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Abstract

We present in this paper a review of methods for segmentation of uncompressed video sequences. Video segmentation is usually

performed in the temporal domain by shot change detection. In case of real-time segmentation, computational complexity is one of

the criteria which has to be taken into account when comparing different methods. When dealing with uncompressed video

sequences, this criterion is even more significant. However, previous published reviews did not involve complexity criterion when

comparing shot change detection methods. Only recognition rate and ability to classify detected shot changes were considered. So

contrary to previous reviews, we give here the complexity of most of the described methods. We review in this paper an extensive set

of methods presented in the literature and classify them in several parts, depending on the information used to detect shot changes.

The earliest methods were comparing successive frames by relying on the most simple elements, that is to say pixels. Comparison

could be performed on a global level, so methods based on histograms were also proposed. Block-based methods have been

considered to process data at an intermediate level, between local (using pixels) and global (using histograms) levels. More complex

features can be involved, resulting in feature-based methods. Alternatively some methods rely on motion as a criterion to detect shot

changes. Finally, different kinds of information could be combined together in order to increase the quality of shot change detection.

So our review will detail segmentation methods based on the following information: pixel, histogram, block, feature, motion, or

other kind of information.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multimedia information is more and more used,
thanks mostly to increasing computation resources. One
of the main processings needed when dealing with
multimedia data is multimedia sequence indexing. The
importance of this research field is shown by the number
of recent communications and publications on the
subject. In order to index multimedia data, we may
need a preprocessing, the aim of which is to temporally
segment the videos, that is to say detect the shot changes
present in the video sequences.
The number of shot change detection methods is now

important and several reviews of these methods have
been made [1–14]. These reviews often present the
different methods and their efficiency based on some
quality measures. So they are very useful when one
wants to select and implement a shot change detection
method for a global video processing which could be
done on-line. When processing has to be done off-line,
the selection of a particular method should also consider
computation time. This is especially true when dealing

with uncompressed video sequences which contain a
huge quantity of data. If the method has to be
implemented on common hardware architecture, com-
putation time is directly linked with complexity of the
method. So in this paper we review most of the methods
presented in the literature and focus on their complexity.
In the first part of this paper, before we present a large

number of methods, we situate our contribution. We
give some references to previous reviews on the subject.
It is also necessary to recall and describe the different
forms a shot change can take. We give a few details on
quality evaluation and introduce the way we compute
the complexity of the methods. We also define the
notations used in this paper. The following parts will
deal with a description of the encountered methods.
Finally some conclusions will be made about shot
change detection methods.

1.1. Related works

Several reviews have already been published in
the literature. Ahanger and Little [1] discuss the
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requirements and global architectures for video index-
ing. Some video segmentation methods are presented in
this framework. Idris and Panchanathan [2] deal with
image and video indexation. Image features and video
processing algorithms useful for indexation are de-
scribed. Shot change detection is one of the video
processing needed to characterize a video sequence.
Brunelli et al. [3] also present video indexation, and
describe main algorithms including shot change detec-
tion. They are particularly involved in a video indexing
system. Aigrain et al. [4] review techniques for video
content analysis. Shot change detection is one of these
techniques. Koprinska and Carrato [5] review algo-
rithms for shot change detection and camera operation
recognition. Lienhart [6] presents the different kinds of
shot changes and some dedicated detection methods.
Jiang et al. [7] propose a review based on three
categories which are uncompressed video-, compressed
video- and model-based algorithms.
Some reviews compare a few algorithms based on

author’s implementation. Boreczky and Rowe [8]
compare the performances of five algorithms using a
common evaluation methodology. Lienhart [9] com-
pares the methods and characterizes their ability to
correctly determine the kind of shot changes that have
been detected. Dailianas et al. [10] compare several
segmentation methods and introduce a filtering algo-
rithm in order to limit the false detections. Some
information is also given about the complexity of the
evaluated methods. Yusoff et al. [11] compare several
methods and propose improved versions using an
adaptive threshold.
Finally, some papers are reviewing only a specific kind

of method, as those from Gargi et al. [12,13] which are,
respectively, dedicated to colour histogram-based meth-
ods and MPEG and motion-based methods for tempor-
al segmentation of video. Mandal et al. [14] focused on
methods working in compressed domain.
Contrary to other approaches, we review and

compare in this paper uncompressed video segmentation
methods following their computational complexity and
not their detection or error rates, which has already
done in papers presented in this section. We base the
classification of the presented methods on the basic
elements used in the segmentation process: pixels,
histograms, blocks, features, motion, and combination
of several approaches.

1.2. Shot change description

A shot is defined as a continuous video acquisition
(with the same camera). When the video acquisition is
done with another camera, there is a shot change. The
simplest way to perform a change between two shots is
called a cut. In this case, the last frame of the first video
sequence is directly followed by the first frame of the

second video sequence. This kind of shot change is also
called abrupt change. Because of their simplicity, cuts
are often the easiest shot changes to be detected.
More complex shot changes are now available for

video editing, thanks to improvement of the video
production softwares. Instead of cutting and pasting the
second video next to the first one, it is possible to insert
an effect, as a wipe, a fade, or a dissolve. A wipe is
obtained by progressively replacing the old image by the
new one, using a spatial basis. A dissolve is a transition
where all the images inserted between the two video
sequences contain pixels whose values are computed as
linear combination of the final frame of the first video
sequence and the initial frame of the second video
sequence. Fades are special cases of dissolve effects,
where a monochrome frame replaces the last frame of
the first shot (fade in) or the first frame of the second
shot (fade out). There are also other kinds of effects
(combining, for example, wipe and zoom), but actually
most of the shot change detection methods are
concerned only with the effects described previously in
their indexing task.

1.3. Quality evaluation

The recognition rate is the most used quality criterion
in order to compare shot change detection methods.
Some work has been done to define some standard
quality measures and to discuss existing ones [12,15–17].
Most of the time, quality is evaluated thanks to
computation of the quantity of correctly detected shot
changes, missed shot changes, and false detections.
Indeed, to be fair, the evaluation should be achieved on
a universal benchmark. This is not the case.
A similar background for two consecutive shots often

results in missing the shot change. False detections
appear when there is a significant content change.
Camera motion, moving objects, illumination changes
can be sources of false detections.
Our review does not focus on this aspect of quality

evaluation of the methods. We will insist here on
complexity of the methods, because this work has not
been done for a complete set of methods yet.
In order to compare video segmentation methods, it is

also possible to take into account the number of
thresholds or parameters which have to be set. Learning
capabilities of these thresholds or parameters can also be
used as comparison criteria. Comparison of uncom-
pressed video segmentation methods based on these
criteria is out of the scope of this paper.

1.4. Complexity computation

As mentioned previously, quality evaluation is not the
only criterion to evaluate and compare shot change
detection methods if we are concerned with real-time
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(or near real-time) processing using common hardware.
In this case, one should also have to consider complexity
of the evaluated methods. A work on complexity of shot
change detection methods has been done by Dailianas
et al. [10] but it was limited to few methods.
In this paper, the complexity was computed consider-

ing a cost of one for any logical or arithmetic operation
(including absolute value). We do not consider other
operations as, for example, memory access time or
branching operations (e.g. if y then). In order to
compute the complexity of the methods, we define N as
the possible number of levels for pixel value, which is
equivalent to the number of bins for histogram-based
methods. We also introduced P as the number of pixels
per frame. In case of block-based methods, we use the
notation B to represent the number of blocks defined in
the frame.
Complexity measurements given in this paper repre-

sent the number of operations needed to process one
frame. Temporal subsampling of the video sequences is
not taken into account. However, when values obtained
for a given frame can be used to process the next frame,
complexity measurements are optimised and given
considering the use of previous results.

1.5. Notations

Video sequences are composed of successive frames or
images. We define It the frame of the video obtained at
time t: So it is possible to define PðIt; i; jÞ the intensity of
the pixel with coordinates i and j in the frame It: We
assume that the size of the images is X -by-Y pixels, so
we have 1pipX and 1pjpY :
When methods are dealing with colour images, the

notation PðIt;Ck; i; jÞ will be used. Ck represents the
colour component numbered k: As an example, we
can consider that C1; C2; and C3; respectively, represent
the R; G; and B components in the RGB colour space.
So PðIt;Ck; i; jÞ represents the value of the colour
component Ck for the pixel with coordinates i and j in
frame It:
Some methods deal with histograms. So we define

HðIt; vÞ the number of pixels of the image It with an
intensity equal to v; with vA½0;V � where V is the
maximum gray-level value. If we consider colour
images, indexing methods can use several histograms,
one for each colour component. We then use the
notation HðIt;Ck; vÞ to define the number of pixels with
an intensity value of v for the colour component Ck in
the image It:
Another common approach for video segmentation is

to use block-sampled images. Let us note B the number
of blocks b in each frame.
Finally, because a lot of methods use some thresholds

for shot change detection, we have also noted T some
threshold fixed by the user. Several authors [18,19]

propose a learning procedure in order to use an
appropriate threshold value.
As can easily be imagined from this introductory part,

the works dealing with video sequence segmentation are
quite numerous. We report 93 entries in our bibliogra-
phy. Of course, some others exist but we consider
covering the main ways used to solve the problem. Even
if the complexity of the methods is naturally increasing
along time we have not chosen a chronological thread to
present the various methods. Rather we have sorted
them according to the basic elements they are rely on.
We have organized them from the most simple, the pixel
in the image, to the most sophisticated ones, those that
use a combination of methods. More precisely we have
distinguished six large categories characterized by the
respective use of:

* pixel characterization,
* histogram of the frames,
* partition of the image in blocks,
* features,
* motion during the sequence, and
* combination of approaches.

2. Pixel-based methods

Shot change detection can be performed by compar-
ing successive frames. The simplest way to compute the
dissimilarity between two frames is to compare corre-
sponding pixels from two successive images [20]. As we
will see, some improvements of the initial pixel
comparison have been proposed. First, we present the
methods considering two consecutive frames and then
those that extend the study to a longer temporal
interval.

