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Abstract— In a number of remote sensing applications it is 

critical to decrease the dimensionality of the input in order to 
reduce the complexity and hence the processing time and 
possibly improve classification accuracy. In this paper the 
application of genetic algorithms as a means of feature selection 
is explored. A genetic algorithm is used to select a near-optimal 
subset of input dimensions using a feed forward multilayer 
perceptron trained by backpropagation as the classifier. Feature 
and topology evolution are performed simultaneously based on 
actual classification results (wrapper approach). 
 

Index Terms— Feedforward neural networks, Genetic 
algorithms, Remote sensing, Image classification 

I. INTRODUCTION 
HE purpose of this paper is to establish a methodology 

for the application of genetic algorithms in classifying 
remotely sensed data using neural networks, by performing 
concurrently feature selection and topology identification. 
Genetic algorithms are deployed since they are known to have 
both the theoretical foundations and the practical capacity of 
revealing near-optimal solutions [4], [6]. It appears that when 
it comes to determining neural network parameters, including 
topology, authors of even recent papers are still struggling 
with the same trial and error methodology that has been used 
for the pnast 16 years despite the progress noted in fields other 
than remote sensing. The novelty of our work mainly consists 
in bridging this chasm. Furthermore, the coding that we use is 
novel, enabling the concurrent evolution of topology with 
feature selection which has been a major handicap in the past. 

We begin by briefly reviewing the literature on feature 
selection by standard (sequential) and genetic algorithm [6] 
based methods in section II. In section III we present the 
experiment and results of feature evolution performed in the 
context of this study. Brief conclusions on the proposed 
method are given in section IV.  

II. FEATURE  EVOLUTION 
Feature selection can be formulated as a search problem 
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[19]. A straightforward way of coding this problem is to use a 
binary string with length equal to the number of available 
input features, with the value of 1 indicating the presence of a 
particular feature and 0 showing its absence [19]. The easiest 
way is to keep the architecture of the neural network fixed but 
this is not efficient since a different number of inputs 
(features) would normally require a different topology for 
optimal classification accuracy. With or without fixing the 
topology, a major obstacle faced when using neural networks 
as the classifier is the noisy fitness evaluation problem [17] 
i.e. the fact that the evaluation of a specific set of input 
features is also dependent on the random initialization 
parameters. In other words the same input dimensions produce 
sometimes quite different outputs because of the different 
random weights assigned to the links of the neural network.  

The unconstrained combinatorial optimization version of 
feature selection corresponds to finding the subset of input 
dimensions that result into the lowest error rate. The constraint 
version is more interesting because it calls for simultaneously 
minimizing the error as well as the number of input 
dimensions [14]. It is also more difficult because it belongs to 
the category of multi-objective problems [10] (ch. 2), since 
the minimization of both the number of features and at the 
same time of the classification error is sought [4] (ch. 5). The 
notion of optimality is thus not obvious and it might not be 
wise to combine both criteria into a single number because the 
two targets are qualitatively different.  

In a pioneer experiment [14] the authors classified a 
number of samples taken from aerial photography using the k-
nearest-neighbors method. They used a canonical genetic 
algorithm to solve the constrained version of feature selection. 
They introduced a formula that we will refer to as the 
Siedlecki – Sklansky throughout this paper. This function 
favors the reduction of features rather than the reduction of 
error. This seems to be the only valid objective in the original 
context that the formula was developed, i.e. for large-scale 
feature selection (>20 input dimensions), where the number of 
features has to be drastically reduced. It consists of the actual 
number of features plus a penalty value to reward 
classification accuracy. 
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  , for l(a) = 0 we set f(a) = 0    (1) 

Where a = (a1, …, an) is a solution string, l(a) is the number 
of features (the number of 1s in the string). Overall accuracy 
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(r) is normalized in [0, 1]. The original publication uses the 
error rather than accuracy rate but the remote sensing 
community is used to the accuracy figures hence this slight 
modification. The feasibility threshold t, is the level of error 
that is considered feasible. The tolerance margin, m, is a scale 
factor that controls the steepness of the function. Symbol e 
denotes the base of the natural logarithm. The only possibility 
for this function to become negative is for zero number of 
features selected. In this case we choose to simply set the 
fitness function to zero. The original publication adopts a 
slightly different approach (equation 3.4 in [14]). Note that: 
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They find that genetic algorithms perform better than the 
sequential selection methods. They also conclude that the time 
required by the genetic algorithm to discover the solution is 
comparable to that of the sequential search method. Finally 
they suggest that genetic algorithms perform better in the 
large–scale feature selection case because they exhibit 
approximately linear increase of time complexity. 

