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Abstract

This paper presents a generalized model for real-time
detection of flying objects that can be used for transfer
learning and further research, as well as a refined model
that achieves state-of-the-art results for flying object de-
tection. We achieve this by training our first (generalized)
model on a data set containing 40 different classes of fly-
ing objects, forcing the model to extract abstract feature
representations. We then perform transfer learning with
these learned parameters on a data set more representa-
tive of “real world” environments (i.e. higher frequency of
occlusion, very small spatial sizes, rotations, etc.) to gen-
erate our refined model. Object detection of flying objects
remains challenging due to large variances of object spatial
sizes/aspect ratios, rate of speed, occlusion, and clustered
backgrounds. To address some of the presented challenges
while simultaneously maximizing performance, we utilize
the current state-of-the-art single-shot detector, YOLOv8,
in an attempt to find the best trade-off between inference
speed and mean average precision (mAP). While YOLOv8
is being regarded as the new state-of-the-art [19], an offi-
cial paper has not been released as of yet. Thus, we provide
an in-depth explanation of the new architecture and func-
tionality that YOLOv8 has adapted. Our final generalized
model achieves a mAP50 of 79.2%, mAP50-95 of 68.5%,
and an average inference speed of 50 frames per second
(fps) on 1080p videos. Our final refined model maintains
this inference speed and achieves an improved mAP50 of
99.1% and mAP50-95 of 83.5%.

1. Introduction
Numerous recent events have demonstrated the mali-

cious use of drones. Over the past few months, there have
been reports of assassination attempts via drones with small
explosive payloads [20], drug deliveries to state prisons
[22], and surveillance of the United States (U.S.) Border Pa-
trol by smugglers [7] to exploit weaknesses. While research
indicates that drone usage is expected to increase exponen-
tially [17], detection technology has yet to provide reliable

and accurate results. Drones and mini unmanned aerial ve-
hicles (UAVs) present a stealth capability and can avoid de-
tection by most modern radar systems due to their small
electromagnetic signature. They are also small, highly ma-
neuverable, and omit low levels of noise. This, along with
the ease of access, provides a natural incentive for drones to
remain an integral part of modern warfare and illegal activ-
ities. While methods such as radio and acoustic detection
have been proposed as solutions, they are currently known
to be inaccurate [6]. This motivates the integration of a vi-
sual detector in any such detection system. The U.S. Bor-
der Patrol implements real-time object detection from digi-
tal towers to monitor people and motor vehicles [4], but is
not currently known to implement drone detection, which
may explain the recent undetected illegal patrolling. Drone
detection in this environment is challenging due to the clut-
tered desert background and the distance that drones survey
from [8]. The farther the drone is from cameras, the more
difficult it will be to detect and classify it, as the object will
convey less signal in the input space to the model.

Our primary objective is to provide a generalized real-
time flying object detection model that can be used by oth-
ers for transfer learning or further research, as well as a re-
fined model that is ready to use “out of the box” for imple-
mentation [16]. We define a generalized model as one that
has good detection and classification performance on a large
number of classes at higher resolutions while maintaining a
reasonable frame rate (1080p : 30-60 frames per second).
Instead of just training our model on drones, we train on
a data set containing 40 different flying object categories
to force the model to learn more abstract feature representa-
tions of flying objects. Then, we transfer learn these weights
on a final data set containing more instances of “real world“
environments (i.e. higher frequency of occlusion, small spa-
tial sizes, rotations, etc.). This in turn will lead to a more re-
fined, ready-to-implement real-time flying object detection
model. To maximize our model’s performance, we use the
latest state-of-the-art single-shot detector, YOLOv8. Cur-
rently, single-stage detectors are the de-facto architecture
choice for fast inference speeds. This choice comes at the
expense of exchanging the higher accuracy you would typ-
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ically expect from a two-state detector. While YOLOv8 is
being regarded as the new state-of-the-art [19], an official
paper has yet to be released. This motivates our secondary
objective, which is to explain the new architecture and func-
tionality that YOLOv8 has adapted.

2. Materials and Methods
Real-time object detection remains challenging due to

variances in object spatial sizes and aspect ratios, inference
speed, and noise. This is especially true for our use case, as
flying objects can change location, scale, rotation, and tra-
jectory very quickly. This conveys the necessity for fast in-
ference speed and thorough model evaluation between low-
variance classes, object sizes, rotations, backgrounds, and
aspect ratios.

