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Abstract. Recent progress in video anomaly detection (VAD) has
shown that feature discrimination is the key to effectively distinguishing
anomalies from normal events. We observe that many anomalous events
occur in limited local regions, and the severe background noise increases
the difficulty of feature learning. In this paper, we propose a scale-
aware weakly supervised learning approach to capture local and salient
anomalous patterns from the background, using only coarse video-level
labels as supervision. We achieve this by segmenting frames into non-
overlapping patches and then capturing inconsistencies among different
regions through our patch spatial relation (PSR) module, which consists
of self-attention mechanisms and dilated convolutions. To address the
scale variation of anomalies and enhance the robustness of our method,
a multi-scale patch aggregation method is further introduced to enable
local-to-global spatial perception by merging features of patches with
different scales. Considering the importance of temporal cues, we extend
the relation modeling from the spatial domain to the spatio-temporal
domain with the help of the existing video temporal relation network to
effectively encode the spatio-temporal dynamics in the video. Experimen-
tal results show that our proposed method achieves new state-of-the-art
performance on UCF-Crime and ShanghaiTech benchmarks. Code are
available at https://github.com/nutuniv/SSRL.

Keywords: Scale-aware · Weakly-supervised video anomaly
detection · Spatio-temporal relation modeling

1 Introduction

Video Anomaly Detection (VAD) aims to automatically recognize events that
deviate from normal patterns and determine the time window in which anomalies
occurred [4,6,28,30]. It is invaluable in many practical applications, such as
monitoring terrorist and violent events in public places, or traffic accidents on
urban roads, significantly reducing the labor costs of manual surveillance.

Most previous VAD approaches [6,28,30,32] would employ a feature encoder
to extract features of video frames and then identify unusual patterns as
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Fig. 1. Samples of video anomaly detection benchmark UCF-Crime [28]. The red boxes
denote the anomalous regions in frames.

anomalies. However, we found that the effect of the spatial size of anomalies
was overlooked. As illustrated in Fig. 1, in the video anomaly detection datasets,
many anomalous actions such as abuse and arrest occur in small areas and are dif-
ficult to be distinguished from background normal behaviors in the frame. There-
fore, the extracted features of full-resolution frames, with limited local anomaly
regions inside, will be dominated by the background information, increasing the
recognition difficulty of subsequent classifiers.

To address the above limitation, we propose a scale-aware video anomaly
detection model to efficiently capture local anomalies from the background.
Specifically, we divide the input video frames into a set of non-overlapping
patches by using a sliding window. Once anomalies occur, the corresponding
anomaly patches will contain more salient anomalous information due to the
restricted receptive field, thus suppressing the background noise. Since the pat-
terns of anomaly patches are likely to be distinct from normal patches, we pro-
pose a patch spatial relation (PSR) module to identify the occurrence of anoma-
lous events by capturing inconsistencies among different spatial regions.

We also observe that anomalous events vary in size, which poses a challenge
to the robustness of the patch-based methods. In Fig. 1, we can see that some
anomalous events such as assault or arson occur in small regions, while others,
such as road accidents or explosions, span almost the entire image. To cope with
this scale variation issue, we further propose a multi-scale patch aggregation
(MPA) method to effectively explore anomalous regions with different scales.
Since the single-scale patches are likely to suffer from size mismatch when cap-
turing anomalous events, we gradually adjust the size of the sliding window from
small to large to generate patches with a pyramidal distribution of scales. The
information of these patches will eventually be integrated to give the model a
pyramid-like spatial perception of the video from local to global. This improves
the scale robustness in anomaly detection.

Previous studies [30,38,49] have demonstrated the significance of long-range
temporal dependencies in VAD. Inspired by them, we introduce an existing video
temporal relation (VTR) module [30] to extend the relation modeling from the
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spatial domain to the spatio-temporal domain to effectively encode the spatio-
temporal dynamics in videos. The combination of our PSR module and VTR
module explicitly considers the local consistency at frame level and global coher-
ence of temporal dynamics in video sequences.

