
                             



                              TRACKING



Techniques de Matching

Il s’agit d’estimer le champ de déplacement en certains points 
correspondant à des primitives seulement.

Le résultat est un champ de déplacement épars.

On illustrera deux cas :
1. L’analyse frame-à-frame dans le cas de 2 frames 

seulement, ce qui revient à trouver les disparités entre 
deux frames consécutives.

2. Le tracking du déplacement d’une primitive à travers 
une séquence d’images plus longue, et qui peut 
améliorer la robustesse du matching frame-à-frame.



Techniques de Matching par autocorrélation



Matching de 2 frames :Tracking avec jetons

Etant donné deux frames capturées à différents instants et m 
points dans chaque image, le problème de mec revient à 
mapper un point d’une frame à un point de l’autre frame de 
sorte que deux points ne se mappent pas en un même point.

Le problème en stéréo est évidemment simplifié puisque les 
correspondants possibles se trouve le long de la droite 
épipolaire.



Dans le cas d’objets se déplaçant et de frames prises à 
intervalle quelconque, les matches possibles peuvent se 
trouver quasiment n’importe où dans la frame suivante, 
contrairement à la stéréo où les frames sont séparés dans 
l’espace et non dans le temps.

Le problème de mec est ainsi extrêmement combinatoire et 
lourd à traiter de façon brutale. Pour 2 frames et 5 points dans 
chaque frame, le nombre de mappings possible est 5!=120.
Par ailleurs, même si on peut éventuellement construire ces 
120 mappings, comment choisir le meilleur ?

Pour réduire la complexité du problème, on utilise des 
contraintes physiques ou heuristiques.



Smoothness

Rigidity



Techniques différentielles

(See M. Shah book)



La difficulté est de traduire ces heuristiques qualitatives en 
expressions quantitatives afin de définir des fonctions de 
coûts. (Techniques d’optimisation de type Programmation 
Dynamique utilisées en Reconnaissance de Formes 
structurelles).

Le problème revient alors à déterminer le mapping optimal en 
fonction de ces fonctions de coût. 

L’énumération de toutes les configurations possibles n’est en 
général pas possible. Il s’agit donc de trouver un bon 
algorithme d’approximation pour obtenir une solution sub-
optimal très proche de la solution optimale.



Tracking avec jetons : Algorithme itératif 

S. T. Barnard and W. B. 
Thompson, "Disparity analysis 
in images," IEEE Trans. Pattern 
Anal. Machine Intell., vol. 
PAMI-2, pp. 333- 340, 1980.

Il s’agit d’un algorithme itératif pour calculer le flot optique 
pour m jetons.

Ils utilisent une mesure de confiance Pij qui code la 

probabilité d’un jeton i du frame f1 à être associée au jeton j 

du frame f2 : Pij = P( (i,1)(j,2) )



Pij
0=

1
c+wij

La probabilité initiale Pij
0 sont calculées en utilisant des 

différences de niveaux de gris dans des petites fenêtres 

autour des jetons se correspondants :

w ij= ∑
dy=−w

dy=w

∑
dx=−w

dx=w

( f 1 ( x i+dx,y i+dy )− f 2 ( x j+dx,y j+dy ) )2
avec



A chaque itération, on calcule : Pij
n=

~Pij
n

∑
k

~Pik
n

Avec :
~P ij

n=Pij
n−1 ( A+Bqijn−1 )

et
qij
n−1=∑

k
∑
l

Pkl
n−1

Avec k voisin de i et l voisin de j, tels que :

‖( x i ,y i )−( xk ,y k )‖≤Dmax

et
‖V ij−V kl‖≤Vmax

où Vij est le flot optique du jeton i s’il est matché avec le 
jeton j dans l’autre frame



  
Algorithme ITER_TOKEN

INPUT : Une séquence temporelle de n images f1, … fn avec le même nombre de 
primitives ou jetons à apparier dans chaque  frame.

Pour chaque paire de frames consécutives, et pour chaque paire de jetons i et j 
d’une frame à l’autre, calculer jusqu’à stabilisation 

OUTPUT :  le flot optique ou  la correspondance de mouvement associé à l’ensemble 
des jetons de frame en frame.

