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Abstract

This paper addresses the problem of motion tracking in a sequence of monocular images.
We want to establish and maintain the successive positions of objects in a sequence of
images. The use of regions as primitives for tracking enables us to directly handle con-
sistent object-level entities. On one hand. a motion-based segmentation process based on
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normal flows and first order motion models provides us with instantaneous measurements
of the geometry of each region present in the segmented images. Shape and position of
each projected object are estimated with a recursive algorithm along the sequence. On
the other hand. a motion filter based on a multiresolution estimation scheme and tem-
poral filtering generates reliable estimates of the motion parameters of each region. The
proposed approach relies on adequate modeling and measurement of the geometry and
kinematics of object projections. In particular no 3-D information is required. It realizes
a good trade-off between tractability and efficiency. Occlusion situations can be handled.
We have carried out experiments on both sequences of synthetic and real images depicting
complex outdoor scenes to illustrate the performance of this new method.

“This work is supported by MRT (French Ministry of Research and Technology) in the context of the
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Résumeée

Nous nous intéressons ici au probleme du suivi d’objets mobiles dans une séquence
d’images monoculaires. Nous voulons suivre les positions successives des objets au cours
de la séquence. Le suivi s'effectue directement sur les régions, qui sont les projections
des objets en mouvement dans la scene. D’une part, un algorithme de segmentation au
sens du mouvement, fondé sur les dérivées spatio-temporelles de la fonction intensité et
un modele affine du champ des vitesses, nous permet d’obtenir des valeurs instantanées
des parametres géométrique de chaque région de I'image de segmentation. La forme et la
position de ces régions sont estimées récursivement au cours du temps. D’autre part, un
filtre cinématique utilisant une estimation multirésolution des parametres du mouvement
apparent 2-D et un filtrage temporel, fournit des valeurs fiables des parametres cinéma-
tiques de chaque région. L’approche proposée s’appuie sur une modélisation appropriée
de la géométrie et de la cinématique des projections des objets dans I'image. En partic-
ulier I'approche ne requiert pas d'information 3-D. Les situations d’occlusion peuvent étre
prises en compte. Nous avons mené des expériences a la fois sur des séquences synthé-
tiques et sur des séquences réelles. représentant des scenes extérieures complexes, afin de
tester 'efficacité de la méthode.



inria-00076962, version 1 - 29 May 2006

Contents

1 Introduction

2.1
2.2

Z.L

3 The
3.1
3.2

4 The
4.1
4.2

4.3

Region Modeling, Extraction and Measurement
The Motion Based Segmentation Algorithm . . . . ..
The Region Descriptor . . . . . ... .. .. ... ...
2.2.1 The Region Representation . . . . . ... ...
2.2.2  The Region Descriptor . . . . . . . ... .. ..
The Measurement Vector . . . . ... ... ... ....
2.3.1 Measurement Definition . . .. ... ... ...
2.3.2 Measurement Algovithm . . . . ... .. .. ..

Basic Region-Based Tracking Algorithm

The Geometric Filter . . . . . . .. . . .. . ... ...
Results . . . . . . . . .

Improved Region-Based Tracking Algorithm
The Geometric Filter . . . . . . .. ... .. ... ...
The Motion Filter . . . . . . . ... .. ... ... ...

4.2.1 Monoresolution Estimation of the Motion Parameters

4.2.2  Multiresolution Estimation of the Motion Parameters .
4.2.3  Comparing the Monoresolution and Multiresolution Approaches
4.2.4  Recursive Estimation of the Motion Parameters . . . . . . . . . ..
4.2.5 Experiments. . . . .. . ... ... ... ... .

Results . . . .. . . ...

4.3.1  The parking lot sequence . . . . . . . . .. ...
4.3.2 The van sequence . . . . . . . . ... ... ...

5 Future Work

6 Conclusion

A Obtaining the discrete state equations

Filter initialization

.

S U Ut Oy

[0 N o >R e

11

13
13
15
15
17
21
21
22
24
24
25

25

25

27

28



inria-00076962, version 1 - 29 May 2006

1 Introduction

Digitized time-ordered image sequences provide an actually rich support to analyze and
interpret temporal events in a scene. Obviously the interpretation of dynamic scenes has
to rely somehow on the analysis of displacements perceived in the image plane, which
represent an important intrinsic intermediate information between input sensor data and
output scene-related features. During the 80’s, most of the works have focused on the
two-frame problem, that is recovering the 3-D motion either from the optical flow field
derived between time t and time #+1, [Adi85, BH83, NY86, WKS87], or from the matching
of distinguished features (points, contour segments, ...) previously extracted from two
successive images, [FLT&7. LH86, MSA85].

Both approaches usually suffer from different shortcomings, like intrinsic ambiguities,
[Adig9, Ber88], and above all numerical instability in case of noisy data, [HW88, JJ88].
Attempts to alleviate these difficulties have been undertaken by introducing for instance
regularization terms. [YMR6]. or active vision paradigms, [AWBS87, ST90]. As far as 3-D
information recovery from motion is concerned, it is obvious that performance is improved
by considering a more distant time interval between the two considered frames (by analogy
with an appropriate stereo baseline). But matching problems become then overwhelming.
Therefore, an attractive solution is to take into account more than two frames [Sha86],
and to perform tracking over time using recursive temporal filtering, [BC86]. Moreover it
offers advantages like formal modeling, useful prediction and smoothing. Tracking thus
represents one of the central issues in dvnamic scene analysis.

First investigations were concerned with tracking of points, [SJ87], and contour seg-
ments, [CSD88, DF90]. However the use of vertices or edges lead to a sparse set of
trajectories and can make the procedure sensitive to occlusion. The interpretation pro-
cess requires to group these features into consistent entities. This task can be more easily
achieved when working with a limited class of a priori known objects [SD91]. It appears
that the ability of directly tracking complete and coherent entities should enable to more
efficiently solve for occlusion problems, and also should make the further scene interpreta-
tion step easier. This paper addresses this issue. Solving it requires to deal with a dense
spatio-temporal information. We have developed a new tracking method which takes into
account regions as features and relies on 2-D motion models. '

Thi report is organized as follows. Section 2 gives a general description of the region
tracking algorithm. A basic version of the algorithm based on a geometric filter is given in
Section 3. Section 4 describes an improved version where a motion filter and a geometric
filter cooperate. Results on svnthetic and real data are presented to show the efficiency
of the approach. Section 5 contains concluding remarks.

2 Region Modeling, Extraction and Measurement

We want to establish and maintain the successive positions of an object in a sequence of
images. Regions ave used as primitives for the tracking algorithm. Throughout this paper
we will use the word. “regions™. to refer to connected components of points issued from a
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motion-based segmentation step. The region can be interpreted as the silhouette of the
projection of an object in the scene, in relative motion with respect to the camera.

Previous approaches. [Gam84, Gor8Y]. to the “region-tracking™ issue generally reduce
to the tracking of the gravity center of regions. The problem of these methods is their
inability to capture the projection in the image plane of complex 3-D motion of objects.
Since the center of gravity of a region in the image may not correspond to the same
physical point throughout the sequence. its trajectory does not actually characterize the
evolution of the concerned region. It can even lead to erroneous interpretation.