Despite the significance of spatio-temporal feature learning, the correspond-
ing spatio-temporal level annotations are costly. For example, Liu et al. [11]
have driven the network to focus on anomalous regions by using a large num-
ber of manually labeled spatio-temporal annotations as supervision. To reduce
the annotation cost, we follow Sultani et al. [28] to address the VAD task in a
weakly supervised multiple instance learning setting by using training samples
annotated with normal or abnormal video-level labels.

Our main contributions can be summarized as follows:

– We propose a novel scale-aware weakly supervised video anomaly detection
framework, which enables local-to-global spatio-temporal perception for cap-
turing anomalous events of various scales.

– We present a multi-scale patch aggregation method to further boost the detec-
tion performance by integrating information from various scale patches.

– We introduce a separable spatio-temporal relation network. Our PSR module
learns the spatial relationships among patches and the VTR module captures
the temporal dependencies in the video.

– We carry out experiments on UCF-Crime and ShanghaiTech datasets to verify
the effectiveness of our method, and the experimental results show that our
approach achieves significant performance boosts.

2 Related Work

Weakly Supervised Video Anomaly Detection. Relevant studies on VAD
can be broadly classified into two categories: unsupervised learning methods [1,
5,6,12,14–19,22,24,26,29,33,34,36,40,43,44,50] and weakly supervised learn-
ing methods [4,20,28,30,32,37–39,45,46,49,51]. Most unsupervised approaches
learn the usual patterns from normal videos and then identify detection targets
with large prediction errors [12,16,26,43,47,50] or reconstruction errors [3,6,17–
19,24,40,44] as anomalies.

Recently, many weakly supervised approaches have been developed. Sultani
et al. [28] proposed a deep multiple instance learning (MIL) ranking framework
with cheap video-level annotations to detect anomalies. Zhang et al. [46] fur-
ther introduced an inner bag loss constraint. Zhong et al. [49] formulated weakly
supervised anomaly detection as a label noise learning problem, and used a graph
convolution neural network to filter the label noise. Wu et al. [38] explored the
importance of temporal cues and feature discrimination. Tian et al. [30] pro-
posed a feature magnitude learning approach of selecting top k snippets with
the largest feature magnitude as a stronger learning signal. Feng et al. [4] pro-
posed a two-stage scheme in which a MIL-based pseudo label generator was first
trained to produce snippet-level pseudo labels, which were then used to fine-
tune a task-specific feature encoder for VAD. Liu et al. [11] re-annotated the
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UCF-Crime dataset, adding fully supervised anomaly location annotations to
drive the model to focus on anomalous regions. Compared with previous weakly
supervised methods, our approach explores the local salience of anomalous events
and identifies anomalies by capturing the inconsistencies among patches, which
is relatively deficient in the VAD area. Moreover, our method addresses the prob-
lem of scale variation by aggregating features of patches with different scales.

Spatio-Temporal Relation Modeling. Recently, spatio-temporal relation
learning has been successfully applied in several fields, such as object detec-
tion [7], action recognition [13,21,27] and object tracking [41]. In anomaly detec-
tion, Zhao et al. [48] proposed a spatio-temporal autoencoder to learn video rep-
resentation by performing 3-dimensional convolutions. Wu et al. [37] introduced
a new task to localize the spatio-temporal tube of anomalous event, they used the
Faster-RCNN algorithm [25] to extract tube-level instance proposals, and then
adopted the multi-head self-attention method [31] to capture the relationships
between video objects. However, the pre-trained object detector cannot recognize
objects of unseen categories. Our method uses a separable spatio-temporal rela-
tion network to effectively capture the inconsistencies among different regions in
frames and the long-range temporal dynamics in video sequences.

3 Methodology

In this section, we first present the overall pipeline of our proposed scale-aware
spatio-temporal relation learning (SSRL) method in Sect. 3.1. Then we describe
the patch spatial relation module in Sect. 3.2. Section 3.3 introduces the multi-
scale patch aggregation method, and the video temporal relation module is
described in Sect. 3.4. Finally, we introduce the loss function in Sect. 3.5.

