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Abstract

Efficient motion and appearance modeling are criti-
cal for vision-based Reinforcement Learning (RL). How-
ever, existing methods struggle to reconcile motion and
appearance information within the state representations
learned from a single observation encoder. To address
the problem, we present Synergizing Interactive Motion-
appearance Understanding (Simoun), a unified framework
Jor vision-based RL. Given consecutive observation frames,
Simoun deliberately and interactively learns both motion
and appearance features through a dual-path network ar-
chitecture. The learning process collaborates with a struc-
tural interactive module, which explores the latent motion-
appearance structures from the two network paths to lever-
age their complementarity. To promote sample efficiency,
we further design a consistency-guided curiosity module to
encourage the exploration of under-learned observations.
During training, the curiosity module provides intrinsic re-
wards according to the consistency of environmental tempo-
ral dynamics, which are deduced from both motion and ap-
pearance network paths. Experiments conducted on Deep-
Mind control suite and CARLA automatic driving bench-
marks demonstrate the effectiveness of Simoun, where it
performs favorably against state-of-the-art methods.

1. Introduction

Reinforcement learning (RL) from visual signals has
achieved great success in recent years. Compared with
learning from hand-crafted states, vision-based RL elimi-
nates the arduous task of designing states with manual fea-
ture engineering. Therefore, it is beneficial for a variety of
tasks such as video game playing [25, 40], robot manipula-
tion [50], and autonomous navigation [4]. However, one of

*Corresponding author.

Concatenation ] Appearance-related encoder/feature
] Motion-related encoder/feature [ ] Motion-appearance mixed encoder/feature

T
1
i
!
o=

|
|
|
|
|
I
I
|
1
|
|
|
|
|
+
|
|
|
I
I
|
|
|
I
I
|
|
|
|
|
|
|
|
|
L

(d) Ours

(c) Latent Flow

Figure 1. Illustration of different observation encoding schemes.
(a) Encoding individual frames with a shared encoder. (b) Encod-
ing stacked multiple frames. (c¢) Encoding individual frames and
latent vector differences (latent flows). (d) Encoding motion and
appearance independently and interactively.

the major challenges of vision-based RL lies in its high di-
mensional observation, which is less interpretable and leads
to low rewards and inefficient sampling [19, 20]. As a re-
sult, robust visual understanding is crucial to bridge the gap
between vision and state-based RL in terms of performance
and sample efficiency.

To make observation comprehensible for agents, recent
works have recognized the importance of learning high-
quality visual features [20, 5, 29, 49, 42]. From the per-
spective of decision-making, two kinds of features are es-
sential for vision-based RL: the motion features, which
closely relate to the actions performed by the agents, and
the appearance features, which describe the contemporary
environmental states. Despite their importance, few works
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have tried to model these two kinds of features explicitly.
Most methods tend to encode single or stacked multiple
frames via a convolutional encoder, as shown in Fig. 1(a)
and Fig. 1(b). The former neglects motion feature model-
ing, while the latter tightly entangles the motion and ap-
pearance information into a single network, causing infor-
mation bias and optimization difficulty. To alleviate these
issues, Shang et al. [33] propose to encode only appearance
features in single frames and impose motion dynamics by
latent vector differences (termed latent flow, see Fig. 1(c)).
In addition, several world models learned directly from in-
put images are also developed [11, 31, 3]. Nevertheless, the
motion features of these methods are still computed from
spatial latent space, which may lead to sub-optimal repre-
sentation learning in complicated environments.

To overcome the limitations described above, we present
Synergizing Interactive Motion-appearance Understanding
(Simoun) for vision-based RL. The design principle of
Simoun is to explicitly learn both motion and appearance
features in the early encoding stage and then interactively
fuse them at the late stage for accurate decision-making. As
shown in Fig. 1(d), given consecutive environment frames,
Simoun learns motion and appearance information by sep-
arate network paths. The motion path (colored in blue)
explicitly models motion clues (such as the speed and direc-
tion of cars) from the residual framme of multiple neighbor-
ing input frames. The appearance path (colored in )
models the environmental spatial structures and focuses on
identifying patterns and objects (such as cars and traffic
lights) from every single frame. Additionally, a struc-
tural interactive module further extracts latent motion-
appearance structures reflected by the correlations of the
dual-path features. It then modulates both paths with the
computed structure masks. In this way, each path can take
complementary information from the other during learning,
and agents are able to better understand the spatial and tem-
poral context of the environment. Finally, the latent vectors
from the two paths are fused for decision-making.