Subsequent results with genetic algorithms and the 
Siedlecki – Sklansky function, are controversial. The authors 
in [7] evaluated this function. Synthetic aperture radar (SAR) 
data and 18 features (textures) are used. It is difficult to make 
a conclusive statement on their results because the solutions 
presented have different number of features. The genetic 
algorithm solution is 1/10 less accurate than the sequential 
floating forward selection solution but at the same time the 
latter has 1/3 less features. To say which of the two solutions 
is preferable, is clearly problem dependent. It is also evident 
however in their discussion that they had difficulties in 
determining the (t, m) parameters of the fitness function.  

In [3] the authors find that genetic algorithms usually 
perform slightly worse than the sequential floating forward 
selection method. The performance however is heavily 
dependent on the two parameters (t, m) of the Siedlecki – 
Sklansky function. They also find contradictory results with 
respect to the scalability of genetic algorithms compared to the 
Siedlecki – Sklansky [14] paper. They observed that the 
performance of genetic algorithms decreases with the increase 
of input dimensions. In both those two studies ([7], [3]) it can 
not be concluded with confidence that the poor performance is 
due to genetic algorithms themselves or due to the specific 
implementation of the fitness function used. 

The authors in [20] use a genetic algorithm with binary 
string representation for feature selection with hyper-spectral 
satellite imagery and compare two classification methods; the 
standard and fuzzy versions of k-nearest-neighbors. They 
deploy the Siedlecki – Sklansky fitness function to solve the 
constrained feature selection problem. They find that the same 
levels of classification accuracy can be achieved by 

significantly reducing the number of input features used. It is 
evident in their results that genetic algorithms outperform the 
sequential floating forward selection method.  

Very few are the cases where genetic algorithms have been 
used in feature selection for land cover classifications with 
satellite images. Stathakis and Kanellopoulos [16] used a 
canonical genetic algorithm with binary representation and 
direct encoding to automatically determine the optimum 
structure of the neural network [16]. Recently, Kavzoglu and 
Mather [9] compared feature selection using genetic 
algorithms to several conventional methods. A binary 
representation of input dimensions is adopted. Paradoxically, 
the number of sought features is fixed because they 
experimentally find that a certain number (8) of input 
dimensions is likely to provide optimal accuracy. The 
architecture of their multilayer perceptron trained by the back-
propagation [12], [17] is also kept fixed (8:10:7). They adopt 
a filter technique [9], i.e. the fitness function is measured 
using several class seperablity indices based entirely on the 
training data without any reference to the classification results. 
The obvious benefit of this approach is reduction in required 
processing time. A major drawback however is that the 
genetic algorithm may be successful in optimizing the 
seperability of classes based on the index used but may not be 
as successful based on the actual classification results. There 
might be some evidence of this side-effect in their work (e.g. 
compare results in Tables 3 and 4 [9]).  

III. METHOD AND RESULTS 
As the basis for comparison the sequential floating forward 

selection method is used. A canonical genetic algorithm to 
solve the constrained version of feature selection is then 
deployed. The slightly modified Siedlecki – Sklansky fitness 
function described in the previous section is adopted. The 
point of departure in our work is that the topology of the 
neural network is concurrently evolved with feature selection. 
Other important novelties of our approach include the 
adoption of constrained optimization, without fixing however 
the sought number of features, as well as the implementation 
of the wrapper approach by evaluating the actual classification 
results of the neural networks. 

Our data set refers to Lefkas Island in the western part of 
the Hellenic Republic. Inputs to the system are seven Landsat 
7 ETM+ bands; plus elevation, slope and aspect which are 
derived from SRTM data [13]. The Landsat scene was 
acquired on July 2000. The complete input features are named 
[B, G, R, NIR, MIR1, TIR, MIR2, DEM, SLP, ASP] 
accordingly. Outputs are five CORINE Level 1 land use 
classes [2], viz. Artificial surfaces, Agricultural areas, Forest 
and semi natural areas, Wetlands and Water bodies. Following 
the recommendation of Congalton [1], we acquire 50 samples 
per class using stratified sampling. CORINE land cover data 
set is used as the reference to annotate the output vector. We 
split the total number of reference points (250) into two equal 
in size parts. One of them serves as the training data set 
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whereas the other one as the testing data set. A more detailed 
description of the data used can be found in Stahakis and 
Vasilakos [15]. 

A. Sequential floating forward selection 
Sequential floating forward selection is the one of the 

sequential variants that competes and sometime outperforms 
the genetic optimization of features [7], [3]. Fisher’s linear 
discriminant ratio is used here as the measure of performance. 
By maximizing the Fisher criterion the distance between the 
means of the classes are maximized while the variance within 
each class is minimized. In the two class case the Fisher 
criterion becomes:                

 22
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where m represents the mean, s2 represents the variance, 
and the subscripts denote the two classes a and b. 

