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a  b  s  t  r  a  c  t

The  histological  assessment  of  human  tissue  has  emerged  as  the  key  challenge  for  detection  and  treatment
of cancer.  A  plethora  of  different  data  sources  ranging  from  tissue  microarray  data  to  gene  expression,
proteomics  or metabolomics  data  provide  a detailed  overview  of  the health  status  of  a  patient.  Medical
doctors  need  to assess  these  information  sources  and they  rely  on data  driven  automatic  analysis  tools.
Methods for  classification,  grouping  and  segmentation  of  heterogeneous  data  sources  as  well as  regres-
eywords:
omputational pathology
achine learning
edical imaging

urvival statistics

sion of  noisy  dependencies  and  estimation  of  survival  probabilities  enter  the  processing  workflow  of a
pathology  diagnosis  system  at various  stages.  This paper  reports  on  state-of-the-art  of the  design  and
effectiveness  of computational  pathology  workflows  and  it discusses  future  research  directions  in this
emergent  field  of  medical  informatics  and  diagnostic  machine  learning.
ancer research
hole slide imaging
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. Computational pathology: the systems view

Modern pathology studies of biopsy tissue encompass multi-
le stainings of histological material, genomics and proteomics
nalyses as well as comparative statistical analyses of patient
ata. Pathology lays not only a scientific foundation for clinical
edicine but also serves as a bridge between the fundamental sci-

nces in natural science to medicine and patient care. Therefore,
t can be viewed as one of the key hubs for translational research
n the health and life sciences, subsequently facilitating transla-
ional medicine. In particular, the abundance of heterogeneous data
ources with a substantial amount of randomness and noise poses
hallenging problems for statistics and machine learning. Auto-
atic processing of this wealth of data promises a standardized

nd hopefully more objective diagnosis of the disease state of a
atient than manual inspection can provide today. An automatic
omputational pathology framework also enables the medical user
o quantitatively benchmark the processing pipeline and to identify
rror sensitive processing steps which can substantially degrade
he final predictions, e.g. of survival times.

.1. Definition

Computational pathology as well as the medical discipline
athology is a wide and diverse field which encompass scientific
esearch as well as day-to-day work in medical clinics. The follow-
ng definition is an attempt for a concise and practical description
f this novel field:

Computational Pathology investigates a complete probabilistic
treatment of scientific and clinical workflows in general pathol-
ogy, i.e. it combines experimental design, statistical pattern
recognition and survival analysis within a unified framework
to answer scientific and clinical questions in pathology.

Fig. 1 depicts a schematic overview of the field and three major
arts it comprises: data generation, image analysis and medical
tatistics, which are described in detail in Sections 2–4.

. Data: tissue and ground truth

.1. Clear cell renal cell carcinoma

Throughout this review we use renal cell carcinoma (RCC) as
 disease case to design and optimize a computational pathology
ramework. We  argue that computational pathology frameworks

or other diseases require a conceptually and structurally similar
pproach as for RCC.

Renal cell carcinoma figures as one of the 10 most frequent
alignancies in the mortality statistics of Western societies [1].
 . .  .  .  . . . . .  .  . .  .  . . . .  .  . . . . .  . . .  .  . . . .  . . . .  . . . . . . .  . . .  . . . . .  . . . . . .  . . .  .  .  .  . . .  .  . . . . . .  . 529

The prognosis of renal cancer is poor since many patients suffer
already from metastases at the time of first diagnosis. The iden-
tification of biomarkers for prediction of prognosis (prognostic
marker) or response to therapy (predictive marker) is therefore
of utmost importance to improve patient prognosis [2].  Various
prognostic markers have been suggested in the past [3,4], but
estimates of conventional morphological parameters still provide
most valuable information for therapeutical decisions.