3.1 Overview

The overall pipeline of our SSRL is shown in Fig. 2. Given an input untrimmed
video V , the corresponding weak video-level label y ∈ {0, 1} indicates whether
abnormal events exist in this video (y = 1 if there exist anomalous events in video
V and y = 0 otherwise). Following the previous MIL-based frameworks [4,20,
28,30,49,51], we divide the video V into a sequence of temporal non-overlapping
video snippets {vt}T

t=1, here we use T to denote the number of video snippets.
We can see that given a video snippet vt ∈ R

H×W×L×3, where H and W
are the height and width of the video snippet, respectively, and L denotes the
temporal length of the video snippet. The video snippet vt will first be split
into several sets of spatial non-overlapping patch cubes with different spatial
sizes. As Fig. 3 shows, we set a number of sliding window sizes {(hr, wr)}R

r=1

to extract patch cubes. Thus, each set of patch cubes is represented as Pr
t =

{pr
t,i}Nr

i=1, r ∈ {1, . . . , R}, where pr
t,i ∈ R

hr×wr×L×3 denotes the extracted patch
cube with spatial patch size of hr × wr, and Nr = �H/hr� × �W/wr� is the
number of patch cubes. Then every patch cube is fed into a pretrained feature
extractor (I3D [2]) to generate features, and then features of patch cubes with the
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Fig. 2. The overall pipeline of our proposed SSRL. Each video snippet is first divided
into several sets of patch cubes. Then, our PSR modules learn the spatial relations
among patch cubes with the same size, and the multi-scale patch aggregation method
further fuses the features of multi-scale patch cubes. After that, the VTR module
captures the temporal dependencies among video snippets, and the snippet classifier
will predict the snippet scores. Finally, the video-level label y and the snippet scores
are used to compute the loss.

Fig. 3. Illustration of the multi-scale patch generator.

same size are stacked in horizontal dimension as χr
t ∈ R

Nr×D, where D denotes
the feature dimensions. To capture the inconsistencies between anomalous and
normal patch cubes, our proposed patch spatial relation (PSR) module comes
into play. It computes patch-wise correlations among patch cubes of the same
size through a self-attention mechanism [35] and dilated convolutions [42] to
produce spatial enhanced patch representations, denoted as φr

t ∈ R
Nr×D. After

that, we apply a multi-scale patch aggregation method to enhance the scale
robustness of our model. The features of the multi-scale patch cubes will be
fused to produce an aggregated snippet feature φ′

t ∈ R
D, enabling a local-to-

global perception of the video snippet. Please see Sect. 3.3 for more details. After
the above process, we obtain the aggregated video representation φA = [φ′

t]
T
t=1

from the T video snippets, which is then fed into a video temporal relation
(VTR) module to capture the temporal dependencies among video snippets,
resulting in a temporal enhanced video representation φST = [φ′′

t ]Tt=1, where
φ′′

t ∈ R
D denotes the enhanced feature of each snippet. Finally we employ a

snippet classifier [28] to generate anomaly scores {st}T
t=1 for all video snippets.
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Fig. 4. Illustration of the relation network. Nr

denotes the number of input patch cubes in the
PSR module.

Fig. 5. Illustration of the multi-
scale patch aggregation method.

3.2 Patch Spatial Relation Module

Inspired by the previous work [30], which used a combined network consisting of
a pyramid of dilated convolutions [42] and a temporal self-attention module [35]
to capture long- and short-range temporal dependencies between video snippets,
we use the same relation network in our framework, but the difference is that
we employ the relation network not only to capture the temporal dependencies
among video snippets but also to learn the spatial relations among patch cubes.
The detailed architecture of this relation network is illustrated in Fig. 4.

Supposing an abnormal event occurs at a limited location in a video snippet,
then the local feature distribution of the corresponding anomaly patch cubes
should be significantly different from other normal patch cubes. Therefore, to
capture the inconsistencies among different spatial regions, we propose the patch
spatial relation (PSR) module. It learns the patch-wise correlations of patch
cubes across different spatial regions from the pre-extracted initial patch features
χr

t ∈ R
Nr×D, where Nr denotes the number of patch cubes extracted with a

particular spatial size (hr, wr). The right sub-network in Fig. 4 is a non-local
network that aims to model the global spatial relations among patch cubes by
self-attention mechanism [35]. After we feed χr

t into the PSR module, the non-
local network first uses a 1×1 convolution to reduce the channel dimension from
χr

t ∈ R
Nr×D to χ̄r

t ∈ R
Nr×D/4, then a non-local operation is performed to model

global spatial relations among patch cubes:

