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Abstract

Images secured from an astronomical telescope usually suffer from blur and from interference that scientists refer to as ‘‘noise’’.
Therefore, good image restoration technique has become an important tool in astronomical observation. In this paper, we propose a
modified anisotropic diffusion scheme to tackle the problem of image restoration in astronomy, especially in the case of nebula images.
In such images, a mass of stars may be extremely bright but also may be spread randomly in dark space, and the shape of the nebula may
therefore appear obscure. To restore the original appearance of a nebula, noisy stars must be filtered out and the detailed structure of the
nebula must be well enhanced. The classical Perona–Malik anisotropic diffusion model that only considers gradient information cannot
filter out noisy stars from the nebula image. In this study, we propose a modified anisotropic diffusion model that incorporates both
gradient and gray-level variance information to remove ‘‘sparking’’ stars of various sizes and brightness in a nebula image. Experimental
results from a number of astronomical nebula images have shown that the proposed anisotropic diffusion scheme can effectively remove
noisy stars and maintain the shape of nebula in this particular case.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The field of image restoration has a long history that be-
gan in the 1950s with the space program. The objective of
image restoration is to reconstruct the original image from
its degraded version. The image restoration techniques are
widely used in various applications such as satellite imag-
ing (Jalobeanu et al., 2000; Bretschneider, 2002; Bratsolis
and Sigelle, 2003), medical imaging (Rathee et al., 1992;
Lee et al., 2004), astronomical imaging (Molina, 1994;
Molina et al., 2001), forensic science (Wen and Lee, 2002)
and many other poor-quality imaging. In this paper, we
especially focus on the problem of image restoration in
astronomy.
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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There are a few problems regarding the image secured
from an astronomical telescope, such as blur and noise.
The objectives of image restoration techniques for astron-
omy roughly include de-blurring, removal of atmospheric
visibility degradation, correction of mirror spherical aber-
ration, image sharpening, image zooming, and optimizing
display (Starck et al., 2002). Much research has been done
on the field of image restoration in astronomy. Molina
et al. (2001) proposed Bayesian image restoration methods
and used expectation-maximization (EM) algorithms to re-
store noise and blur in astronomical images. Starck et al.
(2003) combined both the wavelet and two newly multi-
scale approaches of ridgelet and curvelet transforms, to
the problem of restoring an astronomical image from noisy
data. Due to the high-directional sensitivity of the two mul-
tiscale representations, their method can well enhance elon-
gated features contained in the astronomical images. Wu
and Barba (1998) proposed an algorithm for the restora-
tion of star field images by incorporating both the
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minimum mean square error criteria and the maximum
varimax criteria.

The traditional image restoration techniques for astron-
omy mainly focus on de-blurring and noise removal. In
order to restore the object effectively, most of the methods
use the point spread function (PSF) to de-blend images.
These methods assume that the PSF in an image has been
known or can be estimated based on a priori knowledge.
However, the PSF and useful prior knowledge are not al-
ways available in most practical situations. There are other
common denoising methods such as Bayesian estimate,
maximum likelihood (ML) and maximum a posteri-
ori (MAP) to estimate an original clean image from a cor-
rupted image that contains Gaussian noise (Mihcak et al.,
1999; Moulin and Liu, 1999; Nikolova, 1999; Dias and Lei-
tao, 2002; Deng, 2004). The main difficulties in MAP esti-
mation are the choices of a proper prior distribution of the
estimated image, and the corresponding energy function to
be optimized.

In this paper, we propose an anisotropic diffusion
scheme to tackle the problem of image restoration in
astronomy, especially the nebula images. In a nebula im-
age, a mass of stars are bright and spread randomly in
the dark space, and the shape of the nebula is obscure. It
is not easy for the astronomers to observe the nebula�s
outline. Fig. 1 shows an example of the Henize 70 nebula
image obscured with sparking stars. For the analysis of
nebulae in astronomical images, we must eliminate the
small bright points in the dark background. The proposed
diffusion model will effectively remove sparking stars and
enhance the nebula shapes without the intervention of
human experts. It does not need to estimate the PSF and
MAP from astronomical images.

