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Abstract

Background: Deep learning (DL) is a representation learning approach ideally suited 
for image analysis challenges in digital pathology  (DP). The variety of image analysis 
tasks in the context of DP includes detection and counting  (e.g.,  mitotic events), 
segmentation (e.g., nuclei), and tissue classification (e.g., cancerous vs. non-cancerous). 
Unfortunately, issues with slide preparation, variations in staining and scanning across sites, 
and vendor platforms, as well as biological variance, such as the presentation of different 
grades of disease, make these image analysis tasks particularly challenging. Traditional 
approaches, wherein domain‑specific cues are manually identified and developed into 
task‑specific “handcrafted” features, can require extensive tuning to accommodate 
these variances. However, DL takes a more domain agnostic approach combining both 
feature discovery and implementation to maximally discriminate between the classes of 
interest. While DL approaches have performed well in a few DP related image analysis 
tasks, such as detection and tissue classification, the currently available open source tools 
and tutorials do not provide guidance on challenges such as (a) selecting appropriate 
magnification, (b) managing errors in annotations in the training (or learning) dataset, 
and (c) identifying a suitable training set containing information rich exemplars. These 
foundational concepts, which are needed to successfully translate the DL paradigm to 
DP tasks, are non-trivial for (i) DL experts with minimal digital histology experience, 
and (ii) DP and image processing experts with minimal DL experience, to derive on 
their own, thus meriting a dedicated tutorial. Aims: This paper investigates these 
concepts through seven unique DP tasks as use cases to elucidate techniques needed 
to produce comparable, and in many cases, superior to results from the state‑of‑the‑art 
hand‑crafted feature‑based classification approaches. Results: Specifically, in this 
tutorial on DL for DP image analysis, we show how an open source framework (Caffe), 
with a singular network architecture, can be used to address: (a) nuclei segmentation 
(F‑score of 0.83 across 12,000 nuclei), (b) epithelium 
segmentation  (F‑score of 0.84 across 1735 
regions),  (c) tubule segmentation  (F‑score of 0.83 
from 795 tubules), (d) lymphocyte detection (F‑score 
of 0.90 across 3064 lymphocytes),  (e) mitosis 
detection (F‑score of 0.53 across 550 mitotic events), 
(f) invasive ductal carcinoma detection  (F‑score of 
0.7648 on 50 k testing patches), and  (g) lymphoma 
classification  (classification accuracy of 0.97 across 
374 images). Conclusion: This paper represents the 
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INTRODUCTION

Digital pathology  (DP) is the process by which histology 
slides are digitized to produce high‑resolution images. 
DP is becoming increasingly common due to the growing 
availability of whole slide digital scanners.[1] These 
digitized slides afford the possibility of applying image 
analysis techniques to DP for applications in detection, 
segmentation, and classification. Already algorithmic 
approaches have shown to be beneficial in many contexts 
as they have the capacity to not only significantly reduce 
the laborious and tedious nature of providing accurate 
quantifications  (e.g.,  tumor extent, nuclei counts), but  
to act as a second reader helping to reduce inter‑reader 
variability among pathologists.[2,3]

A number of image analysis tasks in DP involve some 
sort of quantification  (e.g.,  cell or mitosis counting) or 
tissue grading  (classification). As shown in Figure  1, 
these tasks invariably require identification of histologic 
primitives (e.g., nuclei, mitosis, tubules, epithelium, etc.). 
For example, while the spatial arrangement of nuclei in 
oropharyngeal[4] and breast cancers[5] has been correlated 
with outcome, these approaches still initially requiring 
deep annotations  (i.e.,  various entities identified at 
different scales) to extract features from. As a result, 
there is a strong need to develop efficient and robust 
algorithms for analysis of DP images.

While there have been a number of papers in the area 
of computational image analysis of DP images for the 
purposes of object detection and quantification in the 

last few years, there appear to be two main drawbacks 
to existing approaches. First, the development of task 
specific approaches tends to require long research and 
development cycles. For example, to develop a nuclei 
segmentation algorithm, one must first understand all of 
the possible variances in morphology, texture, and color 
appearances. Subsequently, an algorithmic scheme needs 
to be developed which can account for as many of these 
variances as possible while not being too general as to 
result in false positive results or too narrow as to result 
in false negative errors. This process can become quite 
unwieldy as it is often infeasible to view all of the outlier 
cases a priori, and thus an extensive iterative trial and 
error approach needs to be undertaken. Unfortunately, 
once a suitable set of operating parameters is found 
for a specific dataset, it is unlikely to directly translate 
to a second independent dataset, typically requiring 
additional parameter tweaking and tuning. This leads 
to the second drawback with existing approaches; the 
implicit knowledge of how to find or adjust optimal 
parameters often resides solely with the developers of 
the algorithms and thus are not intuitively understood 
by external parties. In addition, note the process above 
describes only a single task, in the case where a DP 
suite is created, consisting of a single approach for each 
desired task  (e.g.,  segmentation of nuclei, detection of 
mitosis, etc.), there is a multiplicative burden of both 
steep learning curves of the nuances of each algorithm 
as well as the general maintenance and upkeep of 
multiple software projects. Together, these create a 
strong hindrance for researchers to leverage or extend 

largest comprehensive study of DL approaches in DP to date, with over  1200 DP 
images used during evaluation. The supplemental online material that accompanies this 
paper consists of step‑by‑step instructions for the usage of the supplied source code, 
trained models, and input data.

Key words: Classification, deep learning, detection, digital histology, machine learning, 
segmentation

Figure 1: The flowchart shows a typical workflow for digital pathology research. Histologic primitives (e.g. nuclei, lymphocytes, mitosis, etc.,) 
are identified, after which biologically relevant features are extracted for subsequent use in higher order research directives. Typically, the 
tasks in the red box are undertaken by the development and upkeep of individual task specific approaches. The premise of this tutorial is 
that these tasks can be performed by a single generic deep learning approach, which can be easily maintained and extended upon
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the available technology to investigate their clinical 
hypothesis.

Deep learning (DL) is an example of the machine learning 
paradigm of feature learning; wherein DL iteratively 
improves upon learned representations of the underlying 
data with the goal of maximally attaining class separability. 
This is to say that every DL network begins with the 
same assumption of random initialization, and for each 
iteration, data are propagated through the network to 
compute its respective output. This output is compared to 
the desired output (e.g., determining if a pixel in question 
belongs to a nucleus or not), and an error is computed per 
parameter so that it can be adjusted to better dichotomize 
that training sample into the correct class. We note that 
there are no preexisting assumptions about the particular 
task or dataset, in the form of encoded domain‑specific 
insights or properties, which guide the creation of the 
learned representation. The DL approach involves deriving 
a suitable feature space solely from the data itself. This 
is a critical attribute of the DL family of methods, as 
learning from training exemplars allows for a pathway to 
generalization of the learned model to other independent 
test sets. Once the DL network has been trained with 
an adequately powered training set, it is usually able to 
generalize well to unseen situations, obviating the need of 
manually engineering features.

DL is thus uniquely suited to analyze big data 
repositories  (e.g.,  TCGA, which currently comprises 
over 1 petabyte worth of digital tissue slide images), as it 
is ideally suited to learn in an implicit fashion the diversity 
of image patterns embedded within large datasets. On 
the other hand, employing a feature engineering or 
“hand‑crafted” approach might require several algorithmic 
iterations and substantial effort to capture a similar range 
of diversity. Many manually engineered or hand‑crafted 
feature‑based approaches are not implicitly poised to 
manipulate and distil large datasets into classifiers in an 
efficient way. DL approaches, on the other hand, function 
well under these circumstances.