Clear cell RCC (ccRCC) emerged as the most common subtype
of renal cancer and it is composed of cells with clear cytoplasm
and typical vessel architecture. ccRCC exhibits an architecturally
diverse histological structure, with solid, alveolar and acinar pat-
terns. The carcinomas typically contain a regular network of small
thin-walled blood vessels, a diagnostically helpful characteristic of
this tumor. Most ccRCC specimen show areas with hemorrhage
or necrosis (Fig. 3d), whereas an inflammatory response is infre-
quently observed. Nuclei tend to be round and uniform with finely
granular and evenly distributed chromatin. Depending upon the
grade of malignancy, nucleoli may  be inconspicuous and small,
or large and prominent, with possibly very large nuclei or bizarre
nuclei occurring [1].

The prognosis for patients with RCC depends mainly on the
pathological stage and the grade of the tumor at the time of surgery.
Other prognostic parameters include proliferation rate of tumor
cells and different gene expression patterns. Tannapfel et al. [2]
have shown that cellular proliferation potentially serves as another
measure for predicting biological aggressiveness and, therefore,
for estimating the prognosis. Immunohistochemical assessment of
the MIB-1 (Ki-67) antigen indicates that MIB-1 immunostaining
(Fig. 3d) is an additional prognostic parameter for patient outcome.
Tissue microarrays (TMAs, cf. Section 2.2) were highly represen-
tative of proliferation index and histological grade using bladder
cancer tissue [5].

The TNM staging system specifies the local extension of the pri-
mary tumor (T), the involvement of regional lymph nodes (N), and
the presence of distant metastases (M)  as indicators of the dis-
ease state. Wild et al. [6] focus on reassessing the current TNM
staging system for RCC and conclude that outcome prediction
for RCC remains controversial. Although many parameters have
been tested for prognostic significance, only a few have achieved
general acceptance in clinical practice. An especially interesting
observation of Wild et al. [6] is that multivariate Cox proportional
hazards regression models including multiple clinical and patho-
logic covariates were more accurate in predicting patient outcome
than the TNM staging system. On one hand this finding demon-

strates the substantial difficulty of the task and on the other hand it
is a motivation for research in computational pathology to develop
robust machine learning frameworks for reliable and objective pre-
diction of disease progression.
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Fig. 1. Schematic overview of a workflow in computational pathology comprising three major parts: (i) the covariate data X is acquired via microscopy and the target data
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 is generated in labeling experiments; Y provides training and testing informatio
nalysis in terms of nuclei detection, cell segmentation or texture classification yield
ixture  of expert models are employed to investigate the clinical end point of inter
orkflow comprising all three parts.

.2. Tissue microarrays

The tissue microarray (TMA) technology significantly acceler-
ted studies seeking for associations between molecular changes
nd clinical endpoints [7].  In this technology, tissue cylinders of

 0.6 mm diameter are extracted from primary tumor material of
undreds of different patients and these cylinders are subsequently
mbedded into a recipient tissue block. Sections from such array
locks can then be used for simultaneous in situ analysis of hun-
reds or thousands of primary tumors on DNA, RNA, and protein

evel (cf. Fig. 3). These results can then be integrated with expres-
ion profile data which is expected to enhance the diagnosis and
rognosis of ccRCC [8,3,9].  The high speed of arraying, the lack of

 significant damage to donor blocks, and the regular arrangement
f arrayed specimens substantially facilitates automated analysis.

Although the production of tissue microarrays is an almost rou-
ine task for most laboratories, the evaluation of stained tissue

icroarray slides remains tedious human annotation work, which
s time consuming and prone to error. Furthermore, the significant
ntratumoral heterogeneity of RCC results in high inter-observer
ariability. The variable architecture of RCC also results in a difficult
ssessment of prognostic parameters. State of the art commer-
ial image analysis software requires extensive user interaction
o properly identify cell populations, to select regions of interest
or scoring, to optimize analysis parameters and to organize the
esulting raw data. Because of these drawbacks in current software,
athologists typically collect tissue microarray data by manually
ssigning a composite staining score for each spot – often during
ultiple microscopy sessions over a period of days. Such manual

coring can result in serious inconsistencies between data col-
ected during different microscopy sessions. Manual scoring also
ntroduces a significant bottleneck that hinders the use of tissue

icroarrays in high-throughput analysis.

