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Abstract

A powerful and useful optimal estimation technique, the Kalman filter,
does not seem to be widely known among physicists. In this article we outliné
the derivation of the algorithm, and give three examples of its use: a) in
estimating the value of a constant, with both system and measurement noise, b)
in numerical differentiation of noisy data, and ¢) in optimally estimating the
amplitude of a signal with arbitrary but known time dependence superimposed on

a noisy background.
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I. Introduction

Sometimes it is desirable to make the best estimate possible of a set of
parameters that describe the state of a system, under circumstances in which
information about the state of the system can be gleaned from periodic
measurements, and under conditions in which both the state of the system and
the measurements are affected by the presence of noise. This is a much more
common problem than might be thought from the description just given.
Examples of systems in this category include the estimation of the first
derivative of noisy data, the amplitude of a coded signal buried in noise, the
position, velocity, and acceleration of a moving object being tracked by
radar, the location of an aircraft traveling under inertial navigation with
periodic updates from another navigational system, the state of a chemical
plant or other complex system being monitored and controlled, and the age
distribution of the French beef cattle herd as a function of time.]

A extensive body of theory has been developed to deal with problems such
as these--the general field is called "optimal estimation theory." It deals
with the development of optimal estimators, or algorithms, for utilizing new
input (measurements) to provide an updated optimal estimate of the state of
the system being observed. Pioneering work in the development of efficient,
recursive algorithms for estimation was done in the early 1960's by Ka]man2
and Kalman and Bucy.3 Optimal estimation theory is extensively used in the
fields of real-time measurement and control, but does not seem to be widely
known among physicists. It can by applied with advantage in many
circumstances commonly occurring in physics, however; we shall give several
examples later in this article.

In this article we deal with the type of estimator developed by Kalman and

Bucy, the least-squares optimal recursive estimator for linear systems, which



has come to be known as the "Kalman filter." The use of the word "filter"
reflects the electrical engineering origin of much of the original work with
these algorithms. The approach is to incorporate the known or anticipated
dynamic behavior of the system being observed into a mathematical model, then
to obtain the optimal estimate, in a Teast-squares sense, of a set of
parameters, comprising the "state vector," that describes the state of the
system. In this way, the system dynamics, as well as the measurement noise,
can be taken into account. As an example, which we will consider in more
detail later, suppose we have to determine as accurately as possible the
length of a metal rod in a room within which the temperature is subject to
random fluctuations, and we have as a measuring tool a micrometer with limited
resolution. The system in this case is the length of the rod, which we model
as a constant plus additive random noise; the length of the rod changes
randomly between measurements. The measurement process also introduces
(different) random noise. We will see later in this article how to make th
optimal estimate of the length of the rod under these conditions.

It is the intent of this article to outline the derivation of the Kalman
filter algorithm and give several examples of its use, in sufficient detail
that physicists and others can adapt this powerful tool to their particular
applications. The development and notation used in this article generally

follows that of the excellent book on optimal estimation edited by Ge]b.4

II. The Recursive Estimator

A recursive estimator is an algorithm that uses new information derived
from measurements to update the previous estimate of the parameters describing

the state of a system. Only the most recent estimate is needed; the previous



information that led to the estimate is not required. A recursive estimator
is well suited, therefore, forlana1yzing data arriving in real time, but can

also be applied to "batch" data.

A. The Linear Recursive Estimator

In this article we deal only with-linear systems. One might expect a

recursive estimator for a simple linear scalar system to be of the form

- ~

xk = xk_] + Kk (zk - xk_]). (1)

~

Here Xy is the estimate of the quantity x after the kth measurement,

-~

X1 is the estimate of x after the (k—l)th measurement,

Kk is the "gain" of the filter, and is a function of k, and

z, is the kth measurement of x.

k
This equation simply states that the new estimate is the previous estimate
plus a weight factor times the difference between the new measurement and the

previous estimate. This weight factor K, is called the gain of the filter.

k
It is a characteristic of recursive estimators that the gain K decreases
with the number of measurements (possibly after some initial transient

response). Initially, the filter weights new measurements heavily, then, as

-~

the estimate x becomes more and more accurate, the weighting factor K either

continually decreases or decreases and asymptotically approaches a constant

value, so that new measurements have a relatively small effect on the estimate.



