Tracking Using Dynamic Programming
for Appearance-Based Sign L anguage Recognition

Philippe Dreuw, Thomas Deselaers, David Rybach, Daniel Keysers, and Hermann Ney
Lehrstuhl fir Informatik VI — Computer Science Department
RWTH Aachen University — D-52056 Aachen, Germany
{dreuw,deselaers,rybach,keysersji@gs.rwth-aachen.de

Abstract Related Work.  When detailed information about mov-
ing objects in video sequences is needed, tracking comes
into play. Popular tracking methods are the Condensation

programming to determine the path of target objects and tracking [6],. Kalma}n fi!tering [9], Meanshift trackin@[5],
that isableto track an arbitrary number of different objects. and Camshift tracking [3]. In[10] face, torso, legs, or hands
The traceback method used to track the targets avoids tak- are detected and tracked in cluttered scenes using Boost-
ing possibly wrong local decisionsand thusreconstructsthe N9 In [2] & linguistic feature vector is used to recognize
best tracking paths using the whole observation sequence. sign Ianguage_. In [131 an algonthm for finding and _klne-
The tracking method can be compared to the nonlinear time matically tracking multiple people in Iong. sequences is pre-
alignment in automatic speech recognition (ASR) and it sented. Mo_st of these approachgs have in common that tr_\ey
can analogously be integrated into a hidden Markov model make poss'lbly wrong local decgons. A S|m|lgr approach is
based recognition process. We show how the method can be presented in [1] where a dynamic programming framework

applied to the tracking of hands and the face for automatic is used to localize and recognize dynamic hand gestures, but
sign language recognition. we present a more general framework with the possibility to

integrate multiple scoring functions e.g. Eigenfaces, or ar-
bitrary objects, and the possibility to track multiple objects
at the same time.

We present a novel tracking algorithm that uses dynamic

1 Introduction _ . . .
2 Tracking Using Dynamic Programming

In automatic sign language recognition usually special The proposed tracking algorithm prevents taking possi-
devices such as data gloves, colored gloves, or wearabldly wrong local decisions, because the tracking is done at
cameras are used to recognize gestures, and the gestures dtee end of a sequence by tracing back the decisions to recon-
often performed in front of a blue screen under normalized struct the best path. The best path is the path with the high-
conditions. In a real environment, however, we are con- est score wrt. a given scoring function. This procedure is
fronted with inhomogeneous background, occlusions, andrelated to time alignment in speech recognition. The track-
further problems that are neither expected nor can be mod-ing method can be seen as a two step procedure: in the first
elled. Under realistic circumstances, the performance ofstep, a score function is calculated for each frame starting
most current approaches decreases dramatically as it heavirom the first, and in the second step, the globally optimal
ily depends upon possibly wrong local decisions. path is traced back from the last frame of the sequence to

To tackle these problems we avoid preliminary decisions 1€ first.

and propose to use the same techniques that are successfully

applied in automatic speech recognition (ASR). That is, we Step 1. For each pixelz, y) of a frameX, at time step
propose to use dynamic programming to implement a novelt = 1,...,T a score(t, x, y) is calculated, called the local
tracking algorithm. It is able to track an arbitrary number of score. Local score functions take into account the image
different objects at the same time with basically no compu- X; at time stept and the positior(z,y). A global score
tational extra cost when the objects to be tracked are of theQ(t, =, y) is calculated for each time ste@mnd each posi-
same type. tion (x,y). Q(¢,z,y) is the total score for the best tracking
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until time stept which ends in positior{z, y). Addition-
ally, for each positioriz, y) in imageX,, the best predeces- |
sor is searched among a set of possible predecessors fron
the scoreg)(t — 1,2’,y") within a neighborhood of posi-
tion (z,y). This best predecessor is then stored for each
time stept and each pixe{z, y) in a table of backpointers
B(t,z,y) which is used for the traceback in step 2. The
recursive equation for this dynamic programming tracking

Score calcultion ————p

algorithm is defined as follows: «— Traceback
— _ rot
Qt,rv,y) = xﬂygl?j%x’y){(Q(t La'y') Figure 1. Tracking of a hand signing the gesture for the

