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Objective:  The  paper  addresses  the  problem  of  finding  visual  patterns  in histology  image  collections.  In
particular,  it proposes  a method  for  correlating  basic  visual  patterns  with  high-level  concepts  combining
an  appropriate  image  collection  representation  with  state-of-the-art  machine  learning  techniques.
Methodology:  The  proposed  method  starts  by  representing  the  visual  content  of  the  collection  using  a bag-
of-features  strategy.  Then,  two  main  visual  mining  tasks  are  performed:  finding  associations  between
visual-patterns  and  high-level  concepts,  and  performing  automatic  image  annotation.  Associations  are
found using  minimum-redundancy-maximum-relevance  feature  selection  and  co-clustering  analysis.
Annotation  is done  by  applying  a support-vector-machine  classifier.  Additionally,  the  proposed  method
includes  an  interpretation  mechanism  that  associates  concept  annotations  with  corresponding  image
regions.

The method  was  evaluated  in  two data  sets:  one  comprising  histology  images  from  the different  four
fundamental  tissues,  and  the  other  composed  of histopathology  images  used  for  cancer  diagnosis.  Dif-
ferent visual-word  representations  and  codebook  sizes  were  tested.  The  performance  in both  concept
association  and  image  annotation  tasks  was  qualitatively  and  quantitatively  evaluated.
Results:  The  results  show  that  the  method  is  able  to find  highly  discriminative  visual  features  and  to
associate  them  to  high-level  concepts.  In the  annotation  task  the  method  showed  a competitive  perfor-

mance:  an  increase  of  21%  in f-measure  with  respect  to  the baseline  in the  histopathology  data  set, and
an  increase  of 47% in  the  histology  data  set.
Conclusions:  The  experimental  evidence  suggests  that  the  bag-of-features  representation  is a  good  alter-
native  to represent  visual  content  in histology  images.  The  proposed  method  exploits  this  representation
to  perform  visual  pattern  mining  from  a wider  perspective  where  the  focus  is  the  image  collection  as  a
whole, rather  than  individual  images.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Thanks to the development on acquisition methods and
quipment and the accelerated progress in communications and
omputer technologies, there is an ever increasing availability of
igital biomedical images [1].  Biomedical images are an impor-
ant source of information, and a potential source of knowledge, for
oth routine clinical decision and biomedical research. Neverthe-

ess, a thorough exploitation of this potential requires techniques

ble to automatically extract information and knowledge from this
ast amount of data. This is an enterprise that has already started,
ut is far from being finished [2].  A great deal of work has been
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done on the area of medical imaging, which is gradually moving
from computer assisted image analysis systems, mainly based on
image processing techniques [3],  to fully automatic systems based
on pattern recognition and machine learning methods [4].  Most of
the work on automatic medical image analysis and interpretation
has concentrated on individual images rather than on collections
of images. Changing this perspective poses new, and potentially
useful, questions: What are the relationships between the images?
What are the common and distinctive characteristics among them?
What are the implicit categories or groups that could be identified
in the collection?

The questions discussed in the previous paragraph can be
deemed as instances of a more general image understanding prob-

lem, in which the focus of the interpretation process is not an
individual image, but the image collection as a whole. This intro-
duces new challenges, but also provides new methods to extract
hidden knowledge from data. This could have an important impact

dx.doi.org/10.1016/j.artmed.2011.04.010
http://www.sciencedirect.com/science/journal/09333657
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n biomedical image analysis since it provides a new set of tools to
utomatically find interesting patterns in images, which are diffi-
ult to obtain when images are individually analyzed.

This paper addresses the problem of automatically extracting
isual patterns from biomedical image collections. The successful
olution of this problem requires to solve two main subproblems:
rst, to find an appropriate image representation that takes into
ccount the structure of the image collection; second, to choose
ppropriate machine learning tools that, based on the image col-
ection representation, could extract the most meaningful visual
atterns. The main contribution of the present work is a method
hat successfully solves these problems by combining state-of-the-
rt machine learning techniques for feature selection and pattern
ining, along with a bag-of-feature approach to represent the

mage collection visual content.
During the last few years, the bag-of-features (BOF) image

epresentation has attracted great attention from the computer
ision community. This approach is an evolution of texton-
ased representations and is also influenced by the bag-of-words
epresentation for text classification and retrieval [5].  The BOF rep-
esentation is an adaptive approach to model image structure in a
obust way. In contrast to image segmentation, this approach does
ot attempt to identify complete objects inside images, which may
e a harder task than the image classification itself. Instead, the BOF
pproach looks for small characteristic image regions allowing the
epresentation of complex image contents without explicitly mod-
ling objects and their relationships, a task that is tackled in another
tage of the image analysis process. Briefly, the BOF approach works
s follows: a set of small regions are extracted from all the images
n the collection, these regions are represented by feature vectors,
hen a visual dictionary, a set of codewords, is built as a summary
f these feature vectors, finally, each image in the collection is
epresented by the frequency of the dictionary codewords that it
ontains, i.e., each image is represented by a codeword histogram.
n addition, an important advantage of the BOF approach is its adap-
iveness to the particular image collection to be processed. Some of
hese properties are particularly useful for medical image analysis
nd, in fact, the BOF representation has been successfully applied to
ome problems in medical imaging. For instance, Tomassi et al. [6]
dapted the BOF representation to effectively classify radiological
mages in an automatic image annotation task.

This work concentrates on histological images, and this is moti-
ated by two main reasons: first, histology images are particularly
hallenging from an image understanding point of view; in this
ype of images, visual patterns are generally a complex combination
f fundamental visual features involving texture, color and shape
7]; second, the success of the BOF representation in other type of
mages, such as natural scenes or X-rays, is not a guarantee that
t will perform well in histology images, so, the sole fact of test-
ng this representation in this type of images is a contribution by
tself. The assessment and identification of biological parameters
n histology materials is usually made by visual inspection of tis-
ue samples, something that may  be often an inadequate approach
o extract the potential information [8].  Manual intervention holds
he disadvantages of being subjective, laborious, and insufficient
hen more complex information is needed or is simply unknown.

oukas [9] stresses the importance of computerized methods as an
ssential tool for interpreting data with major diagnostic value, and
oints out that there is little work on computational methods ded-

cated to the extraction of meaningful information from histology
mages.