We proceed as follows. First the segmentation of each image is performed using a
motion-based segmentation algorithm previously developed in our lab. Second the corre-
spondence between the predicted regions and the observations supplied by the segmen-
tation process is established. At last a recursive filter refines the prediction, and its
uncertainty. to obtain the estimates of the region location and shape in the image. A new

‘prediction is then generated for the next image.

2.1 The Motion Based Segmentation Algorithm

The motion-based segmentation method. fullv described in [FB91], ensures stable motion-
based partitions owing to a statistical regularization approach. The segmentation problem
is formulated as the estimation of a label field. modeled by a Markovian random field.
This approach requires neither explicit 3-1) measurements, nor the estimation of optic flow
fields. It mainly relies on the spatio-temporal variations of the intensity function while
making use of 2-D first-order motion models. It also manages to link those partitions in
time, but of course to a short-term extent.

When the moving object is occluded for a while by another object or by the back-
ground and reappears. the motion-based segmentation process may not maintain the same
label for the corresponding region over time. The same problem arises when trajectories
of objects cross each other. Labels before occlusion may disappear and leave place to
new labels corresponding to reappearing regions after occlusion. Consequently, tracking
regions over long periods of time requires a filtering procedure to be steady. A truly
trajectory representation and determination is needed. The segmentation process will
provide onlv instantaneous measurements.

In order to work with regions. the concept of region must be defined in some mathe-
matical sense. We describe hereafter the region descriptor used throughout this paper.

2.2 The Region Descriptor
2.2.1 The Region Representation

We need a model to represent regions. The representation of a region is not intended to
capture the exact boundary. Tt should give a description of the shape and location that
supports the task of tracking in presence of partial occlusion. Representation of shapes
based on computation of moment-type values (e.g. center of gravity, principle axes, higher
order moments. ...) are of little use when only a partial view is available, since they are
obviously sensitive to occlusion.

ot
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We choose to represent regions with some of its boundary points. The contour is sam-

pled in such a way that it preserves shape information of the silhouette. We must select
points that best capture the global shape of the region. This is achieved through a polyg-
onal approximation of the region. The local features, corners, points of high curvature
are conserved by the approximation. Several methods have been proposed for polygonal
approximation of a two dimensional shape. A good approximation should be “close” to
the original shape and have the minimum number of vertices. We use the approach de-
veloped by Wall and Danielson in [WD8&4]. A criterion controls the closeness of the shape
and the polygon. This method is simple, fast and gave good results on our data.
The region can be approximated accurately by this set of vertices. This representation
offers the property of being flexible enough to follow the deformations of the tracked sil-
houette. Furthermore this representation results in a compact description which decreases
the amount of data required to represent the boundary, and it yields easily tractable mod-
els to describe the dynamic evolution of the region.

Our region tracking algorithm requires the matching of the prediction and an obser-
vation. The matching is achieved more easily when dealing with convex hull. Among the
boundary points approximating the silhouette of the region, we retain only those which
are also the vertices of the convex hull of the considered set of points. We compute the
convex hull with the technique described in [PS83]. As shown in the results reported
further polygonal approximations do not restrict the tvpe of objects nor the the type of
motion considered. As a matter of fact. using exactly the same approach, more complex
models of shape could be used : splines. B-splines. superquadrics, ...

2.2.2 The Region Descriptor

This descriptor is intended to represent the silhouette of the tracked region, all along
the sequence. We represent the tracked region with a constant number of points during
successive time intervals of variable size. At the beginning of the interval we determine
in the segmented image the number of points. n. necessary to represent the concerned
region. We maintain this number fixed as long as the distance, defined in (1), between
the predicted region and the observation extracted from the segmentation is not too
important. The moment the distance becomes too large. the region descriptor is reset to
an initial value equal to the observation. Consequently a new track is initialized. Thus the
new state vector of the geometric filter. which describes the tracked region, 1s initialized
with the current observation. This announces the beginning of a new interval.

We can represent the region descriptor with a vector of dimension 2n. This vector is
the juxtaposition of the coordinates («v;. y;) of the vertices of the polvgonal approximation
of the region : [r).y;. 2 ys. .. L. va.ya)7. Figure 1 illustrates the definition of the region
descriptor.

2.3 The Measurement Vector
2.3.1 Measurement Definition
We need a measurement of the tracked region, in each image. in order to update the

prediction gencrated by the filter. The measurement is derived from the observation

6
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Figure 1: The region descriptor ; (1) Region ; (2) Boundary points approximating the
region ; (3) Vertices of the convex hull

obtained by the segmentation process. Each observation is a region of the segmented
image. For a given region we would like a measurement vector that depicts this region
with the same number of points as the region descriptor. This number remains constant
throughout a limited number of frames. The measurement algorithm consists of three
stages, (See Fig. 2)

1. Association of observation produced by the segmentation and prediction generated
by the filter :

o

Global matching, or registration of the prediction and the observation :
3. Local matching of each region and generation of the measurement.

First the association of observations and predictions is performed. We have to decide
whether an observation given by the segmentation corresponds to a previously tracked
object, or to a new one. When there is no occlusion the segmentation process assigns a
same Jabel over time to a given region ; thus the correspondence between prediction labels
and observation labels is straightforward. If trajectories of regions cross each other, new
labels corresponding to reappearing regions after occlusion will be created while labels
before occlusion will disappear. In this case more complex methods must be derived to
obtain the correct association. These iethods are discussed later.

If the observation can be associated with a previously tracked region we will update
the existing trajectory by refining the prediction with the observation. Updating the
prediction requires the global matching, and the local matching of the predicted region and
the observed one. The global matching involves determining the transformation necessary
to globally superimpose the prediction onto the observation. Registration is achieved
here at the region level. To perform this registration we represent the prediction and the
observation with their region descriptor. Let us assume that the prediction is composed
of n points. and that the observation obtained by the segmentation is represented by m
points, (if the silhouette of the observation is occluded we have m < n). We will move the
polygon corresponding to the prediction in order to globallv match it with the observation
composed of m points, (See Fig. 3).

After the registration is properly achieved. we are able to associate individually each
point of the prediction with the correspouding point of the observation. Since the shape
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Figure 2: Measurement algorithm

of the tracked region may change, the region descriptors of the prediction and the ob-
served region may have different number of points. Thus we do not take the vertices
of the observation as the measurement vector. We prefer to select the n vertices of the
correctly superimposed shape of the prediction onto the observation, as the measurement
vector. The measurement coincides indeed with the segmented region. Furthermore this
measurement algorithm has the following properties. If the object is partially occluded,
the measurement still gives an equivalent complete view of the silhouette of the region.
This approach deals with the problem of occlusion at the level of the region itself. It
does not require the usual matching of specific features which is often a difficult issue.
Indeed the measurement algorithm works on the region taken as a whole. Moreover the
measurement is not sensible to small uncertainties and spurious variations in the shape
created by the motion-based segmentation.

Thus the measurement method is well suited for temporal tracking since it delivers
steady measurements of the shape and position of the tracked region.

2.3.2 Measurement Algorithm

If we represent the convex hull of the silhouette obtained by the segmentation and the
prediction vector as two polvgons, the problem of superimposing the shape of the predic-
tion onto the observation reduces here to the problem of matching two convex polygons
with possibly different number of vertices.

