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Abstract. Reflectance spectroscopy is a standard tool for studying the mineral composition of rock and soil
samples and for remote sensing of terrestrial and extraterrestrial surfaces. We describe research on automated
methods of mineral identification from reflectance spectra and give evidence that a simple algorithm, adapted
from a well-known search procedure for Bayes nets, identifies the most frequently occurring classes of carbonates
with reliability equal to or greater than that of human experts. We compare the reliability of the procedure to the
reliability of several other automated methods adapted to the same purpose. Evidence is given that the procedure
can be applied to some other mineral classes as well. Since the procedure is fast with low memory requirements,
it is suitable for on-board scientific analysis by orbiters or surface rovers.
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1. Introduction

The identification of surface composition from reflectance spectra has traditionally relied
on two methods. The older of the two is a direct examination of spectra by experts, seeking
lines or bands characteristic of particular substances, sometimes taking account of overall
luminosity of the spectrum, and sometimes, with computational aids, taking account of the
shapes of bands. The standard alternative is simultaneous linear regression of an unknown
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spectrum against a library of known spectra for candidate materials; a number of spectral
libraries have been compiled which can be used for this purpose. Some neural net proce-
dures have also been used to analyze spectral data, typically not for identifying surface
composition directly, but rather for finding bounded regions of similar composition in an
array of point spectra from a “visual” field. Other automated techniques have been explicitly
used to identify surface composition of minerals and rocks, including a Bayesian technique
described below. However, despite its numerous applications for planetary and terrestrial
exploration and for various military purposes, we have found no published systematic (or
unsystematic) study comparing automated classification of reflectance spectra to human
expert classification of reflectance spectra, nor any systematic comparative study of alter-
native automated procedures. Using a both laboratory and field data sets, this paper provides
such comparisons.

So far as planetary exploration is concerned, reflectance spectroscopy techniques have
already shown themselves to be useful. Near-infrared reflectance spectroscopy (from ap-
proximately 0.4 µm to 2.5 µm) in particular has offered geologists an important potential
source of petrological information for planetary, satellite and other solar system exploration.
Lightweight, low-power commercial instrumentation is available, detailed physical models
have been developed (e.g. Hapke, 1993), and such data is routinely used by geological spec-
troscopists in practical mineral classification (see, for example, Chapters 3, 14, 16, 20, and
21 of Pieters and Englert (1993) and references therein). Were such instruments coupled
with intelligent software for mineral classification from spectra, the resulting system could
be used for either remote sensing or surface based studies, reducing data storage and infor-
mation transmission requirements and aiding autonomous, rational, scientifically-informed
decisions by robot explorers about further directions for exploration and data acquisition.

This interest in planetary exploration motivates an examination of the problem of deter-
mining whether rock or soil samples contain carbonates and, in particular, whether such
samples contain either of the most frequently occurring forms of carbonate material—
calcite or dolomite. Carbonate identification is interesting for extra-terrestrial exploration,
because carbonates are typically formed by processes—such as deposition from water—
that could indicate an historical environment that once supported life. We therefore, focus
on the task of carbonate identification. We compare the reliabilities of (a) an expert hu-
man spectroscopist, (b) an expert system that models human expert procedures, and (c) a
variety of automated techniques, including linear regression, each with various resampling
and cross-validation techniques, on the task of carbonate identification from visual to near
infrared reflectance spectra. All of our tests of data mining procedures use the same library
of spectra for training or reference. A variety of data sets are used for testing, including
laboratory and field spectra obtained under various conditions.

In our tests, an adaptation of the PC algorithm (Spirtes et al., 1993, 2000) implemented
in the TETRAD II program (Scheines et al., 1994) for constructing causal Bayes nets from
data, combined with appropriate data selection and data preprocessing, performed more
reliably than any other automated procedure we have tested. We will refer to this procedure
as the “modified PC” or “modified Tetrad” algorithm. In some tests this procedure was
more informative than a human expert spectroscopist and almost as reliable, and in other
tests the procedure performed almost as well as human experts with access both to physical
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samples and to measured spectra of the physical samples. These claims are made more
precise in the data summaries given below. We additionally compare various preprocessing
and data selection procedures, and, through an experiment comparing expert human per-
formance and machine performance, we investigate the likelihood that our techniques can
be successfully applied to other classes of minerals.

2. Preprocessing of data

Raw spectral data are preprocessed in our analysis in a variety of ways to produce data that
can usefully be analyzed by automated techniques.