Although the dual-path design of Simoun promotes ob-
servation interpretability, low sample efficiency still exists
due to finite data and sparse rewards. To alleviate this is-
sue, a consistency-guided curiosity module is further de-
signed. The idea is to adapt the learning process by con-
centrating more on under-learned observations, which can
be deduced from the consistency of the motion and appear-
ance paths. Intuitively, both the motion path and the appear-
ance path describe the same observations. Hence, the dy-
namic information inferred from the following two sources
should remain consistent: 1) latent motion vectors learned
directly from the motion path and 2) differences between
the appearance path latent vectors over multiple neighbor-
ing frames. If the opposite were true, then it indicates pre-
mature motion-appearance understanding, thus more explo-

ration should be added. In this way, we build a strong corre-
lation between reward discovery and state novelty. During
training, the consistency-guided curiosity module provides
intrinsic rewards in addition to extrinsic rewards from the
environment, resulting in more efficient exploration.

Experiments on both CARLA and OpenAl DMControl
environments show that the proposed method performs fa-
vorably against state-of-the-arts. Overall, the contributions
of this paper are threefold:

(1) We propose Simoun, a novel dual-path learning
framework that explicitly and interactively learns both mo-
tion and appearance information from observations.

(2) We design a structural interactive module to fully ex-
plore the complementarity of the two paths in Simoun and
thereby further enhance visual understanding.

(3) We devise a consistency-guided curiosity module to
encourage the exploration of under-learned observations.
The proposed module effectively increases sample effi-
ciency by providing intrinsic rewards for the agents.

2. Related Works

Vision-based Reinforcement Learning To improve the
performance and sample efficiency of vision-based RL, ex-
isting works can be roughly divided into three groups: 1)
designing auxiliary loss/learning tasks [20, 14, 36, 49, 23],
2) employing various data augmentation technique [21, 41,
2, 17, 24], and 3) modeling environment dynamics [12, 11,
3,7, 27]. However, most existing works utilize a single-
path network with multi-frame inputs, in which the motion
and appearance information is tightly entangled without ex-
plicit separation. One exception is Flare [33], which also
utilizes a single-path network to encode each frame individ-
ually and models motion information explicitly by taking
latent vector differences. Although Flare achieves improved
performance, its motion information is still computed from
single-frame appearance features, causing insufficient tem-
poral information extraction.
Dual-path Networks for Visual Modeling There is a rich
literature of works on visual modeling with dual-path net-
works. One of the earliest works is the two-stream CNNs
for action recognition [35], which utilizes a spatial stream
with single-frame input and a temporal stream taking multi-
frame optical flows. Thereafter, the concept of dual-path
networks is heavily explored with various fusion strategies
on different tasks [34, 6, 39, 43]. Our approach differs
from existing ones in terms of task, architecture and learn-
ing mechanism. Compare with other visual tasks, vision-
based RL needs to extract fine-grained motion details across
different time steps, which poses a great challenge to RL
models. To the best of our knowledge, Simoun is one of
the first vision-based RL methods which aim to explicitly
learn motion and appearance features by a dual-path ar-
chitecture. Meanwhile, its structural interactive module is
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Figure 2. The proposed dual-path learning framework Simoun. It introduces two modules: 1) a structural interactive module that leverages
the complementarity between the two network paths by extracting latent motion-appearance structures, and 2) a consistency-guided cu-
riosity module that provides intrinsic rewards according to the dynamic consistency between the motion and appearance features.

also deliberately designed to extract motion and appearance
clues residing in consecutive observation frames. By learn-
ing with RL-oriented objectives and curiosity-driven strate-
gies, Simoun successfully imports the idea of dual-path net-
works into robust visual control.