χ̃r
t = softmax

(
Wθχ̄

r
t χ̄

r�
t W�

ϕ

)
Wgχ̄

r
t , (1)
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χ̂r
t = Wzχ̃

r
t + χ̄r

t , (2)

where χ̄r
t is first projected into the embedded space by three 1 × 1 convolutions

with learnable weights Wθ, Wϕ and Wg. We then calculate the attention map
M ∈ R

Nr×Nr by the dot product operation and softmax normalization, the
attention map M is used as weights to compute the weighted sum χ̃r

t . Once
the network captures an anomalous patch, its corresponding column in M is
expected to be highlighted, thus passing the information of this anomalous patch
to all patches. Our expectations coincide with the results of the later experiments
(Fig. 6). Then we obtain the self-attention based representation χ̂r

t ∈ R
N×D/4

by a 1 × 1 convolution with learnable weights Wz and a residual connection,
shown in Eq. 2.

The left sub-network in Fig. 4 contains a pyramid of dilated convolutions to
learn the local spatial dependencies of neighbouring patch cubes with multi-scale
receptive fields. Specifically, we set up three 1-D dilated convolutions with dif-
ferent dilation factors d ∈ {1, 2, 4}. The input features χr

t will be simultaneously
fed into three dilated convolutions to produce multi-scale dilation embedded
representations χr

∗,t ∈ R
N×D/4, ∗ ∈ {DC1,DC2,DC3}. Then, a concatenation

operation and residual connection are applied to the outputs of two sub-networks
to produce the spatial enhanced patch representations:

φr
t = [χ̂r

t , χ
r
∗,t] + χr

t , (3)

where [.] denotes the concatenation operation.

3.3 Multi-scale Patch Aggregation

In the video, the spatial scales of different anomalous objects vary greatly. If we
directly split the input video snippet into multiple patch cubes with a single fixed
spatial size, it is likely that a large anomaly object cannot be completely divided
into a single patch, while a small anomaly object still occupies only a small
part of the patch region. Therefore, we propose a multi-scale patch aggregation
(MPA) method to deal with this size mismatch case.

As mentioned in Sect. 3.1, we will first use sliding windows of different sizes to
split the input video snippet into several sets of non-overlapping patch cubes to
cover anomaly objects with different sizes. These sets of patch cubes will then be
passed through the I3D feature extractor and PSR modules in parallel to obtain
the spatial enhanced patch representations {φr

t}R
r=1, φr

t ∈ R
Nr×D. After that, the

MPA method comes into play. As Fig. 5 shows, each input patch representation
φr

t will first be reconstructed into a 3-D feature vector φ̇r
t ∈ R

�H/hr�×�W/wr�×D

according to the initial spatial location of patch cubes. Subsequent convolutional
and fully connected layers transform this 3-D feature vector into a 1-D feature
vector φ̈r

t ∈ R
D. After the above steps, the local information of the same scale

patches is aggregated. Finally, the multi-scale fused patch features {φ̈r
t}R

r=1 will
be aggregated together by an element-wise add operation, resulting in an aggre-
gated snippet feature φ′

t =
∑R

r=1 φ̈r
t .
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3.4 Video Temporal Relation Module

In an anomalous video, it is most likely that the motion patterns of anomalous
video snippets would not follow the patterns of other normal video snippets.
The existing video temporal relation (VTR) module aims to learn the temporal
context of video snippets by applying the relation network in Fig. 4 over the time
dimension. We formulate the VTR module as follows:

φ̃A = softmax
(
Wθφ̄Aφ̄�

AW
�
ϕ

)
Wgφ̄A, (4)

φ̂A = Wzφ̃A + φ̄A, (5)

φST = [φ̂A, φ∗,A] + φA, (6)

where φA = [φ′
1, φ

′
2, . . . , φ

′
T ] ∈ R

T×D represents the input aggregated features
of the T video snippets, which are then fed into the 1 × 1 convolution layer to
produce φ̄A ∈ R

T×D/4. φ∗,A denotes the outputs of three dilated convolution
layers and φST ∈ R

T×D denotes the output spatio-temporal enhanced video
representation.