First, raw spectral data are converted to intensities by comparing them to spectra from
standard white samples measured under the same conditions. To compensate for the varying
power function of sunlight, digitalized spectra, taken in the field, are automatically divided
by the spectrum of a white reference surface placed near the target, and these ratios are
recorded for a number of channels—826 channels in the instrument used in this study.1 These
ratios are the intensities of the spectral measurements for their respective channels. Different
instruments covering the same wavelength interval may use distinct wavelength channels,
and comparisons of field spectra taken with one instrument to laboratory spectra taken with
another instrument require that the channels for one of the instruments be used to interpolate
values for the channels used in the other instrument. This interpolation ensures that data
submitted to identification algorithms utilize the same set of wavelengths throughout.

Second, anomalous lines are removed from the spectrum. For various reasons, at some
wavelengths the output of a spectroscope in the field may have out-of-range intensity values.
For example, water vapor in the atmosphere often creates anomalous absorption lines around
1.9 µm. These lines within each spectrum can be removed by computational preprocessing,
or they can be removed by hand, or the spectra themselves can be tested automatically for
extreme variation and extremal spectra rejected altogether for analysis. We use the latter
two procedures—removing anomalous lines by hand and rejecting spectra with extremal
variation—for spectra taken in the field in the experiments described in this paper.

Third, hull differences of the spectrum are calculated. After any elimination of out-of-
range channels, the intensities for each of the remaining channels in a spectrum can then be
subjected to interpretation either directly—the data are the “raw” spectral intensities—or
after transformation. The most common transformation fits a piece-wise linear “hull” around
the extremal points of hills and valleys of the spectrum and computes, for each channel,
the difference between the spectral intensity at that channel and the numerical value of the
hull at that channel on the intensity scale. The “hull difference” values are then subjected to
analysis. An alternative but less successful procedure is to compute first differences among
intensities in successive channels. We have found that a suitably loose hull difference works
best.

The effects of different preprocessing procedures are illustrated by analyses of the spec-
trum of a rock taken near Silver Lake, CA; the results are shown in Table 1. The composition
of the rock was analyzed by two procedures, using the raw spectra, hull differences, and
first differences, with and without water lines removed. One of the procedures was linear
regression with a reference library of laboratory spectra from the Jet Propulsion Laboratory
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Table 1. Analyses of the spectrum of a sample taken near Silver Lake, CA, known to contain dolomite and calcite
and described as “dolomite with calcite veins.” Only minerals with positive regression coefficients are shown.

Water lines removed Water lines included

Tetrad Stepwise regression Data treatment Stepwise regression Tetrad

Calcite Calcite None Calcite Dolomite

Dolomite Cyclosilicate Dolomite

Cyclosilicate

Calcite Calcite Hull difference Calcite Dolomite

Dolomite Dolomite Dolomite Cyclosilicate

Cyclosilicate Cyclosilicate

Arsenate Arsenate

Dolomite Cyclosilicate First difference Cyclosilicate None

Cerussite

(Grove et al., 1992) and the STEPWISE procedure in Minitab. The other procedure was the
modified PC algorithm, to be explained later in this paper. The target rock was subsequently
identified by an expert as “dolomite with calcite veins,” and chemical testing showed both
dolomite and calcite composition.2

3. Data selection

In addition to preprocessing methods, further decisions were made about which regions of
the spectrum to accept for purposes of automatic processing. When analyzing the spectrum
from an unknown source to determine its composition, three data selection protocols are
used:

1. Accept the entire spectrum, after removing any channels with out-of-range values.
2. Accept only channels in a particular interval or union of intervals, when the purpose

is to recognize a particular component, or class of components, if present, and this
component, or class of components, is known to exhibit a distinctive spectral features in
this particular wavelength interval or set of intervals.

3. Detect only particular spectral bands or lines characteristic of particular components of
interest, if present.

The advantage of the first strategy is evidently that it uses all of the data, but if only parts
of the spectrum provide a distinctive signal for a mineral class, use of the entire spectrum
may be a disadvantage. The advantage of the second strategy is that it makes efficient
use of background knowledge to focus on the informative part of the spectral signal; the
disadvantage is that the procedure reduces the size of the data set, which sometimes makes
statistical procedures inapplicable, as we will illustrate in subsequent sections. The third
strategy also makes use of background knowledge, but lines and bands characteristic of the
spectrum of a pure mineral may be shifted or masked in the spectrum from a surface of
mixed composition.
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4. A field test of automated procedures and data selection protocols

In the winter of 1999, NASA scientists conducted field tests of a robot and instruments in
and about Silver Lake, California, a dry lake bed in the Mojave Desert (Stoker et al., 2001).
Among the instruments was a near-infrared spectrometer (Johnson et al., 2001). Spectra
were taken, usually in situ, of rocks and soils; the spectra were identified as carbonates or
non-carbonates both by the field geologists, from physical observations of the specimens
and their spectra, and by a group of geologists located remotely at NASA Ames, who
used both the spectra and the descriptions of the field experts (Gazis and Roush, 2001).
Paul Gazis at NASA Ames provided software to correct instrumental artifacts and to filter
out spectra that, typically because of atmospheric effects, were too noisy to process. After
this pre-processing, 21 spectra remained; 13 samples were identified as carbonates and 8
samples identified as non-carbonates by the field geologists. Subsequently, eight of the 21
samples were analyzed by standard petrographic techniques. All eight analyses agreed with
the judgements of the field geologists and the remote geologists.