2.1. Pixel comparison between two successive frames

One of the first method described in literature was
from Nagasaka and Tanaka [20] in 1991. Shot changes
are detected using a simple global interframe difference
measure, defined as

Detection if :XX

i¼1

XY

j¼1

PðIt; i; jÞ �
XX

i¼1

XY

j¼1

PðIt�1; i; jÞ

�����
�����

 !
> T ð1Þ

resulting in OðPÞ operations per frame (as the second
term of the difference has been already obtained after
the processing of the previous frame It�1).
Nagasaka and Tanaka [20] also introduced a shot

change detection method based on pixel pair difference
called template matching. For every two successive
frames, differences of intensities are computed on pixels
having the same spatial position in the two frames. Then
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the cumulated sum of differences is compared to a fixed
threshold in order to determine if a shot change has been
detected:

Detection if :XX

i¼1

XY

j¼1

jPðIt; i; jÞ � PðIt�1; i; jÞj

 !
> T : ð2Þ

The number of operations per frame is equal to Oð3PÞ:
A colour version (of higher complexity Oð9PÞ) has also
been presented:

Detection if :XX

i¼1

XY

j¼1

X3
k¼1

jPðIt;Ck; i; jÞ � PðIt�1;Ck; i; jÞj

 !
> T : ð3Þ

A couple of years later, Zhang et al. [21] compared the
pixels of two successive frames on a Boolean basis. The
fact that pixels are different is noted:

DðIt; It�1; i; jÞ ¼
1 if PðIt; i; jÞaPðIt�1; i; jÞ;

0 otherwise;

(
ð4Þ

for the gray-level case and requires one operation per
couple of pixels. Definition is quite similar for colour
images. In order to allow some variations on pixel
intensities, a better (but more complex as it needs three
operations instead of one) definition is:

DðIt; It�1; i; jÞ

¼
1 if jPðIt; i; jÞ � PðIt�1; i; jÞj > TD;

0 otherwise;

(
ð5Þ

where TD is considered as the tolerance value. The
amount of different pixels is computed and is compared
to a given threshold, which results in the detection or
not of a shot change:

Detection if :
XX

i¼1

XY

j¼1

DðIt; It�1; i; jÞ

 !
> T ð6Þ

resulting in complexity of Oð2PÞ or Oð4PÞ according to
the condition used to compare pixels. In order to avoid
false detections due to motion in the video sequence,
they also propose to smooth the images with a filter of
size 3� 3 before computing the D values. The filter
limits the effects due to noise and camera motion.
Several other statistical measures have been proposed

in the literature [22]. The normalized difference energy
and the normalized sum of absolute differences can be
used for shot change detection, as shown by the
following equations:

Detection if :PX
i¼1

PY
j¼1 ðPðIt; i; jÞ � PðIt�1; i; jÞÞ

2

ð
PX

i¼1

PY
j¼1 PðIt; i; jÞ

2Þð
PX

i¼1

PY
j¼1 PðIt�1; i; jÞ

2Þ

 !
> T ;

ð7Þ

Detection if :PX
i¼1

PY
j¼1 PðIt; i; jÞ � PðIt�1; i; jÞj jPX

i¼1

PY
j¼1 PðIt; i; jÞ þ

PX
i¼1

PY
j¼1 PðIt�1; i; jÞ

 !
> T :

ð8Þ

These measures are, respectively, characterized by a
complexity equal to Oð5PÞ and Oð4PÞ: Indeed, in
both methods, the second part of the denominator
has been obtained after processing the previous
frame It�1 and so does not need to be computed once
again.

2.2. Pixel intensity time variation

The previous two-frame study can be generalized
by analysing variations of intensities through time.
Taniguchi et al. [23] label pixels with respect to the
evolution of their intensities on several successive
frames. The labels used are ‘‘constant’’, ‘‘step ðItÞ’’,
‘‘linear ðIt1 ; It2Þ’’, and ‘‘no label’’. These labels represent,
respectively, pixels with constant values, pixels
with a change in value at frame It; pixels with a
progressive change in value between frames It1 and
It2 ; and finally pixels with random values due to
motion. Two Boolean conditions Y1ðIt1 ; It2 ; i; jÞ and
Y2ðIt1 ; It2 ; i; jÞ (needing, respectively, four and six
operations per pixel) are introduced in order to define
the constancy of a set of pixel values PðIt; i; jÞ with
t1ptpt2:

Y1ðIt1 ; It2 ; i; jÞ

¼
true if max

t1ptpt2
PðIt; i; jÞ � min

t1ptpt2
PðIt; i; jÞ

� �
oT ;

false otherwise;

8><
>:

ð9Þ

Y2ðIt1 ; It2 ; i; jÞ

¼
true if

max
t1ptpt2

ðPðIt; i; jÞ þ ðt � t1Þyt1;t2 Þ

� min
t1ptpt2

ðPðIt; i; jÞ þ ðt � t1Þyt1;t2Þ

0
@

1
AoT ;

false otherwise;

8>>><
>>>:

ð10Þ

with yt1;t2 defined as

yt1;t2 ¼
jPðIt1 ; i; jÞ � PðIt2 ; i; jÞj

t2 � t1
ð11Þ

which requires three operations per pixel to be obtained
since t2 � t1 is a constant value, computed only once per
couple of frames. These similarity conditions Y1 and Y2

are then used to determine the label LðIt0 ; Itf
; i; jÞ of each

pixel of a video sequence involving f þ 1 frames, using
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the following scheme:

LðIt0 ; Itf
; i; jÞ

¼

constant if Y1ðIt0 ; Itf
; i; jÞ;

stepðItÞ if

Y1ðIt0 ; It�1; i; jÞ

4 Y1ðIt; Itf
; i; jÞ

4 : Y1ðIt�1; It; i; jÞ

0
B@

1
CA;

linearðIt1 ; It2 Þ if

Y1ðIt0 ; It1 ; i; jÞ

4 Y1ðIt2 ; Itf
; i; jÞ

4 : Y1ðIt1 ; It2 ; i; jÞ

4 Y2ðIt1 ; It2 ; i; jÞ

0
BBBB@

1
CCCCA;

no label otherwise;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð12Þ

which can also be defined as

LlabelðIt0 ; Itf
; i; jÞ

¼
1 if LðIt0 ; Itf

; i; jÞ is of kind ‘‘label00;

0 otherwise:

(
ð13Þ

Quantities of pixels associated with each label are
computed. Cuts (respectively dissolves) are detected
thanks to the analysis of the ratio between quantity of
pixels labeled ‘‘step’’ (respectively ‘‘linear’’) and quantity
of pixels labeled (i.e. with a label different of ‘‘no label’’).
A cut is detected at frame It if

Detection if :PX
i¼1

PY
j¼1 LstepðItÞðIt0 ; Itf

; i; jÞ

XY �
PX

i¼1

PY
j¼1 Lno labelðIt0 ; Itf

; i; jÞ

 !
> T : ð14Þ

A dissolve is detected between frames It1 and It2 if

Detection if :PX
i¼1

PY
j¼1 LlinearðIt1

;It2
ÞðIt0 ; Itf

; i; jÞ

XY �
PX

i¼1

PY
j¼1 Lno labelðIt0 ; Itf

; i; jÞ

 !
> T : ð15Þ

Considering a number of operations per pixel, respec-
tively, equal to atleast four for Eq. (9), six for Eq. (10),
three for Eq. (11), and two for Eq. (14) or (15), the
overall complexity is then equal to Oð15PÞ:
Lawrence et al. [24] use evolution of temporal

derivative of the pixel intensities as a criterion for shot
change detection. First pixels with high spatial deriva-
tive are discarded in order to avoid motion effect. A
pixel PðIt; i; jÞ is considered if and only if the following
condition holds:

maxðjPðIt; i; jÞ � PðIt; i � 1; jÞj;

jPðIt; i; jÞ � PðIt; i; j � 1ÞjÞoT :
ð16Þ

This condition requires six operations per pixel to be
verified. A convolution process involving remaining
pixels and a Gaussian mask is then performed to obtain
temporal derivative of PðIt; i; jÞ: Absolute values of these
derivatives are summed up in order to define the

distance measure (needing two operations per pixel)
which will be analysed through time. Shot boundaries
correspond to local maxima of this distance measure.
False detections due to noise or motion are limited if the
neighbourhoods of the local maxima obtained pre-
viously are further analysed. Method complexity is
equal to Oð8PÞ without considering the Gaussian
filtering.

3. Histogram-based methods

The previous section was dedicated to pixel-based
methods. It is also possible to compare two images
based on global features instead of local features
(pixels). Histogram is a global image feature widely
used in image processing. The main advantage of
histogram-based methods is their global aspect. So they
are more robust to camera or object motion. The main
drawback appears when we compare two different
images having a similar histogram. It will often result
in missing a shot change.
Different uses of the histogram can be distinguished.

Some methods only compute differences between
histograms and then the quality of the result is linked
to the kind of histogram considered. A first extension is
the use of weighted differences between histograms.
Another approach consists in the definition of an
intersection operator between histograms or the defini-
tion of different distances or similarity measures.

3.1. Histogram difference

Tonomura and Abe [25] proposed a method based on
gray-level histograms. Images are compared by comput-
ing a distance (of complexity Oð3NÞ) between their
histograms, as shown in the following equation:

Detection if :
XV

v¼0

jHðIt; vÞ � HðIt�1; vÞj

 !
> T : ð17Þ

Nagasaka and Tanaka [20] propose a similar method
using only 64 bins for colour histograms (2 bits for each
colour component of the RGB space). Using the
notation H64ðIt; vÞ the detection is defined by

Detection if :
X63
v¼0

jH64ðIt; vÞ � H64ðIt�1; vÞj

 !
> T :

ð18Þ

Gargi and Kasturi [12] apply histogram difference to
other colour spaces (HSV, YIQ, Lnanbn; Lnunvn; and
Munsell). More precisely, only non-intensity compo-
nents are used (i.e. Hue and Saturation for HSV, I and
Q for YIQ, an and bn for Lnanbn; un and vn for Lnunvn;
and Hue and Chroma for the Munsell space). Shot
change detection is then defined by
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Detection if :X2
k¼1

XV

v¼0

jHðIt;Ck; vÞ � HðIt�1;Ck; vÞj

 !
> T : ð19Þ

As it uses two colour components instead of only one,
complexity is twice higher (i.e. equal to Oð6NÞ).
Pye et al. [26] compute three histogram differences,

considering separately the three colour components of
the RGB space. The highest value is compared to a
threshold for a shot change detection of complexity
Oð9NÞ:

Detection if :

max
kAfR;G;Bg

XV

v¼0

jHðIt;Ck; vÞ � HðIt�1;Ck; vÞj

 !
> T :

ð20Þ

Ahmed et al. [27] present several shot change detection
algorithms using colour histograms. The first algorithm
compares two frames using histograms computed on the
Hue component CH : So the detection needs Oð4NÞ
operations and can be represented by

Detection if :PV
v¼0 jHðIt;CH ; vÞ � HðIt�D;CH ; vÞjPV

v¼0 HðIt�D;CH ; vÞ

 !
> T ; ð21Þ

where D is the temporal skip between two frames.
The second algorithm by Ahmed et al. is based on

reduced RGB space histograms. As in [20], histograms
are composed of only 64 bins, using 2 bits for each
colour component. The detection is done through a
computation similar to the previously mentioned
method:

Detection if :P63
v¼0 jH64ðIt; vÞ � H64ðIt�D; vÞjP63

v¼0 H64ðIt�D; vÞ

 !
> T ; ð22Þ

resulting in a similar complexity.
O’Toole et al. [28] detect shot changes using a cosine

similarity measure computed between two histograms.
First three 64-bin histograms representing, respectively,
the Y ;U ; and V components are obtained from each
frame. Next the three histograms are concatenated into
a single one in order to get only one 192-bin histogram
per frame. Then two successive frames are compared
based on their histogram using a cosine similarity
measure to perform shot change detection:

Detection if :PV
v¼0 ðHYUV ðIt; vÞ HYUV ðIt�1; vÞÞPV

v¼0 HYUV ðIt; vÞ
2PV

v¼0 HYUV ðIt�1; vÞ
2

 !
> T : ð23Þ

The method complexity is Oð4NÞ: A similar work has
been done by Cabedo and Bhattacharjee [29].