. ’o German letter combination “SCH”. The dynamic program-
T(y's 2, y)} +alt, :f’ y,) 1 ming algorithm uses skin color difference images to calcu-
B(t,z,y) = argmax {(Q(t—1,2".y) late the scores for the traceback.
@'y’ €M (z,y)
77(‘1:/’ y/a &€, y)} (2)

where M (z,y) is the set of possible predecessors of
point (z,y) and 7 (¢',y’, x,y) is the jump-penalty from
point (z’,y’) in the predecessor image to poift, y) in
the current image. As jump-penalty functions, for
example the Euclidean distancE(z’,y',z,y) = « -
V/(z —2")2 + (y — y')? or the Li-norm can be useda

is a weighting factor to be able to control the impact of the

enalty function with respect to the impact of the local score . .
P y b P tracking rectangle size to reduce the number of hypotheses

function ¢(t, z, y). These simple penalty functions can be ) : .
epaced by morecomple o mogels, .. aking o 45 4 0 e ol e sompit e
account hand or head positions. ' : .

P of 68 frames at different time steps= 10, 14, 18, 22, 26.
In the first step, the score function is propagated from left

Step 2. The_ traceback process reconstructs t_he best pathy, right and in the second step, the traceback is done from
t — (z,y) using the score tabl@ and the backpointer table right to left.

B. Afull traceback starts from last frame of the sequence at
time stepl” usinger = argmax, , Q(T',z,y) as tracking
center. From the backpointer table, the best tracking center
at time stepg — 1 is then obtained by, _; = B(t, ¢;). This
process is iterated up to time step= 1 to reconstruct the

foreground. The tracking can then be controlled by the
tracking rectangle sizes and J, the predecessor aréd,

and the jump-penalty functiof. Dynamic programming
tracking on large images can be very time consuming when
performing a full search over all possible tracking rectan-
gles, depending on the score function and the predecessor
area. Thus, first we develop a tracking algorithm with fixed

Fine Tuning. As not each possible tracking center is
likely to produce a high score, pruning can be integrated

best path. . i . . .
Using a full traceback, the tracking decision at time step "0 the dynamic programming tracking algorithm for
#' thus depends on all scores of images from 1,...,7.  SPeed-up. Attime step= 0 each poin{z, y) is initialized

To track multiple identical objects one simply has to trace- USiN the local scorg(t = 0,z,y) and all points are acti-

back multiple hypotheses where special care has to be takeNated as pqssible predecessors for points at timetstep.
when the paths (hypotheses) are overlapping. From this time step onwards until the end of the sequence,

A partial traceback at time stefp uses only the infor- a point(z,y) Wi|| only be considered as a predecessor for
mation from¢ — 1 up tot — # + A with a reasonably ~ Umestep+1if Q(t,z,y) > max, ,(Q(t, x,y))~To holds
chosen, and can be calculated before the entire sequencd®" @ suitable pruning thresholt.
is known, i.e. after only a short delay (which could also In many cases it might be necessary to allow a change
be chosen to bé&\ = 0). One might argue that sign lan- of the tracking box size, which means a full search over
guage recognition requires online tracking, but also in ASR all possible predecessors for the upper left and bottom right
a partial traceback of the decisions occurs to use the contextorner of the tracking rectangle. In this case we only have
of the observations. to adapt our recursive equation and jump penalty function.

Tracking using dynamic programming performs well As a full search in this setting will run into serious runtime
when one wants to track an object in the presence of manyproblems, we use locally adaptive tracking rectangles (at
occlusions, gaps, or for off-line tracking. It can also be used each time step we optimize the size only locally, keeping
with non-static background or multiple target objects in the the global decision for the sequence of tracking centers).



3 ScoreFunctions

In this section we present score functions starting from
a simple one which uses only difference images and fi-
nally we present a score function that uses eigenfaces and
skin color information to track faces and hands in video se-
quences of sign language utterances.