The data were analyzed using the following combinations of procedures. (The details of
the procedures, and their rationales, are explained in the next section.)

1. The modified PC algorithm, seeking to recognize any carbonates, using a restricted
interval of wavelengths with intensity patterns characteristic of carbonates.

2. The modified PC algorithm, seeking to identify carbonates from calcites and dolomites
only, using a restricted interval of wavelengths with intensity patterns characteristic of
carbonates.

3. The modified PC algorithm, seeking to recognize any carbonates, using all wavelengths
available from the instrument.

4. The modified PC algorithm, seeking to recognize only calcites and dolomites, using all
wavelengths available from the instrument.

5. Linear regression, seeking to recognize the presence of any carbonates using all wave-
lengths available from the instrument.

6. Linear regression, seeking to recognize the presence of any carbonates using all wave-
lengths available from the instrument, but reporting only components with positive
regression coefficients.

7. Linear regression, seeking to recognize carbonates from calcites or dolomites only, using
all wavelengths available from the instrument.

8. Linear regression, seeking to recognize carbonates for calcites or dolomites only, using all
wavelengths available from the instrument, but reporting only components with positive
regression coefficients.

9. An expert system seeking to recognize the presence of any carbonates from a triple of
lines around 2.3 µm. (Gazis and Roush, 2001)

Because this data set has been incompletely described in at least two other published reports,
we give its composition in full in Tables 2 and 3. The field group’s name for each sample
is given in the leftmost columns of the tables.

The number of samples correctly estimated to contain or not contain carbonates, given at
the bottom of each column, is based on the assumption that the expert field identifications
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Table 2. Carbonate identifications of field spectra from Baker, CA using the modified PC algorithm.

Modified PC ID Modified PC ID Modified PC ID Modified PC ID
Field (all carbonates; (calcite or dolomite (calcite or dolomite (all carbonates; Laboratory

Sample expert ID 2.0–2.5 µm) only; 2.0–2.5 µm) only; 0.4–2.5 µm) 0.4–2.5 µm) ID

Emperor #1 C C C C C C (90%)
NC (10%)

Emperor #2 C C C C C C (90%)
NC (10%)

T 103 NC NC NC NC NC NA

T 105 NC NC NC C C NA

T 106 C C C C C NA

Endolith C C C C C C (93%)
NC (7%)

Tubular- NC NC NC NC C NC (100%)
tabular

Arroyo C NC NC C C C (20%)
disturbed NC (80%)

Arroyo C C C C C C (25%)
undisturbed NC (75%)

C3PO C C C C C NA

Chewie NC C NC NC C NA

Jabba C C C C C NA

Jawa C C C C C NA

Lando C C C C C C (93%)
NC (7%)

Luke C C C C C NA

R2D2 C C C C C C (78%)
NC (22%)

Solo C C C C C NA

Tarken NC NC NC NC NC NA

Vader NC NC NC C C NA

Valentine NC NC NC C C NC (100%)

Yoda NC NC NC NC C NA

Total correct 19 20 18 15

The first column shows the nickname given to each sample for purposes of analysis. The second column shows the
carbonate ID of the rock by an expert in the field. Columns 3 through 6 display carbonate identifications using the
modified PC algorithm, with different preparations of spectra and different criteria for carbonate identification.
In columns 3 and 4, all spectra are hull differenced and then truncated to the interval [2.0, 2.5]; in columns 5 and
6, the spectra are hull differenced but not truncated. In columns 3 and 6, a sample is counted as a carbonate if
the modified PC algorithm returns a set of minerals which contains any carbonate from among the 15 large-grain
carbonates in the JPL mineral data set; in columns 4 and 5, a sample is counted as a carbonate only if the modified
PC algorithm returns a set containing a calcite or a dolomite. Column 7 shows the results (where laboratory testing
is available).
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Table 3. Carbonate identifications of field spectra from Baker, CA using the simultaneous linear regression
algorithm in Minitab.

