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a b s t r a c t

Accurate segmentation of cells in fluorescence microscopy images plays a key role in high-throughput
applications such as quantification of protein expression and the study of cell function. In this paper, an
integrated framework consisting of a new level sets based segmentation algorithm and a touching-cell
splitting method is proposed. For cell nuclei segmentation, a new region-based active contour model in a
variational level set formulation is developed where our new level set energy functional minimizes the
Bayesian classification risk. For touching-cell splitting, the touching cells are first distinguished from non-
touching cells, and then a strategy based on the splitting area identification is proposed to obtain
splitting point-pairs. To form the appropriate splitting line, the image properties from different infor-
mation channels are used to define the surface manifold of the image patch around the selected splitting
point-pairs and geodesic distance is used to measure the length of the shortest path on the manifold
connecting the two splitting points. The performance of the proposed framework is evaluated using a
large number of fluorescence microscopy images from four datasets with different cell types. A quan-
titative comparison is also performed with several existing segmentation approaches.

& 2016 Published by Elsevier Ltd.
1. Introduction

Numerous areas of analysing and quantifying fluorescence
microscopy images rely on quantitative cell nucleus image analysis
[1–3]. Specifically, the basis for all automatic image analysis
required in high-throughput applications is cell image segmenta-
tion. Semi-automatic and manual segmentation methods are
tedious, need intensive labor, and suffer from inter-and intra-
reader variability. Therefore automatic methods with the ability to
deal with different cell types and image artifacts are required.

Specifically, this paper has two main goals. The first goal is
motivated by the fact that in cell nuclei image segmentation, pixels
in an image patch possess nearly the same intensity. Therefore, the
spatial relationship of the pixels in an image patch can be utilized
as an important characteristic that improves the performance of
level set segmentation methods [4–7]. Consequently, the first goal
is to develop a segmentation algorithm based on the image patch
information [8–11]. The segmentation algorithms often fail to
separate the individual cells which form clumps. Since
au (A. Gharipour),
quantitative cell nucleus image analysis is dependent on the
characteristics of each individual cell, the overlapping of cells
could have an adverse effect on the performance of the quantita-
tive high-throughput automated image analysis. Thus, the second
goal is to develop a splitting algorithm for touching cells.

The contributions of this paper are as follows. 1) A new
approach is introduced for cell nucleus segmentation in fluores-
cence microscopy images. First, a region-based active contour
model in a variational level set formulation, which is based on the
image patch information, is used to segment the image. Compared
to previous approaches, we define a novel local energy functional
based on the Bayesian classification risk [12–14] for an image
patch. In addition, a weighting scheme is used to enable the pixels
in each image patch to have anisotropic weights. 2) A three-step
touching-cell splitting algorithm is utilized for splitting. In the first
step, morphological features, and the distance between the most
likely radial-symmetry point and the geometrical center, are uti-
lized to distinguish touching-cell clumps from non-touching cells.
After touching-cell identification, splitting areas are identified, and
pairs of splitting points are selected for each clump. Once the
splitting points are recognized, the image patch around splitting
points is defined as their joint neighborhood. The image properties
from different information channels are used to define the surface
manifold of the image patch, and geodesic distance is used to
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measure the length of the shortest path on the manifold con-
necting the two splitting points. Finally, Dijkstra’s algorithm [15] is
used to find the weighted shortest path between splitting points.

The remainder of this paper is organized as follows. Section 2
introduces the proposed approaches. In Section 3, experimental
results are presented and analysed using different cell types. The
results of the proposed methods are also compared with previous
approaches. This paper is summarized in Section 4.
2. Proposed approach

2.1. Background

Recently, many methods have been proposed for the segmenta-
tion of cell nuclei in fluorescence microscopy images. One of the
most common approaches for cell segmentation is intensity thresh-
olding which suffers from intensity inhomogeneity. Watershed-
based methods are commonly utilized for clustered nuclei separa-
tion. A cell segmentation method based on the watershed algorithm
and the cluster splitting technique has been introduced in [1]. A
method based on the improved distance transform and statistical
model-based merging has been proposed in [2]. Marker-controlled
watershed techniques are proposed by Cheng and Rajapakse [3] as
well as Jung and Kim [16] for cluster splitting, where the H-minima
transform is used to find the optimal number of markers.

Deformable models, which are able to capture a wide spectrum
of different shapes, can be considered as a major category of cell
segmentation techniques. There are two main types of deformable
models: parametric models [17], which use an explicit repre-
sentation of objects [18–20], and implicit models [21]. A region
based parametric energy functional is introduced in [18]. Their
proposed model utilizes a coupling term for multiple contours as
well as a penalty term to prevent merging. In [19], the authors
used texture-adaptive weights to overcome the internal pseudo-
edges and low-contrast cell boundaries problems of Zimmer and
Olivo-Marin’s model [18]. Butenuth and Heipke proposed a
method for image segmentation which was based on the para-
metric active contour model and a graph-based approach [20].
Although parametric active contour models can be considered as
one of the common approaches for image segmentation, these
models depend on the parameterization and are not able to deal
with topological changes.