B. Response Time of the Filter

We can deduce the response time v of the filter from Eq. (1). If the

change over a single interval of measurement (Ak = 1) is small, and Kk is

constant or very slowly varying, the discrete form given in £q. (1) is an

approximation to the continuous form given by
dx, _y/dk = =K, (X, _y = Z,)- (2)

Suppose x changes discontinuously at k = 0 from x = 0 to x = Xq? and z, is a

~“

good approximation to x,, so that z = X0- Then with the substitution

k,

-~

y = (xk_]-xo), it is obvious that the time constant for response to change is

T = 1/Kk. (3)

C. An Example of a Recursive Estimator

Let us consider a simple example of a recursive estimator. Suppose we

have made a series of measurements z of a scalar quantity x, and

1 220 0T
we wish an estimate for x. The least-square optimal estimate of x is just the

mean of the set of measurements. Therefore, the (k-l)th estimate of x is

- k-

Xy = V=) 22y (4)

th

If we make one more measurement, we obtain the k estimate of x,

-

k-1

This expression can be rewritten as

Xy = (1/k) 12] z; + ('l/k)zk = ((k_])/k);k—l + (1/k)zk, (6)

and finally, as

%

Lt
A



~ -~ -~

X = Xpp t (1/k)(zk - xk“]). (7)

The estimator is now in the anticipated form, and we see that the gain is

K = 1/k. (8)

Since we have no prior knowlege of x, we take the initial estimate of x to

be zero; in that case the first estimate for x, X1s is just equal to the first

measurement Zy- With increasing number of measurements the gain Kk ultimately
becomes vanishingly small in this example, and new measurements have no effect

on the estimate.

III. The Optimal Recursive Estimator (Kalman Filter)

We now broaden the concept of the re;ursive estimator and seek one that
will give the optimal estimate of the state of a system in the presence of
noise, both in the measurement and in the parameters characterizing the state
of the system. These n parameters, which are assumed to be either constant or
varying slowly compared with the response time of the filter, form the n

components of the state vector Xy at the time of the kth measurement. Qur

approach is to define models for the time evolution of both the system and the
measurement, and then to find the filter gain Kk that minimizes in a least-
squares sense the errors in estimating the state of the system after each new

measurement.

A. The System Model

We assume that the system is examined periodically, and that the state at

time t, 1s linearly related to the state at time t, _, by a matrix ¢ _,, with

the addition of a random noise vector W,_1- We further assume that the vector



w is gaussian, with zero mean, and that the values at different measurement

times are uncorrelated. The system model is then

X + W

k= -1 By T e | (9)
This model is general enough io describe any system that can be

represented by an nth order linear ordinary differential equation, or by a set

of such equations (e.g., the equations of motion of an object, or the behavior

of an electrical circuit). The vector w represents the system noise, that is,

random uncertainties in the state of_the system from one measurement time to
the next. Examples include the noise introduced by measuring the length of a
metal rod in a room with poor temperature control (the length of the rod
actually varies from one measurement time to the next), the position of an
aircraft with erratic engine performance, or subject to variable winds, or the
price of a stock or bond subject to random market pressures. If the system
noise w is zero, the system evolves in a completely deterministic fashion.

The system model given in Eq. (9) generates a random walk in the set of

system parameters that make up the state vector.

B. The Measurement Model

Now suppose that we make a set of L measurements at time k, forming the

% components of the measurement vector ;k' and that these measurements are

X by the measurement matrix Hk' The

measurements are also corrupted by noise Yoo which we assume to be gaussian

linearly related to the state vector

with zero mean. This gives us the measurement model

;k = Hk 5k + !k' (10)

The measurement matrix Hk can be an arbitrary function of time or k, but must,

of course, be known or measurable at the time of each measurement. We will



use this to advantage in an example of signal processing later in this article.

C. Derivation of the Equations for the Optimal Linear Estimator
(Kalman Filter)

In this section we outline, without going into detail, the arguments
followed in deriving the optimal recursive estimator. For the omitted
details, see Ge]b,4 whose derivation and notation we generally follow.