This method produces rapidly [TIR, ASP, NIR, B, G, SLP, 
MIR1, R, MIR2, DEM] as the ordered output vector. The 
associated cost per solution is [4.0, 6.2, 8.4, 10.7, 12.7, 14.4, 
15.7, 17.3, 19.0, 20.2] respectively. Features are placed in this 
vector, from left to right, according to performance. Thus, the 
best five inputs are [TIR, ASP, NIR, B, G]. The best overall 
classification out of ten runs, using this five input combination 
and exactly the same neural network settings that are used 
with the genetic algorithm is 74.4% and 70.4% for 32 and 36 
hidden nodes respectively. 

B. Feature selection via a genetic algorithm  
1) Genetic and neural parameters 
We adopt the binary representation to code the input 

dimensions which is quite standard in the literature and similar 
to the method used in Kavzoglu and Mather [9]. The value of 
1 declares the presence of a particular input dimension in the 
solution whereas the value of 0 declares its absence. The 
difference to Kavzoglu and Mather [9] is that we do not fix 
the sough number of classes. We let instead the genetic 
algorithm decide which the optimal number of inputs is and at 
the same time decide which the optimal combination of inputs 
is. An additional advantage to this strategy is that a correction 
mechanism, forcing the number of input dimensions to be 
fixed, that might introduce unpredictable behavior, is not 
used. Moreover, the choice to have a variable network 
topology rather than a fixed one is made. Frank Rosenblatt 
suggests [11] (ch. 25) that a neural network topology which is 
evolved, with connections created or disregarded based on 
demonstrated utility, rather than fixed, might lead to better and 
more compact topologies. He also suggests that by observing 
the terminal states reached by the evolved system we might 
gain an insight of the dynamics of the system which can be 
used for improving future designs. The topology is evolved 
here using an indirect encoding, i.e. specifying only the 
number of nodes in the single hidden layer. 

In summary, the binary string (chromosome) representation 
has the form shown on figure 1 where the first 10 bits 
correspond to an equal number of input dimensions. The 
following 5 bits correspond to the number of nodes in the 

hidden layer. The search is limited in 5-bits, i.e. range of 
integers [0-31]. Based on the Kanellopoulos – Wilkinson rule 
[8], which states that the optimal number of hidden nodes in a 
neural network with a single hidden layer having 10 inputs 
and 5 outputs should be between 10 and 40 nodes, we add the 
constant number of 8 to this 5-bit figure so that the range of 
hidden nodes becomes [8, 40]. 

Other genetic algorithm parameters include population size 
of 20, two-point crossover at a rate of 0.9 and Gaussian 
mutation. The two best individuals are copied unaltered in the 
next generation (elitism). The termination criterion is the 
completion of 100 generations. Each individual’s performance 
is evaluated for selection based on its rank rather than its 
actual score. The population is split into 5 groups and the best 
individuals per group are selected for reproduction 
(tournament selection).  

The classification is performed using a standard fully 
connected feedforward multilayer perceptron (MLP). 
Learning rate is set to 0.03 and momentum is 0.9. Log 
sigmoid transfer function is used. The performance function 
for training the neural network is the mean of squared errors. 
Termination criterion is either the completion of 110 training 
epochs or reaching an error level of 0.02 mean square error 
for the training data set. The number of epochs is the one that 
is more often met. The winner-takes-all rule is applied to the 
output of the neural network to obtain a single output class per 
input vector. For faster learning, we use the Levenberg-
Marquardt backpropagation variant [5].  

2) Constrained feature evolution 
The objective is to optimize accuracy while at the same 

time minimize the number of input features. The Siedlecki – 
Sklansky fitness function is used with feasibility threshold t = 
0.145 and tolerance margin m = 0.02. Previous experience 
with the data suggests that a feasible overall testing 
classification range for this data using different methods 
should be 85%-95%. For this reason we choose (t, m) 
combinations adapted for this accuracy range. We preserve 
the t value originally proposed [14] value but we slightly 
modify the m value to cover for the expected range of 
accuracies. If accuracy level (m) is set far above what can be 
achieved in practice than the information gained by the fitness 
function is not sufficient to drive the evolution. If m is a bit 
higher (0.02) than originally proposed, the transition is 
smoother which might be preferable. 

The best performing string, 0111001100|11000, contains 
five features [R, G, NIR, MIR2, DEM] and 32 nodes in the 
hidden layer with fitness 4.53 and overall accuracy of 88.8%. 
This solution is discovered in the third generation and lost 
after that. The accuracy matrix for this solution is presented in 
table 1 and a part of the actual classified image in figure 4. 
The second best string, with fitness of 4.58 and overall 
accuracy of 88%, contains the same five input features, 36 
hidden nodes and is discovered after nearly ¾ of total number 
of generations. The third best string contains the same five 
features, yields fitness of 4.67 and overall accuracy of 87.2, it 
is discovered in 16 different generations, most of which are at 
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the late stages of evolution. The same accuracy is produced by 
both a 32 and a 36 node solution. 