Our initial model is trained on a data set [13] com-
prised of 15,064 images of various flying objects with an
80% train and 20% validation split. Each image is la-
beled with the class number of the object and the coordi-
nates of the edges of the associated bounding box. An im-
age may have more than one object and class, sitting at an
average of 1.6 annotated objects per image and a total of
24,769 annotations across all images. The median image
ratio is 416x416. The images were pre-processed with auto-
orientation, but there were no augmentations applied. The
data set represents a long-tailed distribution with the drone
(25.2% of objects), bird (25%), p-airplane (7.9%), and c-
helicopter (6.3%) classes taking up the majority of the data
set (64.4%), suffering from a class imbalance. Published on
Roboflow with an unnamed author, this data set was gener-
ated in 2022, having been downloaded only 15 times.

In addition, we utilized a second data set [1] to apply
transfer learning for the refined model. With a focus on
the challenges we laid out, this second data set consists of
flying objects at a noticeably farther distance than our ini-
tial data set. It consists of 11,998 images, where the av-
erage image size is 0.33 mp with a median image ratio of
640x512. The images are separated into a 90% train and
10% validation split. An image may contain more than one
object and class, however, it has an average of one object
per image, reaching a total count of 12,410 annotated ob-
jects. With only four different objects, each class is well
represented: drones take up 38.8% of the annotated objects,
21.2% helicopters, 20.4% airplanes, and 19.6% birds. Al-
though Roboflow reports a bird class, the images that con-
tain birds are not labeled and are not included as a class in
the transfer model. This dataset was published on Roboflow
in 2022 by Ahmed Mohsen [1], having only 5 downloads
by the time of this paper.

We chose the YOLOv8 architecture under the assump-
tion that it would provide us with the highest probability of
success given the task. YOLOv8 is assumed to be the new
state-of-the-art due to its higher mean average precisions

(mAPs) and lower inference speed on the COCO dataset.
However, an official paper has yet to be released. It also
specifically performs better at detecting aerial objects [Fig-
ure 9]. We implement the code for YOLOv8 from the Ultr-
alytics repository. We decide to implement transfer learn-
ing and initialize our models with pre-trained weights to
then begin training on the custom data set. These weights
are from a model trained on the COCO dataset. Due to
only having access to a single NVIDIA RTX 3080 and
3070, a greedy model selection/hyper-parameter tuning ap-
proach was chosen. We first train a version of the small,
medium, and large versions of the model with default hyper-
parameters for 100 epochs. Then, we decide which model is
optimal for our use case given the trade-off between infer-
ence speed and mAP-50-95 on the validation set. After the
model size is selected, a greedy hyper-parameter search is
conducted with 10 epochs per each set of hyper-parameters.
The model with the optimal hyper-parameters trains for 163
epochs to generate the generalized model. After this model
learns abstract feature representations for a wide array of
flying objects, we then transfer learn these weights to a data
set that is more representative of the real world [1] to gen-
erate the refined model. This data set contains 3 classes:
helicopter, plane, and drone, with very high variance in ob-
ject spatial sizes. For evaluation, we are particularly inter-
ested in evaluating mAP50-95 and inference speed, as these
are the most common measures of success across most ob-
ject detection algorithms. Due to the large class imbalance,
poor performance on the validation set was anticipated in
the minority classes. However, this was not observed [Fig-
ure 1].

Mean average precision (mAP) is one of the most used
evaluation metrics for object detection. mAP takes the av-
erage precision (AP) over all classes and computes them at
a pre-specified Intersection over Union (IoU) threshold. To
define precision, we need to define true positives and false
positives for object detection. A true positive will be deter-
mined when the IoU between the predicted box and ground
truth is greater than the set IoU threshold, while a false posi-
tive will have the IoU below that threshold. Then, precision

can be defined as
tp

tp+ fp
. We take the mean over a class

by iterating over a set of thresholds and averaging them.
For mAP50-95, we take steps of 0.05 starting from an IoU
threshold of 0.5 and stopping at 0.95. The average precision
over this interval is the class AP. Do this for all classes and
take the average over them and we generate the mAP50-95.

