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Il s’agit d’estimer le champ de déplacement en certains points
correspondant a des primitives seulement.

Le résultat est un champ de déeplacement épars.

On illustrera deux cas :

1. L’analyse frame-a-frame dans le cas de 2 frames
seulement, ce qui revient a trouver les disparités entre
deux frames consécutives.

2. Le tracking du déplacement d’'une primitive a travers
une sequence d’'images plus longue, et qui peut
ameliorer la robustesse du matching frame-a-frame.



Techniques de Matching par autocorrélation

Wil T _, (2.3)

Fic. 2.1: a) Image originale b) noyvau choisi ¢) autocorrélation d) autocorrélation seuillée. On
retrouve bien l'emplacement du novau recherche



Etant donné deux frames capturees a différents instants et m
points dans chaque image, le probleme de mec revient a
mapper un point d'une frame a un point de l'autre frame de
sorte que deux points ne se mappent pas en un méme point.

Le probleme en stéréo est évidemment simplifié puisque les
correspondants possibles se trouve le long de la droite
epipolaire.



Dans le cas d'objets se déplacant et de frames prises a
Intervalle quelconque, les matches possibles peuvent se
trouver quasiment n'importe ou dans la frame suivante,
contrairement a la stéréo ou les frames sont séparés dans
I'espace et non dans le temps.

Le probleme de mec est ainsi extrémement combinatoire et
lourd a traiter de fagon brutale. Pour 2 frames et 5 points dans
chaque frame, le nombre de mappings possible est 5!=120.
Par ailleurs, méme si on peut eventuellement construire ces
120 mappings, comment choisir le meilleur ?

Pour réduire la complexité du probleme, on utilise des
contraintes physiques ou heuristiques.
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constraint.




La difficulté est de traduire ces heuristiques qualitatives en
expressions quantitatives afin de définir des fonctions de
couts. (Techniques d’optimisation de type Programmation
Dynamique utilisées en Reconnaissance de Formes
structurelles).
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Le probleme revient alors a determiner le mapping optimal en
fonction de ces fonctions de cout.

L’énumération de toutes les configurations possibles n’est en
genéral pas possible. |l s'agit donc de trouver un bon
algorithme d’approximation pour obtenir une solution sub-

~AntirmaAal fraec nranacrhoa Aa la ecAalifinan Antfirmala



Tracking avec jetons : Algorithme itératif

S. T. Barnard and W. B.
Thompson, "Disparity analysis
in images," IEEE Trans. Pattern
Anal. Machine Intell., vol.
PAMI-2, pp. 333- 340, 1980.

Il s’agit d’'un algorithme itératif pour calculer le flot optique
pour m jetons.

lls utilisent une mesure de confiance P, qui code la

probabilité d’'un jeton i du frame f' a étre associée au jeton j

du frame 2 : P, = P((i,1)<(,2) )



La probabilite initiale P,° sont calculees en utilisant des

difféerences de niveaux de gris dans des petites fenétres

autour des jetons se correspondants :
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avec

dy=w dx=w

W, = Z Z (fl(xl.+dX,y,-+dy)—f2(xj+dx’yj+d)/))2
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A chaque itéeration, on calcule :

P=p'!|A+Bq "
0] 0] i

=T

Avec k voisin de | et Iv0|S|n de J, tels que :

H(Xi’yi)_(xkﬁ)/k)HSDmax ®
et —

P .
HVij_VleSVmax == W4

ou V; est le flot optique du jeton i s’il est matche avec le
jeton j dans l'autre frame

Avec :



Algorithme ITER TOKEN

INPUT : Une séquence temporelle de n images f,, ... f,avec le méme nombre de
primitives ou jetons a apparier dans chaque frame.

Pour chaque paire de frames consécutives, et pour chaque paire de jetons i et j
d’'une frame a l’autre, calculer jusqu’a stabilisation

o 1

Pij_ n
C Wij

Pl’l

nzp

Dn _pn—1

) Zzpnl

A+qu.‘1

OUTPUT : le flot optique ou la correspondance de mouvement associé a I'ensemble
des jetons de frame en frame.
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Matching multi-frames : Tracking avec jetons :
Algorithme non-itératif déterministe (voir le livre en ligne de

M. Shah)

[l s’agit de suivre des jetons dans plusieurs frames successives et
d’utiliser un mapping initial entre les deux premieres frames pour
propager cette information et adapter le mappings suivants en fonction
de cette information a priori.