DL algorithms also have the potential for being the 
unifying approach for the many tasks in DP, having 
previously been shown to produce state‑of‑the‑art results 
across varied domains, including mitosis detection,[6‑8] 
tissue classification,[9] and immunohistochemical 
staining.[10] While we are seeing a wide adoption of DL 
technology, the burden of entry for  (i) DL experts with 
minimal DP experience and (ii) DP and image processing 
experts with minimal DL experience, remains quite 
high. The challenges specific to the context of the DP 
domain, such as  (a) selecting appropriate magnification 
at which to perform the analysis or classification,  (b) 
managing errors in annotation within the training set, 
and (c) identifying a suitable training set containing 
information rich exemplars, have not been specifically 

addressed by existing open source tools[11,12] or by the 
numerous tutorials for DL.[13,14] The previous DL work 
in DP performed very well in their respective tasks 
though each required a unique network architecture and 
training paradigm. As this manuscript is intended to be 
an introductory tutorial and not a thorough review of 
the current literature, we direct the interested reader to 
a number of outstanding recent papers on the use of 
DL for specific tasks in the context of DP. In particular, 
detection of invasive ductal carcinomas  (IDCs),[9] 
mitosis detection,[8] neuron segmentation,[15] colon 
gland segmentation,[16] nuclei segmentation[17‑19] and 
detection,[20] brain tumor classification,[21] epithelial tumor 
nuclei identification,[22] epithelium segmentation,[23] 
and glioma grading[24] have been previously tackled via 
DL strategies. However, since these approaches were 
originally developed in the context of specific contexts, 
the architecture and approach may not readily generalize 
to other DP tasks. As such, the focus of this manuscript 
is to discuss the usage of a single framework, which can 
be marginally tweaked to apply to a diverse set of unique 
use cases.

We developed this tutorial to focus specifically on the 
critical components often needed by DP researchers 
in automating tasks  (e.g.,  grading) or investigating 
clinical hypothesis  (e.g.,  prognosis prediction). The 
seven use cases examined in this tutorial,  (a) nuclei 
segmentation,  (b) epithelium segmentation,  (c) tubule 
segmentation,  (d) lymphocyte detection,  (e) mitosis 
detection,  (f) IDC detection, and  (g) lymphoma 
classification, demonstrate how DL can be applied to a 
spectrum of the most common image analysis tasks in 
DP. We subdivide our seven tasks into three categories 
of detection  (e.g.,  mitotic events, lymphocytes), 
segmentation  (e.g.,  nuclei, epithelium, tubules), and 
tissue classification  (e.g.,  IDC, lymphoma sub‑types) as 
the approaches used within each analysis category are 
similar. Each task is cast into a well‑studied problem, to 
leverage not only the open source DL framework Caffe,[25] 
but also using the well‑known CIFAR‑10 AlexNet network 
schema[26]  (notably smaller and easier to train than the 
full 101 × 101 Version),[27] provided by it.

We show how a single training and model‑building 
paradigm can be applied to each task, solely by modifying 
the patch selection technique, and yet still generate 
results that are either comparable or superior to existing 
handcrafted approaches. Understanding these unique 
patch selection techniques allows for the elucidation 
of best practices needed for researchers to re‑apply 
these approaches to their own tasks. At the same time, 
this convergence to a unified approach not only allows 
for a low maintenance overhead but also implies that 
image analysis researchers or DP users face a minimal 
learning curve, as the overall learning paradigm and 
hyperparameters remain constant across all tasks.
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As this manuscript is intended to be a didactic tool, aimed 
at enabling imaging and machine learning scientists to apply 
DL to DP problems, we are also concomitantly releasing (a) 
an online step‑by‑step guide on the implementation of the 
various approaches,  (b) supporting source code,  (c) trained 
network models, and  (d) the data sets themselves.[28] We 
strongly encourage the readers to review the material, as they 
are intended as a supplement to the manuscript presented 
here. Leveraging these resources should allow readers to not 
only easily reproduce the results presented in this tutorial 
but also to have a strong basis from which to modify these 
approaches and align these approaches toward their own 
datasets and tasks. We note as well that many of the released 
datasets are the first of their kind to be disseminated publicly, 
and thus we hope these datasets will serve as an important 
resource by the community for use in benchmarking task 
specific algorithms (e.g., epithelium segmentation).

The rest of the paper is outlined as follows: Section 3 
provides an overview of the DP tasks and datasets used in 
this tutorial. Section 4 illustrates the DL setup used, Section 
5 provides the main context of the paper via the 7 different 
use cases, and Section 6 presents concluding remarks.

DIGITAL PATHOLOGY TASKS ADDRESSED

Table 1 presents a list of the seven different tasks addressed 
in this paper. These tasks have been chosen as they 
represent the ensemble of critical components necessary 
for most of the pertinent pathology tasks  (e.g.,   disease 
grading, mitotic counting) and thus span the current 
challenges in the DP image analysis space. This is 
evidenced by large numbers of papers and grand challenges, 
which have been proposed to address these problems.[7,29]

Segmentation and Detection Tasks
A segmentation task is defined as the requirement 
of delineating an accurate boundary for histologic 

primitives  (i.e.,  nuclei, epithelium, tubules, and IDC) 
so that precise morphological features can be extracted. 
Detection tasks  (i.e.,  lymphocyte and mitosis detection) 
are different from segmentation tasks in that the goal is 
typically to simply identify the center of the primitive of 
interest and not explicitly extract the primitive contour 
or boundary. Segmentation typically tends to be more 
challenging than detection, especially in the cases 
where the primitives of interest have multiple possible 
manifestations  (e.g.,  mitotic cycles). Thus, a single 
monolithic classifier or model may not be able to capture 
the full range of diversity in presentation  (i.e.,  the 
constellation of visual queues and features used to 
identify a particular histologic primitive).

Tissue‑Based Classification Task
Another set of use cases we tackle in this paper is 
tissue level classification  (i.e.,  lymphoma subtype 
identification). As opposed to explicitly identifying 
individual tissue‑based primitives  (e.g.,  mitoses, nuclei) 
and trying to identify primitive specific features to make 
predictions regarding tissue class, an alternative strategy 
is to directly learn the set of features representative of 
the tissue class via DL. The DL classifier could thus 
be trained to self‑discover the nuanced disease patterns 
within each class. This approach thus obviates the need 
for explicit primitive identification and provides a more 
direct pathway to the final classification while not at the 
same time requiring a comprehension of the  (potentially 
unknown) domain specific relationships of the primitives. 
In fact, in this setting, the DL approach only needs the 
image patches which have been tagged with the class 
label to learn the most discriminating representations for 
class separability.

Manual Annotation for Ground Truth Generation
Well annotated exemplars are an important prerequisite 
for DL schemes; unfortunately, the main challenge in 

Table 1: Descriptions of the digital pathology tasks undertaken in this tutorial using seven different use cases

Task Biological motivation Dataset

Nuclei segmentation Pleomorphism (i.e., variability in the size, 
shape and staining of cells) is used in current 
clinical grading schemes

141 2,000 x 2,000 @40x ROIs of estrogen 
receptor positive (ER+) breast cancer (BCa), 
containing a subset of 12,000 an notated nuclei

Epithelium segmentation Epithelium regions contribute to identification 
of tumor infiltrating lymphocytes (TILs)

42 1,000 x 1,000 @20x ROIs from ER + BCa, 
containing 1735 regions

Tubule segmentation Area estimates in high power fields are critical 
towards BCa grading schemes

85 775 x 522 @40x ROIs from Colorectal 
cancer, containing 795 delineated tubules

Invasive Ductal Carcinoma 
(IDC) Segmentation

Locate and quantify tumor presence in whole 
slide images

162 whole slides @40x from BCa patients

Lymphocyte detection TIL quantification is linked to disease outcome 100 100 x 100 @40x BCa ROIs, containing 
3,064 lymphocyte centers

Mitosis detection Counts of mitotic events is a component in 
breast cancer grading

311 2,000 x 2,000 @40x ROI from 12 BCa, 
containing 550 mitosis centers

Lymphoma sub‑type 
classification

Currently require genetic testing to identify 
sub‑type as treatment plans are very different

374 1,388 x 1,040 @40x of 3 sub‑types of 
lymphoma (CLL, FL, MCL)
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performing any digital histopathology work is to obtain 
high‑quality annotations. These ground truth annotations, 
typically done by an expert, involves delineating object 
boundaries or annotating pixels corresponding to a region 
or tissue of interest. In computational approaches, this 
level of annotation precision is critical so that supervised 
classification systems, and more specifically learn-from-
data approaches  (where domain knowledge is not explicitly 
implemented in the algorithm), can be optimized. 
Generating these annotations, though, is a cumbersome and 
laborious process, and often quite onerous, due to the large 
amount of time and effort needed. For example, the nuclei 
annotation dataset used in this work took over  40  hours 
to annotate 12,000 nuclei, and yet represents only a small 
fraction of the total number of nuclei present in all images.

