Algorithmes évolutionnaires pour l'optimisation numérique : Identification de fonctions et Programmation Génétique

Marc Schoenauer* Équipe TAO – INRIA Futurs – France http://www.lri.fr/~marc

Juin 2005

 \ast Au CMAP, École Polytechnique (UMR CNRS 7641) avant sept. 2001

Plan

- Identification de fonction
- Planification de trajectoire Réseaux de neurones directs
- Chromatographie Réseaux de neurones récurrents
- Lois de comportement de matériaux hyperélastiques 3D GP classique
- Lois de comportement de matériaux élasto-visco-platiques 1D GP ad hoc
- Embryogénèse

Problèmes inverses

Mal posés, numériquement difficile à résoudre

Hypothèses: Résolution précise et robuste du problème direct

Une fitness possible pour le problème inverse:

Question: quelle représentation (et opérateurs de variation) pour les fonctions?

 $\mathbf{5}$

Exemples

- Contrôle optimal : Le problème du créneau Par réseaux de neurones multi-couches
- Identification de loi d'état en chromatographie Par réseaux de neurones récurrents
- Identification de lois de comportement de matériaux Programmation génétique "classique" pour les matériaux hyperélastiques Programmation génétique originale pour les modèles rhéologiques
- Identification d'inclusion par diagramme de Voronoï

Identification de fonctions

Il faut dans tous les cas un modèle pour la fonction à identifier.

- Modèles **paramétriques** : un nombre fixe de paramètres réels (e.g. les polynomes de degré d).
- Modèles **non-paramétriques** : un espace décrit par un nombre variable de paramètres (e.g. les polynômes à *n* variables).
- Les réseaux de neurones et la programmation génétique sont des modèles intermédiaires: paramètrique pour une structure fixe, non-paramétrique si l'on cherche aussi la structure.

Régression (data fitting)

On dispose d'exemples de valeurs prises par la fonction inconnue:

 $(\vec{X_i}, Y_i)_{i=1,\dots P}$

on cherche p.ex. F de ${\rm I\!R}^N$ dans ${\rm I\!R}$ qui minimise

$$\sum_{i=1}^{i=P} [F(\vec{X_i}) - Y_i]^2$$

• Il existe de nombreuses techniques d'approximation et d'interpolation Interpolation polynomiale, fractions rationelles Fonctions Splines

Réseaux de neurones, Machines à vecteur de support (SVM)

• Le point-clé est la **généralisation**: que se passe-t-il pour les points non pris en compte durant l'apprentissage ?

. . .

Réseaux de neurones

Neurones artificiels

- Perceptron (Rosenblatt 59, Widrow & Hoff 60, Minsky & Papert 69)
- Parallel Distributed Proessing (Rumelhart et McClelland 86)

Tutoriel en ligne à http://www.eeaax.polytechnique.fr/Neurones/

• L'activation du neurone, pour des entrées x_i , est $\sum_{i=1}^n w_i X_i$

• Une fonction de transfert σ

• La sortie du neurone est $Y = \sigma(\sum_{i=1}^{n} w_i X_i)$

• Connections : des entrées et une sortie

- Poids sur les connections entrantes

Mémoire locale

Les neurones en réseau

- Les sorties de certains neurones sont connectées aux entrées d'autres neurones.
- Les entrées non connectées sont les entrées du réseau
- Les sorties de certains neurones particuliers sont les sorties du réseau.
- Les paramètres de contrôle sont
 - l'architecture du réseau (le graphe des connections)
 - les poids des connections
- Le but recherché, le type des valeurs des entrées/sorties, le graphe des connections et l'algorithme d'optimisation des poids déterminent le type du réseau de neurones formels.

Types de réseaux

• En l'absence de boucles dans le graphe de ses connections, un RN définit une fonction de \mathbb{R}^n dans \mathbb{R}^m

réseaux dits à propagation directe - feed-forward

- Dans le cas contraire, on calcule les sorties de chaque neurone
 - De manière synchrone, ou
 - Dans un ordre donné

Réseaux récurrents

Muti-layer perceptron

Recurrent Network

Des outils d'approximation

Perceptrons multi-couches :

- L'ensemble des RN multi-couches à fonction de transfert sigmoïdale, à n entrées et m sorties (et même à 3 couches) est dense dans L²([0,1]ⁿ, [0,1]^m).
- Pour un réseau à 3 couches (m = 1), majoration de l'erreur d'approximation / du nombre de neurones de la couche cachée.