Intrinsic Reward Exploration One of the key elements
of RL is the reward function, which aims to quantify the
“goodness” of the agent’s decisions. However, the problem
is that designing dense, well-defined extrinsic reward func-
tions is difficult and unscalable. One possible solution is to
introduce an intrinsic reward function, which is calculated
by the agents. Existing intrinsic reward exploration meth-
ods mainly focus on counting or predicting state novelty [1],
prediction error [28], uncertainty [22], or environmental
dynamics [32]. These methods are typically designed for
the general state-based instead of vision-based RL. The
works most relevant to us are CCFDM [26] and CCLF [37],
which also formulate intrinsic rewards for visual-based RL.
CCFDM utilizes forward dynamics and CCLF is based
on a contrastive term. Differently, the consistency-guided
curiosity module in Simoun exploits the dynamic consis-
tency extracted from both motion and appearance features
to achieve reliable intrinsic reward estimation.

3. Methodology

We start by formalizing the task of vision-based RL in
Sec. 3.1 and then delineate Simoun in detail. The gen-
eral idea of Simoun is to 1) explicitly model the mo-
tion/appearance dynamics (and their correlations) of the
agent’s operating ambiance and 2) capitalize on the learned

dynamics to achieve efficient exploration. As shown in
Fig. 2, our framework consists of two parts. First, given
inputs in the form of consecutive frames, it interactively
models the motion and appearance features using a dual-
path architecture with a set of targeted objectives and a
structural interactive module (Sec. 3.2). Then the decision-
making strategy is learned with adaptive curiosity assign-
ment steered by the proposed consistency-guided curiosity
module (Sec. 3.3). The overall learning objective and infer-
ence process of Simoun are finally summarized in Sec. 3.4.

3.1. Problem formulation

Vision-based RL can be formulated as a Partially Ob-
servable Markov Decision Process (POMDP) M =<
O, A, P,R.~v >, where O denotes the observation space
containing pixel frames o; at different time step ¢ and A
denotes the action space. At each ¢, the agent chooses an
action a; € A. P(0¢y1|o4,ar) is the observation transi-
tion, R(oy, a;) is the reward function, and y € [0, 1) is the
discount factor. The goal is to identify an optimal policy
7 that maximizes the expected cumulative reward based on
the visual observations rather than the complete environ-
ment state:

J(1) =D BionaimalR(0r ar)]- M
¢
During training, 7 is used to interact with the environment,
and the related data are stored in a replay buffer B.
3.2. Dual-path Interactive Modeling

In vision-based RL. motion and appearance clues are
both vital for the agent to perform accurate decision-
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making. Simoun adopts a dual-path architecture to interac-
tively learn motion and appearance features. Specifically, it
consists of three components: the motion path, the appear-
ance path, and the structural interactive module that serves
as a switchboard between the motion and appearance struc-
tures learned from the two paths.

Motion Path Motion information is crucial for the vi-
sual system to understand the dynamics of the surrounding
environment. The motion path aims to extract the motion-
related features (such as the velocity of moving objects)
from the changes between consecutive frames. Given a tu-
ple of three' adjacent observations [0:_5, 0;_1, 0;] sampled
from replay buffer 3, the input of the motion path is the
residual of adjacent frames [(0;—; — 0;—2), (0 — 0;—1)],
concatenated along channel dimensions. A convolutional
encoder £™ is then used to learn a lower-dimensional mo-
tion representation. Specifically, the encoder includes four
convolution layers with 3 x 3 kernel size and ReLU non-
linearity. Denote the feature map of the last convolution
layer as F}* € R®*"*% 4 fully connected (FC) layer with
layer normalization (LN) is used to reduce the dimension of
F}" to get the motion feature vector ;™.

To further impel the motion path to catch abundant en-
vironment temporal structures, a motion-aware constraint
is deliberately designed. Specifically, given f;" and cor-
responding action a; at timestep ¢, an action-conditioned
two-FC-layer transition model G is used to obtain a motion-
action joint representation of the current timestep. A latent-
space transition loss is then defined as:

Ltran - ||g<f ut) +1H2 (2)
which encourages £/ to model the motion trends over time

by predicting the future temporal dynamics £/ ; of the next
time step.