The anisotropic diffusion was first proposed by Perona
and Malik (1990) for scale-space description of images
and edge detection. This approach is basically a modifica-
tion of the linear diffusion (or heat equation), and the con-
tinuous anisotropic diffusion is given by

oI tðx; yÞ
ot

¼ div ½ct � rI tðx; yÞ� ð1Þ

where It(x,y) is the image at time t; div represents the diver-
gence operator; $It(x,y) is the gradient of the image, and ct
Fig. 1. The Henize 70 nebula obscured by sparking stars (original image
courtesy of Anglo–Australian Observatory).
represents the diffusion coefficient. Eq. (1) will reduce to an
isotropic diffusion equation if the diffusion coefficient ct is a
constant. It is then equivalent to convolving the image with
a Gaussian filter. The idea of anisotropic diffusion is to
adaptively choose ct in different iterations so that intra-
regions in an image become smooth while edges of inter-
regions are sharply preserved. The diffusion coefficient ct
is generally selected to be a nonnegative monotonically
decreasing function of gradient magnitude so that small
variations of intensity such as noise or shading can be well
smoothed, while edges with large intensity transition are
distinctly retained.

Hamza et al. (2002) described that the MAP estimator
for a noiseless image u can be given by

û ¼ argmin
u

F ðuÞ þ k
2
ju
 u0j2

� �

where û is an estimate for u; u0 is the observed image; k is a
constant, and F is a given energy function. You et al. (1996)
considered the anisotropic diffusion as the gradient descent
method for solving an energy minimization problem. They
also showed that the Perona–Malik diffusion in Eq. (1) is
the gradient descent flow for a properly selected energy
function F(u).

Barash (2002) addressed the fundamental relationship
between anisotropic diffusion and adaptive smoothing.
He showed that an iteration of adaptive smoothing

I tþ1ðx; yÞ ¼
P

i

P
jI tðxþ i; y þ jÞwtðxþ i; y þ jÞP

i

P
jwtðxþ i; y þ jÞ ð2Þ

is an implementation of the discrete version of the aniso-
tropic diffusion equation if the weight wt in Eq. (2) is ta-
ken as the same of the diffusion coefficient ct in Eq. (1).
The anisotropic diffusion approach has become an useful
tool for edge detection (Alvarez et al., 1992; Chen and
Barcelos, 2001), image enhancement (Sapiro and Ringach,
1996; Solé and López, 2001), image smoothing (Torka-
mani-Azar and Tait, 1996; Tsuji et al., 2002), image seg-
mentation (Niessen et al., 1997; Bakalexis et al., 2002),
texture segmentation (Deng and Liu, 2000), defect detec-
tion (Tsai and Chao, 2005) and image restoration (You
and Kaveh, 1999). However, the anisotropic diffusion ap-
proach has not been used in image restoration in astron-
omy. In order to restore the nebula outline obscured by
sparking stars, the stars should be filtered out from the
astronomical image. The classical anisotropic diffusion
model of Perona and Malik (P–M model) only considers
the gradient information of the image. When using the P–
M model to restore a astronomical nebula image, the
bright stars in a dark background will result in large mag-
nitude of gradient, and cannot be filtered out successfully.
In this study, the gray-level variance information along
with the gradient is added to a modified anisotropic
model for image restoration. The proposed method can
effectively remove the tiny sparking stars and enhance
the shape of nebula in the restored image.
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The organization of this paper is as follows: Section 2
first overviews the anisotropic diffusion equation of Pero-
na and Malik. The proposed anisotropic diffusion scheme
that adaptively smoothes or retains gray levels by taking
into account both gray-level variance and gradient for
astronomical image restoration is then discussed. Section
3 presents experimental results from a number of astro-
nomical nebula images. This paper is concluded in Sec-
tion 4.
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Fig. 2. Graph of the diffusion coefficient function: gðrIÞ ¼ 1=½1þ
ðjrI j=KÞ2�.
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Fig. 3. Graph of the flux function: /ðrIÞ ¼ f1=½1þ ðjrI j=KÞ2�g � rI .
2. The modified anisotropic diffusion model

2.1. The Perona–Malik anisotropic diffusion

Let It(x,y) be the gray level at coordinates (x,y) of a dig-
ital image at iteration t, and I0(x,y) the original input im-
age. The continuous anisotropic diffusion in Eq. (1) can
be discretely implemented by using four nearest neighbors
and the Laplacian operator (Perona and Malik, 1990)