2.1. Generalized Model Choice and Performance

We evaluate small, medium, and large versions of the
models to determine an optimal trade-off between infer-
ence speed and mAP50-95 to then optimize the hyper-
parameters. The small, medium, and large models have
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(11151080, 25879480, & 43660680) parameters and (225,
295, & 365) layers respectively. After training the models,
we see there is a noticeable increase in mAP50-95 between
small and medium models (0.05), but not much delta be-
tween medium and large (0.002). We also see that small,
medium, and large infer at 4.1, 5.7, and 9.3 milliseconds
respectively on the validation set. However, our original
goal is to reach an average inference speed between 30
to 60 frames for 1080p. When testing the medium-size
model on multiple 1080p HD videos, we observe an average
total speed (pre-process speed (0.5ms) + inference speed
(17.25ms) + post-process speed (2ms)) of 19.75 ms (50
frames per second), which aligns with our primary objec-
tive. This leads to our selection of the medium-size model
to begin tuning hyper-parameters.

Due to a lack of computational resources, we evaluate
10 epochs for each set of hyper-parameters as an indica-
tor for the potential performance of additional epochs. We
observe that this assumption is correct, as training with
the optimal set of hyper-parameters achieves better perfor-
mance at epoch 100 compared to default hyper-parameters
(0.027) [Figure 2]. We choose the best hyper-parameters
based on validation mAP50-95 as batch size of 16, stochas-
tic gradient descent (SGD) as the optimizer, momentum of
0.937, weight decay of 0.01, classification loss weight λcls

= 1, box loss weight λbox = 5.5, and distribution focal loss
weight λdfl = 2.5. After training for 163 epochs, we achieve
a mAP50-95 of 0.685 and an average inference speed on
1080p videos of 50 fps.

2.2. Loss Function and Update Rule

The generalized loss function and weight update proce-
dure can be defined as follows:

L(θ) = λbox

Npos
Lbox(θ)+

λcls

Npos
Lcls(θ)+

λdfl

Npos
Ldfl(θ)+ϕ∥θ∥22

(1)

V t = βV t−1 +∇θL(θt−1) (2)

θt = θt−1 − ηV t (3)

(1) is the generalized loss function incorporating the in-
dividual loss weights and a regularization term with weight
decay ϕ, (2) is the velocity term with momentum β, and (3)
is the weight update rule with η as the learning rate. The

specific YOLOv8 loss function can be defined as:

L =
λbox

Npos

∑
x,y

1c∗x,y

[
1−qx,y+

∥bx,y − b̂x,y∥22
ρ2

+αx,yνx,y
]

+
λcls

Npos

∑
x,y

∑
c∈classes

yclog(ŷc) + (1− yc)log(1− ŷc)

+
λdfl

Npos

∑
x,y

1c∗x,y

[
− (q(x,y)+1 − qx,y)log(q̂x,y)

+ (qx,y − q(x,y)−1)log(q̂(x,y)+1)
]

(4)

where:

qx,y = IoUx,y =
β̂x,y ∩ βx,y

β̂x,y ∪ βx,y

νx,y =
4

π2
(arctan(

wx,y

hx,y
)− arctan(

ŵx,y

ĥx,y

))2

αx,y =
ν

1− qx,y

ŷc = σ(·)
q̂x,y = softmax(·)

and:

• Npos is the total number of cells containing an object.

• 1c∗x,y
is an indicator function for the cells containing

an object.

• βx,y is a tuple that represents the ground truth bound-
ing box consisting of (xcoord,ycoord, width, height).

• ˆβx,y is the respective cell’s predicted box.

• bx,y is a tuple that represents the central point of the
ground truth bounding box.

• yc is the ground truth label for class c (not grid cell c)
for each individual grid cell (x,y) in the input, regard-
less if an object is present.

• q(x,y)+/−1 are the nearest predicted boxes IoUs (left
and right) ∈ c∗x,y .

• wx,y and hx,y are the respective boxes width and
height.

• ρ is the diagonal length of the smallest enclosing box
covering the predicted and ground truth boxes.

Each cell then determines its best candidate for predict-
ing the bounding box of the object. This loss function in-
cludes the complete IoU (CIoU) loss proposed by Zheng et
al. [25] as the box loss, the standard binary cross entropy for
multi-label classification as the classification loss (allowing
each cell to predict more than 1 class), and the distribution
focal loss proposed by Li et al. [12] as the 3rd term.
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Figure 1: Confusion matrix for all classes.

Figure 2: YOLOv8 validation mAP50-95.