Regression Regression
ID (all ID (calcite or

Regression carbonates Regression dolomite only,
ID (all with positive ID (calcite or with positive

Field carbonates; coefficient; dolomite only; coefficient; Expert Laboratory
Sample expert ID 0.4–2.5 µm) 0.4–2.5 µm) 0.4–2.5 µm) 0.4–2.5 µm) system ID ID

Emperor #1 C C C C C C C (90%)
NC (10%)

Emperor #2 C C C C C C C (90%)
NC (10%)

T 103 NC C C C C NC NA

T 105 NC C C C C NC NA

T 106 C C C C C C NA

Endolith C C C C C C C (93%)
NC (7%)

Tubular- NC C C C NC NC NC (100%)
tabular

Arroyo C C C C C NC C (20%)
disturbed NC (80%)

Arroyo C C C C C C C (25%)
undisturbed NC (75%)

C3PO C C C C C C NA

Chewie NC C C NC NC NC NA

Jabba C C C C NC NC NA

Jawa C C C C NC C NA

Lando C C C C C C C (93%)
NC (7%)

Luke C C C C C C NA

R2D2 C C C C C NC C (78%)
NC (22%)

Solo C C C C C NC NA

Tarken NC C NC C NC NC NA

Vader NC C C C C NC NA

Valentine NC C C C NC NC NC (100%)

Yoda NC C C C C NC NA

Total correct 13 14 14 15 17

Column 1 shows the nickname given to each sample for purposes of analysis. Column 2 shows the carbonate ID
of the rock by an expert in the field. Columns 3 through 6 display carbonate identifications using linear regression,
with different criteria for carbonate identification. In columns 3 and 5, samples are counted as carbonates if when
regressed onto the JPL library at least one of the JPL carbonates has a significant regression coefficient; in columns
4 and 6, this regression coefficient must be not only significant but also positive. Also, in columns 3 and 4, a sample
is counted as carbonate if when regressed any of the JPL carbonates has a significant regression coefficient; in
columns 5 an 6, only significant regression coefficients for calcites and dolomites are counted. Column 7 shows
the identification by the expert system used in the study, and column 8 shows the results (where available) of
laboratory testing.
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represent the truth. This is a reasonable assumption because expert field identifications
rely on both physical examination of samples and examination of measured spectra and,
where tested, agree with laboratory analyses of the samples. Assuming that remote expert
classifications represent the truth would change values only for samples ‘jawa’ and ‘R2D2,’
increasing the scores of two regression procedures by 1 and the score of the expert system
by 2. All data were hull differenced for all procedures. For a more detailed description
of the expert system referred to here, see Gazis and Roush (2001). A team from the Jet
Propulsion Laboratory has also classified the Silver Lake spectra with a neural net (Gilmore
et al., 2000). Their report of their results is unclear in essential respects, but they report the
identification of only eight carbonates.

These results suggest that the modified PC procedure, in combination with a data filter
restricting the set of wavelengths used as a data, outperforms the other eight procedures
considered and is nearly as good as expert identification in the field using physical exami-
nation and spectra—without the filter, the modified PC procedure overfits almost as badly
as regression and is inferior to an expert system modeling an expert spectroscopist. Why
all of this should be so, and why the regression procedure is not combined with the same
data filter, and, finally, whether these suggestions hold up under further tests, is discussed
in the following sections.

5. Descriptions of the automated procedures

5.1. Multiple regression

The regression procedure takes each channel wavelength as a unit and uses the value of
the intensity of the target rock at each measured wavelength as the dependent variable. The
independent variables are the intensities of each of the 135 large-grain mineral samples
in the JPL library of reflectance spectra, at the same wavelengths. The 135 minerals are
divided into 17 classes, one of which is the carbonate class, with 15 minerals, including 3
dolomites and 2 calcites.3

In the regression procedure using all carbonates, a carbonate is recorded as present if
any of the 15 carbonates in the JPL library has a significant regression coefficient, using
a 0.05 significance level. In the regression procedure using only calcites and dolomites, a
carbonate is recorded as present if any of the five calcites or dolomites has a significant
regression coefficient, using a 0.05 significance level. In the regression procedures requiring
a positive sign, a carbonate is reported present if a carbonate mineral has a significant positive
coefficient. In only one case was the result very sensitive to the significance level (an increase
in the significance level to 0.054 would have resulted in the misclassification of ‘Chewie’ as
a carbonate using either of the two regression procedures that identify carbonates through
calcites and dolomites.) Otherwise, variations in the significance level between 0.100 and
0.010 would have made no difference in the regression results.

Note that regression suffers from three difficulties, one structural and two statistical,
which make it an inferior procedure in many applications:

1. Consider any two regression variables, X1, X2 among a set C of candidate causes of an
outcome variable Y . Suppose X1 and X2 are correlated due to factors that influence both
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X1 and X2 values but are not themselves in C. Suppose, finally, that another factor U ,
not included in C, influences both Y and X2. Then, even if X1 has no influence on Y , and
even if there is no correlated error between X1 and Y , and even if all common influences
on X1 and Y are included among the variables in C, for sufficiently large sample sizes the
partial regression coefficient for X1 will (almost certainly) have a significant value. The
phenomenon is sometimes called conditional correlated error. In the present application,
it can result in the identification of minerals that are not, in fact, components of the
source.