(a) (1) (<) i

(d) I (e} (r)
Ed
¥
(g)
Trajectory generation. (a)-(c) Image sequence — selected images shown. (d)-{)

Respective fingertip points for images. (g) Fingertip trajectories.




Soit une sequence de n frames f/, f?, ..., .
On suppose que les m jetons d’intérét (détecteur de Harris pour
les jonctions par exemple) ont été détectés.

Ainsi, chaque frame f' est reduit a un ensemble de m points.

Xiest le vecteur de coordonnées 2D du i*m points dans la jome
frame.

Le but est de trouver une correspondance bi-univoque dkentre les
points de la frame k et ceux de la frame k+1.

fk Xik Xk+1 fk+1




Il N'est pas irréaliste de supposer que dans l'espace et sur des
Intervalles de temps petits, les objets se déplacent sur de petites
distances. Et que leur mouvement correspondant est regulier ou
uniforme : contrainte (a).

La régularité du mouvement impligue un changement minime de
la vélocité du point. C’est a dire quele point ne peut changer sa
direction et sa vitesse de déplacement simultanément : contrainte (b).

Ainsi, les points vont suivre un certain chemin dit “proximal
uniform path”. La découverte de ce chemin regulier optimal va
utiliser la fonction de colt (“proximal uniformity function”) & définie
dans ce qui suit.

Soit les matrices des Changements Relatifs de la frame k-1 a k+1
CkeM, . etdes Déplacements Relatifs de la frame k a la frame

k+1 DxeM_ .

On placera en ligne les points de la frame de départ et en colonne
les points de la frame d’arrivée.



Points de la couche k+1

Ck

Points de la couche k

Cij]=lX,

et
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Points de la couche k
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Soit MeM_ _ la matrice résultante :

k ° ° ° ) ) )
M"|i,j|=C . |ij|+D .|i,j]
Trajectoire lisse et uniflorme : Prolximal Match
Controle des Changements du vecteur vélocité

Cette matrice code la fonction de cout 6 pour une
association (i,k) avec (j,k+1) sachant I'association
optimale précédente ( ®*(i) , k-1 ) avec (i,k) :

M (i ]=6(X g oo X3 X5

En estimant quantitativement les criteres de regularisation

suivants :
*La vitesse ne change pas beaucoup entre deux frames successives;
La direction ne change pas beaucoup entre deux frames successives;
*Le déplacement d’un point entre deux frames successives tend a étre petit;



Dans cette formulation, on suppose qu’un premier mapping
®' entre la frame 1 et la frame 2 est disponible. On peut
utiliser I'algorithme a jeton itératif préecédent, par exemple.
Ensuite I'algorithme va prolonger la trajectoire de frame en
frame en utilisant ces contraintes de régularités initiales.

Le mapping ®kest déterminé en fonction des mappings
précedents de sorte a minimiser la fonction de cout globale

sur toute la trajectoire :

C= ; 5 X’;‘l,Xg X



Klgorithme GREEDY TOKEN
INPUT :

*Une séquence temporelle de n images f,, f,, ..., f

*Un ensemble de m jetons dans chaque frame.

*Une correspondance initiale entre les m jetons de la frame 1 et les m jetons de la frame
2 donnée par l'algorithme ITER_TOKEN par exemple.

n-

For k=2ton—1 do

(a) Construct M an (m#m) matrix, with the points from kth frame along the rows and
points from (k —}—"I Jth frame along the columns. Let M|z, 7] = 6(.1:';"'_1 Xk X;"'H ),
when ®*~1(p) = 1.

(b) fora =1 to m do
i. Identify the minimum element |z, [;] in each row 7 of M.
ii. Compute priority malriv B, such that Bl ;] = 27, ., Ml j] +
> iy ppi MK, ;) for each i,
iii. Select [4, ;] pair with highest priority value B[i,l;], and make ®*(i) = [,.

iv. Mask row 72 and column /; from M.