3.5 Loss Function

We chose the multiple instance learning (MIL) method for weakly supervised
learning. In addition, to further improve the robustness of our SSRL in detecting
anomaly events, we draw on the feature magnitude learning method presented
in [30], which enables better separation between anomaly and normal videos
by selecting the top k snippets with largest feature magnitudes instead of the
snippet with the highest anomaly score to supervise MIL model. Specifically, for
the output spatio-temporal video representation φST = [φ′′

t ]Tt=1, where φ′′
t ∈ R

D

denotes the snippet feature, the mean feature magnitude is defined by:

g(φST ) = max
Ωk(φST )⊆{φ′′

t }T
t=1

1
k

∑

φ′′
t ∈Ωk(φST )

‖φ′′
t ‖2 , (7)

where Ωk(φST ) contains k snippets selected from {φ′′
t }T

t=1, the snippet feature
magnitude is computed by �2 norm. After that, the feature magnitude based
MIL ranking loss is formulated by:

LFM = max
(
0, ε − g(φ+

ST ) + g(φ−
ST )

)
, (8)

where ε is a pre-defined margin, φ+
ST and φ−

ST denote the anomaly and normal
video representations, respectively.

We feed the top k selected snippets with largest feature magnitudes into the
snippet classifier to generate the corresponding snippet anomaly scores {sj}k

j=1.
Then, we apply a cross-entropy-base loss function to train the snippet classifier:

LCE =
∑

s∈{sj}k
j=1

−(y log(s) + (1 − y) log(1 − s)). (9)



Scale-Aware Spatio-Temporal Relation Learning 341

Following the previous work [28], we add the sparsity and temporal smooth-
ness constraints on all predicted snippet scores{s+t }T

t=1 of the anomaly video. To
sum up, the total loss function of our model is defined as follows:

L = LCE + λfmLFM + λ1

T∑

t=1

|s+t | + λ2

T∑

t=1

(s+t − s+t−1)
2, (10)

where λfm, λ1 and λ2 are weighting factors used to balance the losses of each
component.

∑T
t=1 |s+t | and

∑T
t=1(s

+
t − s+t−1)

2 denote the sparsity regularization
and temporal smoothness constraint, respectively.

4 Experiments

4.1 Datasets and Metrics

We validated our SSRL on two large benchmark datasets for video anomaly
detection, namely UCF-Crime [28] and ShanghaiTech [18].

UCF-Crime: UCF-Crime [28] is a large-scale dataset. It has a total of 128 h with
1900 long untrimmed videos. All videos were captured from real-world surveil-
lance, including 13 types of anomalous events that have a significant impact
on public safety. The training set consists of 1610 videos, and the testing set
contains 290 videos. Both training and testing sets contain all 13 anomalies at
various temporal locations in the videos.

ShanghaiTech: ShanghaiTech dataset has 437 videos, including 307 normal
videos and 130 anomaly videos, all collected under 13 different scenes with com-
plex shooting angles. However, since the original dataset [18] was proposed for
semi-supervised anomaly detection, only normal videos were available in the
training set. Following Zhong et al. [49], we reorganize the videos into 238 train-
ing videos and 199 testing videos, making both the training and testing sets
contain anomalous videos, thus adapting to the weakly supervised setting.

Evaluation Metrics. Following previous works [4,28,30], we compute the area
under the curve (AUC) of the frame-level receiver operating characteristics
(ROC) as the main metric to evaluate the performance of our model and com-
parison methods, where a larger AUC implies higher distinguishing ability.

4.2 Implementation Details

Following previous works [28,30], for a training video, we first split the video into
32 non-overlapping video snippets (T = 32). Then we resize each video snippet
to 480 × 840 × 16 pixels (H = 480, W = 840, L = 16). To extract multi-scale
patch cubes from the video snippet, we set four different sliding window sizes:
480 × 840, 240 × 280, 160 × 168 and 120 × 120, where 480 × 840 means that we
treat the entire video frame as a patch. After that, we deploy the I3D network
pretrained on Kinetic-400 dataset [8] to extract initial features. For the relation
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network described in Fig. 4, we use the same setting as [30]. During the multi-
scale patch aggregation process, for each branch, we employ a 2-D convolutional
layer with 3 × 3 kernel and 2 × 2 stride and a fully connected layer with 2048
output nodes. The snippet classifier consists of three fully connected layers with
output nodes of 512, 128 and 1. For hyper-parameters, we set the margin ε = 100
in (8) and the number of selected snippets k = 3 in (7), and the weighting factors
λfm, λ1 and λ2 in (10) are set to 0.0001, 0.008 and 0.0008, respectively. All
hyper-parameters are the same for both UCF-Crime and ShanghaiTech.