.3. Analyzing pathologists

To assess the inter- and intra-observer variability of pathologists

e designed three different labeling experiments for the major

asks involved in TMA  analysis. To facilitate the labeling process for
rained pathologists we developed a software suite which allows
he user to view single TMA  spots and which provides zooming and
upervised problems and it enables validation in unsupervised settings; (ii) image
iled information about the tissue; (iii) medical statistics, i.e. survival regression and
ing data from the previous two  stages. The aim is to build a complete probabilistic

scrolling capabilities. The expert can annotate the image with vec-
torial data in SVG (support vector graphics) format and he/she can
mark cell nuclei, vessels and other biological structures. In addi-
tion each structure can be labeled with a class which is encoded
by its color. To increase usability and the adoption in hospitals
the software has been specifically designed for tablet PC so that
a pathologist can perform all operations with a pen alone in a sim-
ple and efficient manner. All experiments were conducted with the
same tablet PC employing the same conditions. Fig. 2 depicts the
graphical user interfaces of the three applications.

2.3.1. Nuclei detection
The most tedious labeling task is the detection of cell nuclei. In

this experiment two  experts on renal cell carcinoma exhaustively
labeled a quarter of each of the 9 spots from the previous exper-
iment. Overall each expert independently marked the center, the
approximate radius and the class of more than 2000 nuclei. Again
a tablet PC was used so it was possible to split up the work into
several sessions and the experts could use the machine at their con-
venience. The user detects a nucleus by marking its location and by
drawing a circular semi-transparent polygon to cover it. The final
step consists of choosing a class for the nucleus. In this setting it
was either black for atypical nuclei or red for normal ones. This
annotation work has to be repeated for each nucleus on each spot.
Fig. 4 depicts a quarter of one of the RCC TMA  spots together with
the annotation and the disagreement between experts.

The average precision (tp/(tp + fp))  of one pathologist compared
to the other is 0.92 and the average recall (tp/(tp + fn)) amounts to
0.91. These performance numbers show that even detecting nuclei
on an histological slide is by far not an easy or undisputed task.

2.3.2. Nuclei classification
The second experiment was designed to evaluate the inter and

intra pathologist variability for nuclei classification, i.e. determin-
ing if a nucleus is normal or atypical. This step crucially influences
the final outcome due to the fact that the percentage of staining
is only estimated on the subset of atypical nuclei. In the experi-

ment, 180 randomly selected nuclei are sequentially presented in
three different views of varying magnification. The query nucleus
is indicated in each view with a red cross and the area which com-
prises the next magnification is marked with a red bounding box
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practice. Research in this field should be stimulated by the hope,
ig. 2. Tablet PC labeling applications for (i) global staining estimation; (ii) nuclei
etection and (iii) nuclei classification (from top to bottom).

cf. Fig. 2). During the setup phase the user can adjust these views to
imulate his usual workflow as good as possible. During the exper-

ment the expert has to select a class for each nucleus and rate his
onfidence. Thus, he has the choice between six buttons: atypical
ertainly, atypical probably, atypical maybe, normal certainly, nor-
al  probably and normal maybe. After classifying all nuclei, which
 Imaging and Graphics 35 (2011) 515– 530

have been classified as tumor, are displayed again and the patholo-
gist has to estimate if the nucleus is stained or not. Again he has to
rate his confidence in his own  decision on a scale of three levels. To
test the intra pathologist’s variability a subset of nuclei was queried
twice but the images were flipped and rotated by 90◦ at the second
display to hamper recognition.