Figure 2. Tracking using dynamic programming with
eigenfaces and skin color probability scoring functions: the

) ) ) ) first image shows that using only eigenfaces to detect or
Motion Information Score Function. One possible way recognize faces in Sign Language is insufficient due to oc-

to track objects is to assume that the objects to be tracked clusions of hand or inclined head position, the second that
are moving and to look at difference images where motion  combining the eigenface scoring function with skin color
occurs and to track these positions. That is, using a first- information strongly improves the result. The third shows
order time derivativeX, of an imageX; as image feature, an example of multiple tracking of head and hands using
the local score can be calculated by a weighted sum over the  €i9enfaces, skin color probability and motion scoring func-

absolute pixel values inside the tracking area: tions.
=z (I—-1)/2
y'=y+(J-1)/2 _
q(t,x,y) = Z wy - we - | X (2 Y], () recognizing faceness. As faces generally are skin colored,
o/ =a—(I-1)/2 we use a skin color model to determine whether a position
y'=y—(J-1)/2 : : : :
, , (z,y) in an image is skin colored or not/[8].
wy = 1.5 — Y —yl Wy = 1.5 — |2’ — x‘_ To combine these two methods, we redefine our local
‘ J/2 1/2 score function toy(¢, z,y) = (1 — w) - ¢s(t, z,y) + w -
In this simple case, the minimum search window sizeJ  4s(t 7, y) whereq,(t, z,y) is the score function obtained
must be at least x 3 in order to center the window. from the skin color model and, (¢, z,y) is the faceness

The score function can be replaced by any other scoreScore functionu is a weighting factor. Some scoring func-
function. For example, the distance between a target modefion examples are shown in Figdre 2. _
and a target candidate could be defined here. In the follow- 10 train the eigenfaces, we used the BiolD datdBase

ing we present how to incorporate face detection by eigen-Using the combined score function and pruning, we im-
faces into this method. proved the runtime as usually only regions with a high skin

color probability contain faces.

Eigenfaces and Skin Color Score Functions. Turk and

Pentland applied principal component analysis to face4 Comparison of Dynamic Programming
recognition and detectiofi[L5]. Principal component analy- Tracking to Other Approaches

sis is performed on a set of training images showing faces to

generate their eigenvectors (here called eigenfaces) which | this section we compare our proposed tracking algo-
span a subspace (called the face space). To detect whethgfihm to time alignment in speech recognition and to the
an image patch shows a face or not, it is projected into the condensation tracking algorithm. The comparison to the
subspace and back-projected using e.g. only the 20 first fac§me alignment is especially interesting as the tracking will

space components. Then, the distance between the origifater be integrated into the hidden Markov based decision
nal image and the back-projection can be calculated. Thisprgcess as the time alignment is in ASR.

can be efficiently done for complete images using the fast

Fourier transformation and the remaining energy in the SUb'Comparison to Time-Alignment. In automatic speech

space. Due to the nature of the eigenfaces, face-like im- Lo o
ages can be reconstructed well, whereas non-faces are rerecogmtlon, itis unclear at which timein a sequence of
9 " .. Observation vectors(y, ... X a word starts and where it
constructed poorly and thus the distance between the origi- .
; N ends. So correspondences among observation sequences
nal image and the back-projection is high in this case, or the

energy in the subspace is low. This distance can be seen ahave to be determined. This process is shortly outlined in

a measure ofaceness and can thus be used as a local score %eégf:v'ﬁé sequen f vectors over the tim
functiong, (¢, z, y) for tracking faces. That is, the faceness ¢ and s XT 7qu§( ces)? e;:(o S ;)(e %D edaxes
information can directly be incorporated into the above de- &, o= % 1 = (X X D r), X, € R7 an
scribed tracking process. YP = (Yi . Ve Ys), Y € R, we w.anE to find an op-

To make this method more stable, we further want to usetlmal mappingt — s(t) of "corresponding” vectors. This
color information from the images to help the method in  Yhttp://mww.bioid.com
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task is referred to as time alignment in automatic speech If we included an additional state variable in the dynamic
recognition, in which cas&{ is the observation sequence programming algorithm that encoded the object dynamics,
andY;® is one possible reference sequence. we would be able to recover the overall best path taking the
The standard technique used in automatic speech recogebject dynamics into account. As a complete search over
nition is the nonlinear time alignment. The set of allowed such a large state space is infeasible, the condensation al-
pathss? is constrained by the model topology. For the gorithm uses pruning to reduce the number of active states