De même, pour les réseaux à fonction de transfert gaussienne (RBF).

Apprentissage supervisé classique

Apprentissage **des poids** d'un RN de topologie fixée.

• Un ensemble d'exemples d'entrées/sorties du réseau (i.e. de (n+m)uplets $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ est disponible

Plusieurs variantes, dont la plus célèbre est une méthode de gradient stochastique, la rétro-propagation du gradient.

- Un oracle est disponible, qualifiant un réseau
 - Apprentissage par renforcement

Barto et Sutton

– Règle de Hebb

Renforce les poids entre deux neurones actifs simultanément

Évolution de réseaux de neurones

• Évolution des poids d'un réseau à architecture fixée

Éventuellement, point de départ pour le RPG

• Évolution de la règle d'apprentissage

 $\Delta w_{ij} = \Phi(x_j, y_i, w_{ij})$

 x_j et y_i sont les activités des neurones amont et aval de la connection

• Évolution de la topologie (et des poids)

Planification de trajectoire E. Ronald et MS, 94

Variables d'état : $(x, y, \theta_c, \theta_r)$, commande : angle u des roues.

La dynamique du système est connue (discrètisée)

Problème: trouver la commande $u(x, y, \theta_c, \theta_r)$ pour garer le véhicule au point (0, 0, 0) depuis toute position de départ.

ENPC - Mocule Optimisation - Juin 2005

Perceptron multi-couches

- Réseaux totalement connectés d'architecture fixe.
- Régle empirique: réseau 4–9–1
- 55 poids à ajuster

Pas d'exemple de comportement du réseau Les algorithmes d'apprentissage usuels (e.g. la rétro-propagation) ne s'appliquent pas

 \longrightarrow Évolution artificielle

L'algorithme d'évolution

- Représentation : vecteur de 55 réels
- Taille population ≈ 100
- Initialisation U[-1,1]
- Sélection par roulette ou tournoi de taille 2
- Remplacement générationnel
- Croisement arithmétique, proba ≈ 0.8
- Mutation Gaussienne, écart-type décroissant, prob
a ≈ 0.1
- Quelques centaines de générations

Performance

Pour une fonction $u(x, y, \theta_c, \theta_r)$ (e.g. un perceptron multi-couches) et un point de départ donnés, calcul en boucle ouverte

Distance au but:

$$d^{2} = x^{2} + y^{2} + \min(\theta_{S}^{2}, (\theta_{c} - 2\pi)^{2}, (\theta_{c} + 2\pi)^{2})$$

$$Perf(u) = \min_{trajectoire} d^2$$

Variables **externes** – sauf GPS ultra-précis!

Performance (2)

Le syndrome du "chauffeur de taxi"

Performance (3)

Prise en compte de la distance:

$$Perf(u) = L_{totale} + \min_{trajectoire} d^2$$

Généralisation

plusieurs points de départ $P_0, P_1, \ldots, P_n: P_i \to \text{trajectoire } T_i$

 $Perf(u) = \sum_{i=0}^{i=n} \min_{T_i} d^2$

Les 15 points de départ

Limites de l'approche

Les réseaux multi-couches à architecture fixée sont soit trop limités soit numériquement

Performance en généralisation du meilleur réseau

 \longrightarrow apprendre aussi l'**architecture** du réseau.

Évolution de la topologie des RN

A. Fadda et MS, 1996, Salvi et Trianni, 1999

- Optimise à la fois la topologie et les poids
- Pas d'opérateur de croisement sémantiquement significatif
- \longrightarrow Evolutionary Programming:
 - tous les parents ont un enfant,
 - par mutation seulement,
 - les meilleurs des parents+enfants forment la génération suivante
- Mutations structurelles (topologie) et paramétriques (poids).

Les mutations

- les mutations structurelles
 - Ajouter ou enlever un neurone
 - Ajouter ou enlever une connection
 - Changer de fonction de transfert
- les mutations paramétriques : mutations gaussiennes
 - de tous les poids
 - des poids d'entrée d'un neurone
 - des poids de sortie d'un neurone
 - des coefficients des fonctions de transfert

Stratégie : une mutation structurelle est suivue d'un nombre minimum de mutations paramétriques

Les plus "douces" possibles

 $ENPC\ -\ Mocule\ Optimisation\ -\ Juin\ 2005$

M. Schoenauer

26

Chromatographie analytique A. Fadda 97

La chromatographie est un procédé de **séparation** des composants d'un mélange par absorption sélective dans un milieu poreux.