2. Simultaneous linear regression computes the partial regression coefficient of a variable
X1 effectively by conditioning (assuming a Normal distribution) on all other regressors
in the regressor set C—in our application, conditioning on all of the other 134 minerals
in the JPL library. While any one of these variables may be only loosely correlated with
X1, together they may be highly correlated with X1. In that case, the covariation of X1

and Y after partialing out the variation in Y due to other factors in C may be effectively
zero. In the present application, multicollinearity can result in failing to identify a true
component of the source.

3. The variance of the estimates of a simple regression coefficient is a function of the
sample size. The variance of the estimates of a partial regression coefficient is a function
of sample size and the number of other candidate causes, or regressors—that is, a function
of the cardinality of C. The bigger the sample size and the smaller the number of other
regressors, the smaller the variance. Assuming a Normal distribution, the trade off is one
for one: adding an extra regressor variable is equivalent in its effect on the variance to
reducing the sample size by one unit. In the present application, reducing the number
of channels used for data analysis increases the variance of the estimates of regression
coefficients. In the extreme case in which the number of variables is greater than the
sample size, regression is ill-defined, and standard regression packages will not run at
all. In our application, regression procedures will not run using the JPL library as the
regressor set C and restricting the data to the channels with wavelengths in the interval
[2.0 µm, 2.5 µm].4

Several remedies to this last difficulty can be considered. The wavelength interval [2.0 µm,
2.5 µm], in this case, is chosen because previous work on carbonate spectra shows that this
region has distinctive spectral features for carbonates. We could search for a larger range of
wavelengths optimal for regression procedures in this application. We could eliminate some
of the minerals in the JPL library from the set of possible components of the source, but
that would decrease the reliability of the procedure when those components or spectrally
similar components are actually present in the source. We could use a stepwise regression
procedure, but other experiments with small samples have found stepwise regression less
reliable than the procedure used here (Spirtes et al., 1993, 2001). A better solution to this
problem is available—viz., the algorithm described in the next subsection.

5.2. The modified PC algorithm

All three of the problems cited above with linear regression stem from a single structural
feature of the regression procedure, linear or otherwise. In estimating the influence of a
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variable X on the outcome Y , regression conditions simultaneously on all other candidate
variables—i.e., all of the other members of C. That is, in our (rather conventional, but not
textbook) use of regression, we test the null hypothesis that X has no influence on Y (or is
not a component of Y ) by using the distribution of a test statistic that is conditioned on all
other members of C.

There is an alternative procedure that minimizes the number of variables that must be
conditioned on. It takes as input a set of background variables C = {X1, X2, . . . , Xn} to-
gether with a target variable Y not in C and dynamically eliminates variables from C using
conditional independence facts, calculated from data. Variables are eliminated which are
independent of Y conditional on subsets of other remaining variables in C, where the car-
dinality m of the subsets increases in size (m = 0, 1, 2, . . .) until no more variables can be
eliminated from C. More formally:

Modified PC Algorithm:

Given set C of background variables and target variable Y :

1. for each Xi in C, test the hypothesis that the correlation of Xi with Y is zero; if the
correlation of Xi with Y is zero, C := C – {Xi };

2. for each Xi in C, and for each X j �= Xi in C, test the hypothesis that the correlation
Xi with Y , controlling for X j , is zero; if the correlation of Xi with It controlling for
X j is zero, C := C – {Xi };

3. for each Xi in C and each X j , Xk �= Xi in C test the hypothesis that the correlation
Xi with Y , controlling for X j , Xk is zero; if the correlation of Xi with It controlling
for X j , Xk is zero, C := C – {Xi };
. . . and so on, until no more members of C can be removed. Return C.

This procedure may be understood intuitively as a application of the theory of search for
graphical causal models (Spirtes et al., 1993, 2001), applied in this case to produce a directed
graph representing a hypothesis about the mineral composition of a source.

If n members of C are actually components of Y , no more than n variables must be
conditioned on simultaneously. If, for example, three minerals in the JPL library are actual
components of a sample, a large number of statistical tests will be done, but none of
the tests will require controlling for more than three variables—in no test will the sample
size effectively be reduced by more than 4, in contrast to multiple regression in which
the sample size is reduced by 134. For that reason, unlike multiple regression, the proce-
dure can be used with the JPL library with the reduced data set using only intensities in
channels for wavelengths in the interval [2.0 µm, 2.5 µm].