Appearance Path The appearance path is designed to
extract the visual appearance representations of the object
and scene from individual observation frames. The input
of the appearance path is a single frame o; from the replay
buffer B. Similar to the motion path, the appearance path
also adopts a four-layer encoder £¢ with the same architec-
ture (except for the number of input channels of the first
layer) to get feature map F¢ € R "> followed by FC
and LN layers to get the appearance representation f;*.

To explicitly make appearance representations discrim-
inative to different scenes, we take inspiration from
CURL [20] and adopt an unsupervised contrastive loss be-
tween similar and dissimilar sample pairs. Given observa-
tion frame o;, we consider 0, (obtained from o; by data
augmentation) as the positive sample, while samples com-
ing from different observation frames are regarded as nega-
tives. The contrastive loss is then defined as:

"We choose three here following the practice in [44, 47].
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Figure 3. Illustration of the proposed structural interactive module.
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where f;' and ft”' are appearance representations of o; and
oy, respectively. j is the sample index in a training batch
with K samples. Note that the augmented data is only
used for representation learning and is inaccessible during
decision-making. This is to avoid unstable training, which
is easily caused by the augmented data dominating the eval-
uation of the Q-target.

Lecon = — log 3)

Structural Interactive Module Instead of simply con-
catenating the features from motion and appearance paths
as state representations, interactively communicating the
learned motion-appearance structures between both paths
can lead to a more robust visual understanding. Intuitively,
as shown in Fig. 3(left), given consecutive observation
frames, the motion structure can be revealed by inter-frame
appearance variation. Meanwhile, the appearance structure
can be obtained by spatial pixel correlation. Therefore, the
structural interactive module embraces a single and inter-
frame relation discovering mechanism for efficient motion-
appearance structure mining and propagation.

Specifically, as shown in Fig. 3(right), the inputs of the
structural interactive module are motion feature map F}*
and appearance feature maps F{ o, F{_; and F¢. To ex-
tract motion structures, an inter-frame attention mechanism
is designed. In particular, F{_ is treated as the query, and
F{¢ o, F{ is used as two keys. A inter-frame attention map
X can be obtained as:

X =o(o(Fy o Fy ) +o(Ff Fy ), “

where F“ ReXPXw denotes a new feature map generated
by feeding F{ to a convolution layer for reducing the spa-
tial complexity (F ", and Ft 5 can be obtained similarly).
o denotes the Softmax function. Combining the outputs of
two initial Softmax functions might not yield values sum-
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ming to 1, so an additional Softmax is used to normalize the
final attention scores. The soft indexing of f“tl] by f‘t‘ZQ
or f‘f is performed at the spatial dimensions, resulting in a
soft attention map of dimensions hw X hw. Then a spatial
gating operation is applied on X using weights calculated
from both F}" and F{ to consolidate appearance structures
and obtain two motion-appearance structure masks:

X" =X .F" X=X F¢, 4)
where F7" is a feature map of F}" obtained with an-
other convolution layer. Finally, F7* and F¢ are enhanced

by modulating with their corresponding motion-appearance
structure masks:

FT:F:n+ﬂXm7F(fl:Fg+ﬁXa7 (6)
where /3 is a learnable parameter initialized as zero [48],
and the enhanced F}" and F{ instead of the original ones
are further used to calculate f;" and f{*.

After acquiring the structure-enhanced motion and ap-
pearance features, they are finally fused as f, = [f;". f?],
where f; is used as the final state representation®. To better
capture reward-related features from the fused state repre-
sentation, a reward function R is further introduced to pre-
dict a numerical reward value to each state-action pair. R
has a similar architecture with the transition model G except
the output dimension is set to one. A reward loss £, is then
defined as the mean squared error between the predicted and
actual reward:

Lre = (R(fr,ar) = 1511)°, @)
where 77, is the actual external reward value at the next
time step, which is returned by the environment.