I tþ1ðx; yÞ ¼ I tðx; yÞ þ
1

4

X4

i¼1

½citðx; yÞ � rI itðx; yÞ�

where rI itðx; yÞ, i = 1, 2, 3 and 4, represent the gradients of
four neighbors in the north, south, east and west directions,
respectively, i.e.,

rI1t ðx; yÞ ¼ I tðx; y 
 1Þ 
 I tðx; yÞ
rI2t ðx; yÞ ¼ I tðx; y þ 1Þ 
 I tðx; yÞ
rI3t ðx; yÞ ¼ I tðxþ 1; yÞ 
 I tðx; yÞ
rI4t ðx; yÞ ¼ I tðx
 1; yÞ 
 I tðx; yÞ

citðx; yÞ is the diffusion coefficient associated with rI itðx; yÞ,
and is considered as a function of the gradient rI itðx; yÞ in
the P–M model, i.e.,

citðx; yÞ ¼ gðrI itðx; yÞÞ
For the sake of simplicity, rI itðx; yÞ is subsequently de-
noted by $I. The function g($I) has to be a nonnega-
tive monotonically decreasing function with g(0) = 1 and
limj$Ij!1g($I) = 0. The function g($I) should result in
low coefficient values at image edges that have large gradi-
ents, and high coefficient values within image regions that
have low gradients. In the Perona–Malik anisotropic diffu-
sion model, a possible diffusion coefficient function is given
by

gðrIÞ ¼ 1=½1þ ðjrI j=KÞ2� ð3Þ
where the parameter K is a constant, and must be fine-
tuned for a particular application. Parameter K in the dif-
fusion coefficient function acts as an edge strength thres-
hold. If the K value is too large, the diffusion process will
oversmooth and result in a blurred image. In contrast, if
the K value is too small, the diffusion process will stop
the smoothing in early iterations and yield a restored image
similar to the original one.
Let /($I) be a flux function (Perona and Malik, 1990)
defined by

/ðrIÞ ¼ gðrIÞ � rI ð4Þ
A large flux value indicates a strong effect on smoothness.
Figs. 2 and 3 depict the diffusion coefficient function and
the flux function in Eqs. (3) and (4), respectively. For a
given K value, it can be seen from Fig. 2 that the diffusion
coefficient function in Eq. (3) drops dramatically and
approximates to zero when the gradient magnitude j$Ij
is larger than 5K. That is, the diffusion stops as soon
as j$Ij > 5K. The maximum smoothness occurs at
j$Ij = 1K, as shown in the corresponding flux function.
The classical P–M model considers only the gradient infor-
mation of image for image restoration. Therefore, it cannot
effectively eliminate noises with large gradient or preserve
target objects with low gradient in an ill-structured image.

2.2. The proposed anisotropic diffusion

In this study, our objective is to restore the unclear
shape of a nebula obscured by sparking stars in an astro-
nomical image. Observing the previous nebula image in
Fig. 1, we find numerous bright stars spread randomly all
over the image. Those tiny bright stars have very high gray
values. They may embedded in the dark background of low



Fig. 4. The result of the traditional P–M diffusion for the nebula image in
Fig. 1 (after 50 iterations and K = 8).
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Fig. 5. Graph of the diffusion coefficient function gðrI ;r2Þ ¼
1 1þ jrI j

K0 �r2


 �2
� �

with two variables of rI=K0 and r2.

)
(

2
I,

σ
φ

∆

2
σ

∆ 0I

Fig. 6. Graph of the new flux function /($I,r2) containing both gradient
and gray-level variance variables.
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gray values, or in front of the nebula region of high gray
values. It indicates that the traditional P–M model that
only takes into account the gradient information cannot
sufficiently remove the stars even after a long sequence of
iterations. Fig. 4 shows the result after 50 iterations of
the diffusing process using the P–M model with a properly
selected parameter value K ¼ 8. It can be found from the
figure that the stars are still retained, but the details of the
nebula have been destroyed in the restored image. It is not
an acceptable result for astronomers to distinguish the
complexion of the nebula.

Since the stars have bright intensities and scatter in the
dark space in a nebula image, it infers that there are larger
variances of gray levels in the neighborhood of stars, com-
pared with those of the nebula. In order to remove spark-
ing stars effectively in a nebula image, we incorporate the
local variance information of gray levels in the diffusion
model. By including the gray-level variance in the diffusion
process, the diffusion coefficient function in Eq. (3) is re-
vised as

gðrI ; r2Þ ¼ 1 1þ jrI j
K0 � r2

� �2
" #,

ð5Þ

whereK0 is a positive constant, and r2 is the local variance
of gray levels in a 3 · 3 neighborhood window. For a given
pixel of coordinates (x,y) at iteration t, the variance is de-
fined by

r2
t ðx; yÞ ¼

1

9

X1

i¼
1

X1

j¼
1

ðI tðxþ i; y þ jÞ 
 I tðx; yÞÞ2

where I tðx; yÞ is the mean of gray levels in the 3 · 3 neigh-
borhood window. If r2 is fixed throughout the entire
image, K0 Æ r