Training. We train our network on 8 NVIDIA Tesla V100 GPUs using
PyTorch [23]. We randomly sample 32 abnormal videos and 32 normal videos
per batch and use the Adam optimizer [9] with the initial learning rate of 0.001
and a weight decay of 0.0005 to train our SSRL. For the MPA module, the fusion
process of multi-scale patches is difficult to optimize. To reduce the difficulty of
optimization, we adopt a step-by-step training strategy. We first optimize the
process of single-scale patches, and then gradually introduce new-scale patches.
More details about implementation are reported in Supplementary Material.

4.3 Comparisons with Related Methods

The AUC results on two benchmarks are presented in Table 1. For the UCF-
Crime dataset, our method achieves the highest AUC result of 87.43%. Com-
pared with the existing unsupervised methods [33,34], our SSRL outperforms
BODS [33] by 19.17% and GODS [34] by 16.97%. Our SSRL also surpasses exist-
ing weakly supervised methods [4,20,28,30,38,39,45,46,49,51]. In particular,
when using the same I3D-RGB initial features, our model exceeds Wu et al. [39]
by 4.99%, MIST [4] by 5.13%, RTFM [30] by 3.13%, Wu et al. [38] by 2.54%,
MSL [10] by 2.13% and WSAL [20] by 2.05%. For the ShanghaiTech dataset,
as the table indicates, the detection performance of our SSRL outperforms all
previous weakly supervised methods. It is worth noting that among other mod-
els that also use I3D-RGB features, the previous best method [38] achieved an
AUC result of 97.48%, which is already a fairly high result considering that only
video-level anomaly labels are provided, but our method still improves further
on this to 97.98%, which proves the powerful anomaly detection capability of our
SSRL. We further report the result when the parameters of different PSRs are
shared, with an AUC of 86.85% and 97.84% on the two datasets, respectively.
Although the performance is slightly dropped, the parameter amount is much
reduced (Table 6), which is more favorable for practical applications.

We also compare our SSRL with other spatio-temporal relation model-
ing methods on UCF-Crime. As shown in the Table 2, our approach signifi-
cantly exceeds STC-Graph [29] by 14.73% and STAD [37] by 4.7%. Video swin
transformer [13] is a transformer-based backbone architecture that has recently
achieved strong performance on a broad range of video-based recognition tasks.
We implemented it in VAD field, specifically, we used video swin transformer
(tiny version, due to memory limitations) as backbone, and performed multi-
instance weakly supervised learning using the classifier and loss function in this
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Table 1. Quantitative comparisons with other state-of-the-art methods on UCF-Crime
and ShanghaiTech. Share parameters denotes different PSRs’ parameters are shared.

Method Supervised Feature AUC (%)

UCF-Crime ShanghaiTech

BODS [33] Un I3D-RGB 68.26 –

GODS [34] Un I3D-RGB 70.46 –

Sultani et al. [28] Weak C3D-RGB 75.41 86.30

Zhang et al. [46] Weak C3D-RGB 78.66 82.50

Motion-Aware [51] Weak PWC-Flow 79.00 –

Zhong et al. [49] Weak TSN-RGB 82.12 84.44

Wu et al. [39] Weak I3D-RGB 82.44 –

MIST [4] Weak I3D-RGB 82.30 94.83

CLAWS [45] Weak C3D-RGB 83.03 89.67

RTFM [30] Weak I3D-RGB 84.30 97.21

Wu et al. [38] Weak I3D-RGB 84.89 97.48

WSAL [20] Weak I3D-RGB 85.38 –

MSL [10] Weak I3D-RGB 85.30 96.08

MSL [10] Weak VideoSwin-RGB 85.62 97.32

Our SSRL (share parameters) Weak I3D-RGB 86.85 97.84

Our SSRL Weak I3D-RGB 87.43 97.98

Table 2. Quantitative comparisons with other spatio-temporal relation modeling meth-
ods on UCF-Crime. ∗ indicates the result implemented by us.