This procedure is subject to the statistical objection that no confidence intervals or error
probabilities can be calculated (see Robins et al., 1999; Spirtes et al., 2000). But, unlike
regression, there is a proof that the procedure—under specified assumptions—is asymp-
totically correct, and in simulation studies the procedure is much more reliable than best
subsets procedures (Spirtes et al., 1993). While confidence intervals have important uses,
if the choice is between a procedure with confidence intervals that is known to be asymp-
totically invalid and is unreliable in real applications and in simulation studies and with



AUTOMATED REMOTE SENSING 287

small samples, or an asymptotically correct procedure found to be reliable but admitting no
confidence intervals, we prefer the latter.

6. Test with laboratory spectra

Because the sample size in the field test is small and the samples are all from a single site,
the procedures tested above need to be tested as well on a separate and preferably larger
data set. The Johns Hopkins University (JHU) has assembled a library of reflectance spectra
for a variety of solid and powdered rock samples.5 Each spectrum in the JHU rock library
is accompanied by a description of the petrology of the sample. Because mineralogical
nomenclature is so varied, these descriptions do not generally identify sample components
either as among the 135 specific minerals represented in the JPL library (e.g., calcite,
dolomite, etc.) or as among the 17 general mineral classes into which the JPL library is
classified (e.g., carbonates, phyllosilicates, etc.). Assignment of JHU samples to the 17
general JPL mineral classes on the basis of the petrological descriptions alone requires
expert knowledge.

Using the JHU petrology descriptions, but without access to the sample spectra, Ted Roush
of NASA Ames determined which of the 17 JPL mineral classes is represented in each of
the 192 JHU rock samples. Since the rocks were not pure minerals, they could each belong
to more than one of the 17 general mineral classes. 92 of the samples were judged to contain
some form of carbonate. These assignments of JHU minerals to carbonate class were then
used as ground truth in tests of reliabilities of various procedures for mineral classification.

Each of the procedures applied to the field test data was applied to the JHU samples
as well, except that, in place of the expert system based on Roush’s own procedures in
identifying carbonates from spectra, Roush himself—without access to the petrological
descriptions of the samples—attempted to identify samples with carbonate components.
The results of these analyses are summarized in Table 4.

We recognized that among the machine classification algorithms available in the artificial
intelligence literature, there may be classifiers that perform better than the modified PC
algorithm. To search for such procedures, we used the Model 1 program, a commercial
program that uses a training set—in our study, the JPL library—to assess the performance of
a large number of algorithms.6 We tested one of the best-scoring algorithms found by Model
1 on the JHU library. The procedures among which Model 1 searched included include linear
regression, cross-validated linear regression, logistic regression, cross validated logistic
regression, backpropagation on a neural network, cross-validated backpropagation, CART
(classification and regression trees), naïve Bayes, and other procedures.

The Model 1 program found that a cross-validated logistic regression procedure per-
formed best on the JPL library (a simple linear regression procedure performed worst).
When used on a test set to identify a target variable with a particular algorithm—in our case
to identify samples in the JHU library containing carbonates—Model 1 listed the samples in
order from those most likely to contain carbonate (according to the algorithm tested) to those
least likely and reported how far down in the ordering one must go for any specific number
of correct identifications. The result for 36 correct carbonate identifications is shown in the
next to right-most column of Table 4. Results for other selections are similarly poor.
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Table 4. Comparison of tetrad, regression, Model 1, and human expert on the task of identifying samples with
carbonate components among the JHU rock samples.

Procedure

TA TACR TCD TCDR RAC RACP RCD RCDP M1 HE

Number of carbonates identified 58 63 42 41 192 191 154 176 73 25

Number of carbonates correctly 38 47 36 38 92 91 79 90 36 24
identified

Number of noncarbonates 20 16 6 3 100 100 75 86 37 1
misidentified as carbonates

Number of carbonates 54 45 56 54 0 1 13 2 56 68
misidentified as noncarbonates

Total number of errors 74 61 62 57 100 101 88 88 93 69

Prob (carb | carb predicted) 0.66 0.60 0.90 0.93 0.48 0.48 0.51 0.51 .49 0.96

Prob (carb predicted | carb) 0.41 0.51 0.39 0.41 1.00 0.99 0.86 0.98 .39 0.26

TA = Tetrad all carbonates 0.4–2.5; TACR = tetrad all carbonates 2.0–2.5; TCD = tetrad calcite or dolomite
0.4–2.5; TCDR = tetrad calcite or dolomite 2.0–2.5; RAC = regression all carbonates (any coefficient); RACP =
regression all carbonates (positive coefficient only); RCD = regression calcite and dolomite, any coefficient;
RCDP = regression calcite and dolomite, positive coefficients only; M1 = Model 1; HE = human expert.