(0,1, 2)-standard model the optimization criterion is: (samples) in each step. To allow for recovering possibly
lost sequences, random restarts are allowed. In contrast to
T this, our dynamic programming algorithm prunes the large
tﬂ%) [d(Xt, Yaey) + T (s(t) — s(t = 1))] state space by unifying all states that have different object
t=1 dynamics but instead allows a larger number of active hy-

potheses in each step and does not introduce the element
of randomness used in the Condensation algorithm. Thus,
the dynamic programming tracking algorithm allows us to
track an object even if it is occluded for a prolate time or if
it shows motion unexpected by the motion model, which is
a clear advantage over the condensation tracking algorithm.
Furthermore, another advantage is that the DPT algorithm
allows for tracking multiple objects with basically no addi-
tional costs. The only extra effort that has to be taken to
track multiple objects is that a very inexpensive traceback
is necessary per object. The more expensive calculation of

with the time distortion penalty (s(t) — s(t — 1)). (We
can interpret the model as having infinite distortion penal-
ties7 (6) = oo for § ¢ {0,1,2}.) The model topology here
is related to the predecessor afdaand the time distortion
penalty is related to the jump-penalty functidrdefined in
equation|[(lL).

Using the (0,1,2)-standard model and dynamic program-
ming to solve the optimization criterion, we obtain the fol-
lowing recursive equations:

D(t,s) = min {D(t—-1,5—68)+7(d)}

5€{0,1,2} the score€)(¢, x, y) is necessary only once.
+d(X4,Ys) (4)

B(t,s) = argmin {D(t—1,5—08)+7(6)} (5) 5 Experimental Results
§€{0,1,2}

e can s it e recurshe cquails (1) () core 118 2 ofcondderng o il seerce el
pond to the equation§](1) arld (2), respectively. This rela- g ahy P 9

. N . X to be done under noisy circumstances.
tion opens up the possibility to directly integrate the track- ; . . .
S o . : Figurg 3 shows the dynamic programming tracking com-
ing into the recognition process in the same way the time . oo

; o . pared to the Camshift tracker on a sequence with different
alignment is integrated in the ASR process.

noise levels. Both trackers are tracking a hand gesturing a
“Z" of the German finger-spelling alphabet using first-order
Comparisonto Condensation Tracking. The Condensa- time derivative images of the original images thresholded
tion tracking algorithm presented inl[6] uses a probabilis- by skin color probability. The plot in each row represents
tic framework for tracking in the presence of clutter using a smoothed trajectory of the tracking rectangle centers and
random sampling. The object dynamics form a temporal should contain an S-shaped trajectory, i.e. a mirror-inverted
Markov chain and the observation probabilities are propa- Z-shape. Our proposed tracking algorithm still is able to
gated by the Bayes’ rule. reasonably track the hand at a very high noise-level whereas

The Condensation algorithm models the object dynam- the Camshift tracker is no longer able to follow the hand due
ics. By sampling from the learned shape and motion modelto reduced skin color information because of the high noise
a new sample-set is predicted. The number of used samievel in the image sequences. The sequences for these tests
ples in each time step to track an object has a high impactwere taken from a database of videos showing the German
on the accuracy and the runtime of the tracking algorithm. fingerspelling alphatﬁt It can clearly be observed, that the
This method allows for recovering from a temporary track- dynamic programming tracking is more robust to noise than
ing failure. the Camshift tracking.

In contrast to this, using dynamic programming for
tracking (DPT), no motion model is estimated but jump- g Combining Recognition and Tracking
penalty functions which can be extended and adapted to ap-
prox!mafte the usual motion of a tgrget obj_ect are used. If Hidden Markov models (HMMs) are the standard
pruning is used, and the best tracking path is lost, a recovery . . L
; : . I ; method to compensate for time and amplitude variations.
is not possible anymore, if no pruning is used, the optimal

path is guaranteed to be found. 2http:/Awww-i6.informatik.rwth-aachen.de/"dreuw/database html
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Figure 3. Comparing DPT and Camshift tracking. All example images are showing a person at tinte-stépl 1, 18, 28, 36

signing the letter “Z” in German Sign Language and are disturbed by different noise-levels. In each line, f.l.t.r.: tracking result
images of DPT, a smoothed trajectory plots of the DPT tracking rectangle centers, and in reverse order the result of tracking the
same sequence using Camshift tracking. Lines (a),(b),(b) show the results of tracking the same sequence under different noise levels.