OUTPUT : les traiectoires de la séauence d’'imaaes



This algorithm has the nice property that it will pick the least cost assignment if there
are just two points in the frame. Consider the matrix M, with M[1,1] = 0.6 , M[1,2] =
0.3, M[2,1] = 0.7, and M|[2,2] = 0.2. Minimum along row 1 is element [1,2] with value
0.3, while the minimum along row 2 is element [2,2] with value 0.2. Therefore, B[1,2] =
(0.6 + 0.2) = 0.8, and B[2,2] = (0.7 + 0.3) = 1.0. Now, B[2,2] > BJ1,2], hence we choose
correspondence (2, 2) first. Then, mask row 2 and column 1 with a high value. Next we pick
the only assignment possible [1, 1]. For this assignment § = M[1,1]+M|[2,2] = 0.6+0.2 = 0.8,
which is the least possible for this configuration.

Quand le nombre de jetons varie, on adapte ce cadre algorithmique a la
programmation dynamique (cf. reconnaissance de la parole et de I'écrit manuscrit)

*Ces techniques séparent completement le processus de segmentation/détection
des primitives de leur suivi.

Cynamic programming tracking score calculation and tracebacl

Score calcultion —§»
44— Traccback

Jynamic programming tracking performs well when one wants to track an object with many occlusions, infarmation gaps or for offline tracking. It may also be
1sed with non- static backaround or multinle taroet ohiects in the forecround.


https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Tracking_Using_Dynamic_Programming_for_A.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Tracking_Using_Dynamic_Programming_for_A.pdf

Remarque : Ces conclusions intermédiaires sont tiré esde la these de Auguste Genovesio traitant du tracking de spot fluorescents en imagerie
médidale disponible en ligne et d'un chapitre en particulier qui propose un bon bilan des méthodes de tracking ponctuel ou de forme (les
références se trouvent dans le document)

Avantages

Ces méthodes présentent des avantages qui ont déja permis leur implémentation au sein de
logiciels commerciaux.,

1.
2.

Elle est efficace sur des flots de points bien détectés.

Elle offre une relative simplicité de mise en oeuvre

Inconvénients

Ces méthodes présentent aussi deux inconvénients pour notre application :

1.

1S

Elle repose sur une hypothése de régularité mal adaptée a de multiples objets dont le
mouvement varie entre eux et dans le temps

Elle ne prend pas en compte les fusions ou séparations d’objets en cas de sur ou sous
détection.

Elle est sensible aux fausses détections


https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/GenovesioThesis.pdf

Il s’agit de mettre en correspondance des primitives sur une
séquence d’'images longue en associant des incertitudes..

Il s’agit comme préecédemment d’utiliser le travail de mise en correspondance
passeé pour prédire la mise en correspondance a venir dans I'hypothése de
trajectoires continues.

Pour cela, il existe une cadre théorique bien établi venant des techniques
d’optimisation ; le filtre de Kalman.

Dans nos problématiques de vision, un filtre de Kalman est mis en place sous
la forme d’un algorithme récursif qui estime la position et l'incertitude d'un point
caractéristique mobile dans la frame suivante a partir des frames précédentes.
En d’autres termes, on cherche la primitive dans cette frame et la taille de la

region autour de la primitive prédite pour étre sire de trouver la dite primitive
avae t1ine cartaine confiance



Cadre de modélisation bayésienne

Deétection

¥

'

Filtre bayesien
(prédiction)

Y

association

Filtre bayesien
(mise a jour)

FiG. 2.4: Schema general du suivi bayesien



ath

Voir document kalma.HMM.ps

L’'estimee resultat est optimal au sens statistique : sur un grand nombre
d’expériences, le filtre de Kalman, s’il est bien concu, serait meilleur, en
moyenne, que les estimées résultats de tout autre filtre de prédiction
sous I'hypothése d’'un systeme linéaire et de bruit blanc gaussien.

Si le bruit est non gaussien, le filtre de Kalman est encore le meilleur filtre
linéaire non biaisé.
[P.S. Maybeck, Stochastic Models, Estimation, and Control, Vol I. Academic
Press, New York, 1979]



* Un systeme physique.
. entre parametres:
—qui modélisent le systeme,

—que l'on peut mesurer.

* Estimer les premiers a partir des seconds.

observation

SYSIEME PIYSIQUE | O-l| censemble de paramétres
’ ’ | IR
mesurables

T ¢tat interne du systéme
sl ensemble de paramétres



* Les mesures sont imprecises/incertaines
* Le modele est simpliste donc ....

* Dans ce formalisme statistique, on fait
une estimation s, de |'état courant s. a partir
des observations o..