These results show the same pattern as in the field test. Regression procedures are essen-
tially useless, and one would do roughly as well flipping a coin to decide whether the source
of a spectrum contains carbonate. Like the expert system in the field trials, the human expert
is conservative and has (almost) no false positive carbonate identifications, but correctly
identifies only limestones and marbles, but the expert also has the largest collection of false
negatives. As in the field tests, the modified PC algorithm identifying carbonates through
calcite or dolomite and restricted to the wavelength interval [2.0 µm, 2.5 µm], stands out—
its false positive rate is almost as small as the human expert’s, but its false negative rate is
substantially smaller. The best procedure that the (very expensive) Model 1 program could
find was dramatically inferior.

7. Carbonate composition from a scene

Roush and his colleagues at Ames Research Center obtained 640 spectra by scanning a scene
consisting of rocks of varying composition placed in a square soil bed. The spectra were
taken from a short distance away from the site, using a white reference placed by the nearest
rock. One of the rocks was limestone, a carbonate; others included a cement block with
very low and indeterminate limestone content, a bright sulphate rock, and rocks of other
composition. These spectra were classified for carbonate identification at Ames by least
squares procedures, with the Gazis and Roush expert system and, independently, by Roush
from the spectra. The details of these analyses will appear elsewhere. The results of the
modified Tetrad classification, using a 2.0–2.47 µm data filter (because of signal noise at the
extreme long wave length end of the spectrum), a 10 box boxcar smoother, hull differencing,
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Figure 1. Identification of pixels containing carbonates (C) and not containing carbonates (·) in a 20 × 32 pixel
scene using the modified PC algorithm. For details, see text.

a .01 significance level for independence tests, and eliminating the comparatively rare
carbonate, cerussite, from the JPL reference library (because in the spectral interval allowed
by the data filter, its spectrum matches a sulphate) is shown in figure 1. The white rock in
the upper right hand corner is limestone.

8. Experiments with variable white reference location

Because the power spectrum of the sun varies with place and time, reflectance spectra require
comparison of the reflected light from a surface with that reflected from a white reference
surface. In laboratory studies, and in the laboratory and field studies so far reported here,
the reference is placed at or near the target sample. But remote sensing requires that the
white reference be near the spectroscope and remote from the target. We have been able to
find no study of the accuracy of deconvolution algorithms in this deployment.

We obtained commercial floor tiles respectively of terra cotta (silicate), marble (a car-
bonate), and granite. Each tile had a rough side and a smooth side. Repeated measurements,
four of each side, were made of the reflectance spectra of these tiles at NASA Ames Re-
search Center, under two conditions. In one condition, the white reference was placed next
to the tiles, 28 feet from the spectrometer. In the other, the white reference was placed 2 feet
in front of the spectrometer, and the target tiles were in the former position, 28 feet from
the instrument. The data were then analyzed with the expert system referred to previously
and the modified Tetrad procedures with 2.0–2.43 µm data filter, no hull differencing, 20
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Table 5. Ames test of mineral identification with varied location of white reference.

Reference at target Reference at instrument

Ames expert system 2 of 8 carbonates 2 of 8 carbonates

No false positives No false positives

Tetrad, 2.0–2.4 µm 7 of 8 carbonates 7 of 8 carbonates

.05 significance 4 false positives 1 false positive

Tetrad 2.0–2.4 µm 7 of 8 carbonates 7 of 8 carbonates

.01 significance 2 false positives 3 false positives

box boxcar smoothing, using two significance levels for independence tests. The results are
shown in Table 5.

9. Other mineral classes: A human expert baseline and a John Henry experiment

Many other minerals or mineral classes other than carbonates are of scientific interest or of
interest in terrestrial or Martian exploration. To investigate whether automated procedures
can approximate human expertise for other mineral classes, we obtained an experimental
human expert baseline and compared it with the performance of the modified Tetrad program
with no data filter.

Roush examined 191 JHU spectra stripped of identifiers and attempted to determine, for
each of the 17 JPL mineral classes, which classes were present in the JHU source. He had
unlimited time and was free to use any reference works or computer aids he wished. In
the event he spent about 12 hours on the task over 4 days. The modified PC algorithm was
then run on the same spectra, using the entire 0.4 µm–2.5 µm spectrum, hull differenced,
at 0.05 significance for independence tests, and outputting any of the 17 JPL classes if a
representative of that class was found for a sample. For eight of the seventeen JPL mineral
classes, no representative, or no more than two representatives, were present in the JHU
library, and for those classes the experiment is of no significance. The results are shown
graphically in figures 2(a) and (b).

For tectosilicates, phyllosilicates and inosilicates the positive identifications of the human
expert have significant reliability, and can be approximated (with more false positives and
fewer false negatives) by the modified PC algorithm. We have reason to hope, therefore, that
subclasses of these mineral groups can be distinguished, and informative spectral regions
found, for which the machine procedures will be useful. The problem is to find informative
data filters for each class, if they exist.