Method Supervised AUC (%) - UCF

STC-Graph [29] Un 72.70

STAD [37] Weak 82.73

Video swin transformer [13] Weak 81.62∗

Our SSRL Weak 87.43

paper, with the rest of the setup as in [13]. The test results on UCF-Crime show
that our method outperforms video swin transformer by 5.81%, which may be
due to the lack of long-range temporal dependencies in video swin transformer.

4.4 Ablation Study

In this section, we conduct ablation studies to study the impact of important
designed elements in our SSRL.

Analysis of Multi-scale Patch Aggregation. To investigate the influence of
our proposed multi-scale patch aggregation method, we conduct ablation studies
on the UCF-Crime and ShanghaiTech datasets. The detailed comparison results
are shown in Table 3. Specifically, we employ RTFM [30] as our baseline, which
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Table 3. Ablation studies on the multi-scale patch aggregation method (see Sect. 3.3)
on two benchmarks. ∗ indicates we use the method in [30] as our baseline.

Patch size AUC (%)

480 × 840 240 × 280 160 × 168 120 × 120 UCF-Crime ShanghaiTech

� 84.30∗ 97.21∗

� � 86.38 97.60

� � 85.69 97.69

� � 85.29 97.55

� � � 86.70 97.85

� � � 86.32 97.77

� � � 86.97 97.71

� � � � 87.43 97.98

Table 4. Ablation studies on two benchmarks for investigating the effect of spatio-
temporal relation learning. Baseline is [30] trained with video temporal relation net-
work. SSRL is our whole model. SSRLw/o PSR is SSRL trained without patch spatial
relation module but with multi-scale patch aggregation module. For the MPA module,
we use all four patch sizes in Table 3.

Methods VTR MPA PSR AUC (%)

UCF-Crime ShanghaiTech

Baseline � 84.30 97.21

SSRLw/o PSR � � 85.98 97.45

SSRL � � � 87.43 97.98

performs anomaly detection directly on the input video snippet and achieves
84.30% and 97.21% AUC results on UCF-Crime and ShanghaiTech, respectively.
Then, we set up three different patch sizes: 240×280, 160×168 and 120×120 for
capturing anomalous events on the corresponding spatial scales. When we extract
patch cubes using only one of the sizes, the corresponding experimental results
are shown in the second to fourth rows of Table 3. We observe 0.99% to 2.08%
and 0.34% to 0.48% improvement on the two datasets respectively. This verifies
the effectiveness of patch-based feature learning. After that, we start integrating
multiple sizes of patch cubes to capture anomaly events of different sizes. We
report the corresponding experimental results in the fifth to the last row of the
table. We observe the AUC results increase gradually as more sizes of patch cubes
are introduced. The AUC increases from 86.32% to 87.43% on the UCF-Crime
dataset and improves from 97.71% to 97.98% on the ShanghaiTech dataset. Our
MPA module fuses patch features from multiple branches by an element-wise
add operation, so that anomalies will be identified if they are captured by any
of the branches. The above observations reveal the complementary effect among
the patch information at multiple scales.
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Analysis of Spatio-Temporal Relation Learning. The results in Table 4
verify the effect of spatio-temporal relation learning. Compared with the base-
line that only considers the temporal context in the video and treats the video
frame as a whole, SSRLw/o PSR achieves a significant improvement when the
MPA-enabled spatial local patterns are utilized. In particular, we observe 1.68%
and 0.24% improvement in AUC on two benchmarks, respectively, which shows
that spatio-temporal features are more discriminatory than simple temporal fea-
tures. Moreover, the PSR module also plays an important role in spatio-temporal
feature learning by capturing the inconsistencies among different patches. Com-
pared with SSRLw/o PSR, with the help of the PSR module, SSRL further
increases 1.45% AUC on the UCF-Crime and 0.53% AUC on the ShanghaiTech.