2.0n veut savolir la fiabilite d’'une estimation
s, de I'etat courant s..

— ce que le filtre de Kalman permet.



*On a acces a: 0.-0, +ni Les notes de Boutayna le mois i

* 1]: bruit blanc additif et:

_ t Etat de concentration du
R, _E[ ;-1 ] professeur pour le mois i

. Evolution du modeéle:

= +
h (S ) n Etat de connaissance de
Boutayna le mois i+1

Etat de concentration de
Boutayna pour le mois |

* n;bruit blanc additif et :
=E|n;.n.

I



*Filtrage de Kalman: processus iteratif d’estimation du vecteur §,

*Estimation a lI'instant i:

A o / \

s, associée a P,=E|[(5,—s,;)(5,—s,)]

l

. Pi traduit la confiance que I'on a en I'estimation

» Si on connait %i- 1, statlsthuement parlant la meilleure
estimation possible de s est:

Siji1=hil ;1)



Formalisation: les équations de mesures,ou de

quoi dispose-t-on en pratique ?

* du Lien entre les observations et le vecteur
d’état:
fi(oiﬁsi):()
fiiRTXRTH>RY

-Cas linéaire: 0. =F..s. 1.



* Dans le cas non-linéaire, on s'y ramene: développement de
Taylor a l'ordre 1 de |,

. A of; of, .
fil0,,8,)=f (0,8, )+ 80 (0,—0,)+ asi'<si_si/i—1)+"'
* et on a bien: en lieu et place de
Zi:Mi'Si+wi A — _I_
avec Oi Fi . Si rli
. of, .
=—fi(0,,8; )+ 3s ~—(0,,8,-1)-81-4
of. W. mesure I’incertitude
M.=—1(0,5S,._,) sut la mesure
l as i /11—
of of;

W’:ﬁoi (01"51'/1'— ) (0 0) 80 (01,51/1 ) n;



3 etapes, propagation des incertitudes.

Initialisation:  S0:Po)
*Prédiction (grace au modéle systéme) :

§i/1'—1: hi(§1—1>
oh oh
P = aT(Si—1>'Pi—1'5T(Si—1)t +Q,_;

Calcul du gain de Kalman: t " -1
i Pi/i—l'Mi°(Mi'Pi/i—1'Mi+Wi)

*‘Mise a jour (grace aux mesures) :

A

§.: Si/i—1+Ki'(Zi_Mi'§i/i—1
P= (I-K.M,).P

ili—1

Un pas du filtre.



*Compromis entre la contribution de la prédiction et de la mesure:

PTGQQCUOH inoyation
\
S B l/l -1 +K (Z M‘Si/i'l)

l

*On peut réécrire: K. :Pi,Mg, Wl._1

Grande incertitude sur le vecteur d’état donc P, « grande »,
i « grand » donc innovation favorisée.

*Grande incertitude sur la mesure donc W. «grande», K.
« petit » , donc prédiction favorisée.




Formalisons dans ce cadre le probléme du tracking.

Une nouvelle frame de la séquence d'image est acquise et traitée a
chaque instant t =t +k ou k est un entier naturel.

k est suffisament petit pour considérer que le mouvement est linéaire
d’'une frame a l'autre.

On considere seulement un point primitive, p,=[x,,Y,]", dans la frame
acquise a l'instant t,, se deplagant avec la velocite v, =[v, ,v, I".




On décrit le mouvement dans le plan image avec un vecteur d'état
S = XYV xioV yid -

En supposant un intervalle d’échantillonnage suffisamment petit (et donc
une velocité de la primitive constante entre 2 frames), le modéle
systéme s’écrit dans le cadre du filtre de Kalman :

D =Py Vi HS g
V=Vt
oué, ,et ¢, ,sontdes bruits blancs

gaussiens modélisant le bruit du systeme .
En terme de vecteurs d’état s, cela s’écrit :

S =H Sk Py
1 01 0

avec H, = 01011 n,_,= -1
00 1 0 -
0 0 0 1




En terme de mesures, on suppose qu’'un extracteur rapide de primitive est
disponible et estime 7z, la position du point primitive p, pour chaque frame

de la séquence. Ainsi le modéle de mesure du filtre de Kalman devient :

Pk
Vi

1 0 0 ol
0 1 0 0

avec w, bruit blanc Gaussien centré

modélisant le bruit de mesure

Remarque : dans le cas linéaire : R =W,, M,=F, etz = 6k

Sous les hypotheses du filtre linéaire de Kalman, et etant
données les observations bruitees z,, calculer la meilleure

estimée de la position de la primitive et de sa velocite a
I'instant t, ainsi que leurs associées.