We do not use the structural approach nor the methods based on distances invariant
to translation, rotation and scale, because we are interested in the transformation be-
tween the two polygons. Matching is achieved by moving a polygon and finding the best
translation and rotation to superimpose it on the other one. We did not include scaling in
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Figure 3: The measurement algorithm : (1) Observation obtained by the segmentation
(grey region). and prediction (solid line) : (2) Convex hull of the observation ; (3) Matching
of polygons : (4) Effective measurement : vertices of the grey region.

the transformation. otherwise in the case of occlusion the minimization process will scale
the prediction to achieve a best matching with the partiallv occluded observation.

Most of the works that follow this approach define a distance on the space of shapes
(Haussdorf distance. Minkowski distance. Frechet distance,...) and seek the geometrical
transformation that minimizes the distance between the two shapes.

We use the measure proposed by Cox et al. in [CMMR89]. If P, and P, are two
polvegons. we define the measure by :

D(P] P‘) Y\[ €P (/( \[1 P) - Z”?EP (1(/\{2 P])

where d{ M. P} is the Euclidean distance of a point M to the polvgon P. This measure
1s not a distance because it does not obey to the triangular inequality. The minimum of
D(P;. Py) generallv occurs for positions of polygons that a human observer would have
intuitively imagined. The advantage of this measure is that it has interesting properties
regarding the problem of minimization. Let us suppose that we are moving the polygon
F,. We are looking tor the transform 7' that minimizes the measure between P; and

T(P},)

FT)=DP.TIR) = 3 dM.T(P) + 3 dT(M), )’ (1)
M. eP Mo € P>

where 7 is the composition of a rotation and a translation. The function F is continu-
ous, differentiable. Tt is also convex with respect to the two parameters of the translation.
Thus conjugate-gradient methods can be efficiently used to solve the optimization process.
Unfortunately the function is not convex with respect to the rotation parameter. A pre-
conditioned quasi-Newton conjugate gradient method is used to solve the minimization

problern with respect to the three parameters.

3 The Basic Region-Based Tracking Algorithm
We propose hereafter a basic version of the tracking algorithm. The tracking algorithm

relies on the geometric filter described hereafter. By suitable choice of the time scale, the
time step between two successive frames can be chosen as unity.

9
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3.1 The Geometric Filter

Each region is represented by the set of vertices (z,,y;) of the region descriptor.

We assume that trajectories of these vertices are independent. This assumption is
considered for two reasons. [irst it gives more freedom for each vertex to evolve indepen-
dently from the others. Thus the filter will be able to track complex transformation of
the regions. The second reason is related to the size of the filter. The assumption allows
us to decouple the state vector and to break a large filter containing all the vertices into
n smaller filters.

Using another approach, a more accurate modeling of the correlation of the trajectories
of the vertices is proposed in the next section.

Because the projection on the image plane is not a linear transformation, the motion
of a point in the image sequence. undergoing a constant velocity motion in the scene, can
generally not be represented by a motion with constant velocity not even with a constant
acceleration. For this reason there is no exact transformation giving 2(t + 1) and y(t +1)
as a linear function of the derivative of x(¢) and y(t). To derive x{f +1) and y(¢+ 1) from
z(t) and y(t) we assume that the derivatives of order larger than three can be neglected,
and we represent the third derivative as a sequence of zero-mean Gaussian white noise
e(t) of variance o?.

The measurement is described i Sect. 2.3.1. We are able to measure the position of
each vertex.

Let
x(1) = [, (t). 2:(1). £ and y(t) = [yi(t), yalt), G.(8))T
-1z-1zbe the two state vectors ; and let m = [m(t).m,(t)] be the measurement vector.
Then the following dynamic system can be derived for eaclh point (a;, ;) of the region
descriptor in the image at time ¢. as shown in Appendix A :

X(1+1) = ®x(t) + £(t)

y(t+1) = @y(t) + &) (2)
m(t) = Cx(t) + n(f) -
ma(t) = Cy(t) + n(t

&1(t) and &,(t) are two sequences of zero-mean Gaussian white noises of covariance matrix
Q. m(t) and ny(1) are two sequences of zero-mean Gaussian white noise of variance o2.

We have :
1

L

=011 C=[1 0 0] (3)
0 0 1

The covariance matrix of £(1) or &(t) is Q(t) = E [{j(t)é_]-T(t)] (7 = 1 or 2) has the

following form [see Appendix A]:

2
Q=0

Sl |~ |
00 100 i |t
b— 0 =G |

We assume that the above linear dynamic svstem is sufficiently accurate to model the
motion of the region in the image. We want to estimate the vectors x(¢) and y(t) from

10
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the measurement oy (1) and e,(f) vespectively. The Kalman filter [Gel74] provides the
optimal linecar estimate of the unknown state vector from the measurements, in the sense
that it minimizes the mean square estimation error and by choosing the optimal weight
matrix gives a minimum unbiased variance estimate.

A standard Nalman filter generates recursive estimates of the two vectors x(¢) and
y(t).

Let i3 be the instant of the first measurement. We calculate the first estimate at time
to+ 2. First and second derivative are estimated at time to+ 2 using the first, second and
third measurements. We obtain the following expression, as explained in appendix B :

[ 1’1“0'*'?-)
)A((t()‘*'?f) = Ul(t0+2) —Ul(t0+1)
| vi(to 4+ 2) = 2v4(tg + 1) + v1(20) |

[ vp(to + 2)
Vito+2) = | va(to+2) —vato+ 1)
| va(to +2) — 2va(to + 1) + v2(to) |

The covariance matrix of X(to + 2) or y(to + 2) is given by. as shown in Appendix B :

2 3 2 12
7] Ty T2 217 2 72 % 6
o (o Sy — | 8 2 T* 2 13 2 9T2 9 6 2
£ [xx j(tot2) =1 370, Q3T206 + 2779, 2430T‘7€ + Té’gfr
1.2 9T 2, 6 2 23T 2, 6 2
777 30 % T T30, 30 % T 140

It should be pointed out that though the equations of the resulting filter are the
same as those derived in the “token tracker™ algorithms, [CSD88, DF90], our approach is
quite different. Indeed we deal with a “region-level” measurement, and system models.
Furthermore the segmentation is motion-based and thus the tracking process does not
track spatially-segmented regions. but entities corresponding to objects moving in the
scene.,

3.2 Results

The airplane sequence

We present hereafter experiments performed on a sequence of real images with synthetic
motion that will validate the approach. We have generated a sequence of 41 images. We
superimposed on a fixed real image a patch cut out from another real image. This patch
represents a plane. It undergoes a rotation motion about the upper right corner of the
image. We can observe that the inter-frame motion is rather large (about 10 pixels).
In the middle of the secquence. the plane disappears, as if crossing under an imaginary
“cloud”. It progressively reappears, the nose first, then the wings. and finally the entire
plane. This sequence illustrates a case of occlusion.

Though the inter-frame displacements of the object are significantly large, the motion-
based segmentation yields good results. When the nose of the plane reappears after having
crossed under the “cloud™. the segmentation algorithm of course considers it as a new
region and assigns it a new label. As the plane is getting out of the “cloud™ with the

11
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same new region label. the tail of the plane, with the initial region label disappears under
the “cloud™. We have here an occlusion problem : a region disappears while another
reappears.