In our previous work [10,11] we presented preliminary results

hat suggested the potential of the BOF representation for histol-
gy images. The present work builds on these preliminary results
erforming a systematic experimentation and proposing a method
or visual pattern mining in histology image collections. In particu-
e in Medicine 52 (2011) 91– 106

lar, the proposed method is tested on two different histology image
collections: one involving a wide range of images acquired from dif-
ferent organs and representative of normal fundamental tissues,
and the other one including images used for diagnosis of a type
of skin cancer called basal-cell carcinoma. In both cases, images
have global annotations, corresponding to high-level concepts, but
miss local or regional annotations. Taking into account that an
image may  involve different tissues and biological structures, the
challenge is to identify the particular visual patterns that character-
ize the different associated high-level concepts. The experimental
results show that the proposed method is successful on finding
meaningful visual patterns. Particularly, the method was able to
find: visual patterns that are highly correlated with high-level con-
cepts in both data sets (e.g. cancer cells appearance for cystic change
concept), the space location of these visual words in global anno-
tated images (e.g. image regions related to muscular tissue), and
groups of images with similar appearance and visual patterns (e.g.
a group of images that share the same concept, epithelial tissue,  and
stain, Masson’s trichrome).  Additionally, in the automatic annota-
tion task the BOF representation showed an improved performance
over the baseline given by a global representation based on tex-
ture (Gabor, Zernike and Tamura). Specifically, the test f-measure,
which combines precision and recall, is increased by 21% in the
histopathology data set and 47% in the histology data set.

The paper is organized as follows: Section 2 reviews previous
works in histology image representation and medical image anno-
tation using BOF; Section 3 describes the details of the different
stages of the image collection representation strategy based on
BOF; Section 4 presents the proposed method for visual pattern
mining; Section 5 describes the proposed automatic annotation
strategy; Section 6 discusses the image acquisition process and data
sets used; Section 7 presents the experimental results in both data
sets; finally, conclusions and future work are discussed in Section
8.

2. Previous work

Microscopy image processing has been the subject of an impor-
tant body of research since digital images started to be coupled
to microscopes in the early 80s to acquire and analyze high quality
images [8].  From signal processing operations to automated pathol-
ogy grading, there is a wide range of applications and problems
in microscopy images that brings together researchers of different
disciplines.

One of the earliest applications of computer vision to histology
images has been the characterization of cells within a slide. Quanti-
fying cells or defining their boundaries in blood films or tissue slides
is a time consuming and subjective task, yet, an important proce-
dure in research and diagnosis activities. Automatic identification
and measurement of single cell properties has been proposed as a
mechanism to help experts make accurate and reproducible mea-
surements in cell cultures [12] and infected blood films [13] among
others. These methods showed to be 30 times faster than humans
and up to 90% accurate in completing the task.

In a broad range of histology analysis tasks, the subject of study
goes from individual cells to complete tissue regions. These cases
are usually related to cancerous lesions, and the purpose of tis-
sue analysis is to determine the stage of the lesion on different
parts of the tissue, a procedure known as grading. Automatic grad-
ing is approached as an image segmentation problem to identify
those regions that correspond to each grade [14]. Different patholo-

gies may  have different grading protocols and strategies to identify
lesion stage. For instance, Doyle et al. [15] follows the Gleason sys-
tem, which describes 5 increasingly malignant stages of cancer and
uses discriminative learning to identify them according to several
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issue architectural features. In [16], neuroblastoma histological
lides are processed for identifying pathological regions associated
o three different grade subtypes, which are identified in a multires-
lution framework. Other examples of tissue segmentation and
issue classification can be found in [17,18].

The main characteristic of the works described above, is that
he image analysis concentrates on evaluating information in one
mage to segment cells or regions, which is still a very important
nd fundamental problem in histology image analysis. However,
ur approach is different from these works since we  follow an
mage collection analysis strategy to extract meaningful informa-
ion out of a set of images rather than process or segment tissues
n individual slides.

Another branch of research in histology image analysis is the
utomatic image classification, annotation and retrieval. Since large
umbers of digital histology slides are being stored more fre-
uently, methods for automatic image organization and access
trategies are becoming important. Histology image classification
sing multiple transformed features was evaluated by Orlov et al.
19], training classifiers that decide what overall category an image
elongs to.

The design of image similarity measures for histology images
as been approached by Tang et al. [20] and Naik et al. [21], to
nable image retrieval systems to use semantic information. These
pproaches tend to exploit more systematically the information
ithin a collection of images rather than processing just individual

mages. Learning a classification model and computing image sim-
larities are tasks that require image collection analysis. However,
hese works are not intended to discover relationships between
isual patterns or to reveal the image collection structure, which is
he core of our study.

The present work is closely related to a new emerging research
rea called bioimage informatics [22,23], which comprises image
rocessing, data mining and database visualization, extraction,
earching, comparison and management of biomedical knowledge
nside massive image collections. Peng [22] reviewed techniques
nd biomedical application of this area to high-throughput/high-
ontent analysis of cellular phenotypes, atlas building for model
rganisms, understanding the dynamic processes in cells and liv-
ng organisms, joint analysis using both bioimage informatics and
ther bioinformatics methods.

Mining of visual patterns in biomedical image collections has
mportant applications in both research and clinical practice. For
nstance, Swedlow and Eliceiri [24] and Kvilekval et al. [25] present
ioimage informatics tools for analysis and management of large
iomedical data supporting collaborative research in molecular and
ell biology. Another examples is the work of Madabhushi et al.
26,27] that proposes a method that combines multimodal informa-
ion sources, including magnetic resonance imaging (MRI), digital
athology and protein expression, to support the prognosis and
heragnosis of cancer patients.

In our study, we consider the BOF approach for image represen-
ation as a mechanism to analyze local image patterns from a whole
ollection perspective. This strategy has been previously used by
ther researchers to approach certain problems in medical image
nalysis, particularly, high level interpretation of radiology images.
osch et al. [28] and Iakovidis et al. [60] used a BOF approach to deal
ith mammography images and X-ray images respectively. Tom-
asi et al. [6] and Avni et al. [29] have adapted BOF models to more

eneral medical image collections, with different modalities, body
arts and pathologies. To the best of our knowledge, our work is the
rst attempt to systematically evaluate the potential of a BOF model
n histology images. An important difference with other works that
pply BOF to medical images, is that, in almost all the cases, these
orks are mainly focused on the problem of automatic image anno-

ation using discriminative models [6,29,30], however other works
e in Medicine 52 (2011) 91– 106 93

propose the use of generative models taking advantage of this rep-
resentation to learn the latent semantic of data using probabilistic
latent semantic analysis (pLSA) and latent dirichlet allocation (LDA)
[31,32]. Related works have been applied in biomedical and bioin-
formatics problems [33,34]. In histology, latent semantic analysis
has not been extensively applied, for instance, pLSA has been used
for dimensionality reduction in histopathology images but not for
latent topic analysis [35].