There have been discussions previously in the literature,[9,30] 
regarding the challenges associated with supervised learning 
classifiers that have to rely on large swathes of deeply 
annotation data. The findings from[30] show that metrics 
computed from a single resolution appear to degrade at a 
finer resolution, not because the tissue classifier presented 
was performing worse. On the contrary, the classifier 
became so sophisticated at the higher magnification that 
it began to tease apart regions that were too subtle to be 
captured by an expert approximate delineations  [a similar 
situation is shown in Figure 5]. A large contributory reason 
is the fact that pathologists are typically not available 
to perform the large amounts of laborious manual 
annotations at the high resolutions needed for training and 
evaluating supervised object detection and classification 
algorithms. As a result, annotations are  (a) rarely pixel 
level precise,  (b) usually done at a lower magnification, 
and  (c) tend to contain numerous false positives and 
negatives. For example, the annotation of the IDC dataset 
took place at  ×2, while there are many subregions visible 
at  ×5 and  ×10 that are clearly not IDC, but since the 
delineation happens quickly and at a high level, those 
regions are falsely included in the positive class.

There can also be an issue with the ambiguity 
naturally present in biological images, especially where 
three‑dimensional  (3D) objects are represented in 2D, 
further confounding the annotation process. For example, 
annotating clumps or overlapping nuclei is a challenge 
since it is not always clear where the boundaries between 
intersecting nuclei lie. This is an unfortunate artifact of 
tissue sectioning and representation of fundamentally 3D 
tissue sections as a 2D planar image on a glass slide. In 
the discussion section below, we discuss an approach that 
aims to optimize the process of ground truth generation 
and annotation construction.

DEEP LEARNING METHODS

This section is divided into two parts. The first sub‑section 
discusses the typical workflow used when applying DL to 

a DP image analysis task. The second subsection briefly 
describes the components typically used in constructing 
a DL architecture  (i.e.,  network); instantiated as the 
popular CIFAR‑10 version of AlexNet.[26]

Overview of Deep Learning Workflows
The DL approach employed in conjunction with the 
7 use cases can be thought of as comprising the following 
four high‑level modules.

Casting
Typically, one needs to make various decisions to 
design an appropriate network such as input patch 
size, number of layers, and convolutional attributes. 
We attempt to mitigate this dependency by instead 
opting to leverage the popular and successful AlexNet 
network  (described below). The main reasons for using 
an existing architecture are 2‑fold. First, finding the most 
successful network configuration for a given problem 
can be a difficult challenge given the total number of 
possible configurations one could avail of and also the 
concomitant amount of time for training and testing 
the network. By choosing an existing proven network, 
we can measure the performance of other configurations 
against a known benchmark. Second, since the patch 
size of 32  ×  32 is associated with a well‑known image 
benchmark challenge CIFAR‑10,[31] and since we use a 
popular open‑source DL framework  (Caffe),[25] we create 
a situation by which future upgrades are essentially 
obtained for “free.” As newer, more efficient/accurate 
networks and training produces become available and 
integrated into Caffe, they can be directly leveraged. If 
we were to design our own network, without regard to 
input sizes and software, we would require significant 
upkeep to leverage any future advances in DL techniques.

Patch generation
Once the network is defined, which involves locking 
down input sizes, image patches need to be generated 
to construct the training and validation sets. This stage 
requires modest domain knowledge in order to ensure 
a good representation of diversity in the training set. 
Since our chosen network has limited discrimination 
ability  (drastically reducing the likelihood of over‑fitting 
the model), selecting appropriate image patches for the 
specific task could have a dramatic effect on the outcome. 
Especially in the domain of histopathology, there can be 
substantial variance present within a single target class, 
such as nuclei. This is especially pronounced in breast 
cancer nuclei, where nuclear areas can vary upwards of 
200% between nuclei. Ensuring that a sufficiently rich 
set of exemplars is extracted from the images is perhaps 
one of the most key aspects of effectively leveraging and 
utilizing a DL approach. In Section 5: Use Cases, we 
present a detailed description of approaches that can 
allow for tailoring of training sets toward specific tasks.
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Training
The training procedure for all tasks is essentially the same 
and follows the well‑established paradigm laid out in.[32] This 
strategy utilizes a stochastic gradient descent approach, with a 
fixed batch size, (a) a series of mean corrected image patches 
are introduced to the network over a series of epochs, (b) an 
error derivative calculated, and  (c) back‑propagated through 
the network by updating the network weights. The learning 
rate is annealed over time so that a local minimum is 
reached. The resulting learned weights  (i.e.,  the model) are 
stored to be used later at test time.

Testing
By submitting image patches to the network, of the same 
size used during training, we obtain a class prediction 
from the learned model.

Review of AlexNet Network Architecture
Although a full DL primer is out of the scope of this 
paper, we briefly discuss the components which make up 
the popular AlexNet and then follow on by describing 
the full network. We strongly encourage the reader to 
review,[26,27] for a complete understanding of the network. 
We assume the input image to be of size w  ×  w × c, 
where w is both the width and height and c is the 
number of channel. In addition, one represents grayscale, 
and three represents red‑green‑blue.

Convolutional layer
This layer type takes a square kernel of size k × k, which is 
smaller than the input w, and is then convolved with the 
image to obtain network activations. A  number of these 
kernels are learned such that they minimize the training 
error function (discussed below). Due to the static nature of 
natural images, especially in histopathology, a single bank of 
filters can optimally represent the many components present 
in an image. A convolutional filter is often likened to a local 
receptor field, where spatially proximal inputs are mapped 
to a single value through a filter activation. Convolutional 
layers are interesting because they minimize the number 
of individual variables required  (since k2<<w2), while still 
displaying strong representational ability. As seen in previous 
papers,[33] the first layer tends to be similar to edge detectors, 
Gabor filters, and other first order filters. Artificially 
augmenting an image to a specified size  (i.e.,  padding) 
often takes place to ensure favorable computational 
properties, such as the number of elements being processing 
coinciding with a power of 2 for improved GPU efficiency. 
Padding can be done by appending zeros but often times 
involve simply mirroring adjacent pixels. In addition, there 
is an optional stride component which specifies the intervals 
at which to apply the filter. Output of this is of size:

NumKernels
pad

stride
pad

stride
×

+ × −
×

+ × −( ) ( )w k w k2 2

.

Pooling layer
These layers are used as a way of summarizing the 
information created from the layer above. Two types of 

pooling layers are typically used, max and average, which 
summarize an area of k  ×  k into either the maximal 
value or the mean value. The output size is computed in 
a manner similar to the convolutional layer.

Inner product (fully connected)
This is the traditionally fully‑connected layer where every 
input is fed into a unique output after being multiplied 
by a learned weight. Inner products are easily represented 
by matrix multiplications of a weight matrix and the input 
vector to produce a vector output, which is the same size 
as that of the previously specified number of neurons.

Activation layer
This layer operates on each element individually 
(i.e.,  element‑wise) to introduce nonlinearity into the 
system. In past approaches,[34] a sigmoid function was 
typically used, but more recent implementations[35,36] have 
shown that a rectified linear  (ReLu) activation has more 
favorable properties. These properties include sparser 
activation, elimination of vanishing/exploding gradient 
issues, and more efficient computation as the underlying 
function consists of only a comparison, addition, and 
multiplication. In addition, one can argue that this type 
of activation is more biologically plausible,[37] allowing for 
more consonance with the way the human brain functions. 
A ReLu activation is of the form f (x) = max (0, x).

Dropout layer
Performed on the fully connected layers, dropout[38] is 
the process of randomly excluding different neurons 
during each iteration of training. This has been shown 
to improve generalizability of the classifier to unseen 
cases while also eliminating overfitting as weights cannot 
become co‑dependent. It has been shown that simply 
using this procedure, which could improve the training 
time as additional computations are simply avoided, is on 
par with training multiple nets with different initialization 
points and averaging their resulting probabilities.

Softmax layer
The entire network is optimized to minimize a loss 
function. In all cases discussed here, we use the softmax 
loss function which computes the multinomial logistic 
loss of values presented to it. The purpose of using 
softmax, as opposed to a regular argmax function is that 
the softmax function has the favorable property of a 
smooth gradient, so that the back‑propagated error is not 
subject to discontinuities, allowing for easier training.