3.3. Consistency-guided Curiosity Module

Given state representation f; from the dual-path model,
we adapt SAC [9, 10] as the base RL algorithm following

2We use concatenation to fuse £/ and f2 for simplicity, advanced fu-
sion mechanisms are also applicable.

previous methods [47, 5], which aims to maximize the ex-
pected cumulative reward to find an optimal policy by ap-
proximating the action-value function () and a stochastic
policy 7 based on a a-discounted maximum entropy #(+):

J(®) =D Eoran~rlr(0nar) + aH(x(fo,))].  (8)

The action-value function @) are learned by minimizing the
soft Bellman error:

Lo =E(o, 0 (Q0r, ar) — (re + )\V(0t+1)))2: 9
and the soft state value V' can be estimated by sampling an
action under the current policy:

V(o) = Egpyynn[@Q(0r41. A1) —alog m(asi|0ps1)],

(10)
where @ denotes the exponential moving average of the pa-
rameters of (). The policy is optimized by decreasing the
difference between the exponential of the soft-Q function
and the policy:

Lr=Eq4n [alogﬁ(at\ot) — Q(oy,a¢)|- (11)

Although SAC algorithm introduces the entropy term to
encourage exploration, it still heavily relies on carefully en-
gineered environmental extrinsic rewards and suffers from
low sample efficiency. Instead of extrinsic rewards, intrinsic
curiosity can be a powerful concept to endow an agent with
an automated mechanism to continuously explore its envi-
ronment in the absence of task information. During train-
ing, in addition to the extrinsic rewards r“ obtained from
the environment, the curiosity module also provides intrin-
sic rewards 7', The learning objective SAC in Eq. 8 is there-
fore extended as:

T(1) = 3" Eoranymnr (0, ar) aH(m (o)) +7 (04, ar)].

12)
To get proper intrinsic rewards r?, we propose to lever-
age the consistency of motion and appearance features from
the dual-path model. Intuitively, as shown in Fig. 4, the en-
vironmental temporal dynamics can be obtained from two
sources: 1) directly learned from the motion path, and 2)
through the variations of the spatial features learned from
the spatial path, similar to the latent flow [33]. Optimally,
these two sources should be consistent with each other. That
is, the motion feature £;" should be similar to the difference
between the spatial features f* ,, ff* | and f*. The idea
of the consistency-guided curiosity module is then to en-
courage the agent to explore when the temporal dynamics
produced by the two sources are inconsistent. To this end,
the intrinsic reward r* is defined as:
T

rt = Ce MA([f"]. |7y — £ o + £ —£7 1) 2%, (13)

-2

max
where C' is temperature weight, A is an exponential decay
weight, d is the L2 distance function, ¢ is the environment
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Algorithm 1 Inference procedure of Simoun

1: for each environment step t do

2:  Collect observation frames 0;_o, 01 and oy.

3:  Extract motion and appearance feature maps:
Fit = &"([(0t—1 — 0¢—2), (0r — 0;-1)]).
F¢=&%0j),j=t—2.....t

Structural Interactive Modeling:
X =o(a( t—ZTF?—l) + U(F?TFQLA))
Fp =Fp + 6 (X -F}")
Fy =F{+3-(X-Fy)

10:  Extract low-dimensional features:

11: f;" = LayerNorm(FC(F}"))

R AU

12: fi* = LayerNorm(FC(F{¢))

13:  Take action based on the fused features:
14: f, = [£" £

15: ar ~ 7(a|fy)

16:  Environment state transition:

17: Ot41 N'P(O,H,l‘ot,at)

18: end for

time step, | - | is the vector element-wise absolute operation
(used to avoid the cancellation of £ ,), r7. .. and 7}, are
the maximum extrinsic reward value and intrinsic reward
value over the time step [0, ¢]. which serve as normalization
term to balance »* and r°. At the beginning of the train-
ing, r%,,, and % are assigned with an initial value and
dynamically updated as the training goes on. By rewarding
the agent to explore motion-appearance inconsistent states,
the curiosity module encourages the agent to learn more ef-
ficiently, leading to better performance and fewer learning

steps.

3.4. Overall Training Objective

By capitalizing on interactive motion-appearance under-
standing, Simoun learns from vision to control in an end-to-
end manner by optimizing the following training objective:

L= Etv‘n,n + Er‘on + /:'re +['Q + ETH (14)

Motion  Appearance  State RL

where the objective jointly considers the learning of mo-
tion and appearance features, as well as getting efficient
state representation for high-performance RL policy learn-

ing. The detailed inference procedure is presented in Alg. 1.