In our work, the BOF approach is used to learn discriminative
models for automatic image annotation, as well as for analyzing
relationships between local visual patterns and image categories
from a wider perspective, adding an interpretation layer that aims
to explain image collection structures and that supports high-level
decision making in histology.

3. Image collection visual content representation using BOF

The BOF framework is an adaptation of the bag-of-words
scheme used for text categorization and text retrieval. The key
idea is the construction of a codebook, i.e., a visual vocabulary
in which the most representative patterns are codified as code-
words or visual words. Then, the image representation as BOF is a
histogram generated through a simple frequency analysis of each
codeword inside the image. Csurka et al. [36] describe four steps to
classify images using a BOF representation: (1) feature extraction
and representation, (2) codebook construction, (3) the BOF repre-
sentation of images, and, finally, (4) training of learning algorithms.
Fig. 1 shows an overview of the three first steps. The BOF approach
is a novel and simple method to represent image contents using
collection dependent patterns. This is also a flexible and adaptable
framework, since each step may  be determined by different tech-
niques according to the particular application domain needs. The
following subsections describe these steps.

3.1. Feature extraction and representation

In general, the BOF approach starts extracting small blocks (in
the present work, 8 × 8 pixels) from each image in the collection.
There are two main alternatives for block extraction, partition of
the image by a regular grid or extraction of blocks on salient points
[37]. In this study the regular-grid-based extraction is used; this
process take into account a large quantity of blocks, but reduces
the probability of missing interesting patterns. Each extracted block
must be represented by a set of features. There is a great variety of
image descriptors proposed in the literature [38], we studied three
different strategies that have produced good results when used in
conjunction with the BOF representation [30,36]. The first strategy
uses the raw block, i.e., the feature vector has 64 values correspond-
ing to the luminance values of the corresponding pixels (thus, the
color information is ignored). The advantage of this strategy is its
simplicity and computational efficiency [37].

The second block-representation strategy is based on scale-
invariant feature transform (SIFT) points [39]. This strategy uses a
key-point detector based on the identification of interesting points
in the location-scale space. This is implemented efficiently by pro-
cessing a series of difference-of-Gaussian images. The final stage
of this algorithm calculates a rotation invariant descriptor using
predefined orientations over a set of blocks. SIFT points are used
with the most common parameter configuration: 8 orientations
and 4 × 4 blocks of cells, resulting in a descriptor of 128 dimen-

sions. The SIFT algorithm has demonstrated to be a robust key-point
descriptor in different image retrieval and matching applications,
since it is invariant to common image transformations, illumination
changes and noise [28,39].
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Fig. 1. Overview of the BOF a

Finally, the third strategy is the discrete cosine transform (DCT)
40,41] applied to each channel of the RGB color space by block. The
escriptor is built merging the 64 coefficients from each one of the
hree channels. This strategy generates a visual word that takes into
ccount color and texture information from local features described
n an efficient way.

.2. Codebook construction

The visual dictionary or codebook is built using a clustering or
ector quantization algorithm applied to the set of block descrip-
ors extracted from the image collection. All local features, over

 training image set, are brought together independently of the
ource image and are clustered to learn a set of representative visual
ords from the whole collection. The k-means algorithm is used in

his work to find a set of centroids that correspond to the code-
ords. Nowak et al. [37] have reported that the application of a

lustering algorithm has not a big impact in the classification of
atural images, compared with a random selection of codewords.
owever, this is not necessarily the case for histology images [10].

An important decision in the construction of the codebook is the
ize selection, that is, how many codewords are needed to represent
mage contents. According to different works on natural image clas-
ification, the larger the codebook size, the better [36,37]. However,
omassi et al. [6] found that the size of the codebook is not a sig-
ificant aspect in a medical image classification task. We  evaluated
ifferent codebook sizes, to analyze the impact of this parameter

n the pattern mining task.

. Visual pattern mining

The main goal of data mining is to extract useful knowledge from
arge data bases. This knowledge is usually represented in terms
f interesting patterns that uncover hidden, unexpected, and/or
nteresting relationships among data items. Data mining methods
ave been successfully applied to different types of data includ-

ng transactional databases, web pages, and text documents [42].
mage collections are not an exception, in fact there have been some
ttempts to perform data mining in image databases [43–46],  but
he advancement has not been as fast as for the other types of data.
he fact is that dealing with visual information is particularly chal-

enging because of the semantic gap, i.e., the difficulty of finding

 connection between low-level visual information and its con-
eptual interpretation. This gap has been a widely discussed topic
nd the focus of several works that propose methods to reduce it
ch to image representation.

[1,30,47,48]. In biomedical images, the gap may be even larger than
in natural scene images or generic objects [49], due to the hetero-
geneity of these images, the complexity of the structures, and the
specialized knowledge required to understand them.

This paper proposes a system to perform visual pattern min-
ing that adapts particularly well to histology image collections. The
input of the system is a set of images that have global annotations,
which associate images with general conceptual classes. The main
goal of the system is to find visual patterns that can be associated
with the high-level annotations. The first type of visual patterns are
individual visual codewords that are highly correlated with concep-
tual classes and that have a good discrimination performance. This
codewords are selected by a feature selection and analysis process.
In general, it is not possible to characterize conceptual classes by
individual codewords, but by complex interactions between them.
Thus, the next level of visual patterns combine various codewords
and associate them with conceptual classes. This is accomplished
by a biclustering analysis that brings out these complex interac-
tions. The mined visual patterns can be used to understand how
high-level concepts relate to low-level visual content, e.g. mapping
discriminative words back to the image to identify characteristic
regions associated to a particular concept. Additionally, this pat-
terns can be used to automatically annotate new images. This is
accomplished by an annotation module that uses the BOF  codified
images to train a supervised learning model (e.g., a support vec-
tor machine). The overall approach is depicted in Fig. 2, and the
different steps involved are detailed in the next subsections. The
annotation stage is discussed in Section 5.