HMMs are generally used for ASRI[7], gesture recognition with (¥ a sequence over time of the tracking states
[12], sign language recognition [14.116], and human action [y, ..., I, ..., l7.
recognition [4[11]. Here, a tracking state can be a simple locatiofx;, y;),

In ASR, recognition and time alignment are an in- e.g.the center of a tracking rectangle, a location with a spe-
terwoven process. The entangledness of time alignmentcific range(z:, y:, r+), €.9. the center of a tracking rectangle
and recognition allows for example to prune unlikely hy- of sizer;, or any more complex description of the current
potheses and thus fewer hypotheses have to be considerettacking situation(x;, y;, 4, ...) including e.g. the dynam-
Through the close relation between dynamic programmingics.
tracking and time alignment it is possible to benefit from  Combining these two processes can be very time con-
the same effects in gesture recognition. In this section wesuming and additional assumptions have to be made. We
briefly explain how tracking and recognition of gestures can assume that the probabilipf X, s¢, lt\Xf‘l, stl‘l, li‘l, k)
be directly combined thus benefiting from the experiences only depends on the abstract states s, ..., st of the ges-

in automatic speech recognition. ture classe (which means “hidden” states). Furthermore,
To classify an observation sequen&d’, Bayes’ deci- it is assumed that the transition probabilities depend only
sion rule is used: on the predecessor state, and that the emission probabilities
XT — #(XT) = argmax {p(k;|X1T)} depend on the reached state: We can simplify equdgtion (6)
k now as follows:

= k) - p(X{ |k 1 -1 g
arginax{p( ) p( 1| )} pXt7St7lt|Xf 1a8§ l’li 1,]€)

(

T = p(Xt, 50,185 1K)

:argfﬁnax p(k)-Z{Hp(Xt,st|Xf_1,s§_l,k)} = p(X¢, 80, le|si—1,li—1, k)
T t=1

51 p(stalt|3t—17lt—1,k) : p(Xt|3talt7k')

T _
wher_eX1 is a sequence v_v!th images,, ..., Xr. _Here, Transition probability Emission probability

p(k) is the a priori probability of class, p(X{|k) is the

class conditional probability for the observatiaff given Additionally, we assume that the transition probability is
classk andr(X7T) is the decision of the classifier. independent of the tracking state, i.e.

To integrate the dynamic programming tracking into the
recognition process, we rewrite the class specific densities p(s, l¢|st—1,1t—1,k) = p(stlsi—1, k) - p(le|st—1, 11, k)
as follows: . -
and that the tracking state probability only depends on the

r(XT) = argmax {p(k) - p(XT|k)} predecessor tracking state, i.e.
p(X{ k)= Z p(XT, 57,11 k) p(stslelse—1,l—1, k) = p(se|si—1, k) - p(lelle—1, k)
[sT.17]

T Combining DPT and recognition into an HMM changes
p(XT, T 1T k) = Hp(Xt,st,lthf’l,si’l,lﬁ’l,k) (6) the modeling of the emission probability. We can model

Py the tracking state probability aslog(p(l¢|l;—1,k)) = « -
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|(ly — l,—1) — i, ||* which considers the Euclidean dis-
tance between the current tracking state and the predecessor
and additionally estimates a tracking state maqdel | in
the HMM.

This proposed method allows us to have tracking as an
integral part of the recognition process and thus to avoid
possibly wrong local decisions.

7 Summary and Conclusions

[6]

We proposed a new dynamic programming tracking al-
gorithm based on the idea of time alignment in speech
recognition. We compared the new algorithm to the Con-
densation algorithm theoretically and showed its practical
potential under noisy circumstances in comparison to the
Camshift tracking algorithm. In this comparison, the pro-
posed algorithm showed superior performance.

The comparison to condensation tracking or camshift
might seem unfair but shows the advantage of using more
context information. These approaches are online tracking
and do not know the whole sequence while the DPT allows
also partial tracebacks over e.g. only one or two frames.

Our DPT framework can be extended by incorporating

any image comparison function to calculate the distance bell

tween a target model and a target candidate, and different
motion models can be easily integrated in our framework.
Using the information of the entire sequence by tracing back
the decisions at the end of the sequence reconstructs the be
path and enables us to track a target disregarding informa-
tion gaps in the video sequence due to occlusions or strong
noise. Integrating eigenfaces in combination with skin color
information into our tracking framework enables to track
hands and faces for automatic sign language recognition.

Additionally we proposed a framework to integrate the
dynamic programming tracking algorithm into an HMM to
allow a simultaneous tracking and recognition in one pro-
cess which is interesting for further research.
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