Algorithme KALMAN TRAKING

INPUT : L’entrée est formée, a chaque instant t,, des deux matrices de covariance
des bruits du systeme et de mesure a lI'instant t,_;, Q,, et W, respectivement, plus

les deux matrices invariantes temporellement d’état d’'une part, H, et de mesure,
M, d’autre part, ainsi enfin que des mesures de position a I'instant t,, z,. Les entrées

de P sont fixées a de tres fortes valeurs arbitraires.
=H

Sk/k 1 k-1 Sk 1 Prédiction modéle
_ T

Pyj-1=H o1 Py Hg 1 1Qy

T T 1
K =Py i My (M Py My W) Gain

Sk=Sklk-1 +Kk(zk_Mka—1Sk—1) MAJ de la prédiction
_ T T modele par le biais des
Pk_(I_Kk)Pk/k—l(I_Kk) KW K mesures
OUTPUT : les estimations optimales des position et vélocité a I'instant t,, Sk et

leurs incertitudes données par les €éléments diagonaux de P,.




Le filtre quantifie I'incertitude sur I'estimée de I'état, sous la forme des
élements diagonaux de la matrice de covariance d’état P,

Cette information permet au détecteur de primitives de dimensionner
automatiquement la région de recherche de la primitive dans la frame
suivante.

Cette région de recherche est centrée sur la meilleure position estimée et sa
largeur est proportionnelle a l'incertitude.

Dans un filtre correctement congu, la valeur de cette incertitude décroit
rapidement avec le temps et la région de recherche se rétrécit d’'autant avec
le temps.

Dans I'exemple présente, la taille des croix indique la zone d’incertitude dans
laquelle rechercher la primitive dans la frame suivante.

Remarque : la matrice de covariance d’état ne dépend pas des mesures. Donc, si la
dépendance temporelle de H,, M,, Q_et R, est connue, P, peut étre calculée off-line et

ensuite étre approximée par une fonction en escalier. Cette propriété peut étre cruciale
pour les implémentations temps réel du filtre de Kalman.



Deux problémes se posent pour I'implémentation de cet algorithme :

Les données manquantes
Le filtrage de Kalman repose sur la connaissance suivante :
— Le modele du systeme et la matrice de covariance du bruit
correspondant Q,

— Le modéle de mesures et la matrice de covariance du bruit
correspondant R, ou W,

— L’état initial du systeme (temps t,), §O’ et la matrice de covariance
d’etat, P,

Cependant, nombre de données parmi ces derniéres sont inconnues.
Toutefois, en général, elles sont modélisables de fagon simples linéairement. I
faut juste prendre garde a faire en sorte que Q et R soient comparables pour
que la prédiction ou 'innovation ne I'emporte pas de facon injustifiée sur l'autre.

L’association des données

En présence de plusieurs primitives images et de multiples mesures,
quelle mesure observée doit étre associée avec quelle primitive ?
Le cas de cibles en désordre et interférant.




— C’est la région de I'espace d’'état qui
m contient le véritable état avec une
probabilité donnée.

Exemple : soit le vecteur d’état 2D e, =[x,,x,]". Le
filtre de Kalman calcule I'estimé d’état optimal, é,,

(a) (b) comme le maximum de la densité de probabilité
{a) Disjoint search regions of two features, centered conditionnelle de e, étant donnee la mesure z,.
around the best position estimates py, pz; the measurements my, mp Cette fonction de densité est supposeée Gaussienne,
are associated to the closest estimates. (b) If the search regions si bien que son maximum coincide avec sa
intersect, the minimum-distance criterion fails. moyenne.

Conséquences pratiques :

La région du plan centrée sur &, qui contient le véritable état avec une probabilité c2 est I'ellipse :
(e=&,)(P) " (e=¢,) <c?