Experiment 1

Figure 18 illustrates the good performance of the method in the presence of a disappearing
region. The top half of this figure shows the three images of the initial sequence, at
time ty, t;6 and t3, while bottom half offers a view of the results of the tracking at
the corresponding instants. The tracked region is displayed as a polygon, where vertices
are the points actually estimated by the filter. The polygon is superimposed on the
segmentation map.

The algorithm accurately tracks the region, even in presence of partial occlusion, as
shown in the central frame at time ¢,5. The magnitude of the variance of the measurement
noise, o2 is computed as a function inversely proportional to the distance, defined by (1),
between the prediction and the observation generated by the segmentation algorithm.

Hence when the region is almost completely occluded, the filter essentially ignores the
measurement and relies on the system model. We observe on the rightmost frame, at time
{53 that in such a case the estimate falls behind the observation. Nevertheless the newly
appearing nose of the plane coincides with the “nose” of the region estimate. It is then
possible to make the hypothesis that both regions correspond to the same object. Simple
rules are sufficient to do it. based on the amount of area of the emerging region included
in the estimate currently tracked. Let us point out that the motion-based segmentation
can deliver the information that the emerging region is a new one, owing to the value of its
label (greater than the number of regions in the last frame before this new region appears).
In case of remaining conflicts, the motion measurement derived from the segmentation
step can easily remove the ambiguity.

We can ohserve in Fig.19 the superposition of the region estimates from time ¢; to
time t;3. We have only displayed one region over two for the clarity of the figure. It
should be noted that though we choose here a simplified system model, we nevertheless
have quite good results.

Experiment 2

This experiment illustrates the creation of a new region. We use the same sequence ; but
we only consider the frames where the plane reappears (frames 30 to 41).

Original images are presented on top of Fig. 20 at time t3q, t3s, t41 ; and the tracked
region is superimposed on the segmentation on the bottom of the figure. The size of the
region descriptor is set to 5 because of the small size of the region in the frame where it
appears for the first time.

Figure 21 shows the superposition the estimates of the region corresponding to a
tracking starting from time /3y and ending at t;,. We can notice that the algorithm
poorly updates the shape changement of the region. This phenomenon can be due to the
lack of information concerning the region evolution.

Furthermore we noticed on another sequence (see sequence van in Sect. 4.2.5) that
this basic version of the algorithm could not. generate reliable estimates during long period
of time without measurements.
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On one hand, we observed that the filter based on the dvnamic system (2) diverges after
an extended period of time without measurements. This effect is present even though we
add a fictitious process noise to take into account modelling errors (non linearity, biases.
roundoff and truncation errors in the computation).

On the other hand we have tried a constant-velocity svstem model instead of (2). It
appears that the filter is more stable but the prediction is alwayvs late. This phenomenon
is more significant when measurements are not present and the filter generates only esti-
mates. This is the case when a tracked region is being occluded.

In order to build a more robust tracking algorithm we decided to directly extract the
motion information from the sequence : and to use a more accurate model of the region
evolution. The following section describes the complete algorithm based on these ideas.

4 The Improved Region-Based Tracking Algorithm

We propose an approach with a complete model for the prediction and update of the
object geometry and motion. The motion information is not inferred from the tracking as
before. but the tracking itself is based on motion parameters directly extracted from the
sequence. Figure 4 shows the overview of the algorithm. We use two models : a geometric
model and a motion model. At the higher level the geometric filter and the motion filter
estimate shape, position and motion of the region from the observations produced by the
segmentation. The two filters interact : the estimation of the motion parameters enables
the prediction of the geometry of the region in the next frame. The shape of the region
1s compared with the prediction.-and the parameters of the region geometry are updated.
A prediction of the shape and location of the region in the next frame is calculated from
the estimates of the motion parameters and the estimates of the region geometry.

‘The motion-segmentation of each image is still performed with the algorithm described
in Sect. 2.3.1. The motion parameters are given by one of the two methods described in
Sect. 4.2.

Our approach has some similarities with the one proposed in [SM82]. The authors
constraint the target motion in the image plane to be a 2-D affine transform. An overde-
termined system allows to compute the motion parameters. However, the region repre-
sentation and the segmentation step are quite different and less efficient. Furthermore the
authors do not propose anv temporal filtering of the motion parameters and the region
geometry. Besides their approach does not take into account the problems of possible
occlusion, or junction of trajectories.

4.1 The Geometric Filter

We assume that each region R, in the image at time ¢t + 1 is the result of an affine
transformation of the region R. in the image at time ¢. Hence every point (z(t),y(?)) € R
at time ¢ will be located at (»(f 4+ 1).y(t + 1)) at time ¢ + 1, with :

(';'><f.+1) = A(t)(’”)(t) +b(1) (4)
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Figure 4: The complete region-based tracking filter

The affine transform has already been used to model small transformation between two
images, [SM82].

As shown in (4) the region evolution model requires now the estimation of A(t) and
b(t). These six parameters (four for A(¢). two for (1)) are derived from another set of
variables : the six parameters of an affine model of the 2-D velocity field within the region.

Indeed we can consider a first-order development of the 2-D motion field within each
region. For a given region R in image at time ¢, the parameters of the 1st order model of
the 2-D velocity field can be denoted by a matrix M(t) and a vector w(¢) such that :

V(e y) € R. ( ; >(i) = M(t) ( f; ) (1) +w(t) (5)

Even if 2nd order terms generally result from the projection in the image of a rigid
motion, they are sufficiently small to be neglected in such a context of tracking, which does
not involve accurate reconstruction of 3-D motion from 2-D motion. Affine models of the
velocity field have alrcady been proposed by. e.g. [BBH*89] and [Adi&5]. Furthermore the
2 x 2 matrix M(t) stands for a large class of motion: rotation, scaling, shear, ...; it indeed
reflects valuable information on 3-D scene motion, as pointed out in [FB90]. Moreover
this will allow us to keep linear relations for the Kalman filter.

The matrix A(?) and the vector b can be derived from the parameters of the affine
model of the 2-D velocity field. Using a first-order approximation of the velocity we obtain
the following relations :

A(t) =1L+ M(t) and w(?) = b(?) (6)

14
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where I is the 2 x 2 identity matrix. For convenience sake, the time step between two
successive frames, 6, 1s chosen as unity.

For the n vertices (. yy)... .. (. y.) of the region descriptor we obtain the following
system model :

1 [A(1)] 0 % I, (1
N . hn . .
(t+1) = | , PO+ )+
Tn T, : :
., 0 ONAR I 6o
where A(t) and b have been defined above in (7). ¢ = [¢F,¢¥]T is a two dimensional,

zero mean Gaussian noise vector. We choose a simplified model of the noise covariance
matrix. We will assume that :

where I, is the 2n x 2n identity matrix. This assumption enables us to break the filter
of dimension 2n into n filters of dimension 2.

The matrix A(t) and the vector b(t) accounts for the displacements of all the points
within the region. between t and t + 1. Therefore the equation captures the global de-
formation of the region. Even though each vertex is tracked independently, the system
model provides a “region-level™ representation of the evolution of the points.