Pij
0=

1
c+wij

Pij
n=

~Pij
n

∑
k

~Pik
n

avec ~Pij
n=Pij

n−1 (A+Bqij
n−1)

et
q ij
n−1=∑

k
∑
l

Pkl
n−1



Illustration de la méthode de Barnard et Thompson avec A=.3, B=3 et Vmax = 2, et Dmax=4



Matching multi-frames : Tracking avec jetons : 
Algorithme non-itératif déterministe  (voir le livre en ligne de 
M. Shah)
Il s’agit de suivre des jetons dans plusieurs frames successives et 
d’utiliser un mapping initial entre les deux premières frames pour 
propager cette information et adapter le mappings suivants en fonction 
de cette information a priori. 



Soit une séquence de n frames f1, f2, …, fn.
On suppose que les m jetons d’intérêt (détecteur de Harris pour 
les jonctions par exemple) ont été détectés.

Ainsi, chaque frame fi est réduit à un ensemble de m points.

Xi
j est le vecteur de coordonnées 2D du ième points dans la jème 

frame.

Le but est de trouver une correspondance bi-univoque k entre les 
points de la frame k et ceux de la frame k+1.

fk fk+1Xi
k

Xj
k

X
Φk ( i)
k+1

X
Φ k ( j)
k+1



Il n’est pas irréaliste de supposer que dans l’espace et sur des 
intervalles de temps petits, les objets se déplacent sur de petites 
distances. Et que leur mouvement correspondant est régulier ou 
uniforme : contrainte (a).

La régularité du mouvement implique un changement minime de 
la vélocité du point. C’est à dire quele point ne peut changer sa 
direction et sa vitesse de déplacement simultanément : contrainte (b).

Ainsi, les points vont suivre un certain chemin dit “proximal 
uniform path”. La découverte de ce chemin régulier optimal va 
utiliser la fonction de coût (“proximal uniformity function”)  définie 
dans ce qui suit.

Soit les matrices des Changements Relatifs de la frame k-1 à k+1 
Cr

kmxm   et des Déplacements Relatifs de la frame k à la frame 
k+1 Dr

k
 mxm. 

On placera en ligne les points de la frame de départ et en colonne 
les points de la frame d’arrivée. 



Ck Dk

Points de la couche k Points de la couche k

Points de la couche k+1

Ck [ i,j ]=‖X
Φ−(k− 1)( i)
k−1 X i

k−X i
k X j

k+1‖

et
Dk [ i,j ]=‖X i

k X j
k+1‖

fk fk+1

Xi
k

X j
k+1

fk-1

X
Φ−(k− 1)( i)
k−1

Soit les matrices de 
Changement C et 
Déplacement D 
Absolus

Mapping 
initial



C
r k[ i,j ]=Ck [ i,j ]

∑
u
∑
v
C k [ u,v ]

et

Drk [ i,j ]=
D k [ i,j ]
∑
u
∑
v

D k[ u,v ]

Soit



M k [ i,j ]=Cr k [ i,j ]+Dr k [ i,j ]

Soit Mmxm la matrice résultante : 

Cette matrice code la fonction de cout  pour une 
association (i,k) avec (j,k+1) sachant l’association 
optimale précédente ( -(k-1)(i) , k-1 ) avec (i,k) :

M k [ i,j ]=δ (XΦ−( k−1)( i)
k−1 ,X i

k ,X j
k+1 )

En estimant quantitativement les critères de régularisation 
suivants :

•La vitesse ne change pas beaucoup entre deux frames successives;
•La direction ne change pas beaucoup entre deux frames successives;
•Le déplacement d’un point entre deux frames successives tend  à être petit;

 Trajectoire lisse et uniforme :
Controle des Changements du vecteur vélocité

Proximal Match



Dans cette formulation, on suppose qu’un premier mapping 
1 entre la frame 1 et la frame 2 est disponible. On peut 
utiliser l’algorithme à jeton itératif précédent, par exemple. 
Ensuite l’algorithme va prolonger la trajectoire de frame en 
frame en utilisant ces contraintes de régularités initiales.

Le mapping k est déterminé en fonction des mappings 
précedents de sorte à minimiser la fonction de coût globale 
sur toute la trajectoire :

C=∑
k

δ ( X p
k−1 ,Xq

k ,X r
k+1)



  
Algorithme GREEDY_TOKEN

INPUT :
•Une séquence temporelle de n images f1, f2, …, fn. 
•Un ensemble de m jetons dans chaque frame. 
•Une correspondance initiale entre les m jetons de la frame 1 et les m jetons de la frame 
2 donnée par l’algorithme ITER_TOKEN par exemple.