Using these components, the AlexNet describes a complete 
DL architecture according to Table 2. As we can see, the 
model accepts as input a 32  ×  32 image and ends up by 
producing a class prediction using a softmax operation.

USE CASES

We use each of the individual tasks, described in 
Table 1, as a vehicle to describing the unique challenges 
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present in DP and the solutions we have implemented. 
We briefly discuss their clinical motivation, unique 
dataset characteristics, and the resulting patch 
generation schemas. Once the individual patches are 
created, in a manner that is unique to each task, the 
same network architecture  (Section 4.2: Review of 
AlexNet Network Architecture) and hyperparameters are 
used. We present qualitative and quantitative results 
as well as comparisons to state‑of‑the‑art hand‑crafted 
classification approaches.

Deep Learning Parameters
The parameters used with the stock AlexNet architecture 
are shown in Table 3. They were held constant to further 
illustrate how parameter tweaking and tuning is not 
strictly necessary to yield good quality results. Also to 
alleviate the need for an annealmeant schedule of the 
learning rate, we use AdaGrad[39]  (which is supplied by 
Caffe), where optimal learning rates on a per variable 
basis are continuously estimated. We note that the 
training time is about 22 h on a Tesla M2090 GPU using 
CUDA 5.0 without cuDNN, and about 4 h using a Tesla 
K20c with CUDA 7.0 using cuDNN for all experiments 
as the number of iterations and mini‑batch size was 
fixed.

A subset of the tasks below were performed using the 
dropout network described above. There did not exist a 
case where dropout improved the metrics in any of the 
experiments so further investigation was not performed. 
This is unsurprising as the original dropout paper[38] 
discusses that the optimal dataset size for dropout 
usage is smaller than the ones we have created here. As 
our training sets are quite large, we saw no evidence of 
overfitting, which further reduces the motivation for the 
usage of a dropout approach.

Nuclei Segmentation Use Case
Challenge
Nuclei segmentation is an important problem for 
two critical reasons:  (a) There is evidence that the 
configuration of nuclei is correlated with outcome,[5] 
and  (b) nuclear morphology is a key component in 
most cancer grading schemes.[40,41] A recent review of 
nuclei segmentation literature[42] shows that detecting 
these nuclei tends not to be extremely challenging, 
but accurately finding their borders and/or dividing 
overlapping nuclei is the current challenge. The 
overlap resolution techniques are typically applied as 
postprocessing on segmentation outputs, and thus 
outside of the scope of this paper. We have specifically 
chosen to look at the problem of detecting nuclei within 
hematoxylin and eosin  (H&E) stained estrogen receptor 
positive (ER+) breast cancer images.

Manually annotating all of the nuclei in a single image is 
not only laborious but also does not generalize to all of 
the other variances present by other patients and their 
stain/protocol variances. As a result, time is better invested 
annotating sub‑sections of each image for a number of 
minutes. Unfortunately, this creates a challenging situation 
for generating training patches. Typically, one would use 
the annotations as a binary mask created for the positive 
class, and the negation of that mask as the negative class, 
randomly sampling from both to create a training set. In 
this particular case, though while one can successfully 
randomly sample from the positive mask, the randomly 
sampling from the complement image may or may return 
unmarked nuclei belonging to the positive class.

Patch selection technique
An example of a standard approach for patch selection 
could involve selecting patches from the positive class, and 
using a threshold on the color‑deconvolved image[43] to 
determine examples of the negative class (Examples of the 
patches are shown in Figure 2). This rationale is based on 
the fact that nonnuclei regions tend not to strongly absorb 
hemotoxin. Figure 2 shows that while the patches would 
correctly correspond to their associated class, the negative 
class [Figure 2a] would not be particularly informative 

Table 2: The AlexNet configurations are used in 
this work. The network is identical to the one 
provided by Caffe. The dropout network is the 
same except layers 7 and 8 have an additional 
dropout combined with the ReLu

Layer Type Num 
Kernels

Kernel 
size

Stride Activation

0 Input 3 32×32 ‑ ‑
1 Convolution 32 5×5 1 ‑
2 Max pool ‑ 3×3 2 ReLu
3 Convolution 32 5×5 1 ReLu
4 Mean pool ‑ 3×3 2
5 Convolution 64 5×5 1 ReLu
6 Mean pool ‑ 3×3 2
7 Fully connected 64 ‑ ‑ Dropout+ 

ReLu
8 Fully connected 2 ‑ ‑ Dropout+ 

ReLu
9 SoftMax ‑ ‑ ‑

Table 3: Deep learning hyperparameter settings 
held constant for all experiments

Variable Setting

Batch size 128
Initial learning rate 0.001
Learning rate schedule Adagrad
Rotations 0, 90
Number of iterations 600,000
Weight decay 0.004
Random minor Enabled
Transformations Mean‑centered
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Figure 2: Typical patches extracted for use in training a nuclear segmentation classifier. Six examples of (a) the negative class show large 
areas of stroma which are notably different than (b) the positive nuclei class and tend to be very easily classified. To compensate, we 
supplement the training set with (c) patches which are exactly on the edge of the nuclei, forcing the network to learn boundaries better

cba

from the perspective of training the network. The resulting 
network consequently has very poor performance in 
correctly delineating nuclei, as shown in Figure  3d, since 
these edges are underrepresented in the training set.

To compensate, we extend the standard approach, discussed 
above, with intelligently sampled challenging patches for the 
negative class training set. Figure 3a shows an example image 
with its associated nuclear mask in Figure  3b. Note that 
only a subset of the nuclei is annotated. Using Figure 3b to 
identify positive pixels and the basic color deconvolution[43] 
thresholding approach to select random negative patches, we 
obtain the segmented nuclei in Figure 3d. However, as may 
be evidenced by the result in Figure 3d, the network is unable 
to accurately identify nuclear boundaries. To enhance these 
boundaries, an edge mask is produced by morphological 
dilation of Figure  3b, in turn yielding the result shown in 
Figure 3c. From the dilated mask, we select negative training 
patches, [Figure 2c] which are inherently difficult to learn 
due to their similarity with the positive class. We still include 
a small proportion of the stromal patches to ensure that 
these exemplars are well represented in the learning set. This 
patch selection technique results in clearly separated nuclei 
with more accurate boundaries, as seen in Figure 3e.

Results and Discussions
Each of the 5‑folds in the cross‑validation set had 
about 100 training and 28 testing images. We use a 
ratio of 1:1:0.3 in selecting positive patches, negative 
edge patches, and miscellaneous negative patches for 
a total of 130 k patches in the training set. We present 
metrics at both  ×20 and  ×40. For the detection rate, 
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 are calculated, where TP, FP, and FN 

represent true positives, false positives, and false negatives, 
respectively. Note that the probability map obtained via 
DL is thresholded at 0.5 to obtain a binary result.

Qualitatively, we can see in Figure 4 that the quantitative 
results correspond to the visual results. The network 
yields crisper nuclear boundaries that are more accurately 
delineated at the  ×40 magnification, compared to 
the ×20 resolution.

Quantitatively, from the Table  4, we can see in all cases 
that the higher  ×40 magnification testing performs 
better than the lower  ×20 magnification. This is 
not unexpected owing to the higher strength signal 
embedded within the higher magnification. We also note 
that the detection rate, i.e.,  the ability to find nuclei in 
the image, is very high, with the network identifying 98% 
of all nuclei at the  ×40 magnification. Dropout appears 
to negatively impact the metrics here. In addition, we 
note that in the recent review paper,[42] the performance 
measures are on par with several state‑of‑the‑art nuclear 
detection algorithms.