4. An Information Bias Analysis of Simoun

As we demonstrated in Fig. I, existing observation en-
coding paradigms model motion and appearance informa-
tion either heuristically without special design or using pre-
liminary techniques (such as taking latent difference). In
contrast, Simoun deliberately models both information and
emphasizes their interactions. In this section, we analyze

[ |Dynamic [ ]Statc [ JJoint [ ]Residual

Individual Frame |6%| 39% I 12% 43%
Stacked Frames [ 10% 36% 10%| 44%

Latent Flow| 14% | 32% 1% | 43%
smonaPatn| 16% |  28% | 14% | 42%
smonMPatn| 20% | 22% | 18% | 40%

smounFu)|  21% | 23% | 18% | 38%

0 2‘0 4‘0 6‘0 8'0 160

Units Encoding Factor (%)
Figure 5. Feature component analysis of different models. M-Path
and A-path represent the motion and appearance paths of Simoun,
respectively. Strong information bias can be observed from the
baseline models and Simoun notably alleviates the bias and de-
creases meaningless residual units.

the representations learned by Simoun and other observa-
tion encoding paradigms from an information bias perspec-
tive to gain an in-depth understanding of them.

Specifically, we leverage a recent approach [18] that can
quantify static and dynamic information learned by any
spatial-temporal model. The approach estimates the amount
of static vs. dynamic bias based on the mutual information
between sampled input sequence pairs. It then calculates
the percentage of units (channel dimensions) of the model
feature layer that encodes several pre-defined information
factors (static, dynamic, joint, and residual). The quanti-
fying results of Simoun and other models are illustrated in
Fig. 5. Itis immediately evident that previous methods tend
to encode the static factor more than the dynamic, indicating
a strong bias toward appearance information. It is also clear
that the two paths of Simoun learn corresponding static and
dynamic factors as expected, with the motion path having
more dynamic units than the appearance path. By fusing
the two paths together, Simoun enjoys abundant dynamic
and static information, meanwhile having minimal resid-
ual units that do not involve any dynamic or static factor.
As will be shown in the experiment section, such an abun-
dant and informative representation significantly improves
the decision-making process.

5. Experiments

In this section, we explore how Simoun can improve
vision-based RL in terms of sample efficiency and perfor-
mance gains. Two benchmarks are used for evaluation:
DeepMind Control Suite (DMControl) [38] for continuous
control and CARLA [4] for autonomous driving.

Experimental Settings: Simoun is implemented on the
basis of the SAC algorithm [10]. For DMControl, to avoid
the potential effects of different hyperparameters, we fol-
low the previous training setup of DrQ [44] and choose
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100K Step Scores SAC Dreamer CURL DrQ SVEA SPR PlayVirtual MLR CCLF Ours
Cartpole, Swingup 237+49 326427 5824146 759492  727+86 799442 816+36 806+48 79961 85114
Reacher, Easy 239+183  314+155 5384233 601£213  811£115  638+269 785+142 866+103  738+99 910465
Cheetah, Run 118+13  235+137  299+48 344467  375+54  467+36 474£50 482£38 317438 51857
Walker, Walk 95+19 277+12 403+£24  612+164  747+65  398+165 460+173 643+114  648+110 869+45
Finger, Spin 230£194  341£70 76756 901104  859+77  868%143 915+49 907£58  994+42 872490
Ball in cup, Catch 85+130  246+174  769+43  913+53  O15+71 8614233 929431 933+16  914+20 97117
Average 167.3 289.8 559.7 688.3 739.0 719.0 729.8 772.8 735.0 831.8
500k Step Scores
Cartpole, Swingup 330+73 762+27 841+45  868+10 86510  870£12 865+11 87245 869+9 8764
Reacher, Easy 30765 793164 929+44 942471 944+52  925£79 942+66 05741  941+48  979+44
Cheetah, Run 85+51 570+253  518+28  660+96  682+65  716+47 719+51 674+37  588+22 69353
Walker, Walk 71+£52 897+49 902+43  921+45  919£24  916%75 928+30 939£10  936+23  966+7
Finger, Spin 34695  796+183 926445  938+103 924493  924+132 963+40 973+31 974+6  964+19
Ball in cup, Catch 162+122 879487 959+27 963+9 960+19 963+8 967+5 964+14 961+9 97012
Average 216.8 782.8 845.8 882.0 882.3 920.0 897.3 896.5 878.2 908.0
Table 1. Comparison with state-of-the-art methods on DMControl benchmark. The best results are shown in bold.
Measurements SAC CURL DrQ Flare DeepMDP ours
Episode reward 1 121 £26.1 134 +15.1 154 +21.5 132 £24.7 170 £36.1 281 +30.4
Distance (m) T 74 174 128 £32.5 95 £27.2 90 +£14.6 132 £20.4 207 ¥15.5
Crash intensity | 3930 £80.3 3050 £100.3 2419 £72.3 2668 +95.7 2136 +69.3 1813 +57.8
Average steer | 17.52% #0.021%  16.60% +0.025% 15.79% +0.018%  11.48% +0.022% 10.22% +0.015% 14.84% +0.012%