The results for inter-pathologist variability for the binary classi-
fication task are plotted in Fig. 5a. Out of 180 nuclei all five experts
agreed on 24 nuclei to be normal and 81 nuclei to be atypical,
respectively cancerous. For the other 75 nuclei (42%) the pathol-
ogists disagreed.

The analysis of the intra-pathologist error is shown in Fig. 5b.
The overall intra classification error is 21.2%. This means that every
fifth nucleus was  classified by an expert first as atypical and the
second time as normal or vice versa. The self-assessment of con-
fidence allows us also to analyze single pathologists. For example
Fig. 5c shows the results of a very self-confident pathologist who
is always very certain of his decisions but ends up with an error
of 30% in the replication experiment. Fig. 5d on the other hand is
the result of a very cautious expert who  is rather unsure of his
decision, but with a misclassification error of 18% he performs
significantly better than the previous one. The important lesson
learned is, that self-assessment is not a reliable information to
learn from. The intuitive notion, to use only training samples which
were classified with high confidence by domain experts is not
valid.

In defense of human pathologists it has to be mentioned that
these experiments represent the most general way  to conduct a
TMA  analysis and analogous studies in radiology report similar
results [10,11]. In practice, domain experts focus only on regions
of TMA  spots which are very well processed, which have no stain-
ing artifacts or which are not blurred. The nuclei analyzed in this
experiment were randomly sampled from the whole set of detected
nuclei to mimic  the same precondition which an algorithm would
encounter in routine work. Reducing the analysis to perfectly pro-
cessed regions would most probably decrease the intra-pathologist
error.

2.3.3. Staining estimation
The most common task in manual TMA  analysis requires to esti-

mate the staining. To this end a domain expert briefly (e.g. several
seconds) views the spot of a patients and estimates the number of
stained atypical cells without resorting to actual nuclei counting.
This procedure is iterated for each spot on a TMA-slide to get an esti-
mate for each patient in the study. It is important to note that, due
to the lack of competitive algorithms, the results of nearly all TMA
studies are based on this kind of subjective estimations. To inves-
tigate estimation consistency we presented 9 randomly selected
TMA spots to 14 trained pathologists of the University Hospital
Zurich.

The estimations of the experts varied by up to 20% as shown
in Fig. 6a. As depicted in Fig. 6b the standard deviation between
the experts grows linearly with the average estimated amount of
staining. The high variability demonstrates the subjectivity of the
estimation process. It is interesting to note that the ranking of TMA
spots according to their staining degree is much more consistent
than the direct estimation of the continuous percentage value (cf.
Fig. 7).

This uncertainty is especially critical for types of cancer for
which the clinician chooses the therapy based on the estimated
staining percentage. This result not only motivates but emphasizes
the need for more objective estimation procedures than current
that computational pathology approaches do not only automate
such estimation processes but also produce better reproducible and
more objective results than human judgment.
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Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 �m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 6. (a) Results for 4 TMA  spots from the labeling experiment conducted to investigate the inter pathologist variability for estimating nuclear staining. 14 trained pathologists
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stimated MIB-1 staining on 9 TMA  spots. The boxplots show a large disagreement
stimated percentage is plotted on the y-axis. Spot 1 for example, yields a standard
stimated staining.

.4. Expert variability in fluorescence microscopy

Complementary to immunohistochemical TMA  analysis, flu-
rescence microscopy is applied often for high-throughput
creening of molecular phenotypes. A comprehensive study evalu-
ting the performance of domain experts regarding the detection of
ymphocytes is presented by Nattkemper et al. [12]. In a best case,

 medium-skilled expert needs on average one hour for analyz-
ng a fluorescence micrograph. Each micrograph contains between
00 and 400 cells and is of size 658 × 517 pixel. Four exemplary
icrographs were blindly evaluated by five experts. To evaluate

he inter-observer variability Nattkemper et al. [12] define a gold
tandard comprising all cell positions in a micrograph that were
etected by at least two experts.

Averaged over of CD3, CD4, CD7 and