4.1. Visual word discrimination analysis

The visual dictionary or codebook, as a whole,  summarizes the
set of visual patterns that are representative of the image col-
lection. Some visual codewords are shared by all the conceptual
classes and some others are associated with particular conceptual
classes. We  are interested in finding the latter kind of codewords,
which are good representatives of particular classes, i.e., code-
words with a high discriminative power. In the general scope of
machine learning, this process is known as feature selection. There
are different approaches to perform feature selection, one popu-
lar strategy is to choose those features (in this case, codewords)

that have a high correlation or dependence with a particular class
[50]. This approach is called maximum relevance feature selection
in [51]. Mutual information (MI) is a popular approximation to
measure feature relevance. In general, MI  measures the depen-
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Fig. 2. Overview of the proposed method for vi

ence between two random variables. In this context, each visual
odeword (wi) and concept (cj) are assumed to be binary random
ariables that measure the presence/absence of a visual word or
oncept in a particular image block. MI  is used to measure the
elevance of a visual word with respect to a concept as follows:

(
cj; wi

)
=
∑

wi ∈ {0,1}

∑
cj ∈ {0,1}

P
(

cj, wi

)
log

(
P(cj, wi)

P
(

cj

)
P (wi)

)
, (1)

here P(cj) is the probability that an individual block belongs to an
mage labeled with the concept cj, P(wi) is the probability that one
lock corresponds to the visual codeword wi, and P(cj, wi) is the

oint probability.
One problem when using correlation or mutual information

o measure the relevance of visual codewords with respect to
oncepts is that it ignores the interactions among visual code-
ords and concepts. Some visual codewords can be relevant for

everal concepts, so their discriminative power is low. A better
riterion is provided by the minimum redundancy maximum rel-
vance feature selection (mRMR) method proposed by Peng et al.
n [51], which selects a subset of codewords (features) that max-
mizes the codeword-concept relevance, while minimizing the
nter-codeword redundancy. The maximum relevance criterion is
epresented by the following expression:

axW D(W, cj) = maxW
1∣∣W∣∣
∑

wi ∈ W

I(wi; cj), (2)

The minimum redundancy criterion is represented by the fol-
owing equation:
in
W

R(W) = min
W

1∣∣W∣∣2
∑

wi,wj ∈ W

I(wi; wj) (3)
attern mining using BOF image representation.

Then simultaneous optimization of both criteria is accomplished
by defining a combined objective function �(W, cj) defined as fol-
lows:

maxW �(W,  cj) = maxW D(W, cj) − R(W) (4)

The above objective function is solved by an incremental
method that builds an optimal subset of features W.  In this work,
this method is applied to get a small subset of visual codewords
from the large original visual codebook. This produces a set of
codewords that collectively have a high discriminative power.

The Peng’s method for feature selection [51] is useful to select
a highly representative and discriminative subset of codewords.
However, we are interested on finding which visual codewords
from this subset are associated to which concept. To accomplish
this, the degree of connection between visual features, wi, and con-
cepts, cj, is estimated by the conditional probability P(cj|wi), which
indicates the probability of having the concept cj in an image where
the visual word wi is present. This is calculated as follows:

P(cj|wi) = P(cj = 1, wi = 1)
P(cj = 1, wi = 1) + P(cj = 0, wi = 1)

(5)

The above expression is useful to determine the representative
visual words per concept using the following strategy: first, the
conditional probability of (5) is calculated for each concept and
each visual word in the subset of the most relevant-discriminative
visual words; second, each visual word is assigned to the concept
with the highest conditional probability.

4.2. Biclustering analysis

Biclustering (or coclustering) analysis is a data mining tech-

nique which allows simultaneous clustering by rows and columns
of a data matrix. This method, with its respective graphic repre-
sentation of data, is commonly applied in bioinformatics for gene
expression analysis [52]. In this particular application field, biclus-
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parameters where the average performance was  the best. Then, the
whole training set is used to train the classifier with the selected
6 A. Cruz-Roa et al. / Artificial Intel

ering analysis is useful to correlate gene expression with different
xperimental samples (conditions). The different conditions may
orrespond to samples taken at different times in an experiment,
amples from different organs, or samples from different individ-
als. This is accomplished by finding subsets of genes that are
ifferentially expressed in particular subsets of conditions. The

nput data is represented as a matrix with rows corresponding to
enes and columns to samples. A value at position Di,j represents the
mount of expression of gene i in sample j. A cocluster (o bicluster)
s a submatrix DI,J defined by the intersection of a subset of genes,

 ⊆ Rows, and a subset of columns, J ⊆ Columns. Depending on the
pplication, biclusters may  be required to exhibit particular prop-
rties: constant values, constant rows/columns, coherent values,
tc. [52]. Different algorithms have been proposed to efficiently
nd the different types of biclusters, with a particular emphasis
n biclusters with coherent values, which are of special interest in
ene expression analysis [52–54].

In this work, we propose to apply biclustering to histology image
nalysis using the following approach: images are analogous to
amples (or conditions) and visual words are analogous to genes.
he data matrix is calculated using only the set of most discrimi-
ative visual codewords generated by the mRMR  feature selection
ethod described in the previous subsection. The main goal is to

nd biclusters that relate sets of images, which are conceptually
onnected, with sets of codewords. This goal translates into finding
iclusters with high constant values. An agglomerative hierarchical
lustering, using Euclidean distance and average linkage, is applied
imultaneously to both images and visual codewords. The result-
ng dendrograms are drawn alongside the matrix representation,

here the cells frequency values are represented with colors (blue
or low frequency, red for high frequency). Good candidate biclus-
ers can be spotted as rectangles with a uniform red color.

.3. Identification of characteristic regions

One important aspect of data mining models is their inter-
retability, i.e., the possibility of understanding how a model is
apturing the semantics of a problem. For instance, an interpretable
lassification model must be able to explain why a particular sam-
le was classified in a given class. In the context of visual pattern
ining, this translates to models that are able to relate high level

ecisions, e.g. assigning an annotation, with particular visual pat-
erns in the image. This is particularly useful in some application
cenarios such as computer-aided medical image analysis.

Here we show how a BOF representation allows a higher degree
f interpretability in contrasts with other image representations
global histograms, directional transforms, etc.). Specifically, a
traightforward method to infer the regions related to global anno-
ations in an automatic way is proposed. Thanks to the fact that
OF visual codewords are, by construction, local visual features, it

s possible to map  particular codewords back to their position in a
articular image. If images are globally annotated (as it is the case
or both data sets used in this study), there is not information about
hat regions of an image are ‘responsible’ for the particular anno-

ations the image has. We  can exploit the locality of the codewords
o automatically infer this information as follows:

. Given a new image, represent it using a particular BOF codebook
that has been previously processed to find the most discrimina-
tive codewords per class.

. If the image is not annotated, annotate it using, for instance, an

annotation algorithm such as the one proposed in Section 5.