Le système d'EDP

Si $w(z,t) = (w_1(z,t), w_2(z,t), ..., w_M(z,t))$ sont les concentrations des composantes du mélange,

$$\begin{cases} \frac{\partial w(z,t)}{\partial z} + \frac{\partial f(w(z,t))}{\partial t} = 0 \text{ for } (z,t) \in [0,L] \times [0,T] \\ w(0,t) = w^{inj}(t) \\ w(z,0) = w^{init}(z) \end{cases}$$

 w^{inj}, w^{init} : conditions expérimentales, f: fonction isotherme.

 $w(L,t)_{t\in[0,T]}$: chromatogramme observé.

Il s'agit d'un système hyperbolique non-linéaire bien posé. (P. Valentin, F. James) qui peut se résoudre numériquement (e.g. schéma de Godunov standard).

État de l'art: Méthode déterministe

M. Sepulveda 96

- Il faut un modèle paramétrique (e.g. fractions rationelles),
- avec peu de paramètres.
- Il faut poser et résoudre le problème adjoint,
- et partir près de la solution.
- Ne peut utiliser qu'un seul chromatogramme expérimental.

Résultats

Un composant, un chromatogramme

Données expérimentales:

 w^{inj} et w^{init} , les conditions expérimentales, $w_c^{exp}(t)_{t \in [0,T]}$ le chromatogramme observé.

Fitness:

$$\sum_{c=1}^{M} \left\{ \int_{0}^{T} \left| w_{c}^{NET}(L,t) - w_{c}^{exp}(t) \right|^{2} dt \right\}^{1/2}$$

oú w_c^{NET} est solution de

$$\begin{cases} \frac{\partial w^{NET}}{\partial z} + \frac{\partial NET(w^{NET})}{\partial t} = 0 \text{ in } \Omega = [0, L] \times [0, T] \\ w^{NET}(0, t) = w^{inj}(t) \\ w^{NET}(z, 0) = w^{init}(z) \end{cases}$$

Remarque: Godounov $\equiv 2500$ à 10000 calculs de la sortie du réseau !

• Robuste par rapport au schéma numérique

• mais dépend des conditions expérimentales

Mauvaises propriétés de généralisation

Erreur sur une plage de conditions expérimentales.

Z=error

 \longrightarrow Il faut prendre en compte plusieurs chromatogrammes dans la performance.

 \rightarrow discrétisation grossière

Un composant, plusieurs chromatogramme

Données expérimentales:

 w_i^{inj} et w_i^{init} , $i \in [1, N]$, les N conditions expérimentales, $w_{c,i}^{exp}(t)_{t \in [0,T]}$ les N chromatogrammes correspondants.

Fitness:

$$\sum_{i=1}^{N} \sum_{c=1}^{M} \left\{ \int_{0}^{T} \left| w_{c,i}^{NET}(L,t) - w_{c,i}^{exp}(t) \right|^{2} dt \right\}^{1/2}$$

oú $w_{c,i}^{NET}$ est solution du système d'EDP de conditions expérimentales w_i^{inj} et w_i^{init} et de fonctions isotherme le réseau considéré.

 \longrightarrow Meilleure robustesse et meilleure précision.

Erreurs sur une plage de conditions expérimentales

Choix des conditions expérimentales

- Sur une grille Impossible pour un nombre de corps important
- Aléatoirement choisis et modifiés en cours d'évolution

Avec quelle fréquence ?

• Par co-évolution Conditions expérimentales – fonctions isothermes (RN) Fitness des $RN \equiv min$ (erreurs sur CI) Fitness des $CI \equiv max$ (erreurs des RN)

Chromatographie et RN: conclusions

- Pas de modèle *a priori*
- Pas de problème adjoint
- Méthode coûteuse
- Permet de prendre en compte plusieurs données expérimentales (robustesse).
- Comparaison avec la méthode déterministe en cours sur données réelles (chères).
- Comparaison avec la Programmation génétique ???

Identification of macro-mechanical models

coll. F. Jouve, B. Lamy (CMAP), and M. Sebag, H. Maitournan (LMS)

Behavioral law of materials

- needed for accurate CAD;
- ill-known for new materials (e.g. polymers).

Art of macro-mechanical modeling:

- Adapting the model of another material;
- Designing a brand new model;
- Starting with a micro-mechanical analysis.