Figure  3: The process of creation of training exemplars to 
enhance the result obtained via deep learning for nuclei 
segmentation. The original image (a) only has (b) a select few of 
its nuclei annotated. This makes it difficult to find patches which 
represent a challenging negative class. Our approach involves 
augmenting a basic negative class, created by sampling from 
the thresholded color deconvoluted image. More challenging 
patches are supplied by  (c) a dilated edge mask. Sampling 
locations from  (c) allows us to create negative class samples 
which are of very high utility for the deep learning algorithm. 
As a result, our improved patch selection technique leads to (e) 
notably better‑delineated nuclei boundaries as compared to the 
approach shown in (d)
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Figure 4: Nuclear segmentation output as produced by our approach 
wherein the original image in (a) is shown with (b) the associated 
manually annotated ground truth. When applying the network 
at × 40 probability map (c) is obtained, where the more green a 
pixel is, the higher the probability associated with it belonging to 
the nuclei class. The × 20 version is shown in (d)

dc

ba

Figure  5: Epithelium segmentation output as produced by our 
approach where original images in (a and d) have their associated 
ground truth in (b and e) overlaid. We can see that the results from 
the deep learning, in (c and f), that a pixel level metric is perhaps 
not ultimately suited to quantify this task as deep learning is better 
able to provide a pixel level classification, intractable for a human 
expert to parallel

d

cb

f

a

e

Epithelium Segmentation Use Case
Challenge
The identification of epithelium and stroma regions is 
important since regions of cancer are typically manifested 
in the epithelium. In addition, recent work by Beck et al.[44] 
suggest that histologic patterns within the stroma might 
be critical in predicting overall survival and outcome in 
breast cancer patients. Thus, from the perspective of 
developing algorithms for predicting prognosis of disease, 
the epithelium‑stroma separation becomes critical.

This task is unique in that it is less definitive than the 
more obvious tasks of mitosis detection and nuclei 
segmentation where the expected results are quite clear. 
Epithelium segmentation, especially the subcomponent of 
identifying clinically relevant epithelium, is typically done 
more abstractly by experts at lower magnifications. This has 
been discussed above in Section 3.3: Manual Annotation 
for Ground Truth Generation, but for a concrete example 
consider Figure  5, which shows expert annotation versus 
our output. Due to such discrepancies, which can make 
both training and evaluating difficulties, we consider an 
additional expert evaluation metric to validate our results.

Patch selection technique
Given that our AlexNet approach constrains input data 
to a 32  ×  32 window, we need to appropriately scale 
the task to fit into this context. The general principal 
employed is that a human expert should be able to 
make an educated decision based solely on the context 
present in the patch supplied to the DL network. What 
this fundamentally implies is that we must a priori select 
an appropriate magnification from which to extract 
the patches and perform the testing. In this particular 
case, we downsample each image to have an apparent 
magnification of  ×10  (i.e.,  a 50% reduction) so that 

Table 4: Results for both ×20 and ×40 
magnifications showing detection accuracy, 
F-score, true positive rate, and positive 
predictive value. We can see that in all cases, 
operating at the higher magnification produces 
more accurate results, though at the cost of 
computation time. The variances of all reported 
metrics were <0.001

Method Detection F-score TPV PPV Time per 
image

20x 0.95 0.8 0.83 0.83 4h
20x + Dropout 0.9 0.79 0.74 0.91 4h

40x 0.98 0.83 0.85 0.86 15h

sufficient context is available for use with the network. 
Networks which accept larger patch sizes could thus 
potentially use higher magnifications, at the cost of 
longer training times, if necessary.

Similar to the nuclei segmentation task discussed above, 
we aim to reduce the presence of uninteresting training 
examples in the dataset, so that learning time can be 
dedicated to more complex edge cases. Epithelium 
segmentation can have areas of fat or the white 
background of the stage of the microscope removed by 
applying a threshold at conservative level of 0.8 to the 
grayscale image, thus removing those pixels from the patch 
selection pool. In addition, to enhance the classifiers ability 
to provide crisp boundaries, samples are taken from the 
outside edges of the positive regions, as discussed above in 
Section 5.2: Nuclei Segmentation Use Case.

Results and Discussion
Each of the 5‑fold cross validation sets has about 
34 training images and 8 test images. We use a ratio 
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of 5:5:1.5 in selecting positive patches, negative edge 
patches, and miscellaneous negative patches for a total of 
765 k patches in the training set.

Quantitatively, we evaluate our results using the F‑score 
after applying  (a) a thresholding procedure to eliminate 
all the white pixels from the background,  (b) an area 
threshold to remove all objects with an area  <300 as 
these areas are not clinically relevant. Next, we aim to 
identify the optimal threshold using the 1st fold and apply 
it to all other folds. In addition, we separately report the 
F‑score of each fold the corresponding to the unique 
optimal threshold that was identified. These results are 
summarized in Table 5.

We can see that the individual optimal thresholds are all 
very near each other. These findings appear to suggest 
that the network and the classifier are relatively robust to 
variations in the training set.

Qualitatively, from the above Figure  5, we can see that 
pathologists often treat this task as a higher level abstraction 
instead of a pixel level classification. It becomes clear in 
panel  (f) why we exclude white pixels from the metric 
computation, as these gaps correspond to white background 
which is rarely removed manually by the pathologist  (as 
shown in  (e)). We note that we are also able to identify 
smaller regions which are often ignored by pathologists, most 
likely since they are not believed to be clinically relevant.

While visually our results appear quite similar to the 
original ground truth, the additional pixel level detail 
that the DL segmentation yields are not quite captured 
by the quantitative metrics, as we discussed in Section 
3.3: Manual Annotation for Ground Truth Generation.

Apart from the quantitative performance measures, we 
also had our results reviewed by our clinical collaborator 
and these results were then graded on a scale of 1–5, 
where 1 is “poor, not fit for purpose” and 5 is “definitely 
fit for purpose.” On average, our images were scored 
a 4 with a standard deviation of 0.8. This implies that 
overall our results are suitable to be used in conjunction 
with other classification algorithms  (e.g.,  prognosis 
prediction).

Interestingly, this is the first attempt, to our knowledge, 
to directly segment and quantify epithelium tissue in 
general and more specifically in breast tissue. We hope 
that with the release of our dataset, with annotations, 
other researchers will be interested in using it as a 
benchmark to quantify their respective segmentation 
approaches.

Tubule Segmentation Use Case
Challenge
The morphology of tubules is correlated with the 
aggressiveness of the cancer, where later stage cancers 
present with the tubules becoming increasingly 
disorganized, as seen in Figure  6. The Nottingham 
breast[40] cancer grading criteria divides scoring of the 
tubules into three categories according the area relative 
to a high power field of view:  (i) >75%,  (ii) 10–75%, 
and (iii) <10%. The benefits of being able to identify and 
segment the tubules are thus 2‑fold,  (a) automate the 
area estimation, decreasing inter‑/intra‑reader variances, 
and  (b) provide greater specificity, which can potentially 
lead to better stratifications associated with prognosis 
indication.

Tubules are the most complex structures considered 
so far. They not only consist of numerous 
components  (e.g.,  nuclei, epithelium, and lumen) but 
also the organizational structure of these components 
determines tubule boundaries. There is a very 
large variance in the way tubules present given the 
underlying aggressiveness and stage of cancer. In benign 

Figure 6: The benign tubules, outlined in red, (a) are more organized 
and similar, as a result the deep learning can provide very clear 
boundaries  (b), where the stronger green indicates a higher 
likelihood that a pixel belongs to the tubule class. On the other 
hand, when considering malignant tubules  (c), the variances are 
quite large making it more difficult for a learn from data approach 
to generalize to all unseen cases. Our results (d) are able to identify 
a large portion of the associated pixels, but can be seen providing 
incorrect labeling in situations where traditional structures are 
not present
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Table 5: F-scores for epithelium versus stroma 
segmentation task. We can see that the optimal 
thresholds of each fold are close to each other as 
are the F-scores

Threshold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

Fold 1 Thresh 
(.3382)

0.88 0.82 0.86 0.80 0.84 0.84

F‑score At 
Optimal Thresh

0.88 0.82 0.86 0.81 0.84 0.84

Optimal Thresh 0.34 0.37 0.34 0.30 0.34 0.34
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cases  [Figure  6a], tubules present in a well‑organized 
fashion with similar size and morphological properties, 
making their segmentation easier, while in cancerous 
cases  [Figure  6c], it is clear that the organization 
structure breaks down and accurately identifying the 
boundary becomes challenging, even for experts. To 
further compound the complexity of the situation, 
tubules as an entity are much larger compared to their 
individual components, thus requiring a greater viewing 
area to provide sufficient context to make an accurate 
assessment.