2.3. Model Confusion and Diagnosis

One of the primary challenges in object detection is deal-
ing with data sets with low inter-class variance, i.e. multiple
classes that look similar to each other compared to the rest
of the labels. Take, for example, the F-14 and F-18, which
are displayed in Figure 3. Both have similar-looking wing
shapes, two rudders, an engine, a cockpit, and a respective
payload. In this confusion matrix [Figure 1], the model is
most likely to misclassify an F-14 as an F-18. This type of
misclassification typically affects classes in categories with
low inter-class variance amongst themselves. Visualizing
activation maps [24] is a technique that helps us understand

what pixels in the input image are important for determining
its class.

Generally, deeper layers in CNNs extract more
granular/complex/low-level feature representations.
YOLOv8 incorporates this idea into its architecture by hav-
ing repeating modules and multiple detection heads when
making its prediction. For our experimentation, we use
MMYolo [24] to create activation maps at different stages
of our backbone. We expect some sense of differentiation
in the different feature maps. If our model shows similar
feature activations for F-14s and F-18s, we can say that
may be the reason for class confusion.

MMYolo [24] by Yamaguchi et al. is an open-source
toolbox for YOLO series algorithms based on PYTorch.
MMYolo can decompose the most popular YOLO algo-
rithms, making them easily customizable and ready for
analysis. For our analysis, we employed MMYolo to first
convert the weights from .pt (Pytorch model) to .pth (State
dictionary file, i.e., weights, bias, etc.), and to second vi-
sualize the different activation maps of YOLOv8 during in-
ference. MMYolo allows you to specify the model type,
weight file, target layer, and channel reduction.

YOLOv8 uses CSPDarknet53 [15] as its backbone [Fig-
ure 7], a deep neural network that extracts features at mul-
tiple resolutions (scales) by progressively down-sampling
the input image. The feature maps produced at different
resolutions contain information about objects at different
scales in the image and different levels of detail and ab-
straction. YOLOv8 can incorporate different feature maps
at different scales to learn about object shapes and textures,
which helps it achieve high accuracy in most object detec-
tion tasks. YOLOv8’s backbone consists of four sections,
each with a single convolution followed by a c2f module
[19]. The c2f module is a new introduction to CSPDark-
net53. The module comprises splits where one end goes
through a bottleneck module (two 3x3 convolutions with
residual connections). The bottleneck module output is fur-
ther split N times, where N corresponds to the YOLOv8
model size. These splits are all finally concatenated and
passed through one final convolution layer. This final layer
is where we will get the activations.

Figure 3 shows the original F-14 and F-18 images and
the activations of the four c2f stages in the network, with
each stage being more profound in the network from the
second image right. The activation map corresponding to
the shallowest c2f module shows the broadest activation.
This module detects the two wings of the aircraft and de-
termines that this object is a plane. The second activation
map corresponds to the second c2f module in our backbone.
It shows strong activations at different components of the
aircraft, such as locating the wings, body, cockpit, and pay-
load. It appears that this layer is attempting to infer what
kind of aircraft is being presented in the image by high-
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Figure 3: Feature activation maps for the F-14 and F-18 fighter jets. From left to right, we have the four stages of the model’s
CSPDarkNet53 backbone.

Figure 4: From left to right, (1) picks up the drone, (2) picks up tree top granularity - tree tops are more granular than stumps,
(3) granular version of layer (2), (4) an outlier, texturized analysis of what the object is.

lighting these features. The third activation map is start-
ing to dive into the individual textures of the components
of the aircraft, presumably checking for minute differences
in the jet’s structure. Finally, the model’s final c2f module
activates extremely fine-grained details and outlines in the
respective images. These similar feature activation maps
could be the reason that the model confuses the two.

3. Results
3.1. Generalized Model

To highlight our results, we address three challenging
conditions: (1) detecting and classifying extremely small
objects, (2) identifying flying objects that blend into their
background, and (3) classifying different types of flying
objects. We examined the performance of our generalized

model, [13], against these challenges. This is demonstrated
in Figure 5, which features four images that represent the
bird, drone, passenger airplane, and V22 classes.

The first of the four images showcases the model’s abil-
ity to identify distant birds. In the second image, the model
was put to the test against a very small drone that occupied
only 0.026% of the image size while also blending in with
its background. The model still resulted in the correct detec-
tion and classification of the drone. The third image shows
the model’s ability to identify a minute passenger airplane
of size 0.063% of the image, which is also blended into its
surroundings. Finally, the fourth image features a V22 air-
craft, which is an underrepresented class and accounts for
only 3.57% of the entire dataset. A V22 can easily be mis-
taken as a drone due to its vertical propeller positioning.
Despite these two hindering characteristics and only tak-
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(a) Generalized Model

(b) Refined Model - Transfer Learning Images

Figure 5: Prediction Images

ing up 0.14% of the entire image, the image exhibits the
model’s ability to still identify the V22 with impressive ac-
curacy, achieving a confidence score of 0.83.