For each tracked vertex the measurement is given by the position of the vertex in the
segmented image. The measurement process generates the measurement as explained in
Sect. 2.3.1. The following system describes the dynamic evolution of each vertex (z;,y;)
of region descriptor of the tracked region. Let s(t) = [z,,y:]7 be the state vector, and
m(t) the measurement vector which contains the coordinates of the measured vertex,

—_
-1
~—

s(t+1) = A(ls(t) + b(t) + (1)
m() = s(t) + (1)

¢(t) and 7n(t) are two sequences of zero-mean Gaussian white noise. b(t) is interpreted as
a deterministic input. A(f) is the matrix of the affine transform. Both are computed at
each step with the motion filter. We estimate s(¢) with a standard KKalman filter.

We use the first measurement as the initial estimate.

4.2 The Motion Filter
4.2.1 Monoresolution Estimation of the Motion Parameters

The motion-based segmentation algorithm requires the measurement of the parameters
M(¢t) and w(t) defined in (5), for each region. A maximum-likelihood estimation is
therefore performed. When the image sequence involves large displacements it appears
that this method yields underestimated values.

On the other hand, the geometric filter requires estimates of the motion parameters
which have to be. if not precise, at least correct in magnitude. For this reason, we have
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developed a multiresolution method to provide reliable motion parameters. These param-
eters have been used in an other context to derive accurate time-to-collision measurements
based on a 2-D affine model of the velocity field, in [MB92]. We present hereafter the
monoresolution scheme utilized within the segmentation algorithm. The multiresolution
approach is given afterwards.

The principle of the estimation of the six parameters of the 2-D affine model of the
velocity field is similar to the solution proposed in [Bro87]. Let © be the vector of the six
parameters of the affine model : the four coefficients of M(t) and the two coefficients of
w(t). The following “data-model adequacy” variable is considered :

ve(r,y) = VI(x,y).ve(z,y) + L2, y) (8)

where ve(a,y) is the 2-D affine velocity field at location (x,y), given by (5). VI(z,y)
1s the spatial gradient of the image intensity at pixel (z,y), and I,(z,y) is the partial
derivative with respect to time of the iinage intensity. It relies on the well-known image
flow constraint equation. [HS81]:

VIiv+1,=0 (9)

A maximum-likelihood estimation is achieved, which reduces here, assuming that ¥ are
independent zero-mean Gaussian variables of variance 03,, to a least square estimation.
Let & be the following 6 x .\ array :

L(py) Tpy) xl(p) 2lp) vl(p) yl(p)
,l’ L N N : : .

I(p~x) Tpn) oL(pn) xlypn) yla(py) yl(pn)

Each row of & contains the partial derivatives of the brightness function 7 with respect
to space and the products of these derivatives with the spatial coordinates, for each point
piyt = 1...N of the considered region. And let Y be the N vector which contains the
partial derivatives with respect to time of the brightness function 7, for the N points of
the region :

Y=[=Lip).....—Lipn))

Applying (8) to the N points of the region, we obtain :
Y =0 -V with ¥ = [so(m),.-. ,l,/"(;)(]))\j)]t
The optimal estimator © has the following classic expression :
. -1
6= [X‘X] Xty | (10)

it follows :

6=0- x| xu (11)

-1 : o : : . :
and [X'X]7 X'V is a zero mean Gaussian white noise of covariance matrix :

o2 i)™ (12)

16
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4.2.2 Multiresolution Estimation of the Motion Parameters

The 1mage flow constraint equation (9) is in fact approximated by :
NLép+ I(p.t+6t)=I{p.t)=0 (13)

where ép 1s the displacement at location p from time ¢ to time ¢t + 8¢. The approximation
of the velocity v. at p is: )

_¢p

Tt
and 4t is the time step between two successive frames. Even if ot i1s chosen as unity
throughout all the paper. we will keep the notation 8¢ in this section to emphasize on
the temporal role of this constant. When the displacement. ép, between two successive
frames 1s not sufficiently small the approximated equation (13) does not hold anymore.

The idea is to estimate the six motion parameters with a “coarse-to-fine” strategy. We
use a Gaussian low-pass pyramid of each image. A rough estimate of the parameters is
obtained at the lowest resolution. The estimate is subsequently refined using the higher
resolution images. The approach is similar to [PR90] where the authors derive estimates
of the 3-D translational and rotational velocity in the limited case where the depth of
the scene is constant or known. Similar hierarchical methods have already been employed
for motion measurement. For instance. hierarchical estimation of the optical flow with
a gradient-based algorithm are proposed in 'Enk8&88] : in [Ana89] the author describes a
hierarchical matching scheme for the determination of dense displacements fields.

We build two low pass Gaussian pyram:ds for each image at time ¢t and ¢ 4 6t as de-
scribed in [Bur84] : aud a pyvramid for the segmented image. Fach image in the Gaussian
pyramid is a blurred and subsampled version of its predecessor. As a result the displace-
ments measured in pixel. at level 7+ 1. are twice as less as the displacements at level [.
Thus the approximation of the image constraint equation (13) can be more easily applied
at the lowest resolution level. Delineations of regions are provided at each level by the
pyramid of the segmented image.

First we estimate at the lowest resolution level, L.the six motion parameters of each
region 1n the image. with (10). Then we refine the estimate. For a given level [, the
displacement estimated-at the coarser level 7 + 1 is projected on the current level and
accounts for an initial displacement. Let p’ be a point within a region at level [. Let
vei{p') be the affine model of the velocity at location p’. ©' is the vector of the motion
parameters to be estimated at level /. In fact we will estimate a refinement of O with
an equation similar to (13).

For the clarity of the presentation and to lighten the notation we will drop the variable
t in MY(¢). and in w'(¢) in the following : and we will only note vg: to refer to vgi(p').
With M! and w' defined by (5). we have

vor = M'p' +w'

Since ép' = ve(p').81 we are interested in the displacement §p' at location p'. Equation
(9) can be formulated as follows :

J(p' +op'.t +6t) = Ip'.t)

in



inria-00076962, version 1 - 29 May 2006

[4+1

level I +1 . P
—@ @ ' B 9
-
6pl+1
level] [ %pl
@ L 2 L L 2 L L 4 L 4 @
26p't? o 62>

Figure 5: Hierarchical estimation of the motion parameters
+1 s the father of p’ at level I+ 1. And let §p'*! be the displacement
', We can project 6p't! on the level I. The
decimation used to build the pyramnid reduces each image by a factor two in each direction.
Hence the projection of §p'*! on the level / is equal to : 26p/*1. It serves as an initial
estimate to compute 6p’. (See Fig. 5).

It follows from above :

Let us assume that p’
estimated, at level [ + 1, at location pl""

Ip' +25pt = &%pl it + &ty = 1(p'.1)

where 62p’ is the incremental estimate to be computed at level [. Expanding / in Taylor
series about p + 26p/*!. and dropping higher order terms. leads to :

I(p' +26p 1t + 61)+ TI(p' + 26p'* .1 4+ 61).6%p" = I{p'. t)

Because
calbl 41y g
("‘p - v()l+1 \p )

it implies :
I(p'+2vg, (p™1).6t.t+6t)+VI(p'+2v5.,. (P 1“)61 t4+61).(Ver—2vgu, (P1))6t = I(p',1)

We define
AM =M - M and Aw! = w! — 2&!*!