Analysis on Two Sub-networks in the PSR Module. The results in Table 5
verify the effect of two sub-networks in PSR. We employ the pyramid of dilated
convolutions to learn the local spatial dependencies of neighboring patches with
multi-scale receptive field, and it brings 0.24% and 0.18% AUC gains on UCF-
Crime and ShanghaiTech, respectively. We also use the no-local network to cap-
ture the global spatial relations of different patches, and it improves the AUC
by 0.69% and 0.37% on UCF-Crime and ShanghaiTech, respectively. When
both sub-networks are added, we observe an increase in AUC of 1.45% and
0.53% on UCF-Crime and ShanghaiTech, respectively. This indicates that two

Table 5. Ablation studies on two benchmarks for verifying the effectiveness of sub-
networks in the PSR module.

Methods AUC (%)

UCF-Crime ShanghaiTech

Full 87.43 97.98

w/o dilated convolutions 86.57 97.82

w/o no-local network 86.22 97.63

w/o PSR module 85.98 97.45

Fig. 6. Visualization results of attention heatmaps with three patch sizes on UCF-
Crime (Stealing079, Burglary017, Arson010, from top to bottom) test videos.
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sub-networks complement each other in capturing both local and global range
spatial dependencies, and contribute to the overall performance.

4.5 Visual Results

To further evaluate the performance of our method, we visualize the attention
map M = [wm,n]Nr,Nr

m=1,n=1 in the PSR module. As we mentioned in Sect. 3.2,
the columns corresponding to anomalous patches are expected to be highlighted
in M. We accumulate the weights [wm,n]Nr,Nr

m=1,n=1 row by row to generate a 1-
D attention vector [w′

n]Nr
n=1, w′

n =
∑Nr

m=1 wm,n, which is normalized and then
rearranged into a 2-D attention mask M′ ∈ R

�H/hr�×�W/wr� according to the
initial spatial location of the patches. We then use M′ to generate the attention
heatmap for spatial explanation. As Fig. 6 shows, our PSR module is able to sen-
sitively focus on salient anomalous regions and suppress the background, even
if the anomalous objects keep moving over time. In addition, the three rows in
Fig. 6 correspond to three different patch sizes, and from top to bottom, we can
see that as the patch size decreases, the focus of attention becomes more concen-
trated. This scale-aware pyramidal attentional vision can effectively improve the
scale robustness of detecting anomalies. We also compare the predicted anomaly
scores of our SSRL and the baseline [30] in Fig. 7. Two anomalous videos (Shoot-
ing022, 01 0141 ) and one normal video (Normal210 ) are used. As we can see,
compared with the baseline, our SSRL can effectively detect small anomalous
events (e.g., Shooting022 and 01 0141 ). Moreover, our SSRL produces much less

Fig. 7. Visualization of the anomaly scores of our SSRL and the baseline [30] on UCF-
Crime (Shooting022, Normal210 ), and ShanghaiTech (01 0141 ) test videos. Pink areas
are temporal ground truths of anomalies. The red boxes denote anomalous regions.
(Color figure online)

Table 6. Computational complexity comparisons with other methods.

Method Feature encoder Param FLOPs

RTFM [30] I3D 28M 186.9G

Zhong et al. [49] C3D 78M 386.2G

Our SSRL I3D 191M 214.6G

Our SSRL (share parameters) I3D 136M 214.6G
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false positives on normal videos (e.g., Normal210 ) and anomalous videos (e.g.,
Shooting022 ).

4.6 Computational Complexity

We provide detailed information of parameter amount and computational cost
in Table 6, and we acknowledge that large parameter amount is a potential limi-
tation of our approach. Since our SSRL uses the same VTR module as baseline,
the extra computational cost and parameters come from the PSR and MPA
modules, and we can address this limitation by sharing parameters between dif-
ferent PSR modules. As the Table 6 shows, with a slight decrease in performance
(Table 1), the parameter amount drops by 55 megabytes, which facilitates the
real-world application of our method.

5 Conclusion

In this work, we propose a scale-aware weakly supervised video anomaly detec-
tion framework that uses only video-level labeled training videos to learn to focus
on locally salient anomalous regions. We adopt a separable spatio-temporal rela-
tion network which explores the spatio-temporal context in the video to generate
discriminative spatio-temporal features. We also introduce a multi-scale patch
aggregation method to enable the local-to-global perception in frames and to
enhance the scale robustness of our model. Remarkably, our proposed method
achieves significant improvements on two public benchmarks.
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