We seek a new estimate for the state of the system immediately following

-~

the kth measurement, denoted by gk(+), that is a linear combination of the

~

estimate immediately preceeding the‘kth measurement, denoted by 5k(—),

and the new measurement Ek'

5k(+) = Kk'gk(-) + Kkzk . (11)
Here K, ' and K  are time-varying matrices to be determined.

k k
We define the error x(+) in the estimate after the kth measurement to be

X (+) = x.(+) - %, (12)
with a similar definition for zk(-). Here Xy is the true value of the

state vector at the time of the kth measurement. When we substitute these
error definitions into Eq. (11), and require that the new error estimate Zk(+)

be unbiased (expectation value equal to zero), we find that

K,'=1-K (13)

k k "k’

where I is the identity matrix. This expression, when substituted into

Eq. (11), gives an estimator of the form



X (9) = %, () + K (2 = K X (), (14)

~

which shows how the estimate of the state of the system gk(—) just before

the measurement is modified by the new measurement. The corresponding change

in the error estimate is given by

X (+) = (I - KHIX (-) + Ky, . (15)

~

We are unlikely ever to know the actual error Xy - Statistically speaking,

we can only determine the root mean square error in the components of the
state vector. As the first step in calculating these quantities, we define

the covariance matrix associated with any vector a to be the matrix E[a gT],

where the symbol E denotes the expectation value, or mean, of the elements of

the matrix, and the QT denotes the transpose of the vector a. We then define

the error covariance matrix after the kth measurement to be

P = E (K (9 K (41 A, (16)

The diagonal elements of this matrix are the expectation values of the squares

of the errors in the estimate of the components of x after the kth

measurement. Shortly we will choose K, to minimize the "square of the length

k
of the error vector", the sum of the diagonal elements (the trace) of P

K
Next we substitute the expression for zk(+) given by Eq. (15) into
£q. (16). We define
P! = P (=) = E[X () X, (5) T, (17)
Rk = € [vg vk 11, (18)

assume that the measurement errors and the errors in the state vector are



uncorrelated, and find that

_ . a T T
Pk = (I - Kk Hk)(Pk ) (I Kk Hk) + Kk Rk Kk . (19)

This expression shows how the error covariance matrix just before the kth

measurement, P, ', 1is modified by the new measurement.
We are now ready to minimize the error estimates. We need to
differentiate the trace of Pk with respect to the matrix Kk (this is not

trivial), set the result equal to zero, and solve for K This provides us

K
that minimizes in a least-squares
h

with an expression for the filter gain Kk

sense the estimate of the error in the state vector 5k after the kt

measurement; the result is

=P'HkT[H bt H | +R T

Ke = Py k P’ Hy k!

(20)

This choice of the filter gain Kk gives the optimal linear recursive

estimator. From this point on, Kk will be assumed to have this form.

The Kalman filter is an optimal least-squares estimator, and gives exactly
the same answer as other 1east-squares estimators that use the same
information.

So far we have only concerned ourselves with how various quantities change
instantaneously when new information becomes available--the change from just
before the new measurement , (-), to just after the measurement, (+). To
complete the picture, we need to know how the estimate of the state vector and
how the error covariance matrix bropagate between measurements (from just

after the last measurement to just before the new measurement). One can

easily show that these propagate as

~

lk(-) = Qk-1;k—1(+) and (21)

- 10 -



k-1 Pk=1 B1 Qe (22)

where we have defined

0, = Elw, W, . (23)

Qk is the covariance matrix for the system noise, as defined in Eq. (9).

D. Recursion Relations for the Optimal Linear Estimator (Kalman filter)

We can now combine the above calculations into four matrix equations that
tell us how to calculate the error covariance just prior to the new
measurement, and how to use the new information provided by the kth
measurement to calculate the optimal filter gain, the new estimate of the
system state vector, and the error covariance of the state vector just after
the new measurement. These four equations comprise a complete algorithm for
updating the estimate of the system staté vector in a stepwise, recursive,

fashion; they constitute the optimal linear recursive estimator, or Kalman

filter. The equations are

-11 -



Error covariance matrix prior to measurement:
T
Pt = 1 Pt T Qe (24a)

Optimal (Kalman) filter gain:

= P H THopot W, T+ Rk]‘] ; (24b)

e = Pk k P e

New estimate of the system state vector:

- ~ -~

Xe = B X1 I o B g K (24c)
Updated error covariance matrix:
P = [T -K HIP". ' (24d)
By definition,

T . .
Qk = E [yk W ] (system noise covariance) , and (24e)
Rk =t [lk Yy T] (measurement noise covariance) . - (24f)

E. Initial Conditions

To start off the filter, we need to know the system and measurement error
covariance matrices R and Q, and we need intial guesses for the state vector x
and for the error covariance matrix P. After each measurement, the filter can
then be advanced one step by using the Kalman filter algorithm summarized in

Eqs. (24a) through (24d).