. For a particular image annotation, we can identify codewords
present in the image which are associated with the class indi-
cated by the annotation. The resulting set of codewords could be
e in Medicine 52 (2011) 91– 106

further filtered to keep only those codewords with the highest
class conditional probability.

4. Highlight those image blocks that correspond to the set of
selected codewords. The highlighted area corresponds to the
region of interes.

5. Histology image annotation using BOF

Annotation is an important task in biomedical image analysis.
Different works focus on the solution of this problem for differ-
ent types of images. Section 2 discusses some of these works in
the area of histology image classification. Despite the fact that the
focus of this work is not the annotation problem, it is interesting to
see how different representation alternatives, such as texture fea-
tures and BOF representation, perform on this task. Works using
BOF representation in biomedical images are not abundant and in
the particular case of histology images they are even scarcer [10,11].
In order to evaluate the BOF representation we  compare different
strategies (varying the dictionary size and the type of visual word)
against texture features that have been suggested for histology
image analysis [8,9] including Gabor and Tamura features.1

In this section, we  applied a supervised learning approach that
uses a state-of-the-art learning algorithm to build a classifier for
each one of the concepts in each data set. The classifiers use as input
the BOF representation of the images and produce a real number
that indicates whether the image exhibits the concept (1) or not
(−1).

5.1. Kernel methods

Classifiers used in this work are support vector machines (SVM),
that receives as input a data representation implicitly defined by a
kernel function [56]. Kernel functions describe a similarity relation-
ship between the objects to be classified. The image representation
that we are dealing with are histograms with codeword frequencies
generated by the BOF representation. In that sense, a natural choice
of a kernel function would be a similarity measure between his-
togram structures. The histogram intersection kernel is the kernel
function used in this work:

D∩(H, H′) =
M∑

m=1

min(Hm, H′
m),

where H and H′ are the codeword frequency histograms of two
images, calculated using a codebook with M codewords.

5.2. Automatic annotation setup

Since one image can be classified in many classes simulta-
neously, the classification strategy is based on binary classifiers
following the one-against-all rule. One classifier is trained per con-
cept class in each data set. Training, including hyper-parameter
tuning, is performed on the 80% of the data and the final assess-
ment of classifiers is performed on the remaining 20%. The data
set partition is done using stratified sampling in order to preserve
the original distribution of examples in both data sets. This is par-
ticularly important due to the high class imbalance, especially in
the histopathology data set. The SVM hyper-parameters are tuned-
up using 10-fold cross validation on the training set choosing the
hyper-parameters and finally the performance is reported over the

1 Details of these descriptors are given in [55].
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Table 1
Image distribution by semantic concept in the histopathology data set.

Concept #Images

Pilosebaceous annexa 145
Cystic change 67
Elastosis 125
Eccrine glands 148
Lymphocyte infiltrate 140
Lesion with fibrosis 90
Necrosis 52
N-P-C, elastosis 50
N-P-C, infiltrate 176

images. In both cases the k-means algorithm was run with k equal
to 150, 500 and 1000, to generate the respective codebooks.

Fig. 5 shows the block-based and DCT-based codebooks of size
500, where the visual codewords extracted from the histopathol-
A. Cruz-Roa et al. / Artificial Intel

est set. Three different block representations were evaluated: SIFT,
lock-based and DCT, and three different codebook sizes: 150, 500
nd 1000. The performance measures reported in this work are pre-
ision and recall to evaluate the detection rate of positive examples,
ince the class imbalance may  produce trivial classifiers with high
ccuracy that do not recognize any positive example.

. Histology image data sets used in this study

Histology is a fundamental area of biology that studies the
natomy of cells and tissues at the microscopic level in both plants
nd animals. The main tool for histology is the microscope (light or
lectron) that is used to examine thin tissue sections. Histology and
istopathology2 images are of great importance for medicine. They
re a fundamental asset to determine the normality of a particular
iological structure or to diagnose diseases like cancer. Histology
ourses are designed to train physicians in order to learn different
issue appearances, which vary according to the structure, function
nd cell organization in different organs of the body. These charac-
eristics are usually highlighted with the help of different types of
tains. Histology images are used both for fundamental biological
esearch and for clinical decision making.

In this study, two different data sets that reflect both kind of
pplications are used. The basal-cell carcinoma data set, which will
e denoted as the histopathology data set,  is constituted by skin

mages (pathological or normal) stained with hematoxylin–eosin
HE). This data set was annotated by an expert identifying the pres-
nce of both normal and abnormal biological structures inside each
mage. One important characteristic of this data set is that, gener-
lly, these concepts correspond to small regions in the whole image,
owever, annotations are assigned to whole images and not to
egions, making the task of automatic annotation even more chal-
enging. On the other hand the fundamental tissues data set, which
s denoted as the histology data set,  is constituted by images of nor-

al  tissues colored with different stains (HE, periodic acid-Schiff
PAS), immunohistochemistry (IHC), Masson’s trichrome, etc.) and
ifferent magnifications (10×, 20× and 40×). Images in this data
et were also globally annotated by an expert with the type of fun-
amental tissue (connective, epithelial, muscular and nervous) that
redominates in the image.

The challenges possed by each data set are different. In the
istopathology data set the visual appearance of concepts is related
ith small biological structures that exhibit high variability, which

s caused by the presence of pathological tissues associated with
 skin cancer. The histology data set presents a high inter-tissue
isual appearance variability caused by the different microscopy
agnifications and stains used. In both data sets the visual appear-

nce of tissues and biological structures changes according with
ype of cut of the biological sample (e.g. muscle fibers look like
ounded cells in transverse cut whereas that same structure looks
ike elongated cells in oblique cut).

.1. Basal-cell carcinoma data set

This data set has been previously used in an unrelated clinical
tudy to diagnose a special skin cancer known as basal-cell carci-
oma. Basal-cell carcinoma is the most common skin disease in
hite populations and its incidence is growing worldwide [57].
t has different risk factors and its development is mainly due
o ultraviolet radiation exposure. Pathologists confirm whether
r not this disease is present after a biopsied tissue is evaluated
nder microscope. In this evaluation, physicians aim to recognize

2 Analysis of pathological tissues.
N-P-C, pilosebaceous a. 60
Sanguineous vessel 122

some characteristic patterns or complex mixes of patterns. This
process is called differential diagnosis and it is mainly achieved
by visual analysis. In [58], the structural patterns that character-
ize the basal-cell carcinoma are described and correspond to 11
different complex patterns. The database is composed of 1502
images globally annotated by experts. Each label corresponds to
a histopathology concept which may  be found in a basal-cell carci-
noma image. An image may  have one or several labels, i.e., different
concepts may  be recognized within the same image and the other
way around. Fig. 3 shows a sample of images from four differ-
ent concept classes in the data set and Table 1 shows the image
distribution per class.