2 will become a constant and the modified
diffusion model with the diffusion coefficient function in
Eq. (5) will be equivalent to the P–M model. The modified
diffusion coefficient function in Eq. (5) is a function of two
variables, the gradient $I and the gray-level variance r2.
The new flux function is given by

/ðrI ; r2Þ ¼ gðrI ; r2Þ � rI ð6Þ
In a nebula image, noisy stars are bright and spread ran-

domly in the dark space. With such characteristics, stars
have both a large gradient value $I and a large variance
value r2, and r2 is more significant than $I in terms of
magnitudes. However, the gray levels of a nebula are chan-
ged gradually in the dark space. In the nebula regions, the
gray-level variance r2 is relatively small, and is not as sig-
nificant as the gradient magnitude $I. Fig. 5 presents the
3D curved surface of the diffusion coefficient function in
Eq. (5) as functions of rI=K0 and r2. When the gradient
magnitude $I increases, the value of the diffusion coeffi-
cient function is reduced gradually as occurs in the tradi-
tional P–M model does. However, when r2 is
significantly larger than rI=K0, the function value will
dramatically increase to one and results in a strong
smoothing in the diffusion process. Therefore, the stars
can be effectively filtered out in the restored image. When
rI=K0 is reversely larger than r2, the value of the diffusion
coefficient function will be close to zero and the smoothing
operation will not be carried out in the diffusion process.
Therefore, the shape of nebula can be completely preserved
in the restored image. Fig. 6 illustrates the 3D curved sur-
face of the flux function in Eq. (6). It represents the degree
of diffusion effect as a function of rI=K0 and r2. When
both $I and r2 increase simultaneously, the value of flux
function will dramatically increase. That is, the high vari-
ance and high gradient strengthen the diffusion process
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since a large flux value indicates a strong effect on smooth-
ness. In a nebula image, the bright stars have higher vari-
ance and higher gradient than those of the nebula. The
noisy stars can be effectively eliminated and the shape of
nebula can be well enhanced by incorporating both gray-
level variance and gradient in the diffusion model.

In the P–M model, the degree of diffusion is based on
the gradient value with respect to a constant parameter
K, as seen in Eq. (3). In the P–M model, the value of
parameter K is fixed throughout the entire image in every
iteration. We can describe the modified diffusion model
that involves two variables of gradient and local variance
Fig. 7. Diffusion coefficients ct for the P–M model and the m

Fig. 8. The restored results of the nebula image in Fig. 1 from various values
respectively.
from the aspect of adaptive K. In the proposed diffusion
coefficient function of Eq. (5), K0 Æ r

2 can be considered
as an adaptive version of K in the P–M model (Eq. (3)).
Each individual pixel in the modified diffusion model has
its own K value, which is determined by the magnitude
of its local variation. The adaptive K function for a pixel
at coordinates (x,y) is defined by

Kðx; yÞ ¼ K0 � r2ðx; yÞ ð7Þ

where r2(x,y) is the variance defined in a small neighbor-
hood of (x,y). Kðx; yÞ is proportional to the variance
r2(x,y). When Kðx; yÞ is significantly larger than the gradi-
odified diffusion model under a given gradient value $I.

of K0: (a)–(f) the restored images from K0 = 5, 1, 0.5, 0.1, 0.05 and 0.01,
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ent $I, the value of diffusion coefficient function will also
be large and the modified model gives a strong smoothing.
A noisy star has a large variance and, therefore, it results in
a large K value for strong smoothing. When $I is reversely
larger thanKðx; yÞ, the function value will be small and the
modified diffusion model stops the smoothing. This pre-
vents the blurring of nebular edges.