Patch selection technique
In this use case, we introduce the concept of using 
cheap preprocessing to help identify challenging patches, 
which can help provide more informative and diverse 
exemplars to the DL system. Per image, we randomly 
select a number of pixels  (e.g.,  15,000) belonging to 
both classes to act as training samples, and compute a 
limited set of texture features  (i.e.,  contrast, correlation, 
energy, and homogeneity). These features were chosen 
because they are available in MATLAB and are also 
very fast to compute. Next, we use a naïve Bayesian 
classifier to determine posterior probabilities of class 
membership for all the pixels in the image. In a matter 
of seconds, we are able to identify pixels which would 
potentially produce false positives and negatives and 
thus would benefit from additional representation in the 
DL training set. These pixels are selected based on their 
magnitude of confidence, such that false positives with 
posterior probabilities closer to 1 are selected with greater 
likelihood than those with .51. This approach further 
helps us to bootstrap our training set, by removing 
trivial samples, without requiring any additional domain 
knowledge.

Finally, knowing that benign cases are easier to segment 
than malignant cases, patches are disproportionally 
selected from malignant cases to further help with 
generalizability. While this dataset comes with the 
samples divided into benign and malignant cases, which 
is a valuable piece of knowledge to have ahead of time, 
an approach discussed in Section 5.5: Invasive Ductal 
Carcinoma Segmentation Use Case, could just as easily 
have been used to help dichotomize the training set.

Results and discussion
Figure  6 shows that benign sections of tissue do well as 
a result of being able to generalize well from the dataset. 
Malignant tubules, on the other hand, are far more abstract 
and tend to have the hallmarks of a tubule, such as clear 
epithelial ring around a lumen, less obvious making them 
harder to generalize to. This is potentially one of the 
downfalls of machine learning techniques, which make 
inferences from training data; when insufficient examples are 
provided to cover all cases expected to be viewed in testing 
phases the approaches begin to fail. On the other hand, in 

this case, especially these challenges could be addressed by 
providing a larger database of malignant images.

Each of the 5‑fold cross validation sets has about 
21 training images and 5 test images. We use a ratio of 
2:1 of malignant to benign patches whereas also including 
rotations of 180 and 270 to the malignant training set, for 
a total of about 320 k training patches. The mean F‑score, 
using a threshold of 0.5, was 0.827  ±  0.05. When we 
optimized the threshold on a per fold basis, the measure 
rose slightly to 0.836  ±  0.05. To determine if this was 
suitable for clinical usage, we computed the difference 
in area between our results and the ground truth results. 
When combining all the test sets together, the P = 0.33, 
indicating that there was no significant difference 
between the expected clinical grade associated with our 
approach versus and expert’s ground truth annotation. 
Two state‑of‑the‑art approaches claim 86% accuracy[45] 
and 0.845 object‑level dice coefficient,[46] indicating that 
our approach is on par with others currently in the field.

Invasive Ductal Carcinoma Segmentation Use 
Case
Challenge
Invasive Ductal Carcinoma (IDC) is the most common 
subtype of all breast cancers. To assign an aggressiveness 
grade to a whole mount sample, pathologists typically 
focus on the regions which contain the IDC. As a result, 
one of the common preprocessing steps for automatic 
aggressiveness grading is to delineate the exact regions of 
IDC inside of a whole mount slide.

We obtained the exact dataset, down to the patch 
level, from the authors of[9] to allow for a head to 
head comparison with their state‑of‑the‑art approach, 
and recreate the experiment using our network. The 
challenge, simply stated is can our smaller more compact 
network produce comparable results? Our approach is at 
a notable disadvantage as their network accepts patches 
of size 50  ×  50, while ours use 32  ×  32, thus being 
provided 60% less pixels of context to the classifier.

Patch selection technique
To provide sufficient context  (as discussed above in 
epithelium segmentation section), the authors have down 
sampled their original ×40 images by a factor of 16:1, for 
an apparent magnification of  ×2.5. We attempted three 
different approaches of using these 50 × 50 patches, and 
casting them into our 32 × 32 solution domain:

Resizing
Using the entire 50  ×  50 patch, we resize it down to 
32 × 32. 

Cropping: Each 50 × 50 image was cropped to a 32 × 32 
sub‑patch from exactly the center to ensure that the class 
label was correctly retained. 
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Cropping  +  additional rotations: To compensate for the 
heavily imbalanced training set, where the negative class is 
represented over 3 times as much, we artificially oversample 
the positive class by adding additional rotations. Since the 
provided patches are 50 × 50, we can rotate them around 
the center of the image origin, and still crop out a 32 × 32 
image. As a result, we use rotations of 0, 45, 90, 135, 180 
degrees, along with their mirrors to the training set for the 
positive class. We continue to use only the 2 rotations for 
the negative class as before. The totals patches available 
for training are about 157 k for the positive set and about 
167 k for the negative set, nearly balancing the classes.

Results and discussion
Qualitatively, we can see from Figure 7 that our results are 
quite similar to.[9] While the pathologist annotations are 
shown in green in   Figure  7a, we note that in our results, 
the upper right corner is not a false positive, but simply a 
region underannotated by the pathologist. As we discussed 
above in Section 3.3: Manual Annotation for Ground Truth 
Generation, this continues to be one of the challenges in 
DP; computer algorithms can often be more fine grained as 
the computation time is cheap while performing the same 
level of annotation for a pathologist is simply too laborious.

Quantitatively, we present the F‑score and the balanced 
accuracy for our methods to compare against[9] in 
Table 6. We can see that using our net provides a better 
F‑score and also a slightly higher accuracy balance. 
Interestingly, resizing the images seems to produce the 
best results indicating that the selected field of view is 
critical to obtaining better results. While cropping the 
images produces better resolution patches, the field of 
view is smaller, most likely making certain areas tricky to 
differentiate without neighborhood information. Again, 

we note that dropout did not provide any improvement 
in generalization during test time.

Lymphocyte Detection Use Case
Challenge
Lymphocytes, a subtype of white blood cells, are an 
important part of the immune system. Lymphocytic 
infiltration is the process by which the density of 
lymphocytes greatly increases at sites of disease 
or foreign bodies, indicating an immune response. 
A  stronger immune response has been highly correlated 
to better outcomes in many forms of cancer, such 
as breast and ovarian. As a result, identifying and 
quantifying the density and location of lymphocytes 
has gained a lot of interest recently, particularly in the 
context of identifying which cancer patients to place on 
immunotherapy.

Lymphocytes present with a blue tint from the absorption 
of hemotoxylin, their appearance similar in hue to nuclei, 
making them difficult to differentiate in some cases. 
Typically, though, lymphocytes tend to be smaller, more 
chromatically dense, and circular. In this particular use 
case, our goal was to identify the center of lymphocytes, 
making this a detection problem  (see Section 3: Digital 
Pathology Tasks Addressed).

Patch selection technique
At the original  ×40 magnification, the average size of a 
lymphocyte is approximately 10 pixels in diameter, much 
smaller than the 32  ×  32 patches used by our network. 
The focus here is on identifying lymphocytes without 
focusing on the surrounding tissue if the patches were 
to be extracted at  ×40, only 10% of the input pixels 
would be of interest. The other 90% of the input pixels 
would eventually learn to be ignored by the network. 
This would have the unfortunate effect of reducing the 
discriminative ability of the network. Thus, to increase 
the predictive power of the system, we artificially resize 
the images to be  ×4 as large, so that the entire input 
space, when centered around a lymphocyte, contains 
lymphocyte pixels, allowing more of the weights in the 
network to be useful.

Figure 7: Invasive ductal carcinoma segmentation where we see the 
original sample (a) with the pathologist annotated region shown in 
green. From (b) we can see the results generated by the resizing 
approach, (c) shows the same results without resizing, (d) shows the 
output when resizing and balancing the training set and (e) finally 
resizing with dropout, where the more red a pixel is, the more likely 
it represents an invasive ductal carcinomas pixel. We note that the 
upper half of the image actually contains true positives which were 
not annotated by the pathologist
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Table 6: F-score and balance accuracy for the 
various approaches. We note that resizing the 
larger patches to fit into our existing framework 
provided the best results, as well as improving 
upon previous results using the same dataset

Method F‑score Balance accuracy

Alexnet, Resize 0.7648 0.8468
Alexnet, Resize + Dropout 0.757 0.8423
Alexnet, Cropping 0.7533 0.8415
Alexnet, Cropping + Additional 
Rotations

0.7558 0.8368

Original Paper[9] 0.718 0.8423

[Downloaded free from http://www.jpathinformatics.org on Wednesday, January 11, 2017, IP: 193.49.116.250]



J Pathol Inform 2016, 1:29	 http://www.jpathinformatics.org/content/7/1/29

Positive class exemplars are extracted by randomly sampling 
locations from a 3 × 3 region around the supplied centers 
of each lymphocyte. The selection of the negative class 
proceeds as follows,  (a) a naïve Bayesian classifier is 
trained on 1000 randomly selected pixels from the image 
to generate posterior class membership probabilities for 
all pixels in the image,  (b) for all false positive errors, the 
distance between the false positive pixels and the closest 
true positive pixels is computed, (c) iteratively, the pixel 
with the greatest distance between the false positive 
and true positive errors is chosen so that negative image 
patches can be generated from those locations. Since 
there are few positive samples available, the training set is 
augmented by adding additional rotations.