Despite the visual similarities between the birds, drones,
and passenger airplanes in these images, our model success-
fully classified them with adequate confidence. These re-
sults illustrate our model’s ability to overcome our identified
challenges associated with object detection in real-world
conditions, and also demonstrate our success in creating a
solution that effectively tackles these challenges. Overall,
it does very well at distinguishing various types of flying
objects despite the need to account for multiple different
classes of aircraft.

3.2. Refined Model

To generate the refined model, we initialized the model
with the weights learned from the generalized model and
default hyperparameters. We then trained the model on the
“real world“ data set for 199 epochs [1]. This data set was
selected to focus on our challenge of detecting and classi-
fying extremely small objects in appearance. Figure 5 dis-
plays our results, featuring four distinct images that repre-
sent the bird, drone, airplane, and helicopter objects.

The first image contains an extremely small bird that
only takes up 0.02% of the image. Even with the lack of
the bird class in our training process, our model correctly
identified that the object was not any of the other available
classes, even while allowing a very low confidence thresh-

old of 0.20. The second image contains a drone, which also
only took up 0.02% of its image. This drone is nearly in-
distinguishable from the background clouds to the human
eye, yet our model was still able to classify it with a con-
fidence score of 0.81. The third image includes a small
airplane that takes up 0.034% of pixels, which our model
was still able to correctly identify and classify with a high
confidence score of 0.85. In the final image, a barely visi-
ble helicopter (0.01% of the image) was correctly classified
with a confidence score of 0.73.

In Figure 4, we can see that the feature map activation
correctly segments the object in the first layer. The second
layer starts picking out all of the tree tops, which can be ex-
plained by the higher relative variance of the tree tops. In
the third layer, we see more importance being placed on the
background and more granular features being detected. In
the fourth layer, we see the outline of the drone itself. In the
second row, the true strength of the localization accuracy
with an over-emphasized detection is displayed. In the sec-
ond layer, we see a de-emphasis on the background. In the
third and fourth layers, we see the same behavior as before.

Our model achieves state-of-the-art results, achieving a
mAP50 of 0.991 and mAP50-95 of 0.835 across the plane,
helicopter, and drone classes. These results demonstrate
that our generalized model serves as an excellent base for
transfer learning, particularly when dealing with extremely
small objects, blended backgrounds, and distinguishing be-
tween drones and other flying objects.
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4. Discussion

To the problem of flying object detection, we apply
transfer learning with weights learned from our generalized
model to our refined model in order to achieve state-of-the-
art results in this domain. We argue that our algorithm ex-
tracts better feature representations of flying objects than
those seen in previous research, furthering the current state
of research in this domain. Our refined model achieves a
99.1% mAP50, 98.7% Precision, and 98.8% Recall with 50
fps inference speed on the 3-class data set (drone, plane,
and helicopter), surpassing models generated from previ-
ous research to a significant extent. Aydin et al. pro-
posed a YOLOv5 instance that achieved 90.40% mAP50,
91.8% Precision, and 87.5% Recall with 31 fps inference
speed trained on a data set only containing drones and birds
[3]. Rozantsev et al. trained their proposed model on a
data set reflective of ours, containing flying objects that oc-
cupy small portions of the input image with clustered back-
grounds. They achieve an 84.9% AP on a data set contain-
ing only UAVs and 86.5% AP on a data set containing only
aircraft [18]. Al-Qubaydhi et al. proposed a model utilizing
the YOLOv5 framework and achieves an impressive 94.1%
mAP50, 94.7% Precision, and 92.5% Recall on a dataset
containing only one class of drones. [2]. Even with our ex-
ceptional results, a potential limitation of our refined model
is that it was trained on a data set with a low amount of dis-
tinct environments. To address this potential generalization
issue, we suggest utilizing our generalized model weights to
transfer learn on a data set with higher frequency of distinct
backgrounds.