Chiu et al. [30] rely their video segmentation on a
genetic algorithm using colour histogram differences of
complexity Oð9NÞ: Possible shot boundaries are eval-
uated with similarity adjacency functions. In order to
limit the optimization cost of these functions, a genetic
algorithm is used instead of traditional methods. A
video sequence is encoded as a string of binary values, 1
and 0 representing, respectively, the presence or not of a
shot boundary in the current frame. The fitness function
used in the algorithm is defined as a similarity adjacency
function based on colour histogram differences. Finally,
crossover and mutation processes are derived from
classical genetic algorithms in order to be adapted to
video segmentation task.
Zhang et al. [21] propose a method called twin

comparison. Successive frames are compared using a
histogram difference metric of complexity Oð3NÞ:
The difference values obtained are compared with
two thresholds. Cuts are detected when the difference
is higher than a high threshold TH : Possible starts
of gradual transition are detected when difference is
higher than a low threshold TL: In this case, an
accumulated difference is computed until the current
difference is below TL: Finally, the accumulated
difference is compared to the high threshold TH for
shot change detection. The two thresholds can be
automatically set using standard deviation and mean
of the interframe differences in the whole video
sequence.
Li and Lu [31] use also a two step method, detecting

successively the location of the end of the transition and
its start. Frames are compared using the colour ratio
histogram metric [32]. First, two frames It1 and It2 (with
t2 ¼ t1 þ D) are compared using this metric. While the
difference is below a given threshold T ; t2 is set to t2 þ 1:
When the difference is above T ; the transition end has
been obtained. In order to determine the transition start,
t1 is set to t2 � 1: The difference between frames It1 and
It2 is then computed and compared to the threshold T :
While the difference is below T ; t1 is set to t1 � 1: When
the difference is above T ; the transition start is also
obtained.
Several other statistical measures have been re-

viewed in [22]. The quadratic histogram difference
can be computed between histograms from two suc-
cessive frames, whereas the Kolmogorov–Smirnov
statistic is computed between cumulative histograms
from two successive frames. These two measures
are detailed below, using the notation HC ðIt; vÞ to
represent the cumulative histogram up to bin v for the
frame It:

Detection if :XV

v¼0

ðHðIt; vÞ � HðIt�1; vÞÞ
2

ðHðIt; vÞ þ HðIt�1; vÞÞ
2

 !
> T ; ð24Þ
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Detection if :

max
vA½0;V �

ðjHCðIt; vÞ � HCðIt�1; vÞjÞ
� �

> T : ð25Þ

The two methods are characterized by a complexity,
respectively, equal to Oð6NÞ and Oð3NÞ:

3.2. Weighted difference

In colour images, some colour components may have
a bigger influence than others. So it is possible to detect
shot changes by weighting the histograms of each colour
component depending on their importance [10]:

Detection if :X3
k¼1

XV

v¼0

LðIt;CkÞ
LmeanðItÞ

jHðIt;Ck; vÞ � HðIt�1;Ck; vÞj

 !
> T ;

ð26Þ

where LðIt;CkÞ and LmeanðItÞ are, respectively, the
luminance for the kth colour component of the frame
It and the average luminance of the frame It considering
all the colour components. The method complexity is
equal to Oð3Pþ 9NÞ:
Zhao et al. [33] use a learning procedure to determine

the best weight values for weighted histogram difference
computation. They first compute the original histogram
difference with complexity Oð3NÞ defined by Eq. (17).
Then a learning step formulated as a minmax optimiza-
tion problem is performed in order to select the best
weights to use in weighted histogram differences. The
detection process relies finally on the following equation
which requires 12 operations per histogram bin:

Detection if :X3
k¼1

XV

v¼0

wðk; vÞjHðIt;Ck; vÞ � HðIt�1;Ck; vÞj

 !
> T ;

ð27Þ

where wðk; vÞ represents the best weight selected after the
learning step. The overall complexity is then Oð15NÞ:
Gargi and Kasturi [12] presented a method based on

the difference of average colours of a histogram, which
can as well be considered as a weighted histogram
difference. The shot change detection can then be
represented by

Detection if :

X3
k¼1

XV

v¼0

HðIt;Ck; vÞv �
XV

v¼0

HðIt�1;Ck; vÞv

 !2
0
@

1
A > T

ð28Þ

and requires Oð6NÞ operations.
Another method by Gargi and Kasturi using colour

histograms has also been described in [12]. More

precisely, it uses a reference colour table as a frame
difference measure. Reference colour table can be seen
as a coarse quantization of RGB colour space into 27
different colour triples which are used as bins for a
three-dimensional (3D) colour histogram Href : The shot
change detection needs five operations per bin and can
be represented by

Detection if :XV

v¼0

wðv; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHref ðIt; vÞ � Href ðIt�1; vÞÞ

2
q !

> T ; ð29Þ

where the weight wðv; tÞ is defined as

wðv; tÞ

¼
Href ðIt�1; vÞ if ðHref ðIt; vÞ > 0Þ4ðHref ðIt�1; vÞ > 0Þ:

1 otherwise

(

ð30Þ

and requires three operations per bin. The overall
complexity is then equal to Oð8NÞ:

3.3. Histogram intersection

Similarity between two images can also be evaluated
thanks to histogram intersection. Histogram intersec-
tion is computed using different operators, for example
a min function. In this case the computational cost is
Oð2NÞ: Similarity ratio belonging to interval ½0; 1� is
then compared with a given threshold. This comparison
allows the detection of shot changes:

Detection if :

1�
1

XY

XV

v¼0

minðHðIt; vÞ;HðIt�1; vÞÞ

 !
> T ; ð31Þ

where XY represents the number of pixels in frames
processed.
Another version of the histogram intersection-based

shot change detection method is defined in [12] using the
following equation:

Detection if :

1�
1

XY

XV

v¼0

minðHðIt; vÞ;HðIt�1; vÞÞ
maxðHðIt; vÞ;HðIt�1; vÞÞ

 !
> T ð32Þ

with a complexity equal to Oð4NÞ:
Haering et al. [34] apply histogram intersection

defined in Eq. (31) to HSV (Hue, Saturation, Value)
colour space, using 16 bins for Hue component and 4
bins each for Saturation and Value components.
An extension of [34] has been proposed by Javed et al.

[35]. Hue is represented using only 8 bins. Instead of
thresholding the histogram intersection of two succes-
sive frames, they compute the difference between two
successive histogram intersection values and compare
this derivative to a threshold.
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3.4. Use of w2 test

Nagasaka and Tanaka have also proposed [20] a 64-
bin histogram comparison based on w2 test. The shot
change detection is then defined by

Detection if :X63
v¼0

ðH64ðIt; vÞ � H64ðIt�1; vÞÞ
2

H64ðIt; vÞ

 !
> T ð33Þ

with the assumption H64ðIt; vÞa0: If this assumption
does not hold, we use the following equation instead:

Detection if :X63
v¼0

ðH64ðIt; vÞ � H64ðIt�1; vÞÞ
2

H64ðIt�1; vÞ

 !
> T ð34Þ

with the assumptions H64ðIt�1; vÞa0 and H64ðIt; vÞ ¼ 0:
This method is considered as more efficient than simple
histogram comparison-based methods. Its complexity is
equal to Oð5NÞ:
A modification has been proposed by Dailianas et al.

[10] where the detection is represented by

Detection if :XV

v¼0

ðHðIt; vÞ � HðIt�1; vÞÞ
2

maxðHðIt; vÞ;HðIt�1; vÞÞ

 !
> T ð35Þ

with a similar complexity.
Gunsel et al. [36] perform a K-means clustering

algorithm to determine the location of shot boundaries.
Successive frames are compared using w2 test or
histogram difference on YUV histograms, resulting in
a complexity equal to Oð15NÞ: Every interframe
difference value is classified into shot change or non-
shot change.

3.5. Similarity measures between normalized histograms

Several measures computed on normalized histo-
grams have been reviewed by Ren et al. [22] and by
Kim and Park in [37]. Using the notation HNðIt; vÞ to
represent the probability of intensity v in the frame It;
cross entropy, divergence, Kullback Liebler distance,
and Bhattacharya distance are, respectively, defined as

Detection if :XV

v¼0

HNðIt; vÞ log
HNðIt; vÞ

HNðIt�1; vÞ

� � !
> T ; ð36Þ

Detection if :PV
v¼0

HNðIt; vÞ log
HNðIt; vÞ

HNðIt�1; vÞ

� �

þ
PV
v¼0

HN ðIt�1; vÞ log
HN ðIt�1; vÞ
HN ðIt; vÞ

� �
0
BBB@

1
CCCA > T ; ð37Þ

Detection if :PV
v¼0

HNðIt; vÞ log
HNðIt; vÞ

HNðIt�1; vÞ

� �

þ
PV
v¼0

ð1� HNðIt; vÞÞ log
1� HN ðIt; vÞ
1� HN ðIt�1; vÞ

� �
0
BBB@

1
CCCA > T ;

ð38Þ

Detection if :

�log
XV

v¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HNðIt; vÞHN ðIt�1; vÞ

p ! !
> T ð39Þ

with complexities, respectively, equal to Oð4NÞ; Oð8NÞ;
Oð11NÞ; and Oð3NÞ:

All these methods are based on a uniform process all
over the image. The heterogeneity present within a
frame led to use block-based methods.

4. Block-based methods

Block sampling of the video frames can be performed
in order to increase the quality of shot change detection
but also to decrease the computation time. Once block
representation has been obtained from original images,
it is possible to perform some algorithms derived from
pixel or histogram-based methods presented previously.
Use of blocks allows a processing which is intermediate,
between local level like pixel-based methods and global
level as histogram-based methods. The main advantage
of block-based methods is their relative insensitivity to
noise and camera or object motion. We have distin-
guished between several approaches all working on
blocks.

4.1. Block similarity

Kasturi and Jain [38] perform a similarity test on
block-sampled images. Like in pixel-based methods,
pairs of blocks (with same spatial coordinates) from two
successive frames are compared. The similarity is based
on block features like mean and variance, which can be
computed on a complete frame considering a complexity
of OðPþBÞ and Oð2Pþ 3BÞ: The likelihood rate L (of
complexity Oð9BÞ) is defined for a block b as

LðIt; It�1; bÞ

¼
ððs2t;b þ s2t�1;bÞ=2þ ððmt;b � mt�1;bÞ=2Þ

2Þ

s2t;bs
2
t�1;b

2

; ð40Þ

where mt;b and s2t;b are, respectively, the mean and
the variance of block b pixel values in image It:
Then thresholded values LD of L are defined by the
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equation

LDðIt; It�1; bÞ ¼
1 if LðIt; It�1; bÞ > TD;

0 in other cases;

(
ð41Þ

where TD is considered as a tolerance value. A detection
is obtained when

Detection if :
XB

b¼1

cbLDðIt; It�1; bÞ > T ; ð42Þ

where cb is used to give more or less importance to block
b: Most of the time cb is set to 1 for all the blocks.
Overall complexity is estimated to Oð3Pþ 15BÞ con-
sidering required operations for estimation of the block
mean, variance, likelihood rate, and thresholding, and
the final cost of the detection. This likelihood ratio can
also be used directly on full-frames, as proposed in [22].
Another well-known measure involving variance is

the Yakimovsky likelihood ratio which can be applied
also on blocks or frames directly [22]. For each block
this ratio is computed as

L0ðIt; It�1; bÞ ¼
ðs2ft;t�1g;bÞ

2

s2t�1;bs
2
t;b

; ð43Þ

where s2t;b and s2t�1;b represent the variances of the pixel
intensity values in the frames It and It�1 considering a
block b: The notation s2ft;t�1g;b is used to denote the
variance of the pooled data from both frames for a
block b: Knowing s2t;b and s2t�1;b computation of s