OUTPUT :  les trajectoires de la séquence d’images



Quand le nombre de jetons varie, on adapte ce cadre algorithmique à la 
programmation dynamique (cf. reconnaissance de la parole et de l'écrit manuscrit) 
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Tracking_
Using_Dynamic_Programming_for_A.pdf
 
•Ces techniques séparent complètement le processus de segmentation/détection 
des primitives de leur suivi.

https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Tracking_Using_Dynamic_Programming_for_A.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Tracking_Using_Dynamic_Programming_for_A.pdf


https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/GenovesioThesis.pdf 

Remarque : Ces conclusions intermédiaires sont tiré esde la thèse de Auguste Genovesio traitant du tracking de spot fluorescents en imagerie 
médidale disponible en ligne et d'un chapitre en particulier qui propose un bon bilan des méthodes  de tracking ponctuel ou de forme (les 
références se trouvent dans le document)

https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/GenovesioThesis.pdf


Matching multi-frames : Tracking : Filtrage de Kalman

Définition :
Il s’agit de mettre en correspondance des primitives sur une 
séquence d’images longue en associant des incertitudes..

Il s’agit comme précédemment d’utiliser le travail de mise en correspondance 
passé pour prédire la mise en correspondance à venir dans l’hypothèse de 
trajectoires continues.

Pour cela, il existe une cadre théorique bien établi venant des techniques 
d’optimisation ; le filtre de Kalman.

Dans nos problématiques de vision,  un filtre de Kalman est mis en place sous 
la forme d’un algorithme récursif qui estime la position et l’incertitude d’un point 
caractéristique mobile dans la frame suivante à partir des frames précédentes. 
En d’autres termes, on cherche la primitive dans cette frame et la taille de la 
région autour  de la primitive prédite pour être sûre de trouver la dite primitive 
avec une certaine confiance.  



Cadre de modélisation bayésienne



Math

Voir document kalma.HMM.ps

L’estimée résultat est optimal au sens statistique : sur un grand nombre 
d’expériences, le filtre de Kalman, s’il est bien conçu, serait meilleur, en 

moyenne, que les estimées résultats de tout autre filtre de prédiction 
sous l’hypothèse d’un système linéaire et de bruit blanc gaussien.

Si le bruit est non gaussien, le filtre de Kalman est encore le meilleur filtre 
linéaire non biaisé. 

[P.S. Maybeck, Stochastic Models, Estimation, and Control, Vol I. Academic 
Press, New York, 1979]



• Un système physique.

• Distinction entre paramètres:
–qui modélisent le système;
–que l’on peut mesurer.

• Estimer les premiers à partir des seconds.

Principe

oi



Prise en compte des incertitudes
• Les mesures sont imprécises/incertaines
• Le modèle est simpliste donc ….

• Dans ce formalisme statistique, on fait 
une estimation si de l’état courant si à partir 
des observations oi. 

• On veut savoir la fiabilité d’une estimation 
si de l’état courant si.

ce que le filtre de Kalman permet.



•On a accès a: 
•     bruit blanc additif et: 

• Evolution du modèle:

• ni bruit blanc additif et :

ηi

ô i=oi+ηi

Ri=E [ ηi .ηi
t ]

Qi=E [ ni .ni
t ]

si+1=hi( si)+ni

Les notes de Boutayna le mois i

Etat de concentration du 
professeur pour le mois i

Etat de connaissance de 
Boutayna le mois i+1

Etat de concentration de 
Boutayna pour le mois i

Formalisation: mesure et vecteur d’états



•Filtrage de Kalman: processus itératif d’estimation du vecteur 

•Estimation à l’instant i:

•      traduit la confiance que l’on a en l’estimation
• Si on connaît        ,  statistiquement parlant la meilleure 
estimation possible de       est:

si

ŝi associée à Pi=E [( ŝi−si)( ŝi−si )
t ]

ŝi

Pi ŝi−1

ŝi / i−1=hi ( ŝi−1 )

Formalisation: mesure et vecteur d’états



• du Lien entre les observations et le vecteur 
d’état:

•Cas linéaire:

f i(o i ,si )=0

f i :ℜ
mi×ℜn→ℜp i

ô i=Fi . si+ηi

Formalisation: les équations de mesures,ou de 
quoi dispose-t-on en pratique ? 