Implicit models [6,7,22–42] using level sets have been widely
used in cell segmentation with promising results. The implicit
models are able to handle topological changes, which are typically
not possible in parametric models. A two-step level set method
has been developed for cell segmentation in [29]. An energy
functional which is based on the multiple active contours inte-
gration as well as a combination of gradient based and region-
based terms has been introduced in [30]. In [13], Voronoi tessel-
lation has been utilized to determine regions corresponding to
single cells and then for each of these regions, region based energy
functional is used. In [14], the flux tensor is used for initialization
of their proposed level set method which was based on Bayesian
energy functional. The cell and the background of cell images are
separated using a gradient-based level set approach and then
topology preserving level sets are employed to perform cluster
splitting in [16]. A level set method based on Bayesian energy
functional which uses a non-PDE-based minimization is developed
in [39]. For cell image segmentation, the level set methods and the
graph partitioning approaches have been combined within in a
variational framework in [38,40]. Sequential integrations of fuzzy
clustering and implicit models have been proposed in [43–45]. A
multi-phase graph partitioning active contour approach which
uses regional density functions has been developed in [38]. A two-
step level set method for histopathological images has been pro-
posed in [40] where first, a geodesic active contour model is
initialized using a hierarchical normalized cuts scheme and then a
level set functional is used. An approach has been proposed in [46]
for segmenting cell nuclei s based on active contours using level
sets and convex energy functionals.

2.2. Local level set method based on the Bayesian risk and weighted
image patch (LLBWIP)

2.2.1. Modeling
Assuming that an image is formed by two regions, cell and

background pixels, the following two hypotheses can be used to
characterize the image segmentation.

� A null hypothesis H1, in which the cell is absent.
� An alternative hypothesis H2, in which the cell is present.

The segmentation method is utilized to decide which hypoth-
esis is correct. Therefore, one of two decisions can be made:

� D1: the classifier declares that the cell is absent.
� D2: the cell is present, and thus should be chosen by segmen-

tation procedure.

The following four conditional probabilities are defined for the
combinations of decisions in the hypothesis test:

(1) PðD1 H1j ) is the probability of declaration that the cell is absent
when it is actually absent.

(2) PðD2 H1j ) is the probability of declaration that the cell is pre-
sent when it is absent.

(3) PðD1 H2j ) is the probability of declaration that the cell is absent
when it is present.

(4) PðD2 H2j ) is the probability of declaration that the cell is pre-
sent when it is actually present.

Using the statistical terminology, the first probability, which is the
probability of rejecting the null hypothesis H1 when it is actually true,
is called type I risk. On the other hand, PðD1 H2j ), which can be con-
sidered the probability of accepting H1 when H1 is actually false, is
called type II risk. The consequence of each combination of hypothesis
and decision is quantified with an associated loss. The losses of
PðD1 H1j ), PðD2 H1j ), PðD1 H2j ), and PðD2 H2j ) can be denoted as L(1, 1),
L(2, 1), L(1, 2), and L(2, 2), respectively. L(1, 1) and L(2, 2) can be
viewed as the losses arising from the correct decision while L(2, 1)
and L(1, 2) denote the losses that arise from the incorrect decision. As
the general rule, we set L(1, 1)¼L(2, 2)¼0 and L(2, 1)¼L(1, 2)¼1 [12].
Now the Bayesian risk for segmenting an image into cell and back-
ground can be written as follows:

r¼ P H1ð ÞP D2 H1j ÞþP H2ð ÞP D1 H2j Þðð ð1Þ
Assuming Ω¼Ωi

2
i ¼ 1 denotes the image domain, where Ω1 and

Ω2 denote cell and background pixels, respectively. I:Ω-Rþ

denotes a given image, for each point x in the image domain Ω, the
image patch centered on x can be represented as:

Px ¼ IðyÞ; yANxð Þ ð2Þ
where Nx can be considered as a q� q neighbourhood of point x.
Now the image patch Px with domain Nx can be partitioned by
Ωi

2
i ¼ 1 into the following disjoint regions:

R1 ¼ Ω1 \ Nxf g and R2 ¼ Ω2 \ Nxf g;where Nx ¼ [2
i ¼ 1 Ri;Ri

\ Rj ¼∅8 ia j:

D1 and D2 can now be redefined as follows; all pixels of the
image patch Px that lead the segmentation procedure to choose
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decision D1 fall in the region R1, whereas all pixels of the image
patch Px that result in decision D2 fall in the region R2. The two
hypotheses, H1 and H2, are considered in association with pdfs Pð
IðxÞjH1Þ and PðIðxÞjH2Þ, respectively, where I xð Þ denotes a pixel
value of the Nx . The integral of PðIðxÞjH1Þ over the region R2

represents the risk P D2 H1j Þð and the integral of PðIðxÞjH2Þ over the
region R1 represents the riskP D1 H2j Þð . Now the energy functional,
based on the Bayesian risk for segmenting an image patch Px into
cell and background, can be written as follows:

Ex ¼ e1þe2 ð3Þ
where e1 and e2 are defined as follows:

e1 ¼
R
R1
ln P I yð ÞjyAR2ð ÞP yAR2ð Þð Þdy

e2 ¼
R
R2
ln P I yð ÞjyAR1ð ÞP yAR1ð Þð Þdy

(
ð4Þ

Since dissimilar pixels should have different weights to reflect
their decrease of importance [47–50], a weighting function needs
to be defined and incorporated into (4) to constrain the influence
of dissimilar pixels. To define the weighting function for each pixel
y, first, its mean square deviation σyx is calculated as follows:

σyx ¼
R
y; ANx=y

I y;ð Þ� I yð Þð Þ2
nx�1

 !1
2

ð5Þ

Then, the following exponential kernel function is utilized to
produce the weight for pixel y:

ζyx ¼ exp � σyx�
R
yANx

σyx

nx

 ! !
ð6Þ

Finally, the weights are normalized by:

κyx ¼
ζyxR

yANx
ζyx

ð7Þ

The weighting function can now be defined as follows:

ωy ¼
κyx ; for IðyÞAPx

0; for IðyÞ=2Px

(
ð8Þ

It is noted that ωy is well defined on the Nx and
R
Nx
ωydy¼ 1.