F. General Observations on Pk

The heart of the Kalman filter is in the error covariance matrix Pk’ which

provides the estimate of the errors in the state vector at each step.

- 12 -



Inspection of the Kalman filter algorithm shows that the error covariance

matrix Pk depends on the intial conditions, the description of the system (&),

the description of the measurements (H), the system noise (Q), and the

measurement noise (R), but not at all on the measurements zkl This mean§ that
the estimated actual (not relative) errors in the component; of the state

" vector (the square roots of the diagonal elements of P) can be calculated as a
function of k in advance of any measurements, provided that &, H, Q, and R

are either constant or have known dependence on time or k. In fact, to save
time in real-time data processing, once the dependence of P, on k has been

k

determined, P, can be approximated by an algebraic function of k or by a

k
step-wise varying function. Except in very simple cases, the functional
dependences of Pk on k cannot be determined.

Iv. Advantages of the Kalman Filter

Before giving examples of the use of the Kalman filter, we 1ist some of ,
the advantages its use affords, although some of these are not yet obvious
from the discussion given sb far:

1. The Kalman filter is recursive, which minimizes memory requirements and
makes the filter well suited to deal with data in real time.

2. It provides after each measurement the optimal estimate of the state of a

linear system--it can be shown that the Kalman filter is the optimal
estimator for linear systems.

3. It provides after each measurement an estimate of the errors in the
parameters characterizing the state of the system.

4. In many cases the time response of the filter is fast enough to follow the

evolution of physical systems in real time.

-13 -



5. The filter responds gracefully to discontinuous changes (steps) in the
measurements, without erratic transients.

6. The filter is flexible, and can be used with many physical systems, such
as those that can be represented by a set of linear ordinary differential
equations, and so is broadly applicable to problems arising in physics.

7. The filter uses knowledge of the system dynamics in the estimation
process, which acts as a constraint against estimates based on occasional
implausible measurements.

8. While the Kalman filter is equivalent to other least squares estimators
that use thé same information, it is often easier to implement in complex

situations.

V. Examples

In this section we discuss three examples of the use of the Kalman filter
in the optimal estimation of
1. A constant, with both system and measurement noise,
2. The first derivative of a set of noisy data, and
3. The amplitude of a time-dependent signal superimposed on a constant
background, with both signal and measurement noise.

We begin with

A. A constant, with both system and measurement noise

we.now return to the problem of optimally estimating the length of the
metal rod in the room with poor temperature control. This example illustrates
the use of a Kalman filter to optimally estimate the value of a constant (the

length of the metal rod) subject to system noise (the room temperature

- 14 -



fluctuates randomly, and so does the length of the rod, correspondingly) and
to measurement noise (the micrometer has limited reso]utionj.

In'this example, the state vector is just the length of the rod.
State Vector:

X = X , a scalar.

System Model:

X, = xk_1 + wk_] (the new length is the previous length plus a random
component).
therefore & =1, Q =¢E [wz] = °§ = q.

Measurement Model:

Zk = )(k +Vk,

therefore H =1, R

i
m
—
<
—
il
Q
]
-

We determine the recursion relations for the Kalman filter by working
our way through one step of the filter algorithm:

P =Pt =Ryt e

ral
[

= (Pk—l + Q)/(pk—l +q+r), and

©
|

(= (B v /(P +a+ )] (P +a)

r(Pk_1+ q)/(Pk_] +q+r).

After running a number of cycles, the filter will reach a steady state,

with constant values for Kk and Pk' The steady-state value for P, Pw, can in

the case of this simple example be found by setting Pk = Pk—] = Pm in the
above expression and solving for Pm; the solution is

P, = 1/2 [q2 + 4qr - q].

- 15 -



The square root of this expression is the minimal error in estimating x
that can be achieved even with an unlimited number of measurements.
Next we consider two special cases: first, systems with no system noise

and second, those with no measurement noise.

1. No System Noise

If there is no system noise (q = 0), then from the system model given by
Eq. (9), the value of x cannot change (& = 1). The only way that x can change
is through the random variable w. This is an important point--if the physics
of the system dictates that the system state vector can change randomly with
time, then there must be system noise (Q % 0). In the alternative case
(Q = 0), the system can only evolve deterministically.