2
ft;t�1g;b

needs four operations per block. When mt;b is not
available, computation of st;b is characterized by a cost
of Oð3Pþ 4BÞ: The overall complexity Oð3Pþ 13BÞ is
obtained by adding the cost of Eq. (43) (i.e. three
operations per block).
The Freund statistic can also be used to detect shot

changes. Distance measure is then defined by

L00ðIt; It�1; bÞ ¼
mt;b � mt�1;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2t;b þ s2t�1;bÞ=XY
q ð44Þ

resulting in a complexity of Oð3Pþ 11BÞ obtained by
replacing cost of Eq. (40) by cost of Freund statistic, i.e.
Oð5BÞ:
Lee et al. [39] perform shot change detection using

block differences computed in the HSV colour space.
First RGB images are converted to HSV in order to
avoid camera flashes. Then the mean values of Hue and
Saturation components are computed for each block
(with a cost of OðPþBÞ for each colour component).
Two successive blocks are compared using these mean
values:

DHðIt1 ; It2 ; bÞ ¼ jmðIt1 ; b;CH Þ � mðIt2 ; b;CH Þj; ð45Þ

DSðIt1 ; It2 ; bÞ ¼ jmðIt1 ; b;CSÞ � mðIt2 ; b;CSÞj; ð46Þ

where mðIt; b;CkÞ is the mean of a block b in the frame It

considering the colour component Ck: DH and DS

represent, respectively, differences for Hue and Satura-
tion colour component. These two distances need two
operations per block each and are used to determine if
each block has changed:

DðIt1 ; It2 ; bÞ

¼
1 if ðDH ðIt1 ; It2 ; bÞ > TH Þ3ðDSðIt1 ; It2 ; bÞ > TSÞ;

0 otherwise;

(

ð47Þ

which requires three operations per block. Finally, the
ratio between the number of changed blocks and the
total number of blocks is compared to another threshold
in order to detect shot changes:

Detection if :
1

B

XB

b¼1

DðIt; It�D; bÞ > T ; ð48Þ

where D represents the temporal skip used in the shot
change detection process. The overall complexity of this
method is Oð2Pþ 10BÞ:

4.2. Histogram comparison

Swanberg et al. [40] present a method detecting shot
changes thanks to the comparison of colour histograms
computed on the blocks of the images noted
HðIt; b;Ck; vÞ: The detection process is then defined as:

Detection if :X3
k¼1

XB

b¼1

XV

v¼0

ðHðIt; b;Ck; vÞ � HðIt�1; b;Ck; vÞÞ
2

HðIt; b;Ck; vÞ þ HðIt�1; b;Ck; vÞ

 !
> T

ð49Þ

and has a computational cost of Oð15NB þ 3BÞ:
Nagasaka and Tanaka [20] extend their histogram

comparison to images divided in 4� 4 blocks. Every
pair of blocks from two successive frames is compared
using the w2 test on 64-bin histograms:

wðIt; bÞ ¼
X63
v¼0

ðH64ðIt; b; vÞ � H64ðIt�1; b; vÞÞ
2

H64ðIt; b; vÞ

 !
ð50Þ

which requires for each block four operations per
histogram bin. The values obtained are then sorted in
an ascending way and the eight lowest are kept. The sum
of these values is computed and compared to a threshold
to detect shot changes:

Detection if :
X8
b¼1

wsðIt; bÞ

 !
> T ð51Þ

where the ws values represent ascending sorted values of
w (i.e. for bA½1; 16� we have wsðIt; 1ÞpwsðIt; bÞpwsðIt; 16Þ).
Considering Eqs. (50) and (51), the overall complexity of
the method is Oð4NB þ 0:5BÞ:
Ueda et al. [41] proposed to use the rate of correlation

change instead of the magnitude of correlation change
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proposed in [20]. Each value wðIt; bÞ obtained from a pair
of blocks is compared to a threshold. The detection
depends on the number of significant values wðIt; bÞ
instead of the sum of the highest wðIt; bÞ; resulting in a
complexity equal to Oð4NB þ 2BÞ:
Ahmed et al. [27] propose also a block-based version

of their method using the six most significant RGB bits
as described in Eq. (22). They compare histograms
computed on blocks instead of global histograms. The
sum of the histogram differences obtained for each
block is computed and compared to a predefined
threshold in order to detect shot changes, as shown in

Detection if :XB

b¼1

P63
v¼0 jH64ðIt; b; vÞ � H64ðIt�D; b; vÞjP63

v¼0 H64ðIt�D; b; vÞ

 !
> T ð52Þ

where D represents the temporal skip between two
successive frames to be analysed. The computation cost
is also equal to Oð4NB þ 2BÞ:
Ahmed and Karmouch proposed [42] an improved

version of their algorithm described previously. Instead
of comparing two frames considering a fixed temporal
skip, the method is based on an adaptive temporal skip.
First, two images It1 and It2 are compared according to
Eq. (52). Then if the difference is greater than a
threshold, t2 is replaced by ðt1 þ t2Þ=2 and the frames
are again compared. If the difference is still greater than
the threshold, t1 is also set to ðt1 þ t2Þ=2 (considering the
current values of t1 and t2) and frames are compared.
This process is repeated until t1 þ 1 ¼ t2 which repre-
sents a shot change between frames t1 and t2:
Lee and Ip [43] introduce a selective HSV histogram

comparison algorithm. First, pixels are classified with
respect to their colour level. If a pixel is characterized by
high values for V and S; it is classified into a discrete
colour using H component. Otherwise the classification
is based on the intensity (or gray-level) value. For a
given pixel PðIt; b; i; jÞ; two complementary states are
defined:

ShueðIt; b; i; jÞ

¼
1 if

ðPðIt; b;CS; i; jÞ > TSÞ

4 ðPðIt; b;CV ; i; jÞ > TV Þ

 !
;

0 otherwise;

8>><
>>: ð53Þ

SgrayðIt; b; i; jÞ ¼ 1� ShueðIt; b; i; jÞ: ð54Þ

Computation of these states requires four operations per
pixel. For each block two selective histograms HhueðIt; bÞ
and HgrayðIt; bÞ are then computed in a classical way
considering the two states previously defined. The
notation HhueðIt; b; vÞ (respectively, HgrayðIt; b; vÞ) repre-
sents the number of pixels in block b of frame It

with state Shue (resp. Sgray) equal to 1 and with hue
(resp. intensity or gray-level) value equal to v: These

histograms are used for shot change detection:

Detection if :

XB

b¼1

PV
v¼0

jHhueðIt; b; vÞ � HhueðIt�1; b; vÞj

þ
PV
v¼0

jHgrayðIt; b; vÞ � HgrayðIt�1; b; vÞj

0
BBB@

1
CCCA

0
BBB@

1
CCCA >T

ð55Þ

resulting in a complexity equal to Oð6NB þ 2Bþ 4PÞ:
Bertini et al. [44] compare in the HSI colour space

histograms of successive frames divided into nine
blocks. In order to improve robustness to change in
lighting conditions, the intensity component is not used.
The detection can then be represented by the following
equations:

DHSðIt; Itþ1; bÞ

¼
X

kAfH;Sg

XV

v¼0

ðHðIt; b;Ck; vÞ � HðItþ1; b;Ck; vÞÞ;

ð56Þ

D0
HSðItÞ ¼

XB

b¼1

DHSðIt; Itþ1; bÞ �
XB

b¼1

DHSðIt�1; It; bÞ;

ð57Þ

Detection if :

ððD0
HSðItÞ > 0Þ4ðD0

HSðItþ1Þo0ÞÞ

3 ððD0
HSðItÞo0Þ4ðD0

HSðItþ1Þ > 0ÞÞ

 !
: ð58Þ

The two distances DHSðIt; Itþ1; bÞ and D0
HSðItÞ require

respectively, two operations per bin per block per colour
and one operation per block. The overall complexity is
then Oð4NB þBÞ: In order to improve the detection, a
minimum temporal distance is defined between two
successive cuts.
Chahir and Chen [45] based their method on

histogram intersection computed on frames divided into
24 blocks. The colour space used in their method is
Lnunvn: For each block, color histogram intersection is
computed between two successive frames requiring 12
operations per bin. A comparison with a threshold
allows to determine whether the block has been changed
or not. The number of changed blocks is then compared
to another threshold in order to detect a shot change,
resulting in an overall complexity equal to Oð12NB þ
2BÞ:

4.3. Combination of histogram differences

and likelihood rate

This method proposed by Dugad et al. [46] is based on
two successive steps to detect cuts and other transitions.
Shot changes are detected using successively histogram
difference and likelihood ratio. In this method, three
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thresholds have to be set. Histogram difference step
(whose complexity is Oð3NÞ) is defined as in Eq. (17)
and is compared with two thresholds. The difference is
first compared to a high threshold in order to avoid false
alarms. If it is lower than this threshold, it is compared
to a low threshold. If it is higher than this low threshold,
the final decision is taken by computing likelihood ratio
values. In this case, the two frames to be compared are
divided in 64 blocks and the 16 central blocks are kept.
For each block, the likelihood ratio is computed
between the block PðIt; bÞ and the blocks PðIt�1; b0Þ
where b0 belongs to the neighbourhood of b; and the
minimum of the likelihood value is kept. Then a mean of
the 16 minimum likelihood ratios is computed and is
compared with the third threshold, which may result in
a shot change detection. The respective costs for
computation of the mean and variance of each block
and estimation of the likelihood ratio in a 3� 3
neighbourhood are Oð3Pþ 4BÞ and Oð72BÞ: Computa-
tion of the minimum values for each block and the mean
value on all block requires, respectively, seven and one
operations per block. As we are using only a quarter of
the blocks, we divide the number of operations per block
by 4. The overall complexity is then Oð3Pþ 3Nþ
21BÞ:

4.4. Use of neighbourhood colour ratio

Adjeroh et al. [47] compare two successive frames
using neighbourhood colour ratios. A local averaging
step (with a cost of Oð5PþBÞ) is first performed in
order to obtain one value P0ðIt; bÞ per block:

P0ðIt; bÞ ¼
YX�1

i¼2

YY�1

j¼2

1

4PðIt; b; i; jÞ

�
PðIt; b; i � 1; jÞ þ PðIt; b; i þ 1; jÞ

þPðIt; b; i; j � 1Þ þ PðIt; b; i; j þ 1Þ

 !
: ð59Þ

Pairs of blocks from two different frames are then
compared using this measure:

D0ðIt; It�D; bÞ ¼ 1�min
P0ðIt; bÞ

P0ðIt�D; bÞ
;
P0ðIt�D; bÞ

P0ðIt; bÞ

� �
ð60Þ

which requires four operations per block and where D
represents the temporal skip. Shot changes are finally
detected if the number of significant D0 values for all
selected blocks is higher than a fixed threshold, or if the
average value of D0 is higher than another threshold.
These two conditions need, respectively, two and one
operations per block to be verified. The overall
complexity of this method is then Oð5NB þ 8BÞ:

4.5. Evolution of block dissimilarity

Shot changes can also be detected by analysing the
evolution of block dissimilarity. Demarty and Beucher

[48] compute locally a distance criterion (of cost Oð9PÞ)
in RGB colour space between blocks of two successive
images. Result obtained consists in distance values
between the two images for every block. Then the sum
of these values is computed (which requires three
operations per block) and an evolution curve of this
sum is built. This evolution curve is filtered using a top-
hat morphological operation and is finally compared
with a threshold in order to detect shot changes. The
complexity is equal to Oð9Pþ 3BÞ:
Lef"evre et al. [49] proposed a method using HSV

colour space on block-sampled images in order to avoid
false detection due to illumination effects. A value is
obtained for each block from Hue and Saturation
components with a cost of Oð2Pþ 5BÞ: Then a block-
based difference (requiring three operations per block) is
computed between two frames based on the block
values. This difference is tracked through time as well as
its derivative. Analysis of this derivative allows cut
detection, whereas the initial (non-derivated) difference
values are used to initialize a cumulative sum computa-
tion of the derivated values. This allows detection of
gradual transitions. This method is characterized by a
computational cost of Oð2Pþ 8BÞ:

4.6. Temporal and spatial subsampling

Xiong and Lee [50] propose to subsample the video
sequence in both space and time. An abrupt change is
detected between two frames It and ItþD if

Detection if :
X
bAB0

DmðIt; ItþD; bÞ

 !
> T ; ð61Þ

where B0 represents a set of a priori selected blocks and
DmðIt1 ; It2 ; bÞ is defined as

DmðIt1 ; It2 ; bÞ ¼
1 if jmt1;b � mt2;bj > Tm;

0 in other cases:

(
ð62Þ

The two equations need, respectively, one and three
operations per block. As the block mean computation is
linked with a cost of OðPþBÞ; the overall complexity is
equal to OðPþ 5BÞ: Gradual transitions are detected
using an edge-based frame-to-frame difference measure.
If a shot change is detected, a binary search is performed
reducing D to determine the exact shot boundaries. The
method proposed is called ‘‘Net Comparison’’ and has
also been tested in HSV colour space.