• et on a bien: en lieu et place de 
zi=Mi . s i+wi
avec

zi=− f i( oi , ŝi / i−1)+
∂ f i
∂ si

( oi , ŝi /i−1). ŝi / i−1

M i=
∂ f i
∂ si

(o i , ŝi / i−1 )

w i=
∂ f i
∂ oi

(o i , ŝi / i−1 ).( ôi−oi )=
∂ f i
∂ oi

(o i , ŝi / i−1 ).ηi

Formalisation: les équations de mesures

• Dans le cas non-linéaire, on s’y ramène: développement de 
Taylor à l’ordre 1 de  :f i

f i( ô i ,si )=f i( oi , ŝi /i−1 )+
∂ f i
∂ o i

.( ôi−oi )+
∂ f i
∂ si

.(si−ŝi / i−1 )+. ..

ô i=Fi . si+ηi

Wi mesure l’incertitude 
sur la mesure



3 étapes, propagation des incertitudes.

•Initialisation:
•Prédiction (grâce au modèle système) :

•Calcul du gain de Kalman:

•Mise à jour (grâce aux mesures) :

             Un pas du  filtre.

ŝi= ŝi /i−1+K i .( zi−M i. ŝi / i−1)
Pi= ( I−K i .M i ) .P i / i−1

( ŝ0 ,P0 )

ŝi / i−1= hi ( ŝi−1)

Pi / i−1=
∂h i

∂ si
( ŝi−1) . Pi−1 .

∂ hi
∂ si

( ŝi−1)
t +Qi−1

K i= P i / i−1 . Mi
t .(M i . Pi / i−1 . M i

t+W i
t )−1

L’algorithme



L’algorithme : interprétation

•Compromis entre la contribution de la prédiction et de la mesure:

•On peut réécrire:

•Grande incertitude sur le vecteur d’état  donc        « grande »,       
        « grand » donc        innovation favorisée.
•Grande incertitude sur la mesure  donc         « grande » ,        
« petit » , donc            prédiction favorisée.

K i

W i K i

K i=Pi . M i
t .W i

−1

Pi

)ˆ.(.ˆˆ 1/1/   iiiiiiii sMzKss
prédiction inovation



Formalisons dans ce cadre le problème du tracking.
Une nouvelle frame de la séquence d’image est acquise et traitée à 
chaque instant tk=t0+k où k est un entier naturel.

k est suffisament petit pour considérer que le mouvement est linéaire 
d’une frame à l’autre.

On considère seulement un point primitive, pk=[xk,yk]T, dans la frame 
acquise à l’instant tk, se déplaçant avec la vélocité vk=[vx,k,vy,k]T. 



On décrit le mouvement dans le plan image avec un vecteur d’état 
sk=[xk,yk,v x,k,v y,k]T. 

En supposant un intervalle d’échantillonnage suffisamment petit (et donc 
une vélocité de la primitive constante entre 2 frames),  le modèle 
système s’écrit dans le cadre du filtre de Kalman :   

pk=pk−1+v k−1+ξk−1
v k=vk−1+ζ k−1
où ξk−1  et ζ k−1 sont des bruits blancs 
gaussiens modélisant le bruit du système .

Le modèle du système : ou prédiction du vecteur d’état

En terme de vecteurs d’état sk cela s’écrit :
sk=H k−1 sk−1+nk−1

avec H k−1=[1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1 ] et nk−1=[ξk−1

ζ k−1 ]



En terme de mesures, on suppose qu’un extracteur rapide de primitive est 
disponible et estime zk,  la position du point primitive pk pour chaque frame 
de la séquence. Ainsi le modèle de mesure du filtre de Kalman devient :

zk=[1 0 0 0
0 1 0 0 ][ pk

vk ]+wk =Msk +wk

avec wk  bruit blanc Gaussien centré 
modélisant le bruit de mesure

Le modèle de mesures

Remarque : dans le cas linéaire : Rk=Wk, Mk=Fk et zk=

Hypothèses et Positions du problème
Sous les hypothèses du filtre linéaire de Kalman, et étant 
données les observations bruitées zk, calculer la meilleure 
estimée de la position de la primitive et de sa vélocité à 
l’instant tk ainsi que leurs incertitudes associées.