Consequentlv :

VI(p'+2vg,, (P )61 1+ (AM'p' + AwH8t+ T (p'+2vg,,, (p'T1).6t . t+6t)—1(p',t) = 0
| (14)
and we lLave :

._,Vém(pzﬂ) = M"*1p! 4+ 2wt

where
. /.- e - L-1
M*H = 57 AMY = MPand Wt = 37 28 HHDARE 4ok L
b=l+1 h=l+1

,__
s
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It 1s possible to give a geometrie representation of (11). For the clarity of the figure we
represent the image in one dimension only in Fig. 6. The interpretation is absolutely the
same 1 two dimensions.
I we use (13) to estimate the displacement at location p' we will obtain the estimate
Ap' given by
I(pht+dt) — I1(p',t)

\i
where V[ is the slope of the intensity function in the one dimensional case. We can notice
that due to the magnitude of the displacement the above estimation is rather bad. On
the other hand if we assume that we have an initial estimate of the displacement, 26p'*!,
we can use (14) to obtain an incremental estimate, 62p' :

S =

I(p' + 26p t + dt) — 1(p',t)
VI(ph+ 26p!*1 t + dt)

8% =

where VI(p! + 26p'*t1 1 4 dt) is the slope of the image intensity function at location
P+ 26p'*! and at time t + dt. If the initial estimate is close enough to the real displace-
ment 6p', then the incremental estimate will be accurate. Indeed, as shown in Fig. 6,
since the initial estimate is in the vicinity of p' 4+ 6p' the approximated equation {13) holds.

Equation (14) is linear with respect to AM! and Aw'. As explained in the monores-
olution case we obtain with (14) maxinuun likelihood estimates AM! and A®! of AM!
and Aw'.

At the lowest resolution level L we use (13) :

VI(pl. t)y.(MEpt + whist + I(pt .t + 6t) — I(pr.t) =0 (15)

At this level we derive estimates IVIL(t) and wi(t) of ME(t) and u’(t). We have at
each level a measurement model similar to (11) :

AMU(1) = AM(t) + n, g (1)
AWl(t) = AwWl(t) + naglt)

where 77‘Aﬁz(t) and n,gi(t) are two sequences of zero-mean gaussian white noise of co-
variance cov(n , g5,) and cov(ng:). Each of these covariance matrix is similar to (12).
We retain the final estimates at the highest resolution level : M° and w©°.

M° aM o+ Mt
Wl = Z{LO‘I 21 w! + -ZLV"‘/.L

Combining the two preceding equations leads to :

fl

IVIU 1) = v =
AO( ) MU(f) + nMo(t) (16)
wo(t) = wP(t) 4+ nge(t)
with : o
"o = Z{ ”0 n_&Ml + 5L
ngo = Z( 0 2 7?_\wl + .)L”v’,‘,L

19
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Figure 6: Geometric interpretation in one dimension of the computation of the incremental
estimate §%p'
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Assuming that the noise vectors naM'./ =0,....L — 1 and ng, are independent we

. : : . Mt
derive the expression of the covariance matrix of ngz,.
L-1
001’(”-1’\4\0) = ;) 001'(77Aﬁ,) + cov(-n.ﬁ,‘) (17)

With a similar assumption we obtain the covariance matrix of ngo :

L-1

cov(ngo) = Z dcov(nyg) + 45 cov(nge) (18)
=0

4.2.3 Comparing the Monoresolution and Multiresolution Approaches

Both methods have been tested on sequences of real images. It appears that the mul-
tiresolution approach vields more accurate estimates. The accuracy of the parameters
has been tested on a sequence of real images with known synthetic motion. We present
present in the Results Section (Sect. 4.2.5) an experiment performed on a sequence of real
images to compare the measurements with the ground truth determined by independent
means.

To determine the number of levels of the pvramid, we take into account the size of each
region present in the segmented image. At each successive level the region area is divided
by four. Therefore at the lowest resolution level the least square estimation of the motion
parameters may give erroncous results if there are not enough points any longer within
the region. In such case the matrix in (10) can happen to be singular. The size of each
region has to be balanced against the expected magnitude of the motion to determine
the maximum level of the pyramid. Practically speaking we use two level, three level and
four level pyramids.

Finally the multiresolution approach requires more memory storage and more compu-
tations. Bilinear interpolations of / and VI have to be computed in (14) for points which
are not on the grid.

4.2.4 Recursive Estimation of the Motion Parameters

The monoresolution or multiresolution methods provide us with instantaneous measure-
ments of the motion parameters. Even if multiresolution estimates are generally less
noisy, we need to filter these measurements to generate more accurate and more stable
estimates. Furthermore the dynamic svstem which describes the temporal evolution of
the motion parameters will provide us with estimates of these parameters at each instant,
even when measurements are not present to update the prediction. In such a case the
dynamic system generates only estimates. This is the case when a tracked region is being
occluded.

In the absence. in the general case. of anv explicit simple analytical function describing
the evolution of the variables. we use a Taylor-series expansion of each function about t
= tx. Is is possible to derive a closed form expression of the motion parameters in some
special cases. For instance, if the tracked object is moving with constant velocity along
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the optical axis toward the camera, then the coefficients of the matrix M(t) have the
general expression :
at + b
. ct +d
Therefore it 1s not possible to obtain, with a dynamic linear system, an accurate descrip-
tion of the evolution of the parameters which is valid for all . However the following
dynamic system provides a local approximation of the temporal evolution of each of the

motion parameters. After having experimented with different approximations, it appears
that using the first three terms performs a good tradeoff between the complexity of the
filter and the accuracy of the estimates.

We have observed on many sequences that the correlation coefficients between the six
components of O(t) are negligible. For this reason, we have decided to decouple the six
variables. The advantage is that we work with six separate Kalman filters. Finally we
can derive the following measurement model for each component of ©, from (11) in the
monoresolution case, or from (16), in the multiresolution case :

a{t) = p(t) + Ae) (19)

where p is any of the six components of ©, and A(t) is a sequence of zero-mean Gaussian
white noise of variance o). o2, is the corresponding diagonal coefficient of the covariance
matrix in (12) for the monoresolution estimation scheme, or in (17) and (18) for the
multiresolution estimation scheme.

Let Z(t) = [u(t), (1), i(t)]¥ be the state vector. where y is any of the six motion
parameters : the four components of M(¢) and the two components of w(t). =z(t) is
the corresponding component of ©(t) given by the mono or multiresolution method. We
derive the following linear dynamic system :

o=
C(t)

—
o~

).
(1)

i

{ =(t+1) (20)

+ (1)
(1) +

in

i

¥(t) and A(t) are two sequences of zero-mean Gaussian white noises of covariance matrix

R, and variance o2 respectivelv. with

& = C=1[1 0 0

O O
O = =
b RO

The covariance matrix R(?) of v(t) is given by, as shown in Appendix A :

1 1 1
Roon | P 1
—YR | &8 3 2

11

6 2

4.2.5 Experiments

We present hereafter two experiments on real data that illustrate the performance of the
filter. The plots represent the evolution of the six kinematic variables, with respect to

[ O]
(8
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time, [sce (5)] :

_ M1.1 Ml.'z _ wy
M(1) = [ M,, M,, } and w(t) = [ ]

The robot sequence

The first experiment was performed on real images to compare the measurements given by
our method with the ground truth determined by independent means. It also illustrates
the comparison between monoresolution estimation and multiresolution estimation of the
motion parameters.