5. Feature-based methods

All the methods we have already presented were using
features, but they can be qualified of trivial features.
Here we are considering more sophisticated ones. We
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consider:

* the moments computed on the image,
* the contour lines extracted from the image,
* some feature points extracted using Hough Trans-

form,
* the planar points,
* colour transition,
* modeling of the video transition effects,
* the use of some decision process as Bayesian

methods,
* features computed from classical statistical ap-

proaches,
* and the use of Hidden Markov Models.

5.1. Moment invariants

Arman et al. [51] use moment invariants combined
with histogram intersection to detect shot changes.
Moment invariants have properties such as invariance
to scale change, rotation, and translation. The moments
of a frame It are defined as

mp;q ¼
XX

i¼1

XY

j¼1

ipjqðIt; i; jÞ: ð63Þ

In [10], shot changes are detected thanks to the
computation of the usual Euclidean distance between
two frames using a vector composed of the first three
moment invariants, defined as

F
-

¼

m2;0 þ m0;2

ðm2;0 � m0;2Þ
2 þ 4m2

1;1

ðm3;0 � 3m1;2Þ
2 þ ð3m2;1 � m0;3Þ

2

0
BB@

1
CCA: ð64Þ

Considering Eq. (63), all moments used in Eq. (64)
require three operations per pixel, excepting m1;2 and
m2;1 which need four operations per pixel. The detection
can be finally defined as:

Detection if : ðjjFðItÞ
��!

� FðIt�1Þ
����!

jj2Þ > T ð65Þ

resulting in an overall complexity of Oð23PÞ:

5.2. Edges

Zabih et al. [52] use edge extraction to detect shot
changes. Global motion compensation is performed on
successive frames. Next, edges are extracted using Canny
algorithm and dilated. Normalized proportions of enter-
ing edges and exiting edges are then computed (with a
cost of Oð3PÞ each) using the following equations:

PðCout; ItÞ

¼ 1�

PX
i¼1

PY
j¼1 EðIt�1; i þ at�1;t; j þ bt�1;tÞEdðIt; i; jÞPX

i¼1

PY
j¼1 EðIt�1;; i; jÞ

;

ð66Þ

PðCin; ItÞ

¼ 1�

PX
i¼1

PY
j¼1 EdðIt�1; i þ at�1;t; j þ bt�1;tÞEðIt; i; jÞPX

i¼1

PY
j¼1 EðIt�1;; i þ at�1;t; j þ bt�1;tÞ

;

ð67Þ

where E and Ed are, respectively, the contour image and
its dilated version, and ðat�1;t;bt�1;tÞ represents the
global motion translation vector between the two
successive images It and It�1: Then a dissimilarity
measure ECF ðItÞ called edge change fraction is com-
puted by

ECF ðItÞ ¼ maxðPðCout; ItÞ;PðCin; ItÞÞ: ð68Þ

Finally this value is compared to a threshold to detect
shot changes:

Detection if : ECF ðItÞ > T ð69Þ

resulting in a complexity at least equal to Oð26PÞ when
considering edge detection requires 20 operations per
pixel.
Smeaton et al. [53] proposed an evolution of the

previous method where the detection is based on the
evolution of the edge change fraction on several frames
instead of the analysis of this dissimilarity measure on
only one frame. Detection can then be defined by:

Detection if : ðECF ðItÞ � ECF ðIt�1ÞÞ > T : ð70Þ

Lienhart [9] also uses edge information to perform
dissolve detection. First, edges extracted with the Canny
edge detector are confronted with two thresholds to
determine weak and strong edges:

EwðIt; i; jÞ ¼
EðIt; i; jÞ if TwpEðIt; i; jÞpTs ;

0 in other cases;

(
ð71Þ

EsðIt; i; jÞ ¼
EðIt; i; jÞ if TspEðIt; i; jÞ;

0 in other cases;

(
ð72Þ

where Tw and Ts are, respectively, the lowest and highest
thresholds for detecting weak and strong edges. Ew and
Es represent the weak and strong edge images and need,
respectively, two and one operations per pixel to be
computed. Then the edge-based contrast EC is obtained
for a frame It according to the equation

ECðItÞ

¼ 1þ

PX
i¼1

PY
j¼1 EsðIt; i; jÞ �

PX
i¼1

PY
j¼1 EwðIt; i; jÞ � 1PX

i¼1

PY
j¼1 EsðIt; i; jÞ þ

PX
i¼1

PY
j¼1 EwðIt; i; jÞ þ 1

ð73Þ

with a cost of Oð2PÞ: Finally dissolves are detected when
the current value of EC is a local minimum. The overall
complexity Oð25PÞ is obtained by adding edge detection
cost.
Yu et al. [54] use edge information to detect gradual

transitions. Cuts are first detected using a histogram
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difference measure (of cost Oð3PÞ) computed between
two successive subsampled frames. Then a second pass is
necessary for detecting gradual transitions. For every
frame It between two successive cuts at time t1 and t2;
the number QEðItÞ of edge points present in the image is
computed (considering 21 operations per pixel) and
temporally smoothed. Then for every local minima
QEðIt0 Þ which is below a predefined threshold, a search
of the two closest local maxima QEðIt0

1
Þ and QEðIt0

2
Þ is

performed with t01ot0ot02: A fade-out effect is detected
between t01 and t0 if

Detection if :
1

t0 � t01

Xt0

t¼t0
1

jQEðItÞ � QEðIt�1Þj

0
@

1
A

A T
fade out
low ;Tfade out

high

h i
: ð74Þ

Similarly, a fade-in effect is detected between t0 and t02 if

Detection if :
1

t02 � t0

Xt0
2

t¼t0

jQEðItÞ � QEðIt�1Þj

0
@

1
A

A½Tfade in
low ;Tfade in

high �: ð75Þ

For dissolve effect detection, a new measure called
double chromatic difference is computed for every frame
belonging to the interval ½t01; t

0
2�:

DCDðItÞ

¼
XX

i¼1

XY

j¼1

1

2
PðIt0

1
; i; jÞ þ

1

2
PðIt0

2
; i; jÞ � PðIt; i; jÞ

����
���� ð76Þ

which requires six operations per pixel. If the
frame number tmin corresponding to the global
minimum value DCD ðItmin

Þ is close enough to t0

(i.e. jt0 � tminjoe with e defined as a small number), a
dissolve effect is assumed to be found between frames It0

1

and It0
2
: The overall complexity of this method is equal to

Oð3Nþ 27PÞ:
Heng and Ngan [55] also propose a method based on

edge information. They introduce the notion of edge
object, considering the pixels close to the edge.
Occurrences of every edge object are matched on two
successive frames. Shot changes are detected using the
ratio between the amount of edge objects persistent over
time and the total amount of edge objects.
Nam and Tewfik [56] propose a coarse-to-fine shot

change detection method based on wavelet transforms.
Image sequences are first temporally subsampled.
Frames processed are also spatially reduced using a
spatial two-dimensional (2D) wavelet transform. Inten-
sity evolution of pixels belonging to coarse frames is
analysed using a temporal one-dimensional (1D) wavelet
transform. Sharp edges define possible shot change
locations. Video frames around these locations are
further processed at full-rate. Temporal 1D wavelet
transform is applied again on the full-rate video

sequence. Edge detection is also performed on every
coarse frame and the number of edge points is computed
on a block-based basis. Difference between two succes-
sive frames is computed using the number of edge points
for each block. True shot boundaries are located on
sharp edges in the 1D wavelet transform and high values
of interframe difference considering block-based
amount of edge points. An extension to wipe transitions
detection has been proposed in [57].

5.3. Feature points

Ardebilian et al. [18] detect shot changes by com-
paring feature points extracted from two successive
images. They use Hough transform to extract feature
points. Success or not of the feature points matching
between two successive frames results directly in cut
detection.

5.4. Planar points

Silva et al. [58] perform shot change detection using
spatio-temporal representation of an image sequence. A
video sequence V is represented in R4 as an hypersur-
face:

V ¼ fi; j; t;PðIt; i; jÞg: ð77Þ

The amount of planar points in every frame is
considered as the measure for detecting cuts. We recall
that planar points are points contained in a flat
neighbourhood of the hypersurface. For a given frame
It; planar points are determined using the characteristic
polynomial coefficients of the Hessian matrix of
PðIt; i; jÞ: Then the percentage of planar points is
computed. A cut is detected (in a four frame interval)
when this value is greater than three times the temporal
variance of the percentage of planar points. The overall
complexity Oð51PÞ is obtained by adding the cost
associated with the Hessian matrix (Oð27PÞ), the three
characteristic polynomial coefficients (Oð18PÞ), the
classification of a point as planar (Oð5PÞ), and the final
decision (OðPÞ).