10. Automated construction of data filters

Moody et al. (2001) describe two methods for locating data filters for a given mineral class.
One procedure bins the intensities of library spectra at each frequency and computes the
information about the given class at each spectral interval. A second procedure partitions
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(a)

(b)

Figure 2. Graph (a) shows the conditional probability that rocks contain minerals belonging to a certain class,
given that the modified PC algorithm (“TETRAD”) identifies them as containing minerals belonging to that class.
The reverse conditional probabilities are shown as well. Graph (b) shows the conditional probability that rocks
contain minerals belonging to a certain class, given that the expert of the experiment described in Section 9
(“Expert”) identifies them as containing minerals belonging to that class. The reverse conditional probabilities are
shown as well. The rock spectra being identified in each case are the 192 rock spectra from the Johns Hopkins
University Spectral Library.

the 4.0–2.5 mm spectral region into intervals and codes each interval as an allele value
(present or absent) in a genetic algorithm, using the modified tetrad algorithm to evaluate
fitness.

The information algorithm is sensitive to the number of bins used, and the genetic algo-
rithm is sensitive to the number of elements of the partition—the number of genes—used.
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Best results in the experiments were obtained with a genetic algorithm with ten genes. An
interval for carbonates corresponding closely to the 2.0–2.5 mm region was found, and
reasonably well-defined intervals were also found for inosilicates. Other mineral classes
and subclasses have not been explored.

11. Discussion

In less formal experiments we have used the JPL library as a training set and the JHU library
as a test set to explore a number of other approaches to automated mineral classification
from reflectance spectra, with little success. Kohenen self-organizing maps and AutoClass
yield interesting classifications of the JPL spectra, but they generally do not correspond to
standard mineral classifications of geological interest. The problem of identifying mineral
composition from reflectance spectra seems as if it could fruitfully be treated by neural
net techniques, and that was our initial approach. In 1996 we generated training data for
a network with four hidden nodes by taking random linear combinations of JPL spectra
and we testing the trained network on JHU data. JPL investigators have subsequently used
a similar approach. We trained networks for carbonate identification but found that the
networks did not perform well if the test data contained significant fractions of minerals not
in the training set. A further problem is that in reality the reflectance spectra of rocks, soils
and other materials are not in general linear or even additive functions of the spectra of their
component minerals, and such training procedures therefore lack realistic training sets.

We have attempted carbonate identification with two Support Vector Machine programs
available online (“MySvm” and “SvmLight”). Treating labels as continuous produced some
promising results superficially similar to those reported here. However, with labels treated
as discrete, as they are treated for the algorithms reported above, neither program converged
at all, no matter which general purpose kernel was used.

It may well be that boosting techniques, or carefully chosen kernels for Support Vector
Machines, or something else altogether that we have not considered, will improve on the
results reported here for the modified PC algorithm with appropriate data filters, but for
the present the modified PC algorithm seems to be the best available procedure for the
identification of carbonate content in minerals and perhaps for the identification of other
mineral class content as well. The algorithm can be improved in various ways, for example
by resolving ambiguities—such as that between cerussite and certain sulphates—within the
range admitted by a data filter by comparing spectral regions excluded by the data filter.

Executables and source code for all of the algorithms described in this paper, except the
Gazis-Roush expert system and proprietary Model 1 algorithms, can be downloaded from
http://www.phil.cmu.edu/rockspec. Data sets described in this paper can be downloaded
from the same location.
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Notes

1. The spectral channels for the JPL library range in wavelength from 0.400 µm to 2.500 µm. They increase by
0.001 µm from 0.400 µm to 0.800 µm and then by 0.004 µm from 0.800 µm to 2.500 µm, for a total of 826
channels.

2. We thank Dawn Robinson and Ray Arvidson of Washington University for the petrological analysis of this
sample.

3. The JPL mineral library contains spectra for 160 different minerals, each of which is measured at from one
to three different powder grain sizes. Of these 160 minerals, 135 minerals are measured at the large grain size
(125–500 µm). It is this set of 135 large grain spectra which is used as a background library.

4. In this case, the number of variables is 135 and the sample size is equal to the number of channels in the interval
[2.0 µm, 2.5 µm] for the JPL library = 126.

5. The JHU spectral library contains many more spectra than just these 192 rock spectra, including spectra for
soils and plants, but our interest was just in the rock spectra. The rock spectra were of six types: (1) solid
igneous, (2) powdered igneous, (3) large grain powdered metamorphic, (4) small gain powdered metamorphic,
(5) large grain powdered sedimentary, and (6) small grain powdered sedimentary.

6. Model 1 is currently distributed by the Unica Corporation under the name “Affinium Model.”
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