22 

through 24d, we find that the recursion relations are c +P +P +P +q 
p +P 

) = C::· 
p 

) 11 12 21 22 1 12 22 12 
p I 

k 
p +P p 

22+ q2 
p 

21 22 22 
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The estimator is 

This simple system is already too complicated for us to proceed very far 

algebraically, so we have left the recursion relations in forms convenient for 

numerical evaluation. 

The performance of this Kalman differentiator on simulated data is shown 

in Figure 1. We have chosen a signal consisting of a constant portion, then a 

linear ramp with slope dx 1/dk = +1, a second constant portion, then an abrupt 

decrease to the original level. Noise variances used in this example are 

q1 = 1.0, q2 = 0.05, and r = 10.0. 

We used as initial conditions x
1 

= 0.0, x
2 

= 0.0. Since our initial 

estimate for x1 cannot be better than the measurement noise, we have set 

P11 = r, and have derived our i~itial estimate of the variance in x
2 

from a 

hypothetical measurement of the slope based on two consecutive amplitude 

measurements: P22 = 2 r. P12 and P21 were initially set equal to zero. With 

the noise variances used, the filter reaches steady-state in about 20 

measurements. 

Gaussian noise with variance (q1+r) has been added to the signal to 

approximate the effects of the system noise and the measurement noise: this is 

the top trace in Figure 1. The second trace shows the Kalman filter's 

estimate of the amplitude, x1-- it duplicates the behavior of the noisy 

signal, but the noise is substantially less, as expected. The bottom trace 

is the estimated slope, x2, with the ideal response (no noise) superimposed. 
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The estimated error in x2 is about 60% of the amplitude of the rectangular 

pulse. Differentiation is easier in hindsight than in real time. If we knew 

that the slope was "supposed" to rem~in constant during the ramp portion, we 

could, of course make a more accurate estimate of the slope. The filter does 

not know this, and neither would we in a situation in which we had no prior 

knowledge of the shape of the signal. The filter output shown is the optimal 

estimate of the amplitude and slope after each measurement, and cannot be 

improved upon. 

C. The Amplitude of a Time-dependent Signal Superimposed on a Constant 

Background, With Both Signal and Measurement Noise 

The Kalman filter can also be used for optimally estimating the amplitude 

of a time-dependent signal buried in noise; the following example gives an 

illustration of this application. 

1. The Models 

Suppose we have a time-dependent signal x1g(t) superimposed on a constant 

background x2 and we wish to optimally estimate the signal amplitude x1. 

State Vector: We take 

System Model: 

xk = xk-l + wk-l' sot= I, the identity matrix. 

Assume the system noise (components of ~) to be uncorrelated. Then 
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0 0 ) = a constant matrix. 

Measurement Model: 

2 
0 s2 

We will incorporate the time dependence of the signal into the measurement 

model. At time tk we measure the scalar quantity 

zk = xl,k g(tk) + x2,k + vk · 

From the information available to us from the measurement, we cannot tell 

whether the signal is actually time-varying or whether the time dependence is 

built into the measurement model--the two cases are indistinguishable. 

From the form of the measurement, we identify 

H = (g 1), 

where we have written g for g(t). We need also to define 

R = E [y yT] =am 2 = r , a scal~r. 

2. The Recursion Relations 

The first equation of the filter algorithm, Eq.(24a), gives 

p I = 
k pk-1 + Q. Let 

- ( pll pl2 ) pk-1 - Then 

p21 p21 

(pll +Ql pl2 ) ( plll pl2
1 

) , and p I = = k 
p21 p22 + q2 p21

1 
p22

1 
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g( pll + ql) + pl2 Kl 

Kk = 1/D = , where 
g p2l + p22 + q2 K2 

0 
2 

+ ql) + g (Pl2 + P21> + P22 + q2 + r · = g ( pll 

The estimate of the state vector is 

The updated error covariance follows from Eq. (24d): 

= ( (1 pk 
(1 

). 
So far we have not had to specify the functional form of the time 

dependence of the signal, g(t). Aside from some practical constraints (g(t) 

should not change appreciably during the measurement time, and g(t) cannot 

have the same value for all measurements), the only restriction on g(t) is 

that its value must be known at the time of each measurement. The function 

g(t) could be periodic in time, a random sequence of pulses, or even (if one 

wanted to make a clandestine measurement) derived from a random noise 

generator! If the signal were generated by an unpredictable event, such as an 

earthquake, an explosion, or a solar flare, it should be possible to use the 

measured time dependence of the disturbance, together with a variable time 

delay and any modifications known to have occurred in the signal during its 

transit, to search for the signal. In some cases when one has control of 

g(t), it might be possible to choose its functional form in a way that 
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minimizes the error estimates. We will give an example of this signal 

optimization later. 

3. Initial Conditions 

To aid in understanding the working of a Kalman filter, we will continue 

with a numerical example of signal processing. Suppose our signal consists of 

a periodic series of pulses, so that at the time of any measurement g is 

either zero or 1. T~e signal is a periodic rectangular (not necessarily 

square) wave. 

Our first problem is in choosing suitable initial conditions for starting 

the filter. This is not as difficult a problem as it might appear; except for 

singularly unfortunate choices of the initial error covariance matrix, the 

filter will reach the same steady state (provided, or course, that Q and R are 

the same in all cases). Still, we should make t•easonable choices, based on 

our understanding of the problem, so that the error estimates will be 

reasonable as the filter approaches steady-state. 