Fig. 7 shows the curves of diffusion coefficients for the
P–M model and the modified diffusion model under a given
$I. For a given value of $I, the diffusion coefficient ct of the
P–M model will be the same since a constant K is used.
However, the value of ct in the modified diffusion model
will vary according to the local variance since the parame-
ter K is adaptively determined by K0 Æ r

2. The value of ct
increases as the value of r2 increases. In our study, it can be
inferred that the variance of a nebula area may locate in re-
gion A in Fig. 7 because the gray levels around the nebula
are changed gradually and smoothly. Conversely, the vari-
ance of noisy stars may locate in region B in Fig. 7 because
the stars have bright intensities in the dark background.
The P–M model cannot find a suitably fixed value for the
parameter K that can simultaneously remove noisy stars
and preserve the shape of a nebula in an image. A small
fixed K value disables the diffusion process and cannot re-
Fig. 9. (a1)–(a3) three original nebula images of NGC 3576, NGC 6523 and N
P–M diffusion model; (c1)–(c3) the results of the proposed diffusion model (o
move the noisy stars effectively. A large K fixed value will
oversmooth both nebula and stars. In a nebula area (region
A), the modified diffusion model with a small adaptive K
provides little smoothing effect and preserves the details
of the nebula. In a noisy star area (region B), the modified
diffusion model with a large adaptive K yields a stronger
smoothing effect and well eliminates the noisy stars. The
adaptive parameter K allows the modified diffusion model
to eliminate noisy stars and retain a nebular shape at the
same time without conflict.

Since the parameter K0 must be fine-tuned for a partic-
ular application, the following experiments are performed
to find out the suitable value of K0 for the restoration of
nebula images. Fig. 8(a)–(f) shows the restored results of
the sample image in Fig. 1 for various values of K0 = 5,
1, 0.5, 0.1, 0.05 and 0.01, respectively. The number of iter-
ations is set to 10 for all tests. When K0 is overly large, the
resulting images are severely blurred. Not only the stars are
totally filtered out, but also the detailed features of the neb-
ula is lost, as seen in Fig. 8(a)–(c). In contrast, when K0 is
overly small, the restored result in Fig. 8(f) shows that the
diffusion process cannot effectively remove the noisy stars
and the filtered image is similar to the original one.
Fig. 8(d) and (e) both have a good effect on eliminating
CG 2244, respectively; (b1)–(b3) the restoration results of the traditional
riginal images courtesy of Anglo–Australian Observatory).
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the noisy stars. The shape of nebula restored in Fig. 8(e) is
clearer than the one shown in Fig. 8(d). By considering the
effective removal of noisy stars and preservation of nebula
details in the restored image, the suitable value of K0 in
Eq. (5) is 0.05 for the application of nebula image restora-
tion. Note that the value of K0 in Eq. (5) depends on the
intensity range of the input image.

3. Experimental results

In this section, we present experimental results from
a number of astronomical nebula images. All the neb-
ula images for testing were obtained from the Anglo–
Australian Observatory (http://www.aao.gov.au/). The
algorithms were implemented on a Pentium 4, 3 GHz per-
sonal computer using the Visual Basic language. The
images were 200 · 200 pixels wide with 8-bit gray levels.
The value of parameter K0 in the diffusion coefficient func-
tion of Eq. (5) was set to a fixed value of 0.05, and the num-
ber of iterations equals to 10 for all test images in the
following experiments. Computation time of 10 iterations
on a 200 · 200 image was 0.2 s.
Fig. 10. Three sample images that contain more noisy stars: (a1)–(a3) original n
(b3) the restoration results of the traditional P–M diffusion model; (c1)–(c3)
Anglo–Australian Observatory).
The test images in Fig. 9(a1)–(a3) presents three types of
nebula images obscured with sparking stars. The restora-
tion results from the traditional P–M diffusion model that
considers only the gradient information are shown in
Fig. 9(b1)–(b3). It can be found from the figure that the
bright stars cannot be removed effectively and the detailed
structures of the nebulae are destroyed. Fig. 9(c1)–(c3)
show the restored results from the proposed diffusion mod-
el that takes into account both gradient and gray-level var-
iance. From the figure, it appears that the noisy stars are
effectively filtered out and the original appearance of the
nebula is very well preserved.

Fig. 10(a1)–(a3) presents three additional nebula images
that contain more noisy stars and make the nebulae hardly
visible. The structures and appearances of these three
nebula images are more obscure, compared with those in
Fig. 9. Fig. 10(b1)–(b3) show the results from the tradi-
tional P–M diffusion model. As with those shown in
Fig. 9(b1)–(b3), the restored images are not satisfactory
with the P–M model. Fig. 10(c1)–(c3) presents the restored
images from the proposed diffusion model. It can be found
that the proposed method can reliably eliminate all sizes of
ebula images of NGC 6995, NGC 2014 and NCG 6822, respectively; (b1)–
the results of the proposed diffusion model (original images courtesy of

http://www.aao.gov.au/
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bright stars and keep the shape of the nebula visible to
observers.