5.5. Colour transitions

Sanchez et al. [59] compare between two successive
frames using colour histograms computed on specific
regions. These regions are defined from the most
significant colour transitions of the image, considered
as high values of its multispectral gradient and
computed with Sobel approximation. Colour histo-
grams are compared between regions of two suc-
cessive frames to determine the coherence of the
region through time. Shot changes are finally detected
if the amount of changed regions is above a given
threshold.
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5.6. Transition modeling

Some shot changes are created from production
effects. These transitions can be modeled explicitly with
mathematical tools in order to be detected. Several
methods using these assumptions are presented below.
Hampapur et al. [16] model several kinds of fades and

wipes with mathematical functions. Knowing the two
last shots and their respective durations, it is possible to
estimate the duration of the current shot. Detection of
shot changes can rely on a constancy measure (of cost
OðPÞ) defined for frame It as

CðItÞ

¼

PX
i¼1

PY
j¼1 SbinaryðIt; i; jÞ

stð1þ jXcðItÞ � ðX=2Þj þ jYcðItÞ � ðY=2ÞjÞ
; ð78Þ

where st represents the standard deviation of pixel
intensities in frame It computed with a cost of Oð3PÞ:
The binary state SbinaryðIt; i; jÞ of a pixel is defined as

SbinaryðIt; i; jÞ ¼
1 if PðIt; i; jÞa0;

0 otherwise

(
ð79Þ

requiring one operation per pixel and the components of
the centroid of image It are noted XcðItÞ and YcðItÞ: They
are computed as

XcðItÞ ¼

PX
i¼1

PY
j¼1 iPðIt; i; jÞPX

i¼1

PY
j¼1 PðIt; i; jÞ

; ð80Þ

YcðItÞ ¼

PX
i¼1

PY
j¼1 jPðIt; i; jÞPX

i¼1

PY
j¼1 PðIt; i; jÞ

ð81Þ

and need together five operations per pixel. The overall
complexity is then Oð10PÞ:
Adami and Leopardi [60] perform dissolve detection

applying a model of dissolve effects on frame histo-
grams. For every frame, two specific histograms are
computed:

%HðItÞ ¼ H1=2ðItÞ*H1=2ðItÞ ; ð82Þ

HDðItÞ ¼ H1=2ðIt�DÞ*H1=2ðItþDÞ ; ð83Þ

where H1=2ðItÞ represents the histogram of the frame It

scaled by half, D is a fixed parameter, and the operator *
figures a convolution. Both operations are characterized
by a cost of OðN2Þ: It is then possible to compute a
dissimilarity measure using these histograms:

RðItÞ ¼
w2ðHðItÞ; %HðItÞÞ
w2ðHðItÞ;HDðItÞÞ

� 1; ð84Þ

where the w2 operator (of complexity Oð5NÞ) is
computed between two histograms. Maxima values of

RðItÞ indicate dissolve locations:

Detection if : RðItÞ > RðIt0 Þ

8t0 in the neighbourhood of t:
ð85Þ

The overall complexity is then Oð2N2 þ 10NÞ:
Aigrain and Joly [61] detect shot changes using

the assumption of the absence of important motion
in the different shots. Their method is based on a
motion differential model and uses a density function
estimation as the difference between two images.
First, two successive images are reduced spatially and
normalized using histogram equalization. Then the
histogram of pixel-pair difference is computed and is
simplified to two values, which are, respectively, the
amount of differences belonging to the interval
½128; 255� computed on normalized images and the
amount of differences belonging to the interval ½1; 40�
computed on non-normalized images. Both values
require four operations per pixel in order to be
computed. Cut and gradual transition detections are,
respectively, based on local maxima of the first and
second value described previously. The method com-
plexity is equal to Oð8PÞ:
Lienhart [9] relies on fade modeling from [16] to

perform fade detection. The proposed algorithm
uses the standard deviation of pixel intensities as
an estimation of the scaling function introduced in
fade effects. First, all monochrome frames are located
as they are fade start or end candidates. These frames
are characterized by a standard deviation sðItÞ close to
zero. Fades are then detected by searching in both
temporal directions for a linear increase in the standard
deviation.
Alattar [62] bases also the shot change detection

on variance of pixel intensities. Fades are detected
using a two-step scheme. First, local minimum values
of the second-order difference of the pixel intensity
spatial variance time series are obtained. Then a test
is performed to determine whether the first-order
difference of the pixel intensity mean is relatively
constant in the neighbourhood of the local variance
minimum or not. In the positive case, a fade is assumed
to be found. A similar method [63] has been proposed
for dissolve.
Truong et al. [64] combine approaches from [9,62].

First, all monochrome frames are detected. Then only
monochrome frames which are next to a local minimum
of the intensity variance second-order difference are
kept. Finally, a test is performed on the first-order
difference of the mean intensity. If this value is constant
through time and other conditions are satisfied, a fade
would be detected. The other conditions correspond to
comparison between thresholds and the absolute value
of the first-order difference and the intensity variance of
the first or last frame. Dissolve detection is performed
using the evolution of the variance first-order difference
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through time. This difference value should be mono-
tonically increasing from a negative value up to a
positive value. So zero crossings are used to locate
dissolve frames.
Fernando et al. [65] use also mean and variance of the

luminance signal to determine fade and dissolve transi-
tions locations. For every frame, the mean and the
variance of the luminance is computed. The ratio
between the second temporal derivative of the variance
and the first temporal derivative of the mean is then
compared between two successive frames. Shot changes
are located when this ratio is constant through time.
All the approaches based on effect modeling using

variance and mean of successive frames are character-
ized by a cost of Oð3PÞ:

5.7. Bayesian approaches

Vasconcelos and Lippman [66] propose a segmenta-
tion method using a Bayesian model of the editing
process. For each frame a local activity measure is
computed based on a tangent distance. In order to
detect shot changes, this measure is compared (following
a Bayesian framework) to an adaptive threshold,
depending on the a priori duration of a shot and on
the time elapsed between the previous shot change and
the current frame It:
Hanjalic and Zhang [67] use also a statistical frame-

work for shot change detection, which is modeled as a
probability minimization problem of the average detec-
tion error. Detection criteria are linked with visual
content discontinuity (based on motion compensation)
and knowledge about shot length distribution.
Han et al. [68] base their detection on gray-level or

colour histogram differences computed between suc-
cessive frames using Eq. (17) or (19). A filtering
step combining an average clipping operation and a
subsequent local convolution is used to improve the
shot change detection. The evolution curve of the
filtered histogram difference value is analysed and
decision for the detection of a shot change is taken
following a Bayesian framework. Detections of a cut or
a gradual effect are, respectively, linked with the
presence in the evolution curve of a rectangular or
triangular shape.

5.8. Statistical approaches

Yilmaz and Shah [69] use Principal Coordinate
System to perform shot change detection on RGB
frames. First, image rows are concatenated in order to
obtain only one row vector per colour component for
each frame. We use the notations V ðIt;CRÞ; V ðIt;CGÞ;
and V ðIt;CBÞ for the row vectors associated with the
Red, Green and Blue components. Then the 3� 3
covariance matrix MðItÞ of the RGB colour space is

computed as:

MðItÞ ¼

V ðIt;CRÞ

V ðIt;CGÞ

V ðIt;CBÞ

0
B@

1
CA

ðV ðIt;CRÞ
T V ðIt;CGÞ

T V ðIt;CBÞ
T Þ ð86Þ

which requires 18 operations per pixel. Next the vector
representing the principal axis is selected and noted
Vlmax

ðItÞ: We recall this vector is the eigenvector
associated with the maximum eigenvalue lmax of the
covariance matrix. Finally, two successive frames are
compared with respect to the angle between their
respective principal axes following the equation

Detection if : 1�
Vlmax

ðItÞ
T Vlmax

ðIt�1Þ
jjVlmax

ðItÞjj jjVlmax
ðIt�1Þjj

� �
> T ; ð87Þ

so the actual complexity is equal to Oð18PÞ:
Han and Tewfik [70] use also a principal component

analysis to perform shot change detection. First frames
are subsampled and represented as column vectors.
Then successive frames are grouped in a temporal
window. The mean vector m and the empirical covar-
iance matrix M of this window are computed. Then the
unique set of orthonormal eigenvectors of M and their
associated eigenvalues are obtained. Each frame in the
window is then projected onto the K eigenvectors
corresponding to the K largest eigenvalues. Finally,
shot changes are detected using the temporal variations
of angle and length of the K first principal components.
Li and Wei [71] based their algorithm on the

computation of joint probability images between
frames. They use a spatio-temporal representation of
the successive joint probability images obtained in order
to detect shot changes. First a joint probability image is
computed (with a cost of Oð2PÞ) between two frames,
which consists in the frequency of the co-occurrences of
intensity or chrominance values. Two similar images It1

and It2 will be characterized by a joint probability image
JðIt1 ; It2 Þ composed of non-zero values on the diagonal.
A distance measure is then defined between two frames
using the joint probability image:

DJðIt1 ; It2 Þ ¼ 1�

P
ði;jÞAJ0 JðIt1 ; It2 ; i; jÞP
ði;jÞAJ JðIt1 ; It2 ; i; jÞ

; ð88Þ

where J and J0 represent, respectively, the set of all
pixels ði; jÞ in the joint probability image and the set of
all pixels near the diagonal line with a given tolerance
d (i.e. T0 ¼ fði; jÞ : ji � jjodg). As J and J0 contain
about V 2 and V values, the computation of DJ has a
cost of OðN2 þNÞ: If the value DJ obtained is higher
than a fixed threshold, several algorithms are used in
order to confirm the presence of a shot change. Dissolve
effects are detected using histogram intersection per-
formed on spatio-temporal representations of joint
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probability images. This method is characterized by a
complexity equal to Oð2PþN2 þNÞ:
Gong and Liu [72] perform shot change detection

using the Singular Value Decomposition. Every frame is
divided in 3� 3 blocks on which a 3D colour histogram
composed of 125 bins is computed. A vector of 1125
components is then obtained for every frame. The video
sequence is represented by a matrix which is processed
by a singular value decomposition algorithm. The K

largest singular values are kept and are used to compute
a similarity measure between two frames. Detection of a
shot change is done by comparing the similarity
computed between the two frames It1 and It2 with a
low and a high threshold. If the similarity measure is
below the low threshold, no shot change would be
detected. On the contrary, if the measure is higher than
the high threshold, a shot change is assumed to be
found. In the last case (i.e. the similarity measure is
between the two thresholds), a refinement step is
performed involving frames between It1 and It2 :

5.9. Hidden Markov models

Eickeler and M .uller [73] use Hidden Markov Models
to perform video indexing. Some of the classes represent
shot boundary frames. Several features are defined to
describe each frame, but only some of them characterize
shot boundary frames:

d1ðItÞ

¼ min

PX
i¼1

PY
j¼1 jPðIt; i; jÞ � PðIt�1; i; jÞj

XY
;PX

i¼1

PY
j¼1 jPðItþ1; i; jÞ � PðIt�2; i; jÞj

XY

0
BBB@

1
CCCA;

ð89Þ

d2ðItÞ

¼
XV

v¼0

jHðIt; vÞ � HðIt�1; vÞj

�median

jHðIt�1; vÞ � HðIt�2; vÞj;

jHðIt; vÞ � HðIt�1; vÞj;

jHðItþ1; vÞ � HðIt; vÞj

0
B@

1
CA

0
BBBB@

1
CCCCA;

ð90Þ

d3ðItÞ

¼
XX

i¼1

XY

j¼1

PðIt; i; jÞ � PðIt�1; i; jÞ
PðIt; i; jÞ � 0:5PðIt�1; i; jÞ þ PðItþ1; i; jÞ

;

ð91Þ

where d1ðItÞ; d2ðItÞ; and d3ðItÞ represent, respectively, the
intensity of motion, the median filtered intensity of
difference histograms, and the ratio between the
difference pixel and the difference from interpolated
pixel. These three measures need, respectively, six

operations per pixel, six operations per histogram bin,
and five operations per pixel, resulting in an overall
complexity equal to Oð11Pþ 6NÞ: After a learning step
using the Baum–Welch algorithm, segmentation is
performed using the Viterbi algorithm.
A similar approach using Hidden Markov Models has

been proposed by Boreczky and Wilcox [74]. The model
is based on image, audio, and motion features.
Classification of a frame into a shot boundary class is
done using only the image feature of the frame. This
feature is defined as a luminance 64-bin histogram
difference similar to the one described in Eq. (17).

6. Motion-based methods

As the nature of motion is usually continuous in a
video sequence, it can also be used as a criterion to
detect shot changes. Based on this fact, several
approaches using motion information were proposed
in the literature. We review here methods based on
global (or camera) motion, motion vectors, optical flow,
and correlation in the frequency domain.