In this case, let us assume that we make the first measurement when there 

is no signal present; g = 0. The measurement cannot affect x1 since it 

contains no information about the signal amplitude. We see. then, from the 

equation for the estimate of the state vector, that for x1 1 to be unaffected 
• 

by the measurement, K1 (the first component of the vector K) must be zero. 

With g = 0, this leads to 

K1 = P121(P22 + q2 + r), so we require 

P12 = P21 = 0 initially. 
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What can we use for initial estimates of P11 and P12? We are meisuring a 

quantity (forget the time dependence for the moment) 

z = x
1 

+ x
2 

+ v, 

and we know the noise covariances for all three quantities on the right hand 

side of this equation. We therefore expect z to have a noise covariance n 

given by 

n = ql + q2 + r. 

In the absence of other information, it is reasonable to assign half the 

initial error to x1 and half to x2, so we choose for initial conditions 

Pll = P22 = (l/2) n · 

- - -Since we measure the sum of x1 and x2, if the actual error x1 is positive, 

-x2 must necessarily be negative, so the expectation value of their product 

(P12 and P21> when the filter reaches steady-state must be negative; the 

errors are anti-correlated. 

In practice, the noise characteristics must be either estimated from the 

physics of the problem or measured. Remarkably, it is possible to determine 

all the noise characteristics (the matrices Q and R) from measurements 

alone. 5 This is a very useful fact, as in many cases (in economics, for 

example), we may not have a physical basis for estimating the system noise. 

The components of Q must be large enough to give the expected variation of ! 

during the observation time by the random walk process implicit in the system 

model. This fact can also be used as a basis for estimating the system noise. 

4. Results for a Square Wave 

In this example, we will express the noise covariances in terms of the 

measurement noise covariance, r, which we take to be 1. We choose 

-4 -2 q1 =10 ,.q2 =10 ,·andr=l 
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The characteristic noise amplitude of the background ( ~ = as 2) is then 

1/10 of the measurement noise amplitude, and that of the signal ( ~ = as 1) 

is 1/100 of the measurement noise. The sum of the noise covariances (n) is 

very nearly 1, so we take for the initial error covariance matrix 

1/2 0 

p = 

0 1/2 

The dependence of the components of Pk on k are shown for the case of a 

square wave in Figure 2. P has reached steady state within 1% by the SOOth 

measurement; in steady-state P is 

p = 

p = 

1.995 X 10-2 -1.002 X 10-2 

-1.002 X 10 -2 

-2 1.996 X 10 

-9.030 X 10 -3 

-1 1 .003 X 10 

-9.030 X 10 -3 

-2 9.931 X 10 

for k even, and 

for k odd. 

Within 200 measurements (100 signal periods), the error covariances are 

nearly as small, and give estimated rms errors of 0.16 for x1 and 0.32 for 

x2. If we require that the estimate of the signal amplitude x1 be determined 

to 10%, then x1 must be 1.6 or greater. To meet the same requirement with a 

single measurement, as one might make from an oscilloscope picture, with rms 
A 

noise of unit amplitude (n) in both signal and background, x1 must be lOv;f, 

or 8.8 times larger. In this case, the use of the Kalman filter provides an 
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improvement of a factor of 8.8 (when the filter reaches steady-state, the 

improvement is a factor of 10) in our ability to measure the amplitude of a 

small signal buried in noise. 

The values of P11 and P22 in Figure 2 oscillate from one measurment to the 

next, depending on whether the signal is present or absent. The dashed 

portions of the curves approximate the mean values. 

5. Optimization of g(t) 

The function g(t) in this example can be a periodic rectangular wave, not 

necessarily square, as was the case just studied. At each measurement the 

signal is either present or absent. Is there an optimal choice of signal duty 

factor, the fraction of the period that the signal is present? Figure 3 

shows the estimated errors in x1 and x2 as a function of signal duty factor. 

The error in x1 is a weak function of signal duty factor over most of the 

range, with the minimum occurring at 0.5. A square wave is therefore the best 

choice for estimating the signal amplitude. For a signal duty factor of 1, g 

= 1 always, and both error estimates become infinite--we always measure the 

sum of x1 and x2• and have no means to determine either one separately. For a 

signal duty factor of zero. we have no information about x1, so the error is 

again infinite, but we minimize the error in x2. 

VI. Related Topics 

Straightforward extensions of this technique permit us to do optimal 

smoothing of data and optimal prediction. Nonlinear problems can also be 

handled. It is possible to make an adaptive filter--one that modifies the 

original estimates of Q and R to further optimize the performance of the 

filter. An extensive body of literature concerns model identification. These 

and other related topics are discussed by Gelb. 4 
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VII. Conclusions 

We have,reviewed the origins of optimal estimation theory, the notion of 

a recursive estimator, and the derivation of the optimal linear recursive 

estimator, or Kalman filter, and have given several examples of its use. The 

Kalman filter offers many advantages in data analysis and signal processing, 

and is capable of efficient and optimal estimation of parameters of interest 

~· in many situations occurring in physics. I hope that this article will 

stimulate others to use and enjoy this powerful tool. 
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Figure Legends 

Fig. 1 Use of the Kalman filter in numerical differentiation of noisy data. 

Trace (a) is the simulated noisy data, (b) is the filter's estimate 

of the amplitude of the data, and (b) is the estimate of the slope, 

with the ideal (noise free) response superimposed. 

Fig. 2 The dependence of P11 , the square of the error in the estimate of the 

amplitude of the square wave, and P22 , the square of the error in the 

estimate of the background, on measurement number k, for the square 

wave signal processor. 

Fig. 3. Estimated errors in the signal and background amplitudes as functions 

of the signal duty factor for a rectangular wave signal processor. 
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