At test time, the posterior probabilities are computed for 
every pixel in the test image. To identify the location most 
likely to be the center of a lymphocyte, a convolution is 
performed with a disk kernel and the probability output 
so that the center of the probably regions are highlighted. 
Iteratively, the highest point in the image is taken as 
center and a radius is cleared, which is the same size as 
a typical lymphocyte to prevent multiple centers from 
being identified for the same lymphocyte.

Results and discussion
Each of the 5‑fold cross validation sets has about 
80 training and 21 test images. We use a ratio of 1:1 for 
the positive and negative classes, while also including 
rotations of 180° and 270° to the positive training set 
due to them being under‑represented, for a total of about 
700 k training patches. We used a single fold to optimize 
the variables  (disk clearing, convolution disk size, and 
threshold) and applied them unchanged to the other 
4 folds. The optimal threshold was found to be at 0.7066, 
convolution disk size of 6 and clearing disk of size 28. 
The mean F‑score was found to be 0.90  ±  0.01, mean 
TPR 0.93 ± 0.01 and PPV of 0.87 ± 0.02, demonstrating 

a favorable comparison to the states of the art which 
show (a) a TPR of 86% and PPV of 64%[47] and (b) F‑score 
of 88.48.[48] Qualitatively, as shown above in Figure 8, we 
are able to detect most of the lymphocytes. The dataset 
itself has lymphocytes on the borders of the image, 
often times with over  50% of the lymphocyte not being 
visible  [as shown above in Figure  8a], making detection 
difficult for such edge pixels.

Mitosis Detection Use Case
Challenge
The number of mitoses present per high power field is 
an important aspect of breast cancer grade. Typically, 
the more aggressive the cancer, the faster the cells are 
dividing which can be approximated by counting the 
mitotic events in a histologic snapshot. The current 
grading scheme divides the mitotic counts into three 
categories per 10 high‑power fields,  (i) ≤7 mitoses,  (ii) 
8−14 mitoses, and  (iii) ≥15 mitoses. This is an active 
area of interest with a number of competitive grand 
challenges taking place in this space.[6‑8]

In practice, pathologists rely on changing the focal length 
of an optical microscope to visualize 3 dimensionally the 
mitotic structure, allowing them to eliminate false positives 
from their estimates. As such, accurately identifying 
mitosis on a 2D digital histology image is very difficult 
but highly sought after as it would allow for the automatic 
interrogation of existing large, long‑term, repositories. 
An open question in the field is trying to determine the 
minimal amount of accuracy necessary for clinical usage.

Patch selection technique
Since the network is smaller than the one used 
in[8] (32 × 32 as compared to 101 × 101), we modified 
and extended the approach in[8] accordingly. In order 
to provide enough context for each of the patches, we 
perform all operations at  ×20 apparent magnification, 
such that an entire mitotic figure can be captured 
within a single image patch. This is most important in 
cases where the mitosis is in the anaphase or telophase 
[Figure 9c], and the coordinates provided by the ground 
truth are actually in the middle of the two new cells.

For the positive class we take each known mitosis 
location, and use a 4‑pixel radius around it to construct 
the corresponding training patch. Since there are very 
few training pixels available, we add a large number 
of rotations to augment the training set, in this case, 
rotations of 0, 45, 90, 135, 180, 215, 270 degrees.

For the negative class, and to reduce both computational 
time, and in order to improve the selection of image 
patches, we leverage a well‑known segmentation 
technique termed blue‑ratio segmentation since there is 
evidence that mitoses are highlighted in regions identified 
by the blue ratio segmentation scheme [Figure 9a].[49,50] 
The results of the blue ratio segmentation approach 

Figure 8: Lymphocyte detection result where green dots are the 
ground truth, and red dots are the centers discovered by the 
algorithm. The image on the left  (a) has 21 TP/2 FP/0 FN. The 
false positives are on the edges, about 1 o’clock and 3 o’clock. The 
image on the right (b) one has 11 TP/1 FP/2 FN. We can see the 
false negatives are quite small and not very clear making it hard to 
detect them without also encountering many false positives. The 
only false positive is in the middle at around 7 o’clock though this 
structure does look “lymphocyte‑like

ba
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Figure 10: False positive samples of mitoses (a) with (b) true positive samples on the right. We can see that in many cases the two classes 
are indistinguishable from each other in the two‑dimensional plane, thus requiring the common practice of focal length manipulation of 
the microscope to determine which instances are truly mitotic events

ba

Figure 9: Result of deep learning for mitosis detection, where the 
blue ratio segmentation approach is used to generate the initial 
result in (a). We take this input and dilate it to greatly reduce the 
total area of interest in a sample. (b) In the final image, (c) we can 
see that the mitosis is indeed located in the middle of the image, 
included our computational mask. We can see that the mitosis is 
in the telophase stage, such that the DNA components have split 
into two pieces (in yellow circle), making it more difficult to identify

c
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are dilated into a 20 disk radial mask [Figure 9b]. This 
creates regions from which we will sample the negative 
patches, as it enables the natural elimination of trivial 
examples from the learning process. We sample 2.5 times 
as many patches as positive patches but only rotate each 
of them in 0, 90, 180, 270 degrees, so that we have more 
unique patches instead of simply rotated images.

Subsequently and modeled on the approach in,[8] a naïve 
Bayesian is employed in order to compute the probability 
masks for the training set. A  new DL network is then 
trained by oversampling from the false positives produced 
by the first network. This is done so that we can focus 
the classification power of the network on the most 

difficult cases. In particular, for the ground truth, we use 
the same positive class selection except we increase the 
number of rotations to every 15°. For the negative class, 
we only consider probabilities which are in the blue ratio 
generated mask, and sample those according to their 
weights. This makes it possible to select pixels which 
were, incorrectly, strongly believed to be a mitotic event. 
This approach resulted in approximately 600 k patches 
for the first stage of training and 4 million patches for the 
second stage of training. To identify the final locations 
of the mitoses, we convolve the image with a kernel disk 
and identify a mitotic event as those image locations 
identified as being above a certain probability threshold.

Results and discussion
Our 5‑fold analysis produced a mean F‑score of 0.37 ± 0.2 
when using the first round classifier and 0.54 ± 0.1 when 
using the second trained classifier, indicating a substantial 
improvement when using two sequential DL networks, 
where the second DL network is trained based off the 
false positive errors identified by the first DL network. 
Our F‑scores are comparable to the state‑of‑the‑art and 
only marginally lower than the winner of a recent grand 
challenge competition on mitosis detection.[8] The 
winners of that grand challenge  (F‑score  =  0.61) use a 
101 × 101 size patches which operates at ×40, and thus 
contains increased classification power as compared to our 
32 × 32 approach at ×20. In our runs of cross‑validation, 
the thresholds varied significantly across different folds 
suggesting that an independent validation set is needed 
for evaluating the trained network. Typical false and true 
positives can be seen in Figure 10a and b, respectively.

Lymphoma Subtype Classification Use Case
Challenge
The NIA curated this dataset to address the need of 
identifying three sub‑types of lymphoma: Chronic 

[Downloaded free from http://www.jpathinformatics.org on Wednesday, January 11, 2017, IP: 193.49.116.250]



J Pathol Inform 2016, 1:29	 http://www.jpathinformatics.org/content/7/1/29

lymphocytic leukemia  (CLL), follicular lymphoma  (FL), 
and mantle cell lymphoma (MCL). Currently, class‑specific 
probes are used in order to reliably distinguish the subtypes, 
but these come with additional cost and equipment 
overheads. Expert pathologists specializing in these types 
of lymphomas, on the other hand, have shown promise 
in being able to differentiate these sub‑types on H&E, 
indicating that there is the potential for a DP approach to 
be employed. A  successful approach would allow for more 
consistent and less demanding diagnosis of this disease. 
This dataset was created to mirror real‑world situations and 
as such contains samples prepared by different pathologists 
at different sites. They have additionally selected samples 
which contain a larger degree of staining variation than 
one would normally expect [Figure 11].