‘Les axes de cette ellipse sont : =cyAe,,i=12, a partir des éléments propres de P,

La variable (e-&,)(P,)'(e-é,)" a une distribution du Chi-2
Utilisation pratique, pour le tracking :
*At,,, la prédiction d’état dufiltreat, esté,, .=H,, &, , avecla matrice de covariance P ,, ;. On
diagonalise P, , pour obtenir ses vecteurs propres, et ne considére que les composantes du vecteur
d’état donnant la position [x,,x,]" de la primitive. On construit une ellipse d’incertitude (centrée en é , |,

avec une probabilité désirée de (7-a)). Puis on cherche la primitive dans la frame k seulement dans
I'ellipse. Une fois que votre détecteur de primitive a mesuré la position de la primitive a t,, on calcule &,

et P,, ce qui vous permet de construire I'ellipse d’incertitude contenant la véritable primitive a t, avec le
niveau de probabilité choisi.




Sulivi de la trajectoire d’'une particule
dans le plan

Le systéme: mouvement a accélération constante

. . . . t
Si [Xi X;p Xip Vi Y }’i]

Equation de mesures:

Incertitude: Meyer a montré que

Si+1

A A
2
1 At
1
0
0]
A At AP
20 8 6
At AP AP
8 3 2
At A2
— — At
6 2

.S. +n.



https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Region-Based_Tracking_in_an_Image_Sequence.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Region-Based_Tracking_in_an_Image_Sequence.pdf
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Bilan sur la Technique de tracking de Kalman

Avantages

1. Elle offre la possibilité de générer une prédiction d'une représentation générale de
chaque abjet

~

Elle permet de corriger cette prédiction au fur et A mesure de 'obtention des mesures.

3. Si les objets se modifient fortement dans le temps, clle permet de ne pas chercher a
suivre chacun de leurs points précisément mais une description générale représentée
par un vecteur d’état

4. Un vectenr d’état pent &tre composé de 1a position spatiale, du volume et de Uintensité
movenne d’ une tache.

[nconvénients

Nous verrons par la suite que ce schéma présente tout de méme des inconvénients pour
son adaptation a notre problématique :

1. La détection, qui ne peut pas étre une étape considérée comme parfaite dans le cas
du suivi de taches fluorescentes, viole systématiquement certaines hypothéses posées
par les méthodes d’association courantes. Nous verrons dans la suite que ceci entraine
beaucoup d'erreurs.

2. L'utilisation de filtres bayesiens nécessite un certain nombre de connaissances o prior:



Suivi de primitives multi-frames : filtrage particulaire ou la
version evolutionnaire avec un peu de Bayes

Encore appelé algorithme CONDENSATION ou filtre bootstrap
Permet de manipuler numériquement des modeles joints.

Repose sur un principe de ré-¢chantillonnage qui correspond a la
sélection dans les algorithmes évolutionnaires (GA)



Suivi de contours multi-frames : Snake ou Contours actifs

Définition :
Il s’agit de suivre un contour d'objet legerement mouvant sur une
séquence d’'images longue.

Fic. 2.2: Exemple de détection par contour actif : a) initialisation du snake, b) évolution,
bilisation du snake sur le contour de l'objet.

*D'abord une méthode de segmentation en image fixe




Zimmer et al., 2002b; 2002a; Koschan et al., 2003].

Le snake est une fonction paramétrique définie par v(s) = v(r(s),y(s)) on x(s) et y(s)
sont les coordonnées des points le long du contour et s € [0,1]. La fonctionnelle d’énergie a
minimiser est alors de la forme :

1
f Has / Eenare(v(s))ds (2.4)
0
Erake(v(s)) est généralement composée de trois termes d’énergie

Esnake{v(s]) = Einterne('v(s)] + Eiima_ge (t-‘(S]I:I + Econrra,mte(ﬂ(ﬁ)) {25}

oil I'énergie interne est définie comme

2

+ A(s)

2

d*v

d2s

dv

- (2.6)

Einterne =& (5]

oil c est le paramétre d’élasticité et 3 est le paramétre de rigidité. L'énergie dite externe ou
de l'image est définie par le gradient (de Sobel par exemple) :

Eimage = —VF (2.7)

Enfin, le dernier terme, désigne une contrainte telle que des rectifications manuelles sur le
snake par exemple. Cette énergie peut étre minimisée grace a un schéma itératif obtenu
depuis les équations d’Euler Lagrange.



Avantages
Les contours actifs représentent une technique de suivi assez puissante dont voici les avan
Lages.