5. Model Architecture

With the publication of “You Only Look Once: Uni-
fied, Real-Time Object Detection” first proposed by Red-
mon et al. [14] in 2015, one of the most popular object
detection algorithms, YOLOv1, was first described as hav-
ing a “refreshingly simple” approach [21]. At its incep-
tion, YOLOv1 could process images at 45 fps, while a vari-
ant, fast YOLO, could reach upwards of 155 fps. It also
achieved high mAP compared to other object detection al-
gorithms at the time.

The main proposal from YOLO is to frame object detec-
tion as a one-pass regression problem. YOLOv1 comprises
a single neural network, predicting bounding boxes and as-
sociated class probability in a single evaluation. The base
model of YOLO works by first dividing the input image into
an S x S grid where each grid cell (i,j) predicts B bounding
boxes, a confidence score for each box, and C class proba-
bilities. The final output will be a tensor of shape S x S x (B
x 5 + C).

5.1. YOLOv1 Overview

YOLOv1 architecture [Figure 6] consists of 24 convo-
lutional layers followed by two fully connected layers. In
the paper [14], the authors took the first 20 convolutional
layers from the backbone of the network and, with the addi-
tion of an average pooling layer and a single fully connected
layer, it was pre-trained and validated on the ImageNet 2012
dataset. During inference, the final four layers and 2 FC lay-
ers are added to the network; all initialized randomly.

Figure 6: YOLO Architecture [14]

YOLOv1 uses stochastic gradient descent as its opti-
mizer. The loss function, shown by Equation 5, comprises
two parts: localization loss and classification loss. The
localization loss measures the error between the predicted
bounding box coordinates and the ground-truth bounding
box. The classification loss measures the error between
the predicted class probabilities and the ground truth. The
λcoord and λnoobj are regularization coefficients that regu-
late the magnitude of the different components, emphasiz-
ing object localization and de-emphasizing grid cells with-
out objects.

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+ λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(
√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2
]

+

S2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)2

+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)2

+

S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2 (5)

5.2. YOLOv5 Overview

YOLOv5 [6] is an object detection model introduced in
2020 by Ultralytics, the originators of the original YOLOv1
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Figure 7: YOLOv8 Architecture [19]

and YOLOv3. YOLOv5 achieves state-of-the-art perfor-
mance on the COCO benchmark dataset [5] while also be-
ing fast and efficient to train and deploy. YOLOv5 made
several architectural changes, most notably the standardized
practice of structuring the model into three components: the
backbone, neck, and head.

The backbone of YOLOv5 is Darknet53, a new network
architecture that focuses on feature extraction characterized
by small filter windows and residual connections. Cross-
stage partial connections (CSP) enable the architecture to
achieve a richer gradient flow while reducing computation
as proposed by Wang et al. [23].

The neck [21], as described by Teven et al., of YOLOv5
connects the backbone to the head, whose purpose is to ag-
gregate and refine the features extracted by the backbone,
focusing on enhancing the spatial and semantic information
across different scales. A Spatial Pyramid Pooling (SPP)
[10] module removes the fixed-size constraint of the net-
work, which removes the need to warp, augment, or crop
images. This is followed by a CSP-Path Aggregation Net-
work [23] module, which incorporates the features learned
in the backbone and shortens the information path between
lower and higher layers.

YOLOv5’s head consists of three branches, each predict-
ing a different feature scale. In the original publication of
the model [5], the creators used three grid cell sizes of 13 x
13, 26 x 26, and 52 x 52, with each grid cell predicting B
= 3 bounding boxes. Each head produces bounding boxes,
class probabilities, and confidence scores. Finally, the net-
work uses Non-maximum Suppression (NMS) [11] to filter
out overlapping bounding boxes.

YOLOv5 incorporates anchor boxes, which are fixed-
sized bounding boxes used to predict the location and size
of objects within an image. Instead of predicting arbitrary
bounding boxes for each object instance, the model predicts
the coordinates of the anchor boxes with predefined aspect
ratios and scales and adjusts them to fit the object instance.

5.3. YOLOv8 Overview

YOLOv8 is the latest version of the YOLO object de-
tection model. This latest version has the same architecture
as its predecessors [Figure 7], but it introduces numerous
improvements compared to the earlier versions of YOLO,
such as a new neural network architecture that utilizes both
Feature Pyramid Network (FPN) and Path Aggregation Net-
work (PAN) and a new labeling tool that simplifies the an-
notation process. This labeling tool contains several useful
features like auto labeling, labeling shortcuts, and customiz-
able hotkeys. The combination of these features makes it
easier to annotate images for training the model.