Fails when the current material:

- does not resemble other materials;
- does not fit expert's guesses;
- is not provided a tractable model by μ -M analysis.
Two different backgrounds:

- 3-D hyperelastic materials (e.g. rubber) are described by the strain energy function E(I₁, I₂, I₃) (I_i are the invariants of the local strain tensor). GP representation is straightforward.
- 1-D rheological models describe general visco-elasto-plastic materials via assembly of elementary elements (springs, sliders and dashpots).
 Specific GP representation was designed:

Strain energy function identification

The direct problem

For a given constitutive law and a given loading, the Finite Element Method allows to compute the simulated behavior of the structure (displacements, stress).

The inverse problem

Boundary conditions Forces Dusplacements $\left. \begin{array}{c} \xrightarrow{GP} E(I_1, I_2, I_3)? \end{array} \right.$

Why GP^a?

- Values of the second derivatives of the strain energy function are used in the FEM.
- Numerical derivation is unstable and inaccurate.
- Derivation of RNN is impossible.
- Derivation of GP-trees is straightforward.

^aWe wanted to try GP on a non-regression problem

Fitness

• $2 \times 2 \times 2$ Q2-mesh.

• Three loading cases (the structure is fixed on its lower surface).

• Sum over the boundary points of the displacement errors.

One fitness evaluation for function E thus implies

- For each loading case
- For each iteration over the nonlinearity
 - For each element of the mesh
 - For each of the 27 Gauss points of the element
 - the computation of values of $E, \frac{\partial E}{\partial I_i}, \frac{\partial^2 E}{\partial I_i \partial I_j}$ at that point
- the numerical solution of the linear system (358×358) .

and finally the computation of the displacements.

 \rightarrow More than 20000 tree-evaluations on average (for the simplissimus $2\times 2\times 2$ mesh !)

Worst complexity = when nonlinear iterations DO NOT converge

41

Tableau for the strain energy function identification

Objective:	Energy function fitting the experiments
Terminal set:	x, y, \mathcal{R}
Function set:	+, -, *
Fitness cases:	Three basic loading cases (different directions of forces)
Fitness:	Mean square error on the fitness cases
Parameters	Population size: 100
Operator rates	Crossover: $0.3 - Mutation: 0.5 - Copy: 0.2$
Selection method	Tournament (2)
Replacement method	Generational
Wrapper	Compute α to meet the <i>no-load</i> condition.
Termination criterion	Final generation reached

42

First NON-results

• Disastrous first trials :

<2% of random trees are valid energy functions (i.e. nonlinear iterations in FEM converge).

- Test limits when variables go to $+\infty$: get rid of 80% of invalid functions.
- Use of Ogden model for strain energy function:

 $F(I_1, I_2, I_3) - \alpha log(I_3)$

where α is a *posteriori* computed such that

$$\frac{\partial E}{\partial I_1} + 2\frac{\partial E}{\partial I_2} + \frac{\partial E}{\partial I_3} = 0$$

at the no-loading point.

Further NON-results

- The convergence of the FEM method for "weird" functions depends on the strength of the loadings.
- The smaller the forces, the more random (Ogden) functions have non-zero fitness.
- But all function behave like their linear part for small forces.

No significant result with small forces, no result at all with large forces.

 \longrightarrow Need to gradually increase the intensity of the loading forces.

First results (Sigh!)

• Experimental results simulated using Mooney-Rivlin law:

$$E = aI_1 + bI_2 + cI_3 - (a + 2b + c)log(I_3)$$

- (a, b, c) = (1, 1, 1): Law found in < 5 generations ... as good as random search !
- (a, b, c) = (1.2, 1.1, 1.3): three out of four trials find out the linear form. Best result is (a, b, c) = (1.2785, 1.0652, 1.3276)

Results of four GP runs limited to 8000 FEA. Best errors: $3.2 \, 10^{-7}$, $9.33 \, 10^{-7}$, $2.83 \, 10^{-6}$ and $7.22 \, 10^{-5}$.

Results of iterated stochastic hill-climbing. Total number of FEAs: 32000. Best overall error: $5.55 \, 10^{-6}$

GP and hyperelastic materials: Conclusion

- Feasibility results
- Specific handling of real-valued terminals (partial local hill-climbing).
- Need for mechanical expertise all along
- Careful design of test experimental conditions
- Coupling with symbolic computation
- Post-GP optimization of real-values in best GP-trees (ES or hill-climbing).