With this weighting function, for yANx if the mean square
deviation of I yð Þis far away from the average mean-square devia-
tion in the Px , I yð Þ is expected to have a very small weight. The
calculated weight vectors of two different image patches are
shown in Fig. 1. The pixel values in both patches are given in the
first column. The mean square deviations σyx are given in the
middle column and the right column shows the obtained weights.
The first image patch (the upper row) is selected from the
boundary area while the second image patch (the bottom row) is
Fig. 1. Two image patches selected from a synthetic image, (middle column) the calc
selected from the homogeneous area. In the first patch, the weight
of the pixel with high intensity (over 200) inclines to zero. Also in
this patch the pixels with intensity values 49 and 81 are con-
sidered as noisy pixels. In the second image patch, pixels with
intensity values 81, 80, 161 and 164 are all considered as noise and
their weights also incline to zero. As can be seen from the calcu-
lated weight vectors in both examples, the anisotropic weighting
method can effectively reduce the impact of edges and noisy pixels
on images. Using this weighting function, (4) is reformulated as:

e1 ¼
R
Ω1
ωyln P I yð ÞjyAR2ð ÞP yAR2ð Þð Þdy

e2 ¼
R
Ω2
ωyln P I yð ÞjyAR1ð ÞP yAR1ð Þð Þdy

(
ð9Þ

Assuming that P IðyÞjyAR2ð Þ and P IðyÞjyAR1ð Þ follow the Gaus-
sian distribution, (9) can be written as follows:

e1 ¼
R
Ω1
ωyln N I yð Þjμ2 yð Þ;P2 yð Þ� �

P yAR2ð Þ� �
dy

e2 ¼
R
Ω2
ωyln N I yð Þjμ1 yð Þ;P1 yð Þ� �

P yAR1ð Þ� �
dy

8<
: ð10Þ

where μi yð Þ andPiðyÞ denote the mean and the covariance matrix,
respectively, of the Gaussian distribution.

To consider the bias field that corrects for the intensity inho-
mogeneity into the energy functional Ex , assuming that the true
intensity vi in each region Ri is constant, μi yð Þ can be approxi-
mated as follows [48,49]:

μi yð Þ ¼ b yð Þvi for i¼ 1;2: ð11Þ

where bðyÞ denotes the bias field at each pixel. Therefore, (10) can
be reformulated as:

e1 ¼
R
Ω1
ωyln N I yð Þjb yð Þv2;

P
2 yð Þ� �

P yAR2ð Þ� �
dy

e2 ¼
R
Ω2
ωyln N I yð Þjb yð Þv1;

P
1 yð Þ� �

P yAR1ð Þ� �
dy

8<
: ð12Þ

Two prior probabilities P yAR2ð Þ and PðyAR1Þ are still
unknown. Although it can be assumed that the prior probabilities
are equal for both regions [51], an iterative algorithm derived from
the concavity of the Kullback–Leibler information number is
adopted for prior probabilities estimation [14,52]. Finally, the aim
is to find the energy for all the centre points x in the image domain
Ω, therefore ELLBWIP ¼

R
ΩExdx denotes the final energy functional.

2.2.2. Level set formulation
We assume that the two regions R1 and R2 can be represented

by the regions separated by the Lipchitz function ∅, Ω1 ¼ f∅ xð Þ40g
and Ω2 ¼ f∅ xð Þr0g. By incorporating the Heaviside function H, e1
ulated mean-square deviation and (right column) the estimated weight vectors.



Fig. 2. Segmentation results of the proposed approach. Column (a) original images. Column (b) segmentation results of the proposed functional.
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and e2 are rewritten as follows:

e1 ¼
R
Ωωyln N I yð Þjb yð Þv2;

P
2 yð Þ� �

P yAR2ð ÞM1 ∅ yð Þð Þ� �
dy

e2 ¼
R
Ωωyln N I yð Þjb yð Þv1;

P
1 yð Þ� �

P yAR1ð ÞM2 ∅ yð ÞÞð Þdy�
(

ð13Þ

where M1 ∅ yð Þð Þ ¼H ∅ yð Þð Þ and M2 ∅ yð Þð Þ ¼ 1�H ∅ yð Þð Þ.
Therefore, the energy functional ELLBWIP can be rewritten as

follows:

ELLBWIP ¼
Z
Ω
e1ð Þþe2ÞdxþγLðÞþPðÞ ð14Þ

where LðÞ and PðÞ are defined as follows:

L ∅ xð Þð Þ ¼ RΩδ ∅ð Þj∇ ∅ð Þjdx
P ∅ xð Þð Þ ¼ RΩ1

2ðj∇∅ �1ð Þ2dx

(
ð15Þ

where δ zð Þ ¼ ∂HðzÞ
∂z and LðÞ is used to control the smoothness of the

zero level set and avoids the formation of small, isolated regions in
the final segmentation. PðÞ is used to eliminate the need for re-
initialization in our method [7]. The parameter γ can be under-
stood as the parameter which controls the penalization effect of
the length term. For small γ, smaller objects will be detected while
for large values of γ, larger objects will be detected. In this work, γ
is set to 255�255�10�3. The Heaviside function H zð Þ can be
approximated by a smooth function HεðzÞ, which is defined as:

Hε zð Þ ¼ 1
2

1þ2
πarctan

z
ε
� �� �

ð16Þ

where ε is a positive constant (see Fig. 3). Therefore, the energy
functional is approximated as follows:

ELLBWIPε ¼
Z
Ω
e1εð Þþe2εÞdxþγLεðÞþPðÞ ð17Þ

where e1ε, e2ε, and Lεð∅Þ approximate e1, e2, and LðÞ, respectively.
Fig. 2 shows visual examples of the segmentation results for the
proposed functional.
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2.2.3. Minimization
In numerical implementation, for fixed ∅ and i¼ 1;2, the

variables
P

i yð Þ, b yð Þ, and vi are updated as follows:

X
i
ðyÞ ¼

R
ΩωyðIðyÞ�bðyÞviÞ2PðyARiÞMi;ϵð∅ðyÞÞÞdyR

ΩωyPðyARiÞMi;ϵð∅ðyÞÞÞdy ð18Þ

b yð Þ ¼
P2

i ¼ 1

R
ΩωyðIðyÞ

P
iðyÞ�1viÞPðyARiÞMi;ϵð∅ðyÞÞÞdyP2

i ¼ 1

R
ΩωyðviðyÞ

P
iðyÞ�1viÞPðyARiÞMi;ϵð∅ðyÞÞÞdy

ð19Þ

vi ¼
R
Ωωyb yð ÞPi yð Þ�1P yARið ÞI yð ÞMi;ϵ ∅ yð Þð ÞdyR
Ωωyb yð Þ2Pi yð Þ�1P yARið ÞMi;ϵ ∅ yð Þð Þdy

ð20Þ

Minimization of the energy functional Eε with respect to ∅ is
achieved by solving the following gradient descent flow equation:

∂∅
∂t

¼ δε ∅ð Þℱþ ∇2∅�div
∇∅
∇∅j j

� 	� 	
ð21Þ

where F is defined as:

ℱ¼
Z
Ω
ωyP yAR2ð Þ ln

X
2

yð ÞÞþ I yð Þ�bðyÞv2ð ÞP
2 yð Þ

2
 !

dy

 ! 

�
Z
Ω
ωyP yAR1ð Þ ln

X
1

yð ÞÞþ I yð Þ�bðyÞv1ð ÞP
1 yð Þ

2
 !

dy

 

þγ div
∇∅
∇∅j j

� 	
ð22Þ

The parameter ε can affect the speed function. As can be seen
in Fig. 3, for the large value of ε, for instance, ε¼ 4, the weight
δε ∅ð Þ becomes very small and consequently δε ∅ð ÞF in (21) is tri-
vial while for the small values of ε, for example, ε¼ 0:1, only a very
small range of level sets is weighted. The convergence of the
Fig. 3. The Heaviside function and the Dirac
energy minimization is slowed down by both cases and therefore,
practically, ε is set to 1 or 1.5 [22,53].

2.3. Touching cell splitting

2.3.1. Detection of touching cells
In contrast to most available cell splitting methods, in this

paper the touching and non-touching cells are separated and then
the cell splitting procedure is only used for the touching cells [54].
The splitting algorithm consists of three steps as summarized by
the flowchart in Fig. 4. In our approach, first, a measurement of the
convex hull of the segmented image coupled with the use of the
radial symmetry point detector [55] are applied to a connected
region ϰi of the segmented image to define two decision variables,
D1 and D2. Then D1 and D2 are used to determine whether ϰi is a
single cell or a clump of touching cells.

To find the most likely radial symmetry centre ri, the radial
symmetry point detector [28] is applied to ϰi. Let the geometrical
centre of the ϰi be given by g

i
and ri denotes the pixel with the

maximum value in the symmetry transform of the image [55], D1

can be defined as follows:

D1 ¼
1 if jri�g

i
j4y1

0 otherwise



ð23Þ

where y1 denotes a threshold of the distance between the radial-
symmetry centre and geometrical centre of ϰi. Practically, y1 is set
to six pixels.

The area of the convex hull of ϰiand the area of ϰi are denoted
by Αv and Αc, respectively. Now D2 can be defined as follows:

D2 ¼
1 Αc

Αv
oy2

0 otherwise

(
ð24Þ

where y2 denotes a threshold of the ratio of Αc
Αv

and is set to
delta function with different ε values.
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92� 10�2. ϰi can be considered as a touching cell if the following
condition is satisfied:

ϰi ¼
touching cell clump if D1 ¼ 1 or D2 ¼ 1
non touching cell clump otherwise

(

ð25Þ

2.3.2. Candidate points for cell splitting
We describe here the second step of the proposed three-step

cell splitting algorithm, known as splitting point-pair identifica-
tion for splitting. In this paper, for a given clump to split,Ci, it has
been assumed that touching clump Ci has roughly a convex shape
[56,57]. Let splitting area (such as hatched regions in Fig. 5),SACi

,
be defined as a difference of the convex hull region of Ci (such as
dashed green line in Fig. 5) and Ci. There-
fore,SACi

¼ [K
k ¼ 1SACi k

� �
, where k¼ 1;…;Kf g and K is the total

number of splitting areas for Ci. For example for Fig. 5(a), since the
given clump has four splitting areas, K¼ 4. For each splitting area,
first, the associated directional vector (Blue arrows in Fig. 5(b)) is
defined as a vector with its tail on the midpoint of the imaginary
local chord (such as the dashed black line in Fig. 5(b)), and initi-
ating towards the splitting area [58]. After finding the associated
directional vector, we select two points on the tails of local chord
(such as the blue circles in Fig. 5(b)). Then, two lines are initiated
from the selected points and extended on either side using the
directional vector (such as the dashed brown line in Fig. 5(b)) until
the lines intersect the contour of Ci (such as the black circles in
Fig. 5(b)). FCik

can be defined as the points on the contour of Ci
Fig. 4. Flowchart of the utilized three-step splitting method.