6.1. Global motion

Cherfaoui and Bertin [75] detect shot changes in two
steps. First the global motion parameters are estimated
using an affine transformation model. The estimated
motion is then used to classify a shot as fixed, pan, or
zoom. If the motion is not coherent through time, a shot
change is assumed to be found.
Bouthemy et al. [76] based their detection on a

dominant multiresolution motion estimation. This
estimation uses a global 2D parametric model composed
of six parameters. Once the dominant motion has been
estimated, a coefficient oi;j is also available for every
pixel ði; jÞ: It represents the coherence of the pixel with
the dominant motion estimated. Using a predefined
threshold, it is possible to define the set of dominant
motion-coherent pixels in each frame. The evolution of
the set size through time is analysed in order to detect
shot changes.
Zugaj and Bouthemy [77] extend the previous method

to wipe detection. Here only pixels which are non-
coherent with the estimated dominant motion are
considered. For each frame, two histograms are
computed based on the number of non-coherent pixels
along horizontal and vertical axes. For every couple of
frames, absolute differences between corresponding
histograms are computed and result in two other
histograms. The correlation between two successive
absolute difference histograms is then measured along
the two axes. If one of the two correlation values exceeds
a predefined threshold, an horizontal or vertical wipe is
detected.
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Mann and Picard [78] proposed a method where
global motion estimation is performed using an eight-
parameter model. They define ‘‘video orbits’’ as a
collection of pictures starting from one picture and
applying all possible projective coordinate transforma-
tions to that picture using the eight motion parameters.
Two frames belonging to the same scene will lie in the
same orbit or nearly so. So shot changes are detected
when the distance between the orbits of successive
frames is higher than a threshold.
Complexity of global or dominant motion computa-

tion is usually estimated at Oð20PÞ when considering
only 2D translations.

6.2. Motion vectors

Akutsu et al. [79] use a motion smoothness measure to
detect shot changes. The indexing method uses sub-
sampled video sequences and processes only one frame
every k frames. Then the selected frame is divided into
8� 8 blocks and each block is matched to a block in the
next chosen frame. Motion vector is estimated thanks to
the closest matched neighbouring block, which is also
used to compute the value of the correlation coefficient.
An interframe similarity measure can be defined as the
average of these correlations. Another measure called
motion smoothness is defined as the ratio between the
number of blocks which have significantly moved and
the displacement of these blocks. Shot changes are
finally detected when occur local extrema in the
correlation and motion smoothness ratio values.
Shahraray [80] proposed a similar method. Sub-

sampled video sequences are used and every frame is
divided in 12 blocks. A search is performed to match
each block from one frame to the most similar block (in
a spatial neighbourhood) in the next frame. Motion
vector and correlation value are computed in a way
similar to the Akutsu et al. method. The main difference
from the previous method is the use of a non-linear
digital order statistic filter. Correlation values are sorted
into ascending order and the first values and their
respective motion vectors are used for the computation
of an average value which is considered as a similarity
measure. As in [79], a local temporal extremum in the
similarity measure means shot change detection. A
motion-controlled temporal filter is used to avoid false
detection due to motion.
Liu et al. [81] based their method on motion-

compensated images obtained from motion vector
information. First motion vectors of frame It�1 are used
to create a motion-compensated version I 0t of the frame
It: The next step is luminance normalization. The
motion-compensated frame I 0t is normalized in order
to get the same energy as the original frame It:
Normalized image is noted I 00t : The original frame It is
then compared to the two modified frames I 0t and I 00t

using a modified version of the w2 test applied on their
histograms. The result wðIt; I 0tÞ is compared to an
adaptive threshold in order to detect cuts. Fade
detection is based on the comparison between wðIt; I 0t Þ
and wðIt; I 00t Þ which are the two histogram differences
computed previously.
When motion vectors are obtained using a fast block-

matching technique (as the three step search method or
the 2D log search method), and considering a search size
of 16� 16 pixels, the complexity is estimated at Oð75PÞ:

6.3. Optical flow

Fatemi et al. [82] use optical flow as information to
detect shot changes. First, the video sequence is divided
into overlapping subsequences, defined as three con-
secutive frames and a fourth predicted frame. Every
frame is then divided into B blocks, which are predicted
from the first frame to the second one, and from the
second frame to the third one. Finally, a set of three
matching blocks from the first three frames is used for
block prediction into the last frame. If the block
prediction does not correctly estimate the content of
the last frame, a shot change is assumed to be found.
Optical flow computation is usually characterized in

the literature by a cost of Oð105PÞ:

6.4. Frequency domain correlation

Porter et al. [83] propose a technique inspired by
motion-based algorithms. Correlation between two
successive frames is computed and used as a shot
change detection measure. In order to compute the
interframe correlation, a block-based approach working
in the frequency domain is taken. Frames are divided
into blocks of 32� 32 pixels. Every block in a frame It�1

is matched with a neighbouring block in frame It by first
computing the normalized correlation between blocks
and then seeking and locating the correlation coefficient
with the largest magnitude. The normalized correlation
is computed in the frequency domain instead of the
spatial domain to limit computation time. The average
correlation is then obtained for a couple of frames. Shot
changes are detected in the presence of local minima of
this value.
Complexity of motion estimation obtained by com-

puting the correlation in the frequency domain is
assumed to be similar to complexity of fast blockmatch-
ing algorithms, i.e. Oð75PÞ:

7. Combination of several methods

Even if most of shot change detection methods
working in the uncompressed domain can be catego-
rized under pixel-, histogram-, block-, feature-, and
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motion-based methods, some cannot. In this section we
will present some methods which do not fit into the
previously defined categories.
Two systems have been proposed by Qu!enot and

Mulhem [84]. The first one is dedicated to cut detection
and based on colour histogram comparison by w2 test
[20] followed by a simplified version of the contour
analysis algorithm [52] where the motion compensation
step is replaced by a dilation of the contour points. The
two steps require, respectively, five operations per
histogram bin and 26 operations per pixel, so the overall
cost is equal to Oð26Pþ 5NÞ: In the second method,
motion compensation is performed using optical flow. A
direct analysis of the resulting images is done in order to
detect cuts, whereas first and second temporal deriva-
tives of the images are compared for progressive
transition detection.
Gauch et al. [85] detect shot changes thanks to the

combination of three image features: the average
brightness of each video frame, the change in pixel
values and the change in colour distribution from two
different frames. Shot changes are detected if at least
one of the two following conditions holds:

XX

i¼1

XY

j¼1

PðIt; i; jÞoT1; ð92Þ

PX
i¼1

PY
j¼1

jPðIt; i; jÞ � PðIt�D; i; jÞj > T2

 !

4
P255
v¼0

jH256ðIt; vÞ � H256ðIt�D; vÞj > T3

� �
0
BBBB@

1
CCCCA:

ð93Þ

where D represents the temporal skip and H256 the
histograms quantified to 256 uniformly distributed
colours. The two conditions are, respectively, character-
ized by a cost of OðPÞ and Oð3Pþ 3NÞ; resulting in an
overall complexity of Oð4Pþ 3NÞ: Thresholds T1; T2;
and T3 are initialized manually at the beginning of the
video using a priori knowledge and updated dynamically
during the video analysis using statistical information.
Yusoff et al. [86] perform shot change detection by

combining five algorithms. The methods used are the
average intensity measurement [16], the Euclidean
distance [87], the histogram comparison [21], the
likelihood ratio [38], and the motion estimation method
characterized, respectively, by a cost of Oð3PÞ; Oð2BÞ;
Oð3Pþ 9NÞ; Oð3Pþ 15BÞ; and Oð75PÞ: The overall
complexity is then Oð85Pþ 9Nþ 17BÞ: The last
algorithm uses prediction error computed as the sum
of absolute differences between the original frame and
the reconstructed frame built using motion information.
Final decision is obtained using a majority vote (there
should be at least three algorithms detecting a shot
change to validate this hypothesis).

Sabata and Goldsmizdt [88] perform fusion of multi-
ple cues to parse video. The features used are from
different origins. One is linked to colour distribution,
another is a set of responses to several texture filters,
some tracking information is also involved, and finally
edges in spatio-temporal volumes are computed. Colour
feature is analysed through the use of weighted
histogram, defined for a temporal window ½t1; t2� with
t1ot2 as

HðIt1 ; It2 ; vÞ ¼
1

V

Xt2

t¼t1

wðtÞHðIt; vÞ ð94Þ

with the weight wðtÞ computed using the 1D Gaussian
function GðtÞ multiplied by a normalization factor.
Colour feature for the frame It is then defined as

DcolourðItÞ ¼
XV

v¼0

ðHðIt�D; It; vÞ � HðIt; ItþD; vÞÞ
2

HðIt�D; It; vÞ þ HðItþD; It; vÞ
: ð95Þ

Texture feature is analysed in a similar way using a set
of 12 Gabor filters instead of colour histogram. The 12
Gabor filters are computed using four values for y and
three for l; which represent, respectively, the orientation
and the wavelength of the filter. The next feature is
linked to results of feature tracking, where a score is
assigned to the tracking in every frame. It is computed
by weighting the contribution of each feature from
the last frame to the current frame using the weight
1� e�di=k; where the constant k determines the sensitiv-
ity to the history of the track and di represents the
number of frames in the past through which the ith
feature was tracked. The distance measure between two
sets of frames ½It�D; It� and ½It; ItþD� is then computed
using the difference between their average track scores
and their missed tracks ratios. The last feature used is
linked to spatio-temporal volumes. These volumes are
built thanks to the projection of the video data along the
ðx; tÞ and the ðy; tÞ planes, as in [89]. For a given
sequence, edges perpendicular to the t-axis may indicate
shot changes. So an average value of the fraction of
pixels covered by the horizontal edges for every set of
frames to be analysed is computed and is used as a
probability measure of the existence of a shot change.
Once all the features are obtained, the final decision is
taken according to the result of a fusion process
performed using a Bayesian network.
Naphade et al. [90] detect shot changes using a K-

means clustering algorithm using two metrics per frame
couple. The two metrics are, respectively, based on
histogram difference and pixel intensity difference. Then
all couples of successive frames are classified, based on
these two metrics and using a K-means clustering
algorithm with two clusters. The cluster characterized
by higher values represents frames containing shot
changes. A final step is necessary to eliminate false
positive. Frames with a local maximum value for the
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histogram difference metric are selected as shot change
boundaries. The complexity has been evaluated to
Oð4Pþ 9NÞ:
Oh et al. [91] propose a three-step method based on a

Gaussian pyramid representation of the background
area of images. Background area is defined as a
concatenation of three regions located, respectively, on
the left, the top, and the right of the image. The first
step, called pixel matching, is based on the computation
of the pixel difference ratio, defined asPX

i¼1

PY
j¼1 DðIt; It�1; i; jÞ

XY

 !
X0:1; ð96Þ

where DðIt; It�1; i; jÞ is defined in Eq. (4). If this
condition is satisfied, there may be a shot change. So
in a next step a matching is performed between signs of
two successive frames. A sign is defined as the pixel on
the top of the Gaussian pyramid. The matching can be
represented by