The FPN works by gradually reducing the spatial res-
olution of the input image while increasing the number
of feature channels. This results in the creation of fea-
ture maps that are capable of detecting objects at different
scales and resolutions. The PAN architecture, on the other
hand, aggregates features from different levels of the net-
work through skip connections. By doing so, the network
can better capture features at multiple scales and resolu-
tions, which is crucial for accurately detecting objects of
different sizes and shapes [21].

5.4. YOLOv8 vs YOLOv5

The reason why YOLOv8 is being compared to YOLOv5
rather than any other version of YOLO is that YOLOv5’s
performance and metrics are closer to YOLOv8’s. How-
ever, YOLOv8 surpasses YOLOv5 in aspects including a
better mAP as seen in Figure 9. Along with a better mAP,
this shows that YOLOv8 has fewer outliers when measured
against the RF100. RF100 is a 100-sample dataset from the
Roboflow universe, which is a repository of 100,000 data
sets. We also witness YOLOv8 outperforming YOLOv5
for each RF100 category. From Figure 8, we can see that
YOLOv8 produces similar or even better results compared
to YOLOv5 [19].

As mentioned previously, YOLOv8 uses a new architec-
ture that combines both FAN and PAN modules. FPN is
used to generate feature maps at multiple scales and reso-
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Figure 8: YOLOs mAP@.50 against RF100.

Figure 9: YOLOs average mAP@.50 against
RF100 categories

lutions, while PAN is used to aggregate features from dif-
ferent levels of the network to improve accuracy. The re-
sults of the combined FAN and PAN modules are better than
YOLOv5, which uses a modified version of the CSPDarknet
architecture. This modified version of CSPDarknet is based
on cross-stage partial connections, which improves the flow
of information between different parts of the network.

Another difference the two models have is based on their
training data. YOLOv8 was trained on a larger and more di-
verse dataset compared to YOLOv5. YOLOv8 was trained
on a blend of the COCO dataset and several other datasets,
while YOLOv5 was trained primarily on the COCO dataset.
Because of this, YOLOv8 has a better performance on a
wider range of images.

YOLOv8 includes a new labeling tool called RoboFlow
Annotate, which is used for image annotation and object
detection tasks in computer vision. RoboFlow Annotate
makes it easier to annotate images for training the model
and includes several features such as auto labeling, labeling
shortcuts, and customizable hotkeys. In contrast, YOLOv5
uses a different labeling tool called LabelImg. LabelImg is
an open-source graphical image annotation tool that allows
its users to draw bounding boxes around objects of interest

in an image, and then export the annotations in the YOLO
format for training the model.

YOLOv8 includes more advanced post-processing tech-
niques than YOLOv5, which is a set of algorithms ap-
plied to the predicted bounding boxes and objectiveness
scores generated by the neural network. These techniques
help to refine the detection results, remove redundant detec-
tions, and improve the overall accuracy of the predictions.
YOLOv8 uses Soft-NMS, a variant of the NMS technique
used in YOLOv5. Soft-NMS applies a soft threshold to
the overlapping bounding boxes instead of discarding them
outright, whereas NMS removes the overlapping bounding
boxes and keeps only the ones with the highest objective-
ness score.

Output heads refer to the final layers of a neural network
that predict the locations and classes of objects in an image.
In YOLO architecture, there are normally several output
heads that are responsible for predicting different aspects
of the detected objects, such as the bounding box coordi-
nates, class probabilities, and objectiveness scores. These
output heads are typically connected to the last few layers
of the neural network and are trained to output a set of val-
ues that can be used to localize and classify objects in an
image. The number and type of output heads used can vary
depending on the specific object detection algorithm and the
requirements of the task at hand. YOLOv5 has three output
heads while YOLOv8 has one output head. YOLOv8 does
not have small, medium, and large anchor boxes. It uses an
anchor-free detection mechanism that directly predicts the
center of an object instead of the offset from a known an-
chor box. This reduces the number of box predictions and
speeds up the post-processing process in return.

It is fair to note that YOLOv8 is slightly slower than
YOLOv5 in regard to object detection speed. However,
YOLOv8 is still able to process images in real-time on mod-
ern GPUs.

Both YOLOv5 and YOLOv8 use mosaic augmentation
on the training set. Mosaic augmentation is a data aug-
mentation technique that takes four random images from the
training set and combines them into a single mosaic image.
This image, where each quadrant contains a random crop
from one of the four input images, is then used as input for
the model [9].
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