Fig. 5. (a) An overlapping clump with k41 and the morphological properties that are us
the white regions are the area of the cell, the hatched regions are splitting areas, the red
The dashed black line indicates the local chord, the blue arrow is the orientation of direc
the local chord, the dashed brown lines are the lines initiated from the tails of the local ch
intersection points.
between the points of intersection. We assume that the splitting
points on a clump Ci commonly occur at BCi

[ FCi

� �
where FSACi

¼ [K
k ¼ 1FCik

n o
and BCi

¼ [K
k ¼ 1BCik

n o
is defined as the boundary

of the Ci and SACi
(such as the red line in Fig. 5). In this work, the

invalid splitting areas are ignored using the method proposed in
[59].

The distance between the vertices of a splitting line should be
small relative to the distance between the vertices along the
contour of the shape, [60,61]. To determine the splitting point
pairs, let A;Bð ÞAS where S¼ A;Bð ÞjAABCih

;BA BCij
[

�n
FCih

Þ for 1rh; jrK and ha jg, the cost function between
points A and B can be defined as follows:

Es A;Bð Þ ¼ distðA;BÞ
min Length A;Bð Þ; LengthðB;AÞ ð26Þ

where dist(A,B) denotes the Euclidean distance between A and B
and Length A;Bð Þ represents the clockwise length from point A to
B on the boundary of the segmented cell. The pair of splitting
point positions can be obtained using the following minimization
(see Fig. 6c):

A�;B�� �¼ arg min
A;B

Es A;Bð Þ ð27Þ

In order to acquire the appropriate splitting point-pair, at each
iteration, a list of the ten splitting point-pairs are sorted in
increasing order according to their value of the Es. The splitting
point-pair whose Es is smaller than the others, is set as the first
candidate. Then, the following conditions are utilized [61]. 1) The
area ratio of the two parts resulting from the separation using the
straight line should be among a certain range, and 2) compared
with the length of the maximum local chord of theCi, the length
of the separation line should be smaller. Once a splitting point-pair
has been found to satisfy the conditions, it will be taken as the
desired splitting point positions A�;B�� �

.

2.3.3. Cut between selected points on local image patch manifold
Most of the existing methods have only used the binarized

image which is a result of the segmentation procedure, and so
have ignored the properties of the original image in splitting line
formation. Basically this means taking a cut with the smallest
Euclidean distance between A�and B�. Although the given clump
might be separated into their correct number of constituent
objects, it may not give the correct individual cell areas. Therefore,
the properties of image pixels can be used to form the accurate
splitting line [60]. These properties can be obtained from different
ed in our splitting algorithm. The dashed green line indicates the convex hull region,
line present the boundary of the Ci and SACi

. (b) An overlapping clump with k¼ 1.
tional vector associated with the local chord, blue circles show points on the tails of
ord aligned in the same direction as the directional vector, and black circles indicate



Fig. 6. Visual results for cell splitting. (a) original image, (b) segmented image, (c) splitting point-pair, (d) local image patch (the parallelogram area highlighted), (e) the
splitting result.
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information channels. For instance, while the intensity of a pixel
could be directly acquired from the original image, the local spatial
information and texture information are obtained from the pro-
cessed image. For splitting line formation, let I-Rv denotes a
given image with the properties obtained from different infor-
mation channels, where v is the dimension of the data point. To
form the splitting line, image intensity as well as the filtered
intensity of the pixels, which represents the local spatial infor-
mation, are utilized. The filtered intensity of pixel is the mean
filtered intensity using a 3� 3 window. Using the local spatial
information is helpful in obtaining a more accurate splitting line
for the fluorescence microscopy images with intensity inhomo-
geneity. For given A�and B� in the image domain Ω, the image
patch around them (see Fig. 6d) can be denoted as follows:

PA�B� ¼ ðIðyÞ; yANA�B� ð28Þ
where NA�B� can be considered as a joint neighbourhood of points
A�and B� and the size of NA�B� is proportional to the object size.
The surface manifold of image patch PA�B� can be defined as fol-
lows:

Pm
A�B� ¼ y; I yð Þð Þ; yANA�B�ð Þ ð29Þ

where the superscript m denotes the surface manifold of patch P.
The aim is to find the shortest path on the image patch surface
manifold Pm

A�B� that connects the two splitting points in the local
image patch Pm

A�B� .
We use the geodesic distance as a distance metric dmðA�;B�Þ to

measure the length of the shortest path on the manifold con-
necting the two splitting points A�and B� on the image patch
surface manifold Pm

A�B� . Let the metric tensor G [62] be defined
with the following elements:

gi;j ¼ αiΔi;jþ
Xv
k ¼ 1

β2
k
∂Ik
∂yi

∂Ik
∂yj

ð30Þ

where i; jA1;2 and Δi;j denotes the Kronecker Delta. αi and βk are
parameters that are used to tune the influence of Euclidean dis-
tances and image values, respectively, on the distance measure. In
this study, we set αi ¼ 1

di
and βk ¼ s

rk
in which di denotes the range

of the image in the ith spatial dimension, rk denotes the dynamic
range of the kth image value, and s is a constant which is defaulted
to s¼ 1. The role of s here is to balance the overall effect of the
spatial distance and intensity value in the distance computation.
Measuring the geodesic distance for infinitesimal changes in Y can
be done by using the metric tensor G. The arc length for a curve
c τð Þ from Y1 ¼ c að Þ to Y2 ¼ c bð Þ is measured by:

L¼
Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i;j ¼ 1

Δi;j c τð Þð Þ dYi

dt
c τð Þ

� 	
dYj

dt
c τð Þ

� 	vuut dt ð31Þ

(31) can be minimized using a geodesic curve.
Fig. 6 illustrates the process of finding the weighted shortest

path between A� and B� on Pm
A�B� . It can be solved iteratively
using Dijkstra’s algorithm in O(NlogN) time [15]. It is important to
note that when the image information is not adequate, the cut
between points A� and B� will degenerate to the shortest Eucli-
dean distance between the splitting points, which is the same
result as for most other existing approaches.
3. Experimental results

The proposed approach is applied to 2D fluorescence micro-
scopy images of cell nuclei from four experiments which includes
different cell types. Two data sets from [63] which have ground
truth are used. The first data set consists of 48 images, each with a
size of 1349�1030 pixels and has 1831 U20S Hoechst stained cell
nuclei (see Fig. 7a). The second data set contains 49 images, each
with a size of 1344�1024 pixels and has 2178 NIH3T3 Hoechst
stained cell nuclei (see Fig. 7b). It is noted that since the images of
the second data set suffer from intensity inhomogeneity, in com-
parison with the images in the first set, automatic analysis of the
second set is more challenging. We also used images from
BBBC005 [64]. The data set consists of 17 images, each with a size
of 520 � 696 pixels and has approximately 159 cell nuclei (see
Fig. 7c). Finally, the set of synthetic images of cell populations with
realistic properties generated with the SIMCEP simulation tool
[65] is also used. The SIMCEP simulation tool is available from
http://www.cs.tut.fi/sgn/csb/simcep/. The generated set includes
20 simulated images of cell populations with ground truth, each
with a size of 400�400 pixels and includes approximately 400
cell nuclei (see Fig. 7d).

The performance of the LLBWIP algorithm is evaluated using
region-based and contour-based measures. For region-based
measure, the Jaccard coefficient [66], which is widely used to
measure spatial overlap, as well as Dice false positive (Dice FP) and
Dice false negative (Dice FN) are used. The Dice FP is used to
measure the over-segmentation and Dice FN gives a measure of
under-segmentation. For contour-based measures, the Hausdorff
distance and mean absolute contour distance (MAD) are used. The
Jaccard coefficient can be calculated as:

Jaccard R; Sð Þ ¼ jR \ Sj
R [ S � 100jj ð32Þ

where R is the binary reference image and S is the binary seg-
mented image. The Dice FP and Dice FN are obtained using the
following equation:

DiceFP R; Sð Þ ¼ 2jR \ Sj
R þ S � 100jjjj ð33Þ

DiceFN R; Sð Þ ¼ 2jR \ Sj
R þ S � 100jjjj ð34Þ

where R and S are the complements of the R and S respectively.

http://www.cs.tut.fi/sgn/csb/simcep/


Fig. 7. Original images of the four different data sets. (a) U20S cells, (b) NIH3T3 cells, (c) BBBC005, (d) synthetic microscopy images from SIMCEP.

Table 1
Quantitative results for U20S data set for the different segmentation approaches.

Approach U20S cells (48 images)

Jaccard MAD Hausdorff Dice FP Dice FN

MA[2] 83.8 4.6 13.6 8.3 9.7
WA [68] 52.4 11.2 34.1 30.5 31.5
OT [67] 76.1 11.7 33.9 12.7 13.3
BLS [23] 77.6 8.3 24.1 11.8 12.2
RSFE [25] 71.7 6.4 19.4 15.6 16.4
DRLSE [53] 72.9 7.8 21.3 15.3 14.7
Two-step [46] 88.7 4.2 12.8 5.4 7.1
Three-step [46] 88.4 4.7 13.4 5.3 5.2
LSBR [14] 83.2 5.8 19.8 11.8 9.1
LLBWIP 91.6 3.5 12.7 4.7 3.9

The best results are indicated by bold values.
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The Hausdorff distance can be calculated as:

Hausdorff R; Sð Þ ¼max
i ASc

D ið Þ ð35Þ

where Dði Þ denotes the minimal Euclidean distance of pixel i to the
contour of the reference object and Sc denotes the contour of the
segmented object. For all nSc pixels on Sc, the MAD is defined as:

MAD¼ 1
nSc

X
iϵSc

Dði Þj
�� ð36Þ

The performance of the splitting algorithm is evaluated using
two detection measures, namely the number of false positives (FP)
and the number of false negatives (FN). FP corresponds to spur-
iously segmented nuclei and FN corresponds to nuclei that have
not been segmented.

Table 1 shows the quantitative results for the different perfor-
mance measures which are averaged over all images in the U20S
cells. The quantitative results for NIH3T3 cells are reported in
Table 2 while the quantitative results for BBBC005 cells are
reported in Table 3. Table 4 reports the quantitative results for
synthetic cells. The splitting results are reported in Table 5. As a
comparison, we also reported the results of the Merging algorithm
(MA) [2], the Otsu thresholding (OT) [67], the Watershed algo-
rithm (WA) [68], and level set-based methods, namely the Baye-
sian based level set approach (BLS) [23], the region-scalable fitting
energy functional (RSFE) [25], the distance regularized level set
method (DRLSE) [53], two step and three step approaches [46] and
the level set method based on the Bayesian risk (LSBR) [14]. To
evaluate the utilized three step splitting algorithm, its perfor-
mance is compared with rule-based splitting method (RB) [59],
improved clump splitting method (IM) [69], Watershed algorithm
(WA), and two step and three step approaches [46]. It is noted that
for RB and IM, the segmentation result of LLBWIP is utilized.