In this case, for q = 0, we can find Pk in closed form as a function of
k. The only uncertainty in the problem is that of the measurement noise.
Therefore, we set P] = r. By successive invocations of the filter algorithm
we find that

P2 = r‘/2._P3 = r/3,....,Pk = r/k.
This means that the error in the estimate of x after k measurements is
om/er: in agreement with the usual result for the error in the mean of a set
of measurements. Since the value of x is truly constant, we can reduce the

error in the estimate of x to any desired value by making a sufficient number

of measurements.

2. No Measurement Noise

If there is no measurement noise (r = 0), then Pk =0 for all k. The

state of the system can be determined exactly at each measurement. In this

- 16 -



case the Kalman gain is Kk =1, so the estimate after the kth measurement,

from Eq. (24c), is

-~ ~ -~

X = X1 * [Zk - xk_]] =7, 3

the new measurement is the optimal estimate of x which is, in fact, determined

exactly at the instant of the measurement.

B. The First Derivative of Noisy Data

Occasionally we have to practice numerical differentiation of noisy
numerical data. We can use the Kalman filter to generate an optimal estimate
of the first derivative and the amplitude of a measured signal.

State Vector:

X
Let x = , where
X2
xl = the amplitude of the signal, and
Xy = dx]/dk, the change in X1 between measurements.

System Model:

1k T K1,k

ok T X

The system model generates a straight line with x, changing by an amount

1

Xy at every step, plus noise in both the amplitude and the slope. We see that
1 1
® = = a constant matrix.
0 1

- 17 -



We assume the noises associated with x1 and x2 are uncorrelated, so

0 a, 0

0 o 0 q2

Measurement Model:

We can only measure the amplitude of the signal, a scalar:

zk = x]'k + Vk’ so H=(1 0). Assume

R=E [yk Yy T] =r.

"1 P12
Define Pk_] = ; after substitution into Eqs 24a
P21 P22

through 24d, we find that the recursion relations are

P +P +P +P +q P +P P! P!
11 12 21 22 1 12 22 1 12
l___ =
P ,
P 4P P +g p P
21 22 22 2 21 22
P K,
— - — ]
Kk = 1/D = , where D = (P]] +r), and
Pa' Ko
_ ' _ )
(1-Ky) Pyy (1-Ky) Py
P, =
- ] ] - ] ]
Ko Pt *+ Py Ko P2’ + Py

-18 -



The estimator is

-~

e R B NS L IS

~

(1-K3)%p o + Koz = %9 y)

This simple system is already too complicated for us to proceed very far
algebraically, so we have left the recursion relations in forms convenient for
numerical evaluation.

The performance of this Kalman differentiator on simulated data is shown
in Figure 1. We have chosen a signal consisting of a constant portion, then a

linear ramp with slope dx,/dk = +1, a second constant portion, then an abfupt

1
decrease to the original level. Noise variances used in this example are

q = 1.0, q, = 0.05, and r = 10.0.

We used as initial conditions x] = 0.0, x2 = 0.0. Since our initial

estimate for x.I cannot be better than the measurement noise, we have set

P]] = r, and have derived our initial estimate of the variance in x2 from a

hypothetical measurement of the slope based on two consecutive amplitude
measurements: P22 =2 r. P12 and PZ] were initially set equal to zero. With
the noise variances used, the filter reaches steady-state in about 20
measurements.

Gaussian noise with variance (q]+r) has been added to the signal to

approximate the effects of the system noise and the measurement noise; this is

the top trace in Figure 1. The second trace shows the Kalman filter's

estimate of the amplitude, x,-- it duplicates the behavior of the noisy

1
signal, but the noise is substantially less, as expected. The bottom trace

-

is the estimated slope, Xos with the ideal response (no noise) superimposed.

-19 -



The estimated error in X is about 60% of the amplitude of the rectangular

pulse. Differentiation is easier in hindsight than in real time. If we knew
that the slope was "supposed" to remain constant during the ramp portion, we
could, of course make a more accurate estimate of the slope. The filter does
not know this, and neither would we in a situation in which we had no prior

knowledge of the shape of the signal. The filter output shown is the optimal

estimate of the amplitude and slope after each measurement, and cannot be

improved upon.

C. The Amplitude of a Time-dependent Signal Superimposed on a Constant

Background, With Both Signal and Measurement Noise

The Kalman filter can also be used for optimally estimating the amplitude
of a time-dependent signal buried in noise; the following example gives an

illustration of this application.