In order to further verify the performance of the pro-
posed method, the commonly denoising techniques includ-
ing Gaussian smoothing, median filtering and Fourier
transform were used for comparison. Figs. 11(a)–14(a)
show the restored results from the proposed method that
incorporates both gradient and local variance information,
and Figs. 11(b)–14(b) present the restored images by using
the Gaussian smoothing, in which the noisy stars cannot be
Fig. 11. Comparison of the restoration results in Fig. 9(a2) from various filte
(c) median filter; (d) Fourier transform; (e) Wiener filtering; (f) wavelet shrink

Fig. 12. Comparison of the restoration results in Fig. 9(a1) from various filte
(c) median filter; (d) Fourier transform; (e) Wiener filtering; (f) wavelet shrink
sufficiently removed. Figs. 11(c)–14(c) show the restored
images from the median filter. It can be observed that some
smaller stars can be eliminated, but larger bright stars still
remain in the filtered images. The Fourier transform blurs
the whole image including the nebula and stars, as seen in
Figs. 11(d)–14(d).

In the experiments, two locally adaptive denoising algo-
rithms that use local variances to estimate the desired
intensities in the original image are also evaluated. The
two adaptive denoising methods selected are the Wiener fil-
ring methods: (a) the proposed diffusion model; (b) Gaussian smoothing;
age.

ring methods: (a) the proposed diffusion model; (b) Gaussian smoothing;
age.



Fig. 13. Comparison of the restoration results in Fig. 1 from various filtering methods: (a) the proposed diffusion model; (b) Gaussian smoothing;
(c) median filter; (d) Fourier transform; (e) Wiener filtering; (f) wavelet shrinkage.

Fig. 14. Comparison of the restoration results in Fig. 10(a3) from various filtering methods: (a) the proposed diffusion model; (b) Gaussian smoothing;
(c) median filter; (d) Fourier transform; (e) Wiener filtering; (f) wavelet shrinkage.
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tering (Lim, 1990) and a wavelet-based bivariate shrinkage
(Sendur and Selesnick, 2002). The Wiener filtering evalu-
ated in this paper uses local mean and local variance infor-
mation to filter out noise (MATLAB, 2004). The Wiener
filtering method performs little smoothing when the local
variance is small, and does the opposite when the variance
is large. The bivariate shrinkage function uses locally adap-
tive estimated variances in the wavelet domain to estimate
the original image. Figs. 11(e)–14(e) and 11(f)–14(f) show
the restored images from the Wiener filtering and the wave-
let-based bivariate shrinkage method (wavelet shrinkage),
respectively. It can be observed from the figures that some
larger bright stars are retained in the filtered images for
both adaptive denoising methods. The results reveal that
solely considering the local variance cannot effectively elim-
inate noisy stars. The commonly used smoothing methods
and the two locally adaptive denoising methods evaluated
in the experiments either fail to remove noisy stars of large
size or blur the details of a nebula. The results indicate that
the proposed diffusion method that considers both gradient



10 S.-M. Chao, D.-M. Tsai / Pattern Recognition Letters xxx (2005) xxx–xxx

ARTICLE IN PRESS
and variance of gray levels is well suited for the restoration
of a nebula in an astronomical image.

4. Conclusions

In this paper we have proposed a modified anisotropic
diffusion scheme for astronomical image restoration. The
astronomical images targeted in this study are unclear neb-
ulae obscured by stars. The noisy stars in a nebula image
have different sizes and brightness, and are spread ran-
domly. Because a large number of stars obscure the nebula
all over the image, astronomers cannot easily observe the
outline of the nebula. In order to restore the original
appearance of a nebula, the stars must be filtered out and
the detailed structure of the nebula must be well enhanced.
The traditional P–M diffusion model only considers the
gradient information of gray levels and, therefore, cannot
effectively eliminate the noisy stars. Since the stars have
higher intensities in the dark space, the stars involve higher
variance of gray levels in the image. The proposed diffusion
method incorporates the variance information of gray lev-
els into the traditional diffusion coefficient function to filter
out noisy stars in the image. Experimental results have
shown that the proposed anisotropic diffusion scheme can
effectively remove noisy stars, and yet maintain sharp edges
of a nebula in the astronomical image. It can help the
astronomers observe the nebula more easily from the re-
stored image. It is believed that the proposed method can
be extended for removal of impulse noise in general, and
it is currently under investigation.
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