ôk



  
Algorithme KALMAN_TRAKING

INPUT : L’entrée est formée, à chaque instant tk, des deux matrices de covariance 
des bruits du système et de mesure à l’instant tk-1, Qk-1 et Wk-1 respectivement, plus 
les deux matrices invariantes temporellement d’état d’une part, H,  et de mesure, 
M, d’autre part, ainsi enfin que des mesures de position à l’instant tk, zk. Les entrées 
de P0 sont fixées à de très fortes valeurs arbitraires. 

OUTPUT :  les estimations optimales des position et vélocité à l’instant tk,          ,et 
leurs incertitudes données par les éléments diagonaux de Pk.

ŝk /k−1=H k−1 ŝk−1

Pk /k−1=H k−1Pk−1 H k−1
T +Q k−1

Kk =Pk /k−1M k
T (M k Pk /k−1 M k

T +W k )
−1

ŝk= ŝk / k−1+K k ( zk−M k H k−1 ŝk−1 )
Pk=( I−K k )Pk / k−1 ( I−K k )

T+K kW k Kk
T

ŝk

Prédiction modèle

Gain 

MAJ de la prédiction 
modèle par le biais des 

mesures



Le filtre quantifie l’incertitude sur l’estimée de l’état, sous la forme des 
éléments diagonaux de la matrice de covariance d’état Pk

Cette information permet au détecteur de primitives de dimensionner 
automatiquement la région de recherche de la primitive dans la frame 
suivante.

Cette région de recherche est centrée sur la meilleure position estimée et sa 
largeur est proportionnelle à l’incertitude.

Dans un filtre correctement conçu, la valeur de cette incertitude décroit 
rapidement avec le temps et la région de recherche se rétrécit d’autant avec 
le temps. 

Dans l’exemple présenté, la taille des  croix indique la zone d’incertitude dans 
laquelle rechercher la primitive dans la frame suivante.  

Remarque : la matrice de covariance d’état ne dépend pas des mesures. Donc, si la 
dépendance temporelle de Hk, Mk, Qk et Rk est connue, Pk peut être calculée off-line et 
ensuite être approximée par une fonction en escalier. Cette propriété peut être cruciale 
pour les implémentations temps réel du filtre de Kalman.



Deux problèmes se posent pour l’implémentation de cet algorithme :

Les données manquantes
Le filtrage de Kalman repose sur la connaissance suivante :

– Le modèle du système et la matrice de covariance du bruit 
correspondant Qk

– Le modèle de mesures et la matrice de covariance du bruit 
correspondant Rk ou Wk

– L’état initial du système (temps t0),  , et la matrice de covariance 
d’état, P0

Cependant, nombre de données parmi ces dernières sont inconnues. 
Toutefois, en général, elles sont modélisables de façon simples linéairement. Il 
faut juste prendre garde à faire en sorte que Q et R soient comparables pour 
que la prédiction ou l’innovation ne l’emporte pas de façon injustifiée sur l’autre.

L’association des données
En présence de plusieurs primitives images et de multiples mesures, 
quelle mesure observée doit être  associée avec quelle primitive ? 
Le cas de cibles en désordre et interférant.

ŝ0



Incertitude de Kalman.
C’est la région de l’espace d’état qui 
contient  le véritable état avec une 
probabilité donnée.

Exemple : soit le vecteur d’état 2D  ek=[x1,x2]T. Le 
filtre de Kalman calcule l’estimé d’état optimal, êk, 
comme le maximum de la densité de probabilité 
conditionnelle de ek étant donnée la mesure zk. 
Cette fonction de densité est supposée Gaussienne, 
si bien que son maximum coïncide avec sa 
moyenne.

Conséquences pratiques :
•La région du plan centrée sur êk qui contient le véritable état avec une probabilité c2 est l’ellipse :
 
•Les axes de cette ellipse sont :
•La variable (e-êk)(Pk)-1(e-êk)T a une distribution du Chi-2

Utilisation pratique, pour le tracking :
•A t k-1, la prédiction d’état du filtre à tk est ê k/k-1= H k-1 ê k-1 avec la matrice de covariance P k/k-1. On 
diagonalise P k/k-1 pour obtenir ses vecteurs propres, et ne considère que les composantes du vecteur 
d’état donnant la position [x1,x2]T de la primitive. On construit une ellipse d’incertitude (centrée en ê k/k-1 

avec une probabilité désirée de (1-α)). Puis on cherche la primitive dans la frame k seulement dans 
l’ellipse. Une fois que votre détecteur de primitive a mesuré la position de la primitive à tk, on calcule êk 
et Pk, ce qui vous permet de construire l’ellipse d’incertitude contenant la véritable primitive à t k avec le 
niveau de probabilité choisi.