6.2. Fundamental tissues data set

This data set comprises images from different organs that
are representative of the four fundamental tissues. The data set
includes 2828 images annotated with a global description of the
tissue type. The data set composition is as follows: 484 connective
tissue images, 804 epithelial tissue images, 514 muscular tissue
images, and 1026 nervous tissue images. The images show the four
tissues in different stains (HE, Masson’s trichrome, PAS, IHC, etc.)
and at different magnifications and cuts. Fig. 4 shows two  sam-
ples for each kind of fundamental tissues and Table 2 shows data
distribution by concept.

7. Results

7.1. Histology and histopathology codebooks

Different codebooks were built for the two  data sets using the
process described in the previous subsections. Specifically, the
three different feature extraction strategies combined with three
different codebook sizes generated nine different codebooks per
data set. For the histology data set a sample of 1000 images was
randomly selected to generate a set of 1,536,000 blocks, which was
used as input to the k-means clustering algorithm to build the code-
book. The same process was applied to the histopathology data set
starting from a sample of 1,280,000 blocks extracted from 1000
Table 2
Image distribution by fundamental tissue in the histology data set.

Concept #Images

Connective 484
Epithelial 804
Muscular 514
Nervous 1026

lomenie
Highlight
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Fig. 3. Sample images from the histopathology data set for basal-cell carcinoma diagnosis exhibiting different normal and abnormal patterns.

Fig. 4. Sample images for the four fundamental tissues in the histology data set.

Fig. 5. Comparison of visual words in the codebooks of size 500 based on blocks (top-left) and DCT (top-right) from histopathology data set. In both codebooks the visual words
are  sorted, in descending order, by their frequency in the whole collection. Each codebook captures different visual patterns including variation in nuclei size, luminance,
stain  concentration and texture (bottom).
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ig. 6. The frequency of visual words against their rank for 1000-size codebook bas

gy collection were sorted by frequency in descending order.
or the block-based codebooks, the visual representation of
odewords is generated by averaging the raw blocks in the clus-
er of the corresponding codeword. In the case of DCT-based
odebooks, the visual representation is generated by calcu-

ating the inverse DCT of the centroid of the corresponding
luster.

In the block-based codebook we can appreciate detailed pat-
erns associated with nuclei of different sizes, orientations and

ig. 7. Mutual information distribution for muscular (top-left) and nervous (top-right) con
ight) in the histopathology data set. In all the cases, codewords are ranked according to t
 blocks, SIFT and DCT. Left, histopathology data set, and, right, histology data set.

luminance levels. In the DCT-based codebook the most frequent
patterns correspond to color features related with the different con-
centrations of stain, followed by texture related patterns. Different
color tones are associated with the cytoplasm (pink levels) and dif-
fuse or more general patterns of nuclei (purple levels) according

with hematoxylin–eosin stain. This behavior is also observed in the
histology data set, the main difference is that this data set has a
richer variety of color, which is a direct consequence of the higher
number of stains present in it.

cepts in the histology data set, and cystic change (bottom-left) and necrosis (bottom-
heir mutual information value against the respective concept.
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Fig. 8. 100 visual words selected by mRMR  method for both data sets, histopathology data set (left) and histology data set (right).

Fig. 9. Biclustering analysis of the histology data set using the 100 most discriminant DCT visual codewords. Rows correspond to images and columns to visual codewords.
Biclusters appear as bright-red areas, which indicate that a set of related images share a set of related codewords. Three example biclusters are highlighted: G1  and G2
(mainly  epithelial tissue images) and G3 (mainly nervous tissue images). The corresponding codewords are shown as well. (For interpretation of the references to color in
this  figure legend, the reader is referred to the web  version of the article.)
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Fig. 10. Biclustering analysis of the histopathology data set using the 100 most discriminant DCT visual codewords. Rows correspond to images and columns to visual
codewords. Biclusters appear as bright-red areas, which indicate that a set of related images share a set of related codewords. Two example biclusters are highlighted:
G1  (mainly images with eccrine glands,  sanguineous vessel, lesion with fibrosis and pilosebaceous annexa annotations, all of them normal) and G2 (images with pathological
concepts cystic change and N-P-C infiltrate, and a normal concept, sanguineous vessels). The corresponding codewords are shown as well. (For interpretation of the references
to  color in this figure legend, the reader is referred to the web  version of the article.)
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Regarding the codeword frequency distribution of the different
odebooks, we want to determine whether the distribution fol-
ows the Zipf’s law, which all the natural languages are known
o satisfy. Zipf’s law states that the frequency of any word is
nversely proportional to its rank in a frequency table. Fig. 6
hows rank-vs-frequency log–log plots for both data sets and
he three types of block representation in a 1000-size codebook.
f the Zipf’s law is satisfied the plot for each codebook should
e a straight line. The central part of all the plots clearly fol-

ows this behavior, however the frequency of the least frequent
odewords plunges. This behavior has been previously observed
n non-medical image databases and it has been related to the
act that these codewords may  be associated with noise and
rtifacts [59].

In the particular case of histology and histopathology images,
igh-frequency visual codewords can be associated with homoge-
eous regions, which are usually associated with the background
r with tissues with low cell density, such as the stroma. These
isual codewords are the analogous of stop words (such as prepo-
itions, articles, connectives, etc.) in natural languages, which have

 high frequency but contribute very less to the meaning. Like-
ise those visual words with lower frequencies falling abruptly
n the plots of Fig. 6 are associated with patterns that are rare
n the collection and may  be related to noise/artifacts in the
mages or produced by the local minima of the k-means clustering
lgorithm.
7.2. Visual words related to semantic concepts