L. Elle permet de disposer d’une description du contour de I'objet a chaque instant.

2. Elle offre la possibilité de suivre des objets qui se deforment legérement dans le temps

Inconvénients
Cependant, cette méthode n'est pas adaptée i tout type d’application et présente guelque:
inconveénients.

1. Elle ne supporte pas un écart trop élevé de position entre deux images.

2. Elle ne peut fonctionner que pour des objets dont les bords sont correctement défini
(dans le cas de l'utilisation du gradient).

3. Elle ne gére pas le changement de topologie (entrée, sortie, séparation et regroupemen

d’objets). Ce point est cependant remis en question dans [McInemey and Terzopoulos
1999].

4. Elle ne gére pas le croisement d'objets et les occlusions.
5. Elle ne supporte pas un changement brutal de forme.,

6. Elle est relativement sensible au bruit.



Suivi de contours multi-frames : Level Set Methods

Définition :

Il s’agit de suivre plusieurs contours d'objets dont le nhombre
varie et legerement mouvant sur une sequence d’'images
longue.

a b c d

2.3: Exemple de détection par ensemble de niveaux : a) initialisation de la fonction de levelse
b) et ¢) évolution d) stabilisation autour des objets.

* Travaille dans le cadre des equations aux derivées  , .
partielles . (y) = FN
* D'abord une méthode de segmentation en image

fixe



https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles2017/ipolDec2012_5.pdf

Avantages

Les ensembles de niveau représentent une bonne technique de suivi dont voici les avantages :
1. Elle offre un moyen de suivre des objets qui se déforment légérement dans le temps.

2. Sion utilise un seul levelsel pour tous les objets, elle permet de s’affranchir du probléme
de changement de topologie inhérent aux contours actifs. En effet, elle peut initialiser
automatiquement des objets qui entrent dans le champ en cours de séquence.

3. Elle peut étre é¢tendue en 3D beaucoup plus naturellement que les contours actifs.

Inconvénients

Cependant, cette méthode présente les inconvénients suivants
1. Elle ne supporte pas un écart trop élevé de position.

2. 51 on utilise un seul [evelset pour tous les objets, elle gére mal le croisement d’objets
et les occlusions.

3. Elle ne supporte pas un changement brutal de forme.
4. Elle est relativement sensible au bruit.

. Etendue en 3D. elle nécessite un emps de caleul éleveé.

o



TrackMate (Fidi / Icy)

Spot tracker Parameter Value
Initial search radius 10
Linear motion tracker | Search radius 7
Max frame gap 3
Max linking distance 7
LAP Brownian motion | Max gap-closing distance 10
Max frame gap 3
Nearest neighbor Max search distance 10
page 57

Associé a la problématique des « spot detection » / CellPose / StarDist

A titre d’exemples de données biologiques :
- 2 medical images biologiques 3D d’une séquence (comme t420.tif et t421.tif) (ISBI 2015 challenge
/ FLUO C3DL _MDAZ231 files) — recalage, SIFT, tracking etc.

- t026.t1f and t027.tif dans
- Plus encore :


https://imagej.net/media/plugins/trackmate/trackmate-manual.pdf
http://celltrackingchallenge.net/
http://data.celltrackingchallenge.net/training-datasets/Fluo-C2DL-MSC.zip
https://public.celltrackingchallenge.net/documents/Naming%20and%20file%20content%20conventions.pdf

Le temps manquant, je n'ai pas parlé de :

* DéteCtIOn de Changement dans des Séquence&[(} 1.1 — Exemple d'une transition brusque.
vidéos (difféerences d’'images sophistiquées) - de
plans dans des films

Fig. 1.2 — Exemple d’une transition progressive de type fondu.

* Du tracking de référence de points de Harris :
I'algorithme de Kanade Lucas et Tomassi (KLD)
disponible dans beaucoup de bibliothéque en ligne



“Use of Optimal Estimation Theory, in Particular the Kalman Filtering”, in Data Analysis and Signal Processing”,
W. Cooper, Review of Scientific Instrumentation, vol. 57, pp. 2862-2869, 1986

*De facon générale, ici


https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/GenovesioThesis.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/KalmanParticle.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Kalman1986.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/BABA/bookMubarakShah.pdf
https://imagej.net/media/plugins/trackmate/trackmate-manual.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/