1. The Models
Suppose we have a time-dependent signal x1g(t) superimposed on a constant

background x, and we wish to optimal]Q estimate the signal amplitude x].

2
State Vector: We take

X1

1%
L}

X2

System Model:

X -1’ so & = I, the identity matrix.

kT k-1 T %
Assume the system noise (components of w) to be uncorrelated. Then

- 20 -



qQ = = = a constant matrix.

0 g 0 q2

Measurement Model:
We will incorporate the time dependence of the signal into the measurement
model. At time tk we measure the scalar quantity

Zz (tk) + X + v

k= X%,k 9 2.k TV

From the information available to us from the measurement, we cannot tell
whether the signal is actually time-varying or whether the time dependence is
built into the measurement model--the two cases are indistinguishable.

From the form of the measurement, we identify

H=1(g 1),
where we have written g for g(t). We need also to define
R=E (v lT] =g 2 _ r , a scaler.

2. The Recursion Relations
The first equation of the filter algorithm, Eq.(24a), gives

P! = Peq * Q. Let

P P

n 12
Pey = ) . Then
21 P
] i
Pli + 9 P12 P11 P12
Pk' = = ., and
P Pa2 * 45 Par Pa2’

- 21 -~



9Py * ap) * Py “
Kk = 1/D = , where
g Pyy + Py + G Ky

D= gZ(P +4qy) +g (P, +P,,) +P,, +q, + T .
11 1 12 21 22 2

The estimate of the state vector is

-~ ~ ~

X1k = X1,k-1 (179 K) + Ky (z = %5 4 9)

-~ ~ -~

Xg. k = %2,k=1 (1 = K) + Koz =9 % ).

The updated error covariance follows from Eq. (24d):

- . ' _ v
(1 -9 K Pyt =Ky Py (1 -9 K Pyt =Ky Py

(1= 9Ky Py’ =Ky P! g Ky P, + (1 -K) P

) |
22 2 27 22

So far we have not had to specify the functional form of the time
dependence of the signal, g(t). Aside from some practical constraints (g(t)
should not change appreciably during the measurement time, and g(t) cannot
have the Qame value for all measurements), the only restriction on g(t) is
that its value must be known at the time of each measurement. The function
g(t) could be periodic in time, a random sequence of pulses, or even (if one
wanted to make a clandestine measurement) derived from a random noise
generator! If the signal were generated by an unpredictable event, such as an
earthquake, an explosion, or a solar flare, it should be possible to use the
measured time dependqnce of the disturbance, together with a variable time
delay and any modifications known to have occurred in the signal during its

transit, to search for the signal. In some cases when one has control of

g(t), it might be possible to choose its functional form in a way that
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minimizes the error estimates. We will give an example of this signal

optimization later.

3. Initial Conditions

To aid in understanding the working of a Kalman filter, we will continue
with a numerﬁca] example of signal processing. Suppose our signal consists of
a periodic series of pulses, so that at the time of any measurement g is
either zero or 1. The signal is a periodic rectangular (not necessarily
square) wave.

OQur first problem is in choosing suitable initial conditions for starting
the filter. This is not as difficult a problem as it might appear; except for
singularly unfortunate choices of the initial error covariance matrix, the
filter will reach the same steady state (provided, or course, that Q and R are
the same in all cases). Still, we should make reasonable choices, based on
our understanding of the problem, so that the error estimates will be
reasonable as the filter approaches steady-state.

In this case, let us assume that we make the first measurement when there

~

is no signal present; g = 0. The measurement cannot affect X3 since it

contains no information about the signal amplitude. We see, then, from the

equation for the estimate of the state vector, that for X1 1 to be unaffected

by the measurement, K1 (the first component of the vector K) must be zero.

With g = 0, this leads to
K] = P]z/(P22 + q2 + r), so we require
P]2 = P2] =0 dnitially.
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What can we use for initial estimates of Pn and P12? We are measuring a
quantity (forget the time dependence for the moment)

Z =Xy + X, +V,

1 2
and we know the noise covariances for all three quantities on the right hand
side of this equation. We therefore expect z to have a noise covariance n
given by

n=gq,+4q,+r.
In the absence of other information, it is reasonable to assign half the

initial error to x, and half to x so we choose for initial conditions

1 2’
P]1 = P22 = (1/2) n .
Since we measure the sum of §] and §2, if the actual error i]-is positive,
22 must necessarily be negative, so the expectation value of their product

(P12 and Ppy) when the filter reaches steady-state must be negative; the

errors are anti-correlated.