As can be seen from Tables 1 and 2, our approach obtains the
best results for the Jaccard coefficient, Hausdorff distance, MAD,
Dice FP, and Dice FN for the U20S data set. Furthermore, our
approach yields better results than the level set based approaches.
Note that for the Dice FP value and the Dice FN value, our approach
yields significantly smaller values. LLBWIP also obtains the best
results for the Jaccard coefficient, MAD, Dice FP, and Dice FN for
the NIH3T3 data set. For the Hausdorff distance the best result is
obtained by Two-step approach, although the result of the pro-
posed approach is very close.

As can be seen from Tables 3 and 4, for the BBBC005 cells,
LLBWIP yields significantly better results for the MAD, Hausdorff
distance and Dice FN. In particular, for the BBBC005 images, we
obtain a significantly smaller Dice FN value. For the Jaccard coef-
ficient and Dice FP the best results are obtained by Two-step
approach and MA, respectively, while the results of LLBWIP are
very close behind. For the synthetic cell images, the best result for
the Dice FN value is obtained by LSBR but our approach is only
slightly poorer. However, the proposed approach has a sig-
nificantly smaller Dice FP value. LLBWIP obtains significantly bet-
ter results for the Jaccard coefficient, MAD, and Hausdorff distance.



Table 2
Quantitative results for NIH3T3 cells data set for the different segmentation
approaches.

Approach NIH3T3 cells (49 images)

Jaccard MAD Hausdorff Dice FP Dice FN

MA [2] 53.4 6.2 18.7 28.2 31.7
WA [68] 45.2 5.9 19.1 35.4 40.5
OT [67] 47.3 12.6 37.4 38.4 33.5
BLS [23] 61.2 7.5 22.2 26.1 22.9
RSFE [25] 62.8 6.8 21.5 20.4 23.5
DRLSE [53] 61.6 7.8 23.3 25.3 23.7
Two-step [46] 73.9 4.4 14.2 16.4 13.5
Three-step [46] 70.8 5.7 16.4 15.5 19.7
LSBR [14] 64.2 7.2 19.8 21.2 20.4
LLBWIP 75.9 4.1 14.3 12.7 12.2

The best results are indicated by bold values.

Table 3
Quantitative results for BBBC005 data set for the different segmentation
approaches.

Approach BBBC005 cells (17 images)

Jaccard MAD Hausdorff Dice FP Dice FN

MA [2] 80.4 1.3 5.8 8.0 12.9
WA [68] 75.3 1.1 5.0 13.1 17.8
OT [67] 76.0 2.3 5.4 14.1 13.9
BLS [23] 68.0 2.4 4.6 18.4 21.5
RSFE [25] 70.6 1.5 7.0 17.7 19.6
DRLSE [53] 70.4 2.7 4.9 18.9 16.7
Two-step [46] 85.6 1.1 3.6 7.7 8.4
Three-step [46] 83.2 1.5 3.9 10.7 9.1
LSBR [14] 75.2 1.9 4.7 14.2 15.9
LLBWIP 83.4 1.1 3.5 8.3 7.2

The best results are indicated by bold values.

Table 4
Quantitative results for synthetic data set for the different segmentation
approaches.

Approach Synthetic cells (20 images)

Jaccard MAD Hausdorff Dice FP Dice FN

MA [2] 65.2 1.6 5.1 18.6 24.5
WA [68] 64.5 1.2 5.6 22.3 21.8
OT [67] 63.2 1.7 7.4 22.7 24.2
BLS [23] 72.4 0.9 4.8 15.4 18.5
RSFE [25] 69.5 1.5 7.1 20.4 15.5
DRLSE [53] 62.0 1.3 6.7 22.9 23.0
Two-step [46] 76.7 1.2 4.8 12.7 13.4
Three-step [46] 73.1 1.4 5.3 13.2 16.7
LSBR [14] 74.6 1.4 4.1 18.1 10.9
LLBWIP 83.3 0.8 3.7 10.1 11.8

The best results are indicated by bold values.

Table 5
Quantitative results for different data sets for the different splitting approaches.

Approach U20S cells NIH3T3 cells BBBC005 cells Synthetic cells

FP FN FP FN FP FN FP FN

WA [68] 1.9 3.0 11.6 5.5 1.9 2.8 3.4 5.7
RB [59] 0.5 3.3 2.6 5.5 1.1 2.7 4.8 3.9
IM [69] 0.7 2.9 3.9 5.2 2.6 4.1 3.5 4.1
Two-step
[46]

0.5 3.8 2.8 6.1 1.7 5.3 4.7 5

Three-step
[46]

0.5 3.9 1.7 11.3 1.8 4.9 6.1 4.7

Proposed
approach

0.3 2.7 1.5 5 1.7 2.4 3.5 3.6

The best results are indicated by bold values.
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As can be seen from Table 5, the proposed splitting approach
yields the best results for the U20S cells and the NIH3T3 cells. The
obtained results are better than the best results in the evaluation
studies proposed in [46,63]. For the BBBC005 cells, the best value
for the FP is obtained by RB, while we obtain intermediate result.
In particular, for the BBBC005 cells, we obtained significantly
smaller value for the FN value. For the synthetic cells, the proposed
splitting approach, yields best results for the FN value. Regarding
the FP value, the best result is obtained by the WA, while the
obtained result by the proposed splitting approach is only slightly
poorer.