1

256
max

kAfR;G;Bg

signBAðIt;CkÞ

� signBAðIt�1;CkÞ

 ! !
X0:1; ð97Þ

where signBAðIt;CkÞ denotes the background area sign
value of the Ck colour component for the frame It: If
this second condition is satisfied, the detection process
continues with a final step called background tracking.
This is done by comparing signatures of two successive
frames. Signatures are 1D arrays extracted from back-
ground areas using Gaussian pyramid. The comparison
is done by shifting the two arrays in opposite directions.
In each matching step, only the overlapping pixels in the
matching window are compared to determine the
maximum continuous match, which is the maximum
amount of consecutive pixels matched in the two frames.
This measure is finally compared to a certain threshold
in order to determine the presence of a shot change.
Ferman and Tekalp [92] extend the K-means-based

method proposed in [36]. The unsupervised clustering
process uses, for each couple of frames, two features
which are filtered histogram difference (derivated from
Eq. (17)) and filtered pair-wise pixel comparison (deri-
vated from Eqs. (5) and (6)). For a given distance
measure DðItÞ; the filtering is done in two steps:

D0ðItÞ ¼ max DðItÞ � mean
t0A½t�D1;tþD1�

DðIt0 Þ
� �

; ð98Þ

D00ðItÞ ¼ max D0ðItÞ � median
t0A½t�D2;tþD2�

D0ðIt0 Þ
� �

; ð99Þ

where D1 and D2 are temporal window lengths which
have to be set. This method has a complexity similar to
[90], i.e. Oð4Pþ 9NÞ:
Lee et al. [93] also use a K-means clustering algorithm

to perform shot change detection. Every couple of
frames is represented by a vector of two components
which are linked to pixel-based and histogram-based

distance measures. The measures used are normalized
versions of those described in Eqs. (2) and (17). A vector
is then composed of two features:

1

255XY
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0
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which need, respectively, three operations per pixel and
three operations per histogram bin. The complexity is
then equal to Oð3Pþ 3NÞ: Every couple of frames
ðIt�1; ItÞ is classified using a 2-class K-means clustering
algorithm applied on pairs of frames from ðIt0 ; It0þ1Þ to
ðItf �1; Itf

Þ where It0 and Itf
represent, respectively, the

first and final frames of the video sequence. The two
classes represent the set of couples of frames where a cut
is present and its complement.

8. Complexity results

We reviewed in previous sections a great number of
methods for segmentation of uncompressed video
sequences. In order to compare the different methods,
we have to select a criterion. Quality evaluation, as
detailed earlier, depends directly on the selection of
optimal parameters for each method. So we decide to
compare reviewed methods based on a complexity point
of view rather than a quality one. As we are focusing on
real-time video parsing, this criterion is also of highest
importance.
In this section, we will present complexity of reviewed

methods. More precisely, theoretical and experimental
results will be given.

8.1. Theoretical complexity

We present in Tables 1–6 results of complexity
computation for the different categories of video
segmentation methods presented in this paper. Com-
plexity computation results are given for most of the
methods reviewed here. However, complexity was not
computed for some methods providing insufficient
available information, as for example video segmenta-
tion methods dealing with wavelet transform, Hough
transform, or motion compensation.
Methods with complexity annoted by * are char-

acterized by higher complexity because of the explicit
use of colour. Other methods were considered in a gray-
level framework. Indeed, colour-based methods dealing
with a subsampled colour space (for example, 64-bin
colour histogram-based methods) are considered as gray
level for complexity computation. For several methods,
the complexity computed does not include some specific
processing. So the actual complexities of the concerned
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methods are in fact higher than values given here. We
use the notation þ in this case.
We also have to notice that complexity of methods

dealing with histograms (mainly those in Table 2) does
not include the cost of histogram computation. It is then
necessary to add a cost of OðPÞ to every method using
histograms.
Block-based methods (Table 3) may not be character-

ized by a lower complexity. It is mainly due to extraction
of block features which need a processing of all pixels in
the image. Some of these methods (like [49]) can be used
to segment compressed video sequences using, for
example, the DC term as a block average value. In this
case, the real complexity is much lower than using

uncompressed frames. The same remark applies to
several motion-based methods which detect shot
changes using motion vectors. These vectors can be
directly available in compressed video sequences
whereas they have to be computed in uncompressed
video sequences.
The theoretical estimations given here have been

verified by actual experiments.

8.2. Experimental complexity

We estimated theoretically the complexity of most of
the reviewed methods. In order to verify these estima-
tions, an important part of reviewed methods were

Table 2

Complexity and relative computation time of histogram-based methods

Method and reference(s) Complexity Time

Histogram creation OðPÞ
Color histogram creation Oð3PÞ

Histogram difference [20,25] Oð3NÞ 4.29

Chrominance histogram difference [12] Oð6NÞn 55.62

Highest histogram difference [26] Oð9NÞn 16.47

Hue histogram difference [27] Oð4NÞ 111.56

Normalized histogram difference [27] Oð4NÞ 12.18

Cosine similarity measure [28,29] Oð4NÞ 45.84

Genetic algorithm [30] (colour histogram only) Oð9NÞnþ
Twin comparison [21] Oð3NÞ
Squared histogram difference [22] Oð6NÞ 11.18

Kolmogorov–Smirnov statistic [22] Oð3NÞ 4.29

Ponderation relative to colour importance [10] Oð3Pþ 9NÞn 19.58

Ponderation after learning step [33] Oð15NÞnþ
Average colour [12] Oð6NÞn 21.56

Reference colour table [12] Oð8NÞ 12.29

Histogram intersection [12,34,35] Oð2NÞ 4.29

Normalized histogram intersection [12] Oð4NÞ 12.18

Original w2 test [20] Oð5NÞ 12.29

w2 test normalized by max [10] Oð5NÞ 12.27

w2 test on colour histograms [36] Oð15NÞn

Cross-entropy [22,37] Oð4NÞ 12.29

Divergence [22,37] Oð8NÞ 12.27

Kullback Liebler distance [22,37] Oð11NÞ 12.29

Bhattacharya distance [22] Oð3NÞ 12.27

Table 1

Complexity and relative computation time of pixel-based methods

Method and reference(s) Complexity Time

Simple interframe difference [20] OðPÞ 1:00
Template matching [20] Oð3PÞ 2:11
Colour template matching [20] Oð9PÞn 5:29
Boolean difference [21] Oð2PÞ 1:80
Improved Boolean difference [21] Oð4PÞ 2:60
Normalized difference energy [22] Oð5PÞ 3:00
Normalized sum of absolute differences [22] Oð5PÞ 2:58
Pixel labeling [23] Oð15PÞ
Evolution of temporal derivative of pixel intensities [24] Oð8PÞþ
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implemented. Experimental results are also given in
Tables 1–6.
As the computation time depends on the programming

language and the computing architecture used, results are
given in a relative form rather than an absolute one.
Simple interframe difference [20] being the fastest
method, it is used as a reference computation time.
Tests have been performed using gray-level or RGB

colour video sequences. Images are composed of 192�

144 pixels. The implementation of the reviewed methods
has been performed using Matlab programming envir-
onment. As we compare methods on a relative basis, the
absolute computation time is not critical. So we use
Matlab rather than C or C++ in order to limit
implementation time.
Due to the Matlab implementation, some apparently

strange results have to be explained. All methods
performing a colour space conversion (chrominance
histogram difference, hue histogram difference, cosine
similarity measure, block difference in the HSV colour
space, selective HSV histogram comparison, and HSV
block dissimilarity) are characterized by higher compu-
tation time as this kind of operation is quite slow using
Matlab. Block-based methods were implemented using
Matlab blkproc and colfilt functions to avoid loops,
which perform really quite slow in Matlab. As colfilt
performs faster than blkproc (ratios observed experi-
mentally are between 135% and 175 %), it was used as

Table 5

Complexity and relative computation time of motion-based methods

Method and reference(s) Complexity Time

Global motion [75–78] Oð20PÞþ 80:80
Motion vectors [79–81] Oð75PÞþ 2312:73
Optical flow [82] Oð105PÞþ
Frequency domain correlation [83] Oð75PÞþ 105:65

Table 4

Complexity and relative computation time of feature-based methods

Method and reference(s) Complexity Time

Moment invariants [51] Oð23PÞ
Edge change ratio [52,53] Oð26PÞþ 240.67

Edge-based contrast [9] Oð25PÞ
Histogram difference, edge points count, double chromatic difference [54] Oð27Pþ 3NÞ
Planar points [58] Oð51PÞ
Transition modeling using centroids [16] Oð10PÞ 11.89

Transition modeling using histograms [60] Oð2N2 þ 10NÞ
Histogram of pixel-pair differences [61] Oð8PÞþ
Transition modeling using mean and variance [9,62–65] Oð3PÞ
Principal coordinate system [69] Oð18PÞn 35.95

Joint probability images [71] Oð2PþN2 þNÞ
Hidden Markov Model with three features [73] Oð13Pþ 11NÞ

Table 3

Complexity and relative computation time of block-based methods

Method and reference(s) Complexity Time

Similarity ratio [38] Oð3Pþ 15BÞ 85.29

Yakimovsky likelihood ratio [22] Oð3Pþ 13BÞ 88.67

Freund statistic Oð3Pþ 11BÞ 79.20

Block differences in the HSV colour space [39] Oð2Pþ 10BÞn 179.05

Colour histogram comparison [40] Oð15NBÞ þ 3BÞn 206.42

Selective RGB histogram comparison [20] Oð4NBþ 0; 5BÞþ 208.42

Rate of correlation change [41] Oð4NBþ 2BÞ
Block-based normalized histogram difference [27] Oð4NBþ 2BÞ 233.38

Selective HSV histogram comparison [43] Oð6NBþ 2Bþ 4PÞn 300.00

Block-based HSI histogram comparison [44] Oð4NBþBÞn

L*u*v* histogram intersection [45] Oð12NBþ 2BÞn

Histogram difference and likelihood ratio [46] Oð3Pþ 3Nþ 21BÞ
Neighbourhood colour ratio [47] Oð5Pþ 8BÞ 45.93

RGB block dissimilarity [48] Oð9Pþ 3BÞn

HSV block dissimilarity [49] Oð2Pþ 8BÞn 114.25

Temporal and spatial subsampling [50] OðPþ 5BÞ 36.45
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often as possible. However, even if we use adequate
Matlab functions, computation time of block-based
methods stays high. Finally, motion-based methods are
characterized by very variable computation times,
depending on the use or not of Matlab optimized
functions. As motion vectors are obtained using the
block matching technique which requires several nested
loops, methods [79–81] using motion vectors show actual
computation time worse than theoretical complexity.

9. Conclusion

We presented in this paper a great number of methods
for segmentation of uncompressed video sequences. We
focused on the complexity of these methods, contrary to
other previously published reviews. This criterion is
particularly important for two main reasons. Firstly,
uncompressed video contains a huge quantity of data,
which is not the case of compressed video. So video
parsing method dealing with uncompressed video will be
characterized by their computational intensive aspect.
Secondly, when dealing with real-time video segmenta-
tion, we have to use methods known for their low
computational cost in order to process video at frame
rate.
Results of this study show that the best method for

real-time segmentation of uncompressed video se-
quences should be selected considering efficiency and
computational cost. Simple methods like interframe
difference is one of the fastest method but it is
characterized by a poor quality. On the opposite,
feature- or motion-based methods or methods combin-
ing several algorithms are more robust and lead to better
quality, but they are also known to be greedy in
computational resources. Another important criterion
to choose a method is the way of computing threshold
values and the number of thresholds. Future work will
deal with the study of this criterion.
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