In practice, the noise characteristics must be either estimated from the
physics of the problem or measured. Remarkably, it is possible to determine
all the noise characteristics (the matrices Q and R) from measurements
a]one.5 This is a very useful fact, as in many cases (in economics, for
example), we may not have a physical basis for estimating the system noise.
The components of Q must be large enough to give the expected variation of x
during the observation time by the random walk process implicit in the system

model. This fact can also be used as a basis for estimating the system noise.

4., Results for a Square Wave

In this example, we will express the noise covariances in terms of the
measurement noise covariance, r, which we take to be 1. We choose

qy = 10_4,. q, = 10-2,-and r=1
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The characteristic noise amplitude of the background ( /E; = °52) is then
1/10 of the measurement noise amplitude, and that of the signal ( /E;'= 051)
§s 1/100 of the measurement noise. The sum of the noise covariances (n) is
very nearly 1, so we take for the initial error covariance matrix

1/2 0

0 172

The dependence of the components of Pk on k are shown for the case of a

square wave in Figure 2. P has reached steady state within 1% by the 500th
measurement; in steady-state P is
1.995 x 107%  -1.002 x 1072
P = for k even, and i}
-2 -1
-1.002 x 10 1.003 x 10
1.996 x 1072 -9.030 x 107 s
p = for k odd. i
-9.030 x 107° 9.931 x 107

Within 200 measurements (100 signal periods), the error covariances are

nearly as small, and give estimated rms errors of 0.16 for X and 0.32 for

s -~

X I[f we require that the estimate of the signal amplitude X be determined

to 10%, then X must be 1.6 or greater. To meet the same requirement with a
‘'single measurement, as one might make from an oscilloscope picture, with rms

noise of unit amplitude (n) in both signal and background, X1 must be 10y2,

or 8.8 times larger. In this case, the use of the Kalman filter provides an

- 25 -



improvement of a factor of 8.8 (when the filter reaches steady-state, the
improvement is a factor of 10) in our ability to measure the amplitude of a
small signal buried in noise.

The values of PT] and P22 in Figure 2 oscillate from one measurment to the
next, depending on whether the signal is present or absent. The dashed

portions of the curves approximate the mean values.

5. Optimization of g(t)

The function g(t) in this example can be a periodic rectangular wave, not
necessarily square, as was the case just studied. At each measurement the
signal is either present or absent. 1Is there an optimal choice of signal duty

factor, the fraction of the period that the signal is present? Figure 3

-~ -

shows the estimated errors in X and X, as a function of signal duty factor.

-~

The error in x]'is a weak function of signal duty factor over most of the
range, with the minimum occurring at 0.5. A square wave is therefore the best
choice for estimating the signal amplitude. For a signal duty factor of 1, g
= ] always, and both error estimates become infinite--we always measure the
sum of X, and Xos and have no means to determine either one separately. For a
signal duty factor of zero, we have no information about Xys SO the error is

again infinite, but we minimize the error in Xy

VI. Related Topics

Straightforward extensions of this technique permit us to do optimal

smoothing of data and optimal prediction. Nonlinear problems can also be

handled. It is possible to make an adaptive filter--one that modifies the

original estimates of Q and R to further optimize the performance of the

filter. An extensive body of literature concerns model identification. These
4

and other related topics are discussed by Gelb.
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VII. Conclusions

We have-reviewed the origins of optimal estimation theory, the notion of
a recursive estimator, and the derivation of the optimal linear recursive
estimator, or Kalman filter, and have given several examples of its use. The
Kalman filter offers many advantages in data analysis and signal processing,
and is capable of efficient and optimal estimation of parameters of interest
in many situations occurring in physics. I hope that this article will

stimulate others to use and enjoy this powerful tool.
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Figure Legends

Fig. 1
Fig. 2
Fig. 3.

Use of the Kalman filter in numerical differentiation of noisy data.
Trace (a) is the simulated noisy data, (b) is the filter's estimate
of the amplitude of the data, and (b) is the estimate of the slope,
with the ideal (noise free) response superimposed.

The dependence of P the square of the error in the estimate of the

1’ _
amplitude of the square wave, and P22, the square of the error in the
estimate of the background, on measurement number k, for the square

wave signal processor.

Estimated errors in the signal and background amplitudes as functions

of the signal duty factor for a rectangular wave signal processor.
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