Average brake | 1.81% +0.013%  2.94% +0.021%

1.70% +0.039%

1.52% +0.014% 1.65% +0.007% 2.14% +0.018%

Table 2. Comparison with state-of-the-art methods on CARLA benchmark. 1 indicates larger is better and | means the opposite.

six commonly adopted tasks: Walker-walk, Finger-spin,
Cartpole-swingup, Reacher-easy, Cheetah-run and Ball in
cup-catch. To evaluate sample efficiency, the performance
at 100k and 500k environment steps are reported during the
training stage. For CARLA, we mostly follow the setup of
DBC [47], where the goal is to travel as far as possible on
Highway 8 of Town 4 in 1000 time steps without any colli-
sions with 20 moving cars. For observation acquisition, we
horizontally concatenate the images from three cameras on
the roof of vehicles to get 84 x 252 images. Random con-
volution [21] is adopted for data augmentation in Eq. 3. All
experiments are trained across 5 random seeds to report the
mean and standard deviation of the rewards. More details
can be found in the Supplementary Material.

Methods Compared: We extensively compare Simoun
with a variety of methods including the SAC [10] base-
line, explicit motion modeling approach (Flare [33]), aux-
iliary loss-based approaches (CURL [20], MLR [46]), data
augmentation approaches (DrQ [44], SVEA [15]). dynamic
modeling based approaches (Dreamer [11], SPR [30],
PlayVirtual [45], DeepMDP [8]), and curiosity based ap-
proach (CCLF [37]).

5.1. Performance Comparisons

Results on DM Control Table | presents the experimen-
tal results on the DMControl benchmark. It can be observed
that Simoun achieves considerable performance gains com-
pared to other state-of-the-art methods. In particular, at
100k steps, significant performance improvement can al-

ready be reached by Simoun, which indicates improved
sample efficiency.

Results on CARLA The results of the CARLA bench-
mark are reported in Table 2. It is clear that Simoun outper-
forms all other methods on the episode reward. Addition-
ally, the average driving distance is farther than other meth-
ods by a large margin and the average collision intensity is
also smaller. Although the driving smoothness of Simoun
is slightly decreased due to increased steer and brake, this
small cost has led to considerable overall reward gain to
break through the current status quo.

5.2. Ablation Study

Effectiveness of the Dual-path Design To demonstrate
the effectiveness of the dual-path design in Simoun, we
compare it with three single-path methods (depicted in
Fig. 1): individual frame encoding, stacked frames encod-
ing, latent flow encoding, and our dual-path encoding. For
a fair comparison, the motion and appearance losses of
Simoun are adopted for all four models to eliminate the af-
fection of loss difference, and the interactive and curiosity
modules are also removed from the dual-path model. The
results are shown in Fig. 6 (left). Several observations can
be made: 1) The low performance of individual frame en-
coding (black line) indicates the importance of modeling
motion information. 2) By considering the motion across
frames, stacked frame encoding (green line) performs much
better than individual frame encoding. 3) The latent flow
encoding (blue line) improves over stacked frame encoding