As discussed in Section 4.1,  MI  measures the association
between concepts and visual words. MI  was  calculated between
each visual codeword and each concept in both data sets. Different
codebook sizes and different block representations were tested. In
all the cases, codewords from the codebook with size 1000 exhib-
ited higher MI  values. This is (strongly) related to the fact that
codewords have a higher specificity in larger codebooks. However,
this does not mean that always a larger codebook is better [10]. The
remaining results in this section were obtained with the 1000-size
codebook. Fig. 7 shows the codeword MI  distribution for four differ-
ent classes, two per data set. As it can be seen, DCT-based codebooks
exhibit higher MI  values. This behavior is repeated through almost
all the concepts in both data sets. One exception is the cystic change
class, in the histopathology data set, where the top 300 MI  values
correspond to codewords using the block representation. The good
performance of DCT representation is related to the fact that it can
capture both texture and color information. Cystic change is a con-
dition associated with the presence of basal-cell carcinoma, which
manifests with a high density of large and dark nuclei. This seems
to be better captured by the raw block representation.
The mRMR feature selection give us a subset of visual codewords
with minimum redundancy and maximum relevance, which jointly
are able to better discriminate the different conceptual classes in
the data set. It was applied to the different codebooks correspond-
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Fig. 11. Automatic detection of concept-related regions in images. Top images: original images from the histology data set (left) and histopathology data set (right). Bottom
i al cla
i 4.3.
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mages:  image blocks corresponding to visual codewords related with the conceptu
dentification is automatically performed using the procedure described in Section 

ng to the different representations. Fig. 8 illustrates the results with
wo subsets of 100 visual words each obtained with mRMR from
oth data sets using block-based representation. These subsets con-
ain visual words that are characteristic of the different conceptual
lasses and that, collectively, can discriminate them.

To appreciate the difference between codewords and how they
re able to discriminate the conceptual classes, the codewords
ere further classified according to their conditional probability
(Cj|wi), the probability that an image containing the codeword
i belongs to the class Cj. A word is assigned to the class it bet-

er predicts, i.e., maxjP(Cj|wi). Table 3 shows the result for the
lock-based discriminative codewords for the histology data set.

n general, the codewords have a high conditional probability that
mplies that they are highly related to the corresponding classes.
he subsets of visual codewordsassociated to each class clearly rep-
esent the visual features that are distinctive of each conceptual
lass. For instance, visual codewords associated with muscular tis-
ue present the different appearances of muscular fibers, whereas
isual codewords associated to epithelial tissue present inter-cell
ontact points, which are characteristic of this type of tissue where
ells are closely packed.

Table 4 shows the results for DCT-based visual codewords. In
ontrast with the results for block-based representation, these
isual codewords do not codify texture information, but color infor-
ation. The reason is that different stains are usually employed
ith different tissues, and each type of stain has a distinctive color.

or example, skin images, which mainly correspond to epithelial
issue, are typically stained with hematoxylin–eosin that produces

istinctive pink and purple tones. Connective tissue has a scarcer
resence of nuclei and cells that causes low stain concentration.
his is captured by visual codewords with brighter colors. Another
mportant difference between the subsets of discriminative visual
ss of the images are highlighted: muscular tissue (left) and cystic change (right). The

codewords of both representations is that the DCT-based subset
exhibits a more balanced distribution of discriminative codewords
per class, as well as higher conditional probabilities. This means
that this representation better captures the class differences and
this is in fact corroborated in the next section, where it produces
the best results in the annotation task. However, this does not mean
that the DCT representation must be chosen over the block-based
one in all the cases, on the contrary, they can be used in conjunction
since they complementarily capture different aspects of the visual
content.

Tables 5 and 6 show the two  discriminative subsets obtained by
mRMR  using block and DCT-based representation respectively. The
tables show the results for three representative conceptual classes:
cystic change,  eccrine glands and NPC- Infiltrate. Again, DCT represen-
tation exhibits a higher discriminative power than the block-based
representation. Discrimination in this data set is definitely more
challenging than in the histology data set. Notwithstanding, the
codewords are able to capture some of the distinctive visual fea-
tures of some conceptual classes. For instance, visual codewords
linked to cystic change, a condition associated to the presence of
basal-cell cancer, capture its distinctive agglomerative presence of
nuclei and the particular dark-purple tint.

7.3. Biclustering analysis of semantic groups

The biclustering analysis provides an additional mechanism to
detect interactions between image subsets and codewords subsets.
It was  applied to each data set using the subset of 100 visual words

found by mRMR.  The data matrix was preprocessed calculating the
logarithm of the frequency values to emphasize the differences
between low and high values. Fig. 9 shows the result for the his-
tology data set using the DCT representation. Biclusters appear as
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Table 3
Block-based visual codewords with highest conditional probabilities for each concept in histology data set. We can observe in each row the concept, followed by number of
visual  codewords selected with high conditional probability from the codebook, the range of class conditional probability values, and finally the first highest visual codewords.

Concept # P(Cj |wi)min P(Cj |wi)max Visual words

Connective 3 0.25 0.5

Epithelial 21 0.3314 0.5698

Muscular 18 0.3254 1

Nervous 58 0.3501 1

Table 4
DCT-based visual codewords with highest conditional probabilities for each concept in histology data set. We can observe in each row the concept, followed by number of
visual  codewords selected with high conditional probability from the codebook, the range of class conditional probability values, and finally the first highest visual codewords.

Concept # P(Cj |wi)min P(Cj |wi)max Visual words

Connective 19 0.3491 0.8631

Epithelial 31 0.4646 0.9711

Muscular 24 0.3706 0.9396

Nervous 26 0.3447 0.9396

Table 5
Blocks-based visual words with highest conditional probabilities for each concept in histopathology data set. We can observe in each row the concept, followed by number of
visual  codewords selected with high conditional probability from the codebook, the range of class conditional probability values, and finally the first highest visual codewords.

Concept # P(Cj |wi)min P(Cj |wi)max Visual words

Cystic change 26 0.1360 0.4
Eccrine glands 3 0.1068 0.3497
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NPC  - Infiltrate 52 0.1215 0.3207

right-red areas, which indicate that a set of related images share a
et of related codewords. Brighter colors indicates a high frequency
f these codewords in the images of the subset that can be detected.
s an example, three different biclusters are highlighted show-
ng the associated images (rows) and visual codewords (columns).
roups G1 and G2 correspond to epithelial images with two  dif-

erent types of stain, and group G2 mainly includes nervous tissue
mages.

able 6
CT-based visual words with highest conditional probabilities for each concept in histop
isual  codewords selected with high conditional probability from the codebook, the range 

Concept # P(Cj |wi)min P(Cj |wi)max Visu

Cystic change 14 0.1656 0.5493

Eccrine glands 9 0.1032 0.5493

NPC - Infiltrate 31 0.1131 0.3317
Fig. 10 shows the biclustering of the histopathology data set
using the 100 most discriminant DCT codewords. Two  groups are
highlighted G1 (blue) and G2 (red) with their corresponding visual
words. The group G1 is mainly constituted by images with normal

concepts such as eccrine glands,  sanguineous vessel, lesion with fibro-
sis and pilosebaceous annexa which are characterized by the visual
words with bright colors ranging from pink to white. On the other
hand G2 is mainly composed of images exhibiting pathological con-

athology data set. We can observe in each row the concept, followed by number of
of class conditional probability values, and finally the first highest visual codewords.

al words
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Table  7
Automatic annotation performance for both data sets: histopathology data set and histology data set. The average of precision, recall and f-measure on the test data sets are
reported for texture features (Gabor-G, Zernike-Z and Tamura-T) and different combinations of block representations (blocks-B, SIFT-S and DCT-D) and codebook sizes for
BOF  representation. B + S + D corresponds to a BOF representation combining the three types of block representation.