(e− êk )(Pk )
−1 (e− êk )

T≤c2

±c √ λi e i ,i=1,2 ,  à partir des éléments propres de Pk



Suivi de la trajectoire d’une particule 
dans le plan

https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Region-Based_Tracking_in_an_Image_S
equence.pdf

 • Le système: mouvement à accélération constante

• Equation de mesures:

• Incertitude: Meyer a montré que 

si [ xi ẋ i ẍ i y i ẏ i ÿ i ]
t         si+1= [1 Δt Δt

2
1 Δt 0

1

1 Δt Δt
2

0 1 Δt
1

] . si+ni

zi=[ x i y i ]
t          zi=[1 0 0 0 0 0

0 0 0 1 0 0 ] . si+w i

Qi=[
Δt5

20
Δt 4

8
Δt 3

6
Δt4

8
Δt 3

3
Δt 2

2
Δt3

6
Δt 2

2 Δt ]

https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Region-Based_Tracking_in_an_Image_Sequence.pdf
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Region-Based_Tracking_in_an_Image_Sequence.pdf




Bilan sur la Technique de tracking de Kalman



Suivi de primitives multi-frames  : filtrage particulaire ou la 
version évolutionnaire avec un peu de Bayes

Encore appelé algorithme CONDENSATION ou filtre bootstrap

Permet de manipuler numériquement des modèles joints.

Repose sur un principe de ré-échantillonnage qui correspond à la 
sélection  dans les algorithmes évolutionnaires (GA)



Suivi de contours multi-frames  : Snake ou Contours actifs

Définition :
Il s’agit de suivre un contour d'objet légèrement mouvant sur une 
séquence d’images longue.

•D'abord une méthode de segmentation en image fixe







Suivi de contours multi-frames  : Level Set Methods

Définition :
Il s’agit de suivre plusieurs contours d'objets dont le nombre 
varie  et légèrement mouvant sur une séquence d’images 
longue.

• Travaille dans le cadre des equations aux dérivées 
partielles
• D'abord une méthode de segmentation en image 
fixe

https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles2017/ipolDec2012_5.pdf 

https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles2017/ipolDec2012_5.pdf




TrackMate (FiJi / Icy)

https://imagej.net/media/plugins/trackmate/trackmate-manual.pdf page 57

Associé à la problématique des « spot detection » / CellPose / StarDist 

A titre d’exemples de données biologiques :
- 2 medical images biologiques 3D d’une séquence (comme t420.tif et t421.tif) (ISBI 2015 challenge

http://celltrackingchallenge.net/    / FLUO_C3DL_MDA231 files) → recalage, SIFT, tracking etc. 
- t026.tif and t027.tif dans  http://data.celltrackingchallenge.net/training-datasets/Fluo-C2DL-MSC.zip
- Plus encore : 

https://public.celltrackingchallenge.net/documents/Naming%20and%20file%20content%20conventions.pdf  

https://imagej.net/media/plugins/trackmate/trackmate-manual.pdf
http://celltrackingchallenge.net/
http://data.celltrackingchallenge.net/training-datasets/Fluo-C2DL-MSC.zip
https://public.celltrackingchallenge.net/documents/Naming%20and%20file%20content%20conventions.pdf


Le temps manquant, je n’ai pas parlé de :

• Détection de changement dans des séquences 
vidéos (différences d’images sophistiquées) - de 
plans dans des films

• Du tracking de référence de points de Harris : 
l'algorithme de Kanade Lucas et Tomassi (KLD) 
disponible dans beaucoup de bibliothèque en ligne



• https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/GenovesioThesis.pdf 

• https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/KalmanParticle.pdf

“Use of Optimal Estimation Theory, in Particular the Kalman Filtering”, in Data Analysis and Signal Processing”, 
W. Cooper, Review of Scientific Instrumentation, vol. 57, pp. 2862-2869, 1986 
https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/Articles/Kalman1986.pdf 

• https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/BABA/bookMubarakShah.pdf
 
• https://imagej.net/media/plugins/trackmate/trackmate-manual.pdf 

•De façon générale, ici https://helios2.mi.parisdescartes.fr/~lomn/Cours/CV/SeqVideo/CoursComplements/ 
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