For each data set, the ranking of the algorithms according to the
values obtained by Jaccard, Hausdorff distance, and MAD, is
depicted in Table 6. For each metric, the differences between the
methods are only considered statistically significant if the 95%
confidence intervals of the estimate of the true means do not
overlap. To acquire the ranking for each data set 135 t-tests are
performed (45 possible pairings of the methods for each of the
3 metrics). Bonferroni correction of the confidence intervals is
used to adjust for multiple comparisons.

All experiments are performed using Matlab on a 64-bit Win-
dows machine, which has a Intel core i7 CPU 2640 M, 2.8 GHz,
with 8 GB RAM. Selection of the value of q is critical. The perfor-
mance of our algorithm increases with the increase of the size of
q� q neighbourhood. For larger value of q (q¼5), our approach
yields better results, while the time cost also increased sig-
nificantly. Taking both the segmentation performance and the
computation time into consideration, we suggest 3rqr4. It is
important to note that all the level set based approaches use the
standard level set scheme with gradient descent optimization and
the convergence criterion is defined as the MAD between the
contours of segmented objects in two consecutive iterations.
In this work, γ, y1, y2 are set to 255�255�10�3, 6, and 92�10�2;
respectively. For U20S date set, BBBC005 data set, and synthetic
cells, we set ε ¼1. For NIH3T3 data set, we set ε ¼1.5. Based on the
performed analysis in [70], for a given n� n image, the compu-
tational complexity of a level set model is O n2

� �
for each evolving

level set. LLBWIP uses information of the image patches which
would increase the computational cost. However, since qrn and q
is fixed in LLBWIP, the computational complexity of LLBWIP can be
approximated by O n2

� �
. To facilitate reproducible research and to

enable future comparison with other methods, we will make our
code freely available for other researchers.
4. Conclusion

Accurate automated cell-nuclei segmentation in fluorescence
microscopy images is important in high throughput cell study. A
novel algorithm for cell-nuclei image segmentation has been
introduced in this paper. For the level sets segmentation, we have
developed LLBWIP as a novel local energy functional based on the
Bayesian classification risk for an image patch. A weighting
scheme is used to enable the pixels in each image patch to have
anisotropic weights in the local energy functional. The final energy
functional is then obtained by integrating the local energy over the
entire image domain. For cells that are touching, a three-step
touching-cell splitting algorithm has been proposed for cell split-
ting. Our cell splitting algorithm utilizes the image properties from
different information channels to define the surface manifold of
the image patch and form the optimum splitting line. The per-
formance of the proposed algorithms has been validated exten-
sively on four fluorescence microscopy image data sets containing



Table 6
Ranking of segmentation methods according to the Jaccard, Hausdorff distance and MAD metrics.

Data set Metric Ranking

U20S Jaccard LLBWIP4 Two-step¼ Three-step 4 MA¼ LSBR 4 BLS ¼ OT ¼ DRLSE ¼ RSFE 4 WA
MAD LLBWIP 4 Two-step4 MA 4 Three-step 4 LSBR 4RSFE 4 DRLSE ¼ BLS 4 WA ¼ OT
Hausdorff LLBWIP ¼ Two-step4 Three-step ¼ MA 4 RSFE¼LSBR ¼ DRLSE 4 BLS 4 WA ¼ OT

NIH3T3 Jaccard LLBWIP4 Two-step 4 Three-step 4 LSBR 4RSFE ¼ DRLSE ¼ BLS 4 MA 4 WA ¼ OT
MAD LLBWIP¼ Two-step 4 Three-step4 WA ¼ MA ¼ RSFE 4 LSBR¼BLS ¼ DRLSE 4 OT
Hausdorff Two-step ¼LLBWIP 4 Three-step 4MA ¼ WA 4 LSBR4 RSFE ¼ BLS ¼ DRLSE 4 OT

BBBC005 Jaccard Two-step 4 LLBWIP¼ Three-step 4 MA 4 OT ¼ WA¼ LSBR 4 RSFE ¼ DRLSE ¼ BLS
MAD LLBWIP ¼ WA ¼ Two-step ¼ Three-step¼ MA 4 RSFE 4 LSBR 4BLS 4 OT 4 DRLSE
Hausdorff LLBWIP¼ Two-step 4 Three-step 4 BLS ¼ LSBR 4 DRLSE 4 WA ¼ OT ¼ MA 4RSFE

Synthetic cells Jaccard LLBWIP 4 Two-step 4 Three-step ¼ LSBR 4 BLS ¼ RSFE 4 MA¼ WA ¼ OT ¼ DRLSE
MAD LLBWIP ¼ BLS4 Two-step ¼ WA 4 LSBR¼ DRLSE ¼ Three-step ¼ RSFE 4 RSFE¼ OT
Hausdorff LLBWIP4 LSBR4 Two-step ¼ BLS 4 MA¼ Three-step 4WA 4 DRLSE ¼ RSFE 4 OT
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different cell types. Experiments demonstrated that the proposed
approaches are robust and capable of producing significantly more
accurate segmentation results than many state-of-the-art
approaches we compared with. However, similar to most level
sets approaches, the proposed segmentation algorithm has a non-
convex energy functional. Therefore, it could suffer from local
minima and poor initialization. Our future research effort will
concentrate on overcoming these defficiencies.
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