1D Elasto-visco plastic materials

48

Input: Experimental curves

- observed strain $\epsilon(t)$ for applied stress $\sigma(t)$;
- observed stress $\sigma(t)$ for applied strain $\epsilon(t)$;

Output: Behavioral law

Differential equations linking $\epsilon(t)$, $\sigma(t)$ and their derivatives, e.g.

if
$$\sigma(t) < \sigma_1$$
 then $\sigma(t) = a.\epsilon(t) + b.\dot{\epsilon}(t)$
else if $\sigma(t) < \sigma_2$ then $\sigma(t) = c.\epsilon(t) + d.\dot{\epsilon}(t)$

Criteria: the law must fit the experiments **and** be comprehensible.

Search space: Rheological models

Dynamic 1-D laws.

Assembly in series or parallel of

- springs (elastic behavior)
- sliders (plastic behavior)
- dashpots (viscous behavior)

Identification Goals:

- For a given model, adjust the parameters \implies **Parametric optimization**
- Optimize both the model and the parameters

 \implies Non-parametric optimization

Simulation of a Rheological model

Elementary equations:

- $\operatorname{Spring}(k)$
- Slider(η)
- Dashpot(σ_S)

$\sigma(t) = k \cdot \epsilon(t)$ $\sigma(t) = \eta \cdot \dot{\epsilon}(t)$ $(\dot{\epsilon}(t) = 0) \ OR \ (|\sigma(t)| = \sigma_S)$

Connection equations:

• Series

$$\begin{aligned} \epsilon_{parent}(t) &= \epsilon_{child_1}(t) + ... + \epsilon_{child_m}(t) \\ \sigma_{parent}(t) &= \sigma_{child_1}(t) = ... = \sigma_{child_m}(t) \\ \bullet \text{ Parallel } \epsilon_{parent}(t) &= \epsilon_{child_1}(t) = ... = \epsilon_{child_n}(t) \\ \sigma_{parent}(t) &= \sigma_{child_1}(t) + ... + \sigma_{child_n}(t) \\ \end{aligned}$$
Solve
$$\{ \text{ equations } \} \cup (\epsilon_{arrow}(t) = \epsilon_{exp}(t)) \end{aligned}$$

 \rightarrow

$$\sigma_{sim}(t) = Fn(\epsilon_{exp}(t), \dot{\epsilon}_{exp}(t))$$

Parametric identification

A given model (e.g. polyethylene)

 $\sigma_{sim}(t) = \mathcal{F}(\epsilon(t), \dot{\epsilon}(t); k_1, k_2, k_3, \eta, \sigma_S)$

The unknown are $k_1, k_2, k_3, \eta, \sigma_S$, and the goal is to minimize $\sum_i |\sigma_{exp}(t_i) - \sigma_{sim}(t_i)|^2$

Measures are available at discrete times t_i only (\approx 30-300 values).

Ill-posed optimization problem

Methodology

- Write the program computing σ_{sim} (by finite differences approximation of the equations). The parameters of that program are $k_1, k_2, k_3, \eta, \sigma_S$.
- Use trial-and-errors, or iterated hill-climbing to adjust the parameters.

Evolutionary Algorithms are a better choice!

Standard (10 + 30) - ES was used.

Results

Model for the polyethylene

Responses of the best model in the population

Rheological GP

Rheological models \equiv Trees built from

- $\mathcal{N} = \{ \text{ series } +, \text{ parallel } // \}$
- $\mathcal{T} = \{ \text{Spring}(\mathbf{k}), \text{Slider}(\sigma_S), \text{Dashpot}(\eta) \}$

Fitness computation

- Need for an **interpreter** of rheological model
- The sliders raise many difficulties (2 modes depending on σ w.r.t. the threshold.
- Complexity: $T \times 2.(3N)^3/3$, where T is the number of time steps of the loading history and N the size of the model
- Much slower than the compiled program used for parametric identification.