By deploying a genetic algorithm that simultaneously 
searches for the optimal feature combination as well as for the 
optimal number of nodes in the hidden layer, we obtain results 
that are more accurate than using standard neural networks 
[15], than using several neuro-fuzzy configuration [15], and 
slightly more accurate than those obtained using neural 
networks with evolved topology but without feature selection  
[16], for the same data set. Feature evolution is also compared 
favorably to standard methods such as sequential floating 
forward selection. Method comparison is presented in table 2. 

By observing the terminal states of feature evolution, we 
realize that the optimal number of hidden nodes based on the 
knowledge discovered by the genetic algorithm is around 35, 
as shown on figure 2. The discovery of this number of hidden 
nodes is interesting because it proves to be well outside the 
Kanellopoulos – Wilkinson rule derived topology. The 
optimal number of features stabilized after approximately half 
of available training generations to 5 as shown on figure 3. 

The time requirements of the sequential search compared to 
those of the genetic algorithm are negligible. It takes 
approximately 20 hours to complete 100 generations on a dual 
2.80 GHz processor with 1.5 GB of RAM computer 
configuration. Sequential floating forward selection produces 
near-instantly the results. 

IV. CONCLUSION 
In this paper a very efficient method of designing neural 

networks via genetic optimization is described. The proposed 
method solved the two main problems faced in any neural 
network classification problem; which input features and 
which hidden topology to use. Note also that the proposed 
method can incorporate in the optimization string additional 
parameters that have to be set, provided that (parallel) 
computational power is available. We elaborate upon applying 
the commonly used Siedlecki – Sklansky fitness function. An 
insight on how to select the proprietary parameters of this 
function is also provided. The results show that the concurrent 
evolution of features and network topology can yield more 
accurate results. It takes significant amount of time to run the 
process but it might be still preferable compared to the trial 
and error approach. Future work could include experiments 
with large-scale feature selection as well as additional 
datasets.  

Finally, the Siedlecki – Sklansky fitness function, imposes 
two parameters (t, m) that need to be set and that have nothing 
to do with the original genetic algorithm parameters. In 
addition, for applications such as classification for some land 
cover mapping it might be more appropriate to target accuracy 
maximization rather than number of features minimization. It 
follows that the design of a new fitness function is desirable 
that favors a solution with fewer features only when the 
accuracy level is the equal of higher.  
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Fig. 1.  Genetic algorithm representation and mapping on to a corresponding 
neural network. Not all the neural network connections are shown. Zero 
values in the string denote inactive input nodes (off). The number of hidden 
nodes is the sum of the constant 8 plus the 5-bit binary number converted to 
decimal.

 
Fig. 2.  Average number of nodes in the hidden layer per generation during 
optimization with the genetic algorithm.

 

 
Fig. 3.  Average number of features per generation during optimization with 
the genetic algorithm. 

TABLE 1. 
Accuracy Matrix for best topology and feature combinations, training top, testing 

below. Simple direct coding with population = 20. Producer’s and User’s refer to % 
accuracy. 

training 
Khat = 0.97 ATF WET FOR WAT AGR User’s 

ATF 25 0 0 0 0 100 

WET 0 24 0 0 1 96 

FOR 0 0 22 0 1 95.7 

WAT 0 0 0 22 0 100 

AGR 1 0 0 0 29 96.7 

producer’s 96.2 100 100 100 93.5 97.6 

testing 
Khat = 0.88 ATF WET FOR WAT AGR User’s 

ATF 19 0 1 0 0 95 

WET 2 24 0 0 0 92.3 

FOR 0 0 25 0 2 92.6 

WAT 0 0 0 28 0 100 

AGR 3 2 2 0 17 70.8 

producer’s 79.2 92.3 89.3 100 89.5 90.4 

TABLE 2. 
Method comparison for the same data set. 

 
 

Method 
overall testing 
classification 

accuracy 
Evolved topology and features with NN topology 5:32:5 
(proposed method) 

90.4% 

SFFS (Fisher) with NN topology 5:32:5 74.4% 
Standard NN with manual feature selection 5:15:5 [15] 80.8% 
Evolved topology without feature selection [16] 88.0% 
Using all input features with NN topology 10:32:5 
(best results over 10 runs with 10:32:5 and 10:36:5) 

83.2% 

 
 
Fig. 4. Partial view of the actual classified image (top) compared to the target 
land use CORINE data set (below). 
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