182



2501 — Individual frame # 100 Only mation path 250
=== Stacked frames I i Only appearance path
Al N
200 - Latent flow i 250 < Dual paths 200
= Dual paths i = —-— +Interactive Module c
= ‘ =
2 2 200 +Curiosity module 2 150
e v 3 ; v
2 = “i / bt
w v 150 A v
o - 3 T 100
Qo Q P Q
2 9 100 @
o a [N
w oo w50
~— Dual paths
ols 0 ---- Stacked frames (2 x params)
------- Stacked frames
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Number of frames (x10°)

Number of frames (x10°)

Number of frames (x10°)

Figure 6. Experiment results on CARLA benchmark. Left: Performance on different encoding paradigms. Middle: Ablation study of each
component of Simoun. Right: Comparison with models having more parameters.
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Figure 7. Visualizations of motion-appearance structure masks.

with explicit motion modeling. However, there is limited
room for further improvement due to the preliminary tech-
nique used for motion extraction. 4) The proposed dual-
path model (red line) remarkably outperforms the other
three methods by modeling motion and appearance explic-
itly. Interestingly, the results in Fig. 6 (left) echo perfectly
with the information bias degrees illustrated and discussed
in Fig. 5 and Sec. 4. which indicates potentially deeper con-
nections between motion-appearance information bias and
the performance of decision-making.

Effectiveness of Each Components in Simoun To in-
vestigate the contribution of each component in Simoun,
we first evaluate the performance of each individual path,
then test the dual-path model by gradually adding the struc-
tural interactive module and the consistency-guided curios-
ity module. It can be found in Fig. 6 (middle) that the indi-
vidual path gives relatively low performance when trained
separately, with the motion path performing better than
the appearance path. When adopting the dual-path model,
both the structural interactive module and the consistency-
guided curiosity module can further improve performance,
which demonstrates their effectiveness. To better under-
stand which visual clues does Simoun concentrate, we vi-
sualize the motion-appearance structure masks (X' and
X in Eq. 5) of the two paths. As can be observed from
Fig. 7, the motion path tends to focus on the moving trajec-
tory of other vehicles (positions where the vehicles passed
by), while the appearance path focuses strongly on spatial
positions where the other vehicles exist.
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Figure 8. Evaluation of the generalization ability on four different
environment domains on DMControl benchmark.

5.3. Further Discussions

Does the performance gain of the dual-path model
come from the increased network parameters? To an-
swer this question, we compare the dual-path model with
a double-channeled stacked frame model, which has nearly
2x more parameters. From Fig. 6 (right) we can observe
that increasing model parameters indeed improves perfor-
mance. However, the dual-path model still outperforms the
double-channeled stacked frames model using only half of
its parameters. This proves the effectiveness of the dual-
path model mainly comes from its motion-appearance mod-
eling paradigm, rather than increased network capacity.

Does Simoun improves domain generalization? To
evaluate the domain generalization ability of Simoun, we
select the “catch” task on the “ball in cup” scenario as the
source domain and test Simoun on DMControl Generaliza-
tion Benchmark [16] with four different environment do-
mains (color easy, color hard, video easy, and video hard).
Fig. 8 shows that Simoun performs on par with other meth-
ods on color-shifted domains. However, the performance
is much better on video-shifted domains, where the back-
ground is also moving. This is attributed to the specialized
modeling of motion information by Simoun, which drives
the agent to pay more attention to reward-related motions
rather than the irrelevant dynamic background.
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6. Conclusion

We have proposed Simoun, a unified framework for
vision-based RL with a dual-path network for motion and
appearance understanding. The design of Simoun demon-
strates the effectiveness of motion-appearance structural in-
teraction, and further shows the benefits of consistency-
guided intrinsic curiosity. Empirical results suggest that the
proposed method has advantages in terms of sample effi-
ciency, performance gains, and generalization ability. By
analyzing Simoun from an information bias perspective, we
build a connection between motion-appearance information
bias and vision-based RL performance. We hope this con-
nection can further inspire more efficient model designs for
vision-based RL tasks.
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