This use case represents the only classification use case of 
this manuscript: Attempting to separate images into 1 of 
3 sub‑types of lymphoma. In the previous tasks, we were 
looking at primitives and attempting to segmented or 
detect them. In this case, though, a high‑level approach 
is taken, wherein we provide whole tissue samples to have 
the DL learn unique features of each class.

Patch selection technique
To generate training patches, a naïve approach was 
used. Images were split into 36  ×  36 sub‑patches with 
a stride of.[32] Caffe has the ability, at training time, to 
randomly crop out smaller 32  ×  32 patches from the 
larger ones provided, artificially increasing the dataset. 
This approach could not be used in other tasks because 
there was no guarantee that the center pixel would retain 
the appropriate class label  (consider an edge pixel of 
nuclei, an arbitrary translation could potentially change 
its underlying class). During testing time, patches were 
extracted using the same methodology, and a voting 

scheme per subtype was used where votes were aggregated 
based on the DLs output per patch. In a winner‑take‑all, 
the class with the highest number of votes became the 
designated class for the entire image.

Results and discussion
Each of the 5‑fold cross validation sets had 300 
training images and 75 test images, for a total of about 
825 k training patches. The mean accuracy is 96.58% 
±0.01% (on average 2.6 misclassified images in 75 tests). 
This is over a 10% improvement from the software 
package, wnd‑chrm,[51] where the dataset was also 
used. Interestingly, both approaches encode no domain 
knowledge.

In the cases where images were incorrectly classified, 
there tends to be an overall poor quality of the slide, 
which would have resulted in either a rescan or a removal. 
For example, in Figure  12, the images have significant 
artifacts which likely caused its misclassification. The 
voting for these types of images shows 814 patches 
assigned to the CLL category, 562 patches to the FL 
category, and 0 patches to the MCL category, a strong 
indication of uncertainty. When this is compared to 
other images, for example, in the FL category, the scoring 
is {5, 1357, 14}, respectively. This indicates that in the 
case where there is not a landslide voting victory, the 
slide should be reviewed manually.

DISCUSSION

There are a few insights which can be gleaned from 
the experiments involving the use cases. First, there 
was no situation which dropout had improved the 
resulting metrics. Srivastava et  al.[38] performed rigorous 
quantitative evaluation identifying dataset sizes which 
might benefit from dropout. Our datasets are larger than 
the recommended sizes discussed in their paper and 
are thus likely large enough that we do not suffer from 
overfitting. This potentially limited the utility of dropout 
in our use cases.

Second, it is of the utmost importance to select an 
appropriate magnification for each task. The rule of 

Figure 12: (a and b) Misclassified image belonging to the follicular 
lymphoma subtype. We can see that when magnified, there appears 
to be some type of artifact created during the scanning process. It 
is not unreasonable to think that upon seeing this a clinician would 
ask for it to be rescanned

ba
Figure  11: Exemplars taken from the  (a) chronic lymphocytic 
leukemia, (b) follicular lymphoma, and (c) mantle cell lymphoma 
classes used in this task. There is notable staining difference across 
the three samples. Also, it is not intuitively obvious what the 
characteristics are which should be used to classify these images

c
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thumb we employed is that a human expert should be 
able to make the correct assessment given only the 
context presented in a patch. For this reason, tasks 
such as the epithelium segmentation were performed 
at very low magnification, while nuclei edge detection 
was performed at higher magnification. By the same 
token, if too low of magnification is selected for a task, 
only a few pixels supply the context needed for the class 
identification. As a result, the network becomes less 
powerful as the noncontext pixels have no use and yet 
still consume input variables.

Third, a majority of the work in this paper focused on 
finding simple, albeit robust ways of identifying challenging 
exemplars for training, in other words, those exemplars 
that would be most informative to the DL network. In 
situations where random selection was solely utilized, there 
are too many instances of trivial exemplars that ended up 
being selected, exemplars that did not enhance the learning 
capability of the network  (e.g.,  nuclei segmentation task). 
Another technique for identifying important patches was 
to use a 2‑stage classification stage  (i.e., mitosis detection 
and lymphocyte detection), where false positives and 
negatives from the first round classifier were oversampled 
to form the second training set.

In addition, due to the nature of DL, where inferences are 
derived from data, improving ground truth annotations so 
that they are precise to the pixel level, would likely further 
improve the results. Figure  5 illustrates the difference 
between a typical manual segmentation of a pathologist 
versus a pixel level output produced by an algorithm. 
DL has the potential to provide a first pass ground truth 
annotation of very high quality, thus allowing domain 
experts such as pathologists to solely focus on correcting 
errors made by the DL network.

Finally, while we have mentioned comparable current 
state‑of‑the‑art metrics where applicable, we note 
that datasets complexity can vary greatly in digital 
histopathology, perhaps more so than other domains, 
making a direct comparison difficult if not impossible 
unless a single benchmark dataset used. Consequently, 
we are releasing our datasets and annotations, online for 
usage, and review by the community in hopes of creating 
more standardized benchmarks. However, we wish to 
emphasize that a single unified DL framework that was 
employed with little to no modifications across a variety 
of different use cases yielded results that compared 
favorably with the best‑reported results for each of those 
domains, a remarkable result in light of the fact that little 
to no domain specific information was invoked.

CONCLUSION

We have shown how DL can be a valuable unifying tool 
for the DP domain due to its innate ability to learn 

useful features directly from data. Via seven use cases, 
(a) nuclei segmentation,  (b) epithelium segmentation, 
(c) lymphocyte detection,  (d) mitosis detection, and 
(e) lymphoma classification, we have outlined a guide 
containing the necessary insights for bridging the current 
knowledge gap between DL approaches and the DP 
domain. In particular, we have shown that a common, 
practical, and publicly available software framework can 
perform on par, or better, than several state‑of‑the‑art 
classification approaches for several digital histopathology 
tasks. Using this tutorial in conjunction with our 
supplemental online resources, we believe researchers can 
rapidly augment their current tools by leveraging DL for 
their specific histological needs.

We do however acknowledge that this tutorial and the 
associated framework did have some limitations. At test 
time, using the mean of the output from many rotations 
of the same patch has been shown to further reduce the 
variance of the output.[8] Others have shown 15 that 
training multiple networks, with the same or different 
architectures, can work well in the form of a consensus 
of experts voting scheme, as each network is initialized 
randomly and does not derive the same local minimum.

Given that all of the approaches presented in this tutorial 
did not explicitly and specifically invoke domain specific 
information, additional improvements could be made 
by invoking additional handcrafted or domain pertinent 
features. For example, the nuclei segmentation approach 
discussed does not address the need to split clustered 
cells, but such postprocessing approaches tend to require 
the well‑defined boundaries that our approaches provide. 
Hand‑crafted features can also be used in parallel with 
DL to improve the quality of the classifier.[50] Conversely, 
recently presented approaches[52,53] can potentially reverse 
engineer DL models to determine what relationships 
were discovered and thus supply valuable insights to the 
specific problem domain.

Computational efficiency is also a concern, given such 
large images. Hierarchical approaches have been discussed 
which greatly limit the number of patches, which must 
be classified by the network, improving efficiency.[54] In 
addition, approaches such as blue‑ratio segmentation or 
color deconvolution could serve as a preprocessing step 
to identify locations for subsequent application of a DL 
network, for instance in the detection of nuclei.

The approaches presented here are not intended to be 
a final ending point towards all histological problems, 
but a surprisingly robust jumping off point for further 
research. In fact, given that the mitosis benchmark results, 
it is evident that a 32  ×  32 network is not the optimal 
framework for all challenges. Yet with the source code and 
data at hand, it becomes possible to begin training and 
employing DL networks very rapidly and begin to modulate 
the approaches as appropriate for task specific settings.
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