Evaluation

Compilation

$$H \rightarrow Système \ d'équations \ S_H$$

 $\begin{aligned} \bullet \operatorname{Ressort}(k) & \sigma(t) = k \cdot \varepsilon(t) \\ \bullet \operatorname{Amortisseur}(\eta) & \sigma(t) = \eta \cdot \dot{\varepsilon}(t) \\ \bullet \operatorname{Patin}(\sigma_S) & (\dot{\varepsilon}(t) = 0) \ OR \ (|\sigma(t)| = \sigma_S) \\ \bullet \operatorname{S\acute{e}rie} & \varepsilon_{parent}(t) = \varepsilon_{fils_1}(t) + \varepsilon_{fils_2}(t) \\ \sigma_{parent}(t) = \sigma_{fils_1}(t) = \sigma_{fils_2}(t) \\ \bullet \operatorname{Parallèle} & \varepsilon_{parent}(t) = \varepsilon_{fils_1}(t) = \varepsilon_{fils_2}(t) \\ \sigma_{parent}(t) = \sigma_{fils_1}(t) + \sigma_{fils_2}(t) \\ \sigma_{parent}(t) = \sigma_{fils_1}(t) + \sigma_{fils_2}(t) \end{aligned}$

Simulation

$$\mathcal{S}_H \cup (\varepsilon_H(t) = \varepsilon_{exp}(t)) \rightarrow \sigma_H(t)$$

Evaluation

$$f(H) = Distance(\sigma_H, \sigma_{exp})$$

Critère d'arrêt

Sources d'erreur

- ED \rightarrow Différences finies
- Erreurs expérimentales
- Bruit de résolution

Estimation de l'erreur

$$Err = ||\sigma_H(t_{exp} = t_1, t_2, t_3, ...) - \sigma_H(t_{exp} = t_1, t_3, t_5, ...)||$$

Critère de succès

$$f(H) \approx Err$$

Results

59

• 20% of successful runs (w.r.t. error criterion)

Repeatedly found (wrong!) structure Compare to actual one \rightarrow due to the absence of *creep* in the experiments.

• Best values of the parameters:

	k_1	η	k_2	k_3	σ_S
"Exp."	790.45	6248.60	150.20	41.60	7.25
Res.	998.89	8698.78	133.08	39.66	19.04

GP in law identification : Parametric vs non-parametric

Parametric identification

- gives more accurate results more rapidly
- ... if the guess of the model is good.
- otherwise, the bias can be misleading.

Non-parametric identification

- looks for solution in a much larger space
- ... but can easily get lost
- and may require heavier computational skills.

In both cases, the experimental data are crucial: Use EC to discover discriminant experiments for similar models. e.g. creep in the polyethylene case above

Embryogénèse : Synthèse de réseaux de neurones F. Gruau, 95

Idée: Faire évoluer un programme dont l'exécution donne une solution.

Arbre \rightarrow graphe de connexion

Embryogenèse : un "embryon" se développe selon un arbre de règles.

Sur un exemple, dans le contexte des réseaux de neurones booléens:

Τ	Е	symbole de fin
\mathcal{N}	S	Division séquentielle
	Р	Division parallèle
	A	Incrémenter le seuil du neurone
	Ο	Décrémenter le seuil du neurone
	+	Incrémenter le poids d'un lien
	_	Décrémenter le poids d'un lien
	C	Couper le lien courant
	Ι	Incrémenter le numéro du lien courant
	D	Décrémenter le numéro du lien courant
	R	Retour au sommet de l'arbre
	W	Wait

Remarque :

un seul terminal \Rightarrow besoin de mutation !

Développement d'un réseau de neurones

63

Avec récursion:

Embryogenèse : synthèse de circuits analogiques Koza et al. 95, 98

Embryon :

une entrée, une sortie

2 cellules initiales : connection source — sortie

connection terre — sortie

Acquis :

Simulateur de circuits analogiques ROBUSTE SPICE (217 000 lignes, Berkeley)

Réalisations :

Filtres passe-bande asymétriques Extracteur racine cubique Amplifieurs,...

Synthèse de circuits analogiques (2)

Un exemple de programme

et d'embryon

Exemples de noeuds et terminaux

Fil générique

Développement :

Noeuds

+ mémoire, récursion et subroutines

Un résultat: Ampli opérationnel 60dB

Meilleur initial

Génération 49

Génération 109

Mais taille population = $\dots 640\ 000$

Identification de fonctions: Conclusion

- Les problèmes inverses mal posés sont des candidats à l'optimisation évolutionnaire
- Paramétrique / non-paramétrique
- Prendre en compte la connaissance du domaine
 - dans la représentation ;
 - dans les opérateurs de variation ;
 - dans la définition de la fitness ;
 - dans l'interprétation des résultats.
- Attention au choix des expériences

Ni les AEs ni l'application ne sont à traiter en boîte noire

Pas de choix "naturel"