Texture BOF-150 BOF-500 BOF-1000

G Z T  B S D B S D B S D B + S + D

Histopathology data set
Precision 0.14 0.00 0.28 0.32 0.33 0.44 0.44 0.36 0.56 0.40 0.40 0.59 0.70
Recall 0.09 0.00 0.03 0.14 0.18 0.28 0.19 0.13 0.23 0.16 0.11 0.23 0.25
F-measure 0.10 0.00 0.06 0.19 0.22 0.34 0.25 0.18 0.32 0.22 0.17 0.32 0.30
Histology data set
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Precision 0.62 0.48 0.63 0.60 0.52 0.84
Recall 0.30 0.30 0.36 0.61 0.27 0.83
F-measure 0.37 0.34 0.42 0.59 0.33 0.83

epts such as cystic change and N-P-C infiltrate, as well as a normal
oncept, sanguineous vessel. Images in group G2 are related to a sub-
et of visual codewords that mixes dark and light tones. The dark
ones are mainly related to with high nucleus density, which is an
ndicator of tumor presence in images with cystic change and N-P-C
nfiltrate, whereas brighter colors are related to the absence of stain
n holes like glands or sanguineous vessels.

.4. Identification of visual patterns on images

Fig. 11 shows the application of the region identification strat-
gy shown in Section 4.3. Original images are shown at the top: an
mage from the histology data set exhibiting muscular tissue (left)
nd one image from the pathology data set exhibiting cystic change
right). The image blocks codified by visual codewords associated to
he corresponding concepts were highlighted and the other image
locks were darkened. The result is shown on the bottom images. In
he image with muscular tissue the highlighted region corresponds
o a region that has an important presence of muscle fibers. In the
mage annotated with cystic change, the highlighted region exhibits

 high profusion of cell nuclei, which is an important characteristic
f this condition.

The results in this section illustrated the application of the
roposed visual mining method to two different histology image
ollections. In both cases, the method was able to find relevant and
eaningful visual patterns with a strong relationship with high-

evel concepts. The method combines different representation and
nalysis tools. However, the main contribution of the proposed
pproach does not relies on the individual methods used, but on
he overall focus on the analysis of the image collection as a whole,
ather than analysis of individual images.

.5. Automatic annotation performance

The annotation strategy was applied to both data sets. Differ-
nt classifiers were trained for each class in each one of the data
ets. The performance of each classifier was independently evalu-
ted using the test images. The average precision and recall per
lass are reported in Table 7. The baseline is given by standard
exture features (Gabor, Zernike and Tamura) calculated for the
hole image. In all the cases, the BOF representation outperforms

he baseline. Overall DCT representation exhibited the best per-
ormance among the individual features, followed by raw blocks,
nd leaving SIFT representation at the last place. SIFT features have
een reported to produce good results in other type of images (e.g.
atural scenes), but in the case of histology images the results are
uite poor. The success of DCT representation is explained by the

act that it simultaneously captures both color and texture informa-
ion, two important visual features in histology images. In general,
he largest codebook produces the best results among the different
epresentations in both data sets. However, the block representa-
0.68 0.52 0.89 0.74 0.49 0.91 0.92
0.65 0.31 0.87 0.66 0.36 0.88 0.88
0.66 0.37 0.88 0.69 0.40 0.89 0.90

tion reaches the top performance in the histopathology data set
with a codebook of size 500. The annotation of the histopathology
data set is clearly harder than the annotation of the histology data
set. This is due to the fact that histopathology images involve more
conceptual classes, some of them with very few samples, and some
with complex visual structure that, probably, is not appropriately
captured by the three representation strategies used. Additionally,
a representation scheme combining the three types of BOF code-
books was tested. In this case, each image is represented by the
concatenation of the three histograms. This strategy in fact pro-
duced better results in both data sets. In histopathology data set
the improvement was  11% in precision and 2% in recall. In the his-
tology data set the improvement was  more discrete, 1% in precision
and f-measure. The better performance exhibited by the combined
BOF strategy in one of the data sets suggests the presence of com-
plex visual patterns that involves different aspects of the visual
appearance (color, texture, etc.). In conclusion, the BOF  represen-
tation is a good alternative for histology image representation for
automatic annotation tasks. This corroborates the main hypothesis
in this work, that the local, distributed nature of BOF representa-
tion is able to capture the distinctive visual patterns in histology
images.

8. Conclusions

The paper proposed a strategy to automatically extract visual
patterns from a histology image collection. The foundation of the
method is a BOF representation that builds a codebook which gath-
ers the building blocks that explain the visual content of the image
collection. A state-of-the-art feature selection process is applied to
find a set of discriminative codewords. The codewords are related
to high-level concepts individually, using conditional probabilities,
and collectively, using biclustering.

The method was evaluated in two histology image data sets.
Histology images are particularly difficult to analyze because of
their high variability and complex visual structure. The method
was able to successfully find visual patterns that could be related
to high-level concepts. The experimental results also showed that
the BOF representation is a valuable alternative for histology image
representation.

The main contribution of the paper does not relies on the indi-
vidual methods by themselves, but on the overall perspective that
focuses on the analysis of the image collection as a whole. This
novel perspective allows to use methods, such as biclustering, that
traditionally have not been applied to the image analysis prob-
lem. This perspective does not replace traditional biomedical image

analysis methods, but complement them. For instance, the method
for automatically detecting concept-related regions in images, can
extend a conventional annotation method by equipping it with an
explanatory capability.
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This is a first explorative work with encouraging results. It
nswers one important question related to the feasibility of per-
orming visual pattern mining in histopathology image collections
sing a BOF representation. However, the results pose new ques-
ions which are the focus of our current and future work, including:
xploration of new representation alternatives which take into
ccount structural and multiscale information in order to capture
iological and magnification variability, application to other type
f biomedical images, use of other data analysis methods as latent
emantic analysis, and data fusion from different sources.
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