The sequence robot, (32 images), has been acquired with an experimental cell con-
stituted by a camera mounted on the end effector of a 6 d.o.f robot. The camera is
undergoing a planar motion toward a poster pined on a wall. The constant velocity of
the camera, in the camera coordinate system, is U = 125 mm/s, V = 0, and W = 250
mm/s. Initially the camera is at 70 cm from the wall, and slightly slanted (17 deg), 1.e.
the image plane is not parallel to the wall. The parameters of the affine model are calcu-
lated analytically with the well known expressions relating the first order approximation
of the optical flow with the structure and the kinematics parameters of a planar surface
undergoing rigid motion, [FB90]. Since we have 3 = 0 and v = 0 for the considered
motion we did not plot these two coefficients.

For each parameter we plotted :

¢ the estimate obtained with the monoresolution method.
e the estimate obtained with the multiresolution approach, for :

— 2 levels.
— 3 levels.

— 4 levels.
e the true value of the parameter.

Because there is only one region in the image we also estimated the parameters with a 5
level pyramid. But no significant improvement could be noticed. This phenomenon is in
fact more general. If the estimation is correct for a certain level, using more levels will
give essentially the same result. The level at which the improvement stops depends only
on the magnitude of the true parameter to be estimated.

Comparative performance results from the different levels are displayed in Figs. 7, 8,
9, which show respectively the estimates of : w(¢), M;;(¢) and M;,(¢). We can notice
the good correspondence between the 4 level multiresolution measurements and the true
parameters. Because the magnitude of the motion is important (4 to 6 pixels per frame)
we need 4 levels to accurately estimate the motion parameters.

This experiment validates the multiresolution method for the estimation of the motion
parameters of the affine model of the 2-D velocity field.

The van sequence
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The second sequence of 66 real images (Fig. 24) illustrates a case of occlusion. The scene
takes place at a crossroad. A white van is comming from the left of the picture and going
to the right (Fig. 24). A black car is driving behind the van at the same speed. A white
car is coming from the opposite side of the road. While crossing the image from right to
left with an oblique trajectory in the image plane, it is comming closer to the camera.
Thus its projection is getting bigger. The car disappears behind the van during 23 images,
and reappears at the end of the sequence. A new label is assigned to the reappearing car
by the motion-based segmentation process.

We plotted each of the six motion parameters of the car before, and after occlusion.
The moment the car disappears, we do not have any motion measurements. Neverthe-
less we are able to predict the value of each parameter using the dynamic model (20).
For almost every motion parameter the prediction generated with the dynamic system
coincides with the motion parameters of the reappearing car. The dynamic model (20)
is thus accurate enough to generate predictions during long time intervals. Because of
the magnitude of the displacement we need a three level pyramid to estimate w. On the
other hand the tracked region. i.e. the white car, has a small area in the segmented image
(refer to Fig. 25). Consequently, as explained in Sect. 4.2.3 the least square estimation
of the affine parameters at the lowest level is rather noisy. Thus final estimates of w; and
W, are also noisy, (see Figs. 14, 15). However the Kalman filter efficiently provides stable
estimates of the two coeflicients. (see Figs. 14,15). We notice on Fig. 11 that the pre-
diction of Mz is not accurate due to the last measurements (frame 30, and later) which
give a different tendency to the prediction. It should be pointed out that theoretically
none of the motion parameters are equal to zero since the car is undergoing a complex
motion in the scene.

This experiment illustrates the efficiency of the motion filter to provide accurate mo-
tion parameters even in the case of complex motion behaviour, and in the presence of
complete and long occlusions.

4.3 Results

We present the results of two experiments done on real images.

4.3.1 The parking lot sequence

The first sequence (Fig. 22) contains two cars manoeuvring in a parking lot. The first
car in the foreground is rotating and moving toward the camera. The second one in the
background is translating toward the camera. It partially hides a third car which is static.
The camera pans the scene from right to left. The image background consists of trees,
some of them being stirred by the wind (in particular in the centre of the image plane).

The top half of this figure shows three images from the original sequence, at time t,, t4
and tg, while bottom half offers a view of the results of the tracking at the corresponding
instants. We can observe in Fig.23 the trajectory of the regions in the image plane. The
variance a? 1s taken equal to 0.001. The results shows the efficiency of the approach to
track multiple regions in an image sequence.
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4.3.2 The van sequence

The sequence has been presented in the above section. The polygons representing the
tracked regions are superimposed onto the original pictures at time to4, tss, ts2, and tee.
The corresponding segmented pictures at the same instants are presented on Fig. 25. The
black car 1s driving so closely behind the van that the segmentation is unable to split the
two objects (Fig. 25). From the beginning of the sequence until the car disappears the
algorithm accurately tracks the region, updating the position and motion of the car with
measurements. (Fig. 24).

When the car is completely behind the van the motion filter generates only predictions.
The geometric filter itself relies on these predictions to predict the shape and position of
the region until the car reappears. Even though the car is occluded during 23 frames, the
prediction is not late when the car reappears. Indeed the prediction coincides with the
reappearing car. It is important to note that the white car is accelerating all along the
sequence, as shown in Fig. 16 and Fig. 17. We have processed the same sequence with the
basic region-based tracking algorithm with a constant velocity model. We noticed that
the prediction was very late when the car pops up. This emphasizes the efficiency of the
affine model of the velocity. even when objects are accelerating. It should be pointed out
that we did not initiated a new track with the reappearing region. We only superimposed
the prediction generated with the filter which tracked the region before occlusion. This
association between tracks is left for future research as explained in the next section.

This example illustrates the good performance of the region-based tracking in the
presence of a total occlusion.

5 Future Work

This work has investigated a new approach to the tracking of region in an image se-
quence. The work emphasized on the maintenance of the tracking. A necessary future
work involves the design of a high level data association module, which will go beyond
the simpler techniques discussed in a previous section. This module should control the
measurement-to-track assigniment in case of conflict situations. It should also solve the
problem of track initiation and deletion. When a track is not updated for an extensive
period of time. it should be deleted. Alternatively if a measurement can not be assigned
to an existing track a new track should be initiated. Multiple target tracking techniques
[Bar78],[Bla86], should provide a theoretical framework to deal with these issues. This
high level data-association module integrated with the region tracking algorithm will offer
an efficient solution to the issue of tracking multiple regions in long and complex image
sequernces.

6 Conclusion

This paper has explored an original approach to the issue of tracking objects in a sequence
of monocular images. We have presented a new region-based tracking method which
delivers dense trajectory maps. It allows to directly handle entities at an “object-level”. It

(8]
Ut
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exploits the output of a motion-based segmentation step which takes into account normal
flows and first order visual motion models. A first version of the algorithm has been
derived, with a simple kinematic state model of the region. Experiments with a sequence
of real images with synthetic motion have shown the ability of the method to track a
region in presence of partial occlusion. Then we have proposed a complete version of the
method. This algorithm relies on two interacting filters : a geometric filter which predicts
and updates the region position and shape, and a motion filter which gives a recursive
estimation of the motion parameters of the region. We have developed a multiresolution
method to provide reliable motion parameters. Experiments have been carried out on
real images to validate the performance of the method. A case of a complete occlusion
on real images has heen successfully handled. The promising results obtained indicate
the strength of the “region approach” to the problem of tracking objects in sequences of
images.
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A Obtaining the discrete state equations

We consider a system where the third derivative of the state variable, z(t), with respect
to time is only white noise. Its behavior is described with the following first-order vector-
matrix differential equation :

X(1) = H(t)x(1) + Buw(t)
where :

0 0
1 and B=10
0

0
x(t) = [w(t), &(t), #(1)]7 H=|0
0 1

OO -

where w(t) is a sequence of zero-mean Gaussian white noise. The solution of the time-
invariant linear differential system is, [Wib71] :

t
x(t) = "0l (t5) + | ") Bw(r)dr
to

Using the above equation we get the discrete formulation of the system at the instants
tr = kT. The resulting linear difference equation is :

X((h 4+ 1D)T) =x(k+ 1) = &x(k) + £(k)

with ,
1 T &
=c"T=|0 1 T (21)
0 0 1
and
(k+1)T (k+1)T ((k“)T_Ty
o+ VT s ' e+ 2
(k) = /kT HEDT=") By (T)dT = /kT (k+ 1T = r | w(r)dr
1
(k) is therefore a sequence of zero-mean Gaussian white noise.
(k+1)T ka7 | M(7)
(k) = / A NT =T B Yn(7)dT = / no(r) | dr
kT kT
ns(T)

The covariance matrix Q(k) of £(&) is

eyt | Wi{The(r) wi(r)we(r) wi(r)ws(T)
Q(k)z/ w(T)w( ) wo(T)waT) wo(T)ws(7) | dT
T wa(T)w (1) wa(Thwe(T) wa(7)ws(T)
It follows :
A S
| HOp B
Qi) =oy | % 5 T (22)

T 7 T
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B Filter initialization

We consider the following dvnamic system :

x(k+1) = ®x(k) + &)
{ (k) Cx(k) + n(k) (23)
with
1 Tz
x(k) = [x(h). 2(B).FK)T ®=|0 1 T C=[1 0 0 (24)
0 0 1
and

E(k) = [51(/\’),{2(19),{3(1.‘_)]7‘
&(k) and n(k) are two sequences of zero-mean Gaussian white noise. The variance of
)

1s cr'j, and the covariance matrix of £(k) is given by (22) :

n(k

7-5 T4

i il

29 6

W e 2 AN &
QM=o | 5T 5 %
o T

We need to specify the value of the initial estimate and the covariance matrix of this
estimate. The initial estimate is build at time 2T. We use approximations of the velocity
and the acceleration at the corresponding instant. We obtain :

Theorem 1 The following vector :

5 22(2) — 22(1) + 32(0) 2(2) — 22(1) + 2(0)

is an unbiased estimale of the vector x at time 2T. Where X and z are defined in (23)
and (24). Its covariance matriv is :

2 3 52 1 42

Oy - 279 2 7299
Y — 3.2 T3 2 13 .2 9 24 6 .2
cov(¥) = | 330, .Tff + 3729, 4(%_06 + 759,
1.2 9 2, 6 .2 23T 2, 6 2
729 T30 %¢ + 7:% 36 % + 7%,

Proof

We define the error between the estimate and the state vector :

T
X=|a|=X-—-x
Let us calculate X. First we have :
F(2) = 2(2) — =(2) = n(2) (25)
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In order to obtain z and 7 we will derive the expression of + =(0). =(1). z(2). #(2) and
Z(2) with respect to 2(0), #(0) and r(0) and the noise variables.
On one hand we have

2y = a(l)+ TF1) + &)
{2) = 20)+ T¥0) + &(0)
+T3(0) + T&(0) + &(1)
Hence :
2(2) = 2(0) + 2T #(0) + £2(0) + TE&(0) + £2(1) (26)

In a similar way :
#(2) = #(0) + &(0) + &(1) (27)
On the other hand. using the same approach we can derive the following relations.
Firstly -
2(0) = x(0) + n(0) (28)
Secondly :
T'Z
= 2(0) + T8(0) + —(0) + & (1) + n(1) (29)

[
—_—

s
—

Finally :

2

2(2) = 2(0) + 2T2(0) + 3(0) — £{0) + T&(0) + %53(0) + &(1) + (s

S
~—
—

w

(e
~—

Using (28). (29). (30) we get :

- , 1 3 3T 3 1.3 1
2(2) = x(0)+277%(0) — E—T—fl(o)+352(0)+T€3(0)7‘ﬁ§1(1)+f(§77(2)—77(1)+577(0))
(31)

and

. . . _ 1 ]

(2) = 2(0) — Ffl(U) + ffz(U) + 353(0) +=&(1) + .—T—z(n(l) = 29(1) + n(0)) (32)

At last since

2= 3(2) - 72 and  F(2) = 2(2) — 2(2)

we obtain from (31) and (32) the following expression of the error vector :

1. T 3 1.3 1
t(2) = (0] +58:(0) = 76(0) + 7=6(1) —52(1)+T(§Tl(2) — (1) + 277(0)) (33)
and
x 1 1
B(2) = —560(0) + 2:6a(0) = 565(0) + 56(1) — &(1) + 25(n(2) — 29(1) +9(0)) (34)

2G
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From equations (25), (33) and (34) it is obvious that Z is an unbiased estimate of x(2).
With (25), (33) and (34) it is possible to obtain the expression of the covariance matrix
of the estimate : cov(Z) with respect to 03 and a?.

We have

After some calculations we get :

2 3 52 1 52
Ty - 2797 2 7299
Iy — |3 2 2 13 2 9 2 6 2 -
cov(Z) = | 570, T+ 35730, 50t T30, (35)
1 .2 972 2, 6 2 28T 2, 6 2
7% a6 % T 139, 3% t 190,

30
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Figure 7: Truc value. multircsolution estimate for different pyramid levels. and monores-
olution estimate, of the motion parameler : w.
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Figure 9: True value. multivesolution estimate for different pyramid levels, and monores-
olution estimate. of the motion parameter : My ,.
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Figure 10: Measurements before and after occlusion, and Kalman estimates of the motion
parameter Mj ;.
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Figure 11: Measurements before and after occlusion, and Nalman estimates of the motion
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Figure 13: Measurements before and after occlusion, and Kalman estimates of the motion
parameter M, ;.
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Figure 15: Measurements before and after occlusion. and Nalman estimates of the motion
parameter wo.
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Figure 16: Measurements before and after occlusion, and Kalman estimates of the vertical
coordinate of the centroid of the tracked region
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Figure 18: Sequence airplane : top : original images, bottom : tracking (black polygon)
superimposed on the motion-based segmentation. at time ty, t1 and ta3.

Figure 19: Sequence airplane : the region trajectory in the image plane from time t, to
time t23
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Figure 20: Sequence airplane ; top : original tmages, bottom : tracking (black polygon)
superimposed on the motion-based segmentation, at time t3p, t3;5 and t4;.

Figure 21: Sequence airplane : the region trajectory in the image from time tzo to time
ta
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Figure 22: Sequence parking ; top : original images, bottom : tracking (black polygons)
superimposed on the motion-based segmentation, at time ty, t4 and tg.

Figure 23: Sequence parking ; the region trajectory in the image from time t; to time tg
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Figure 25: Left to right. top to down : segmented images at instants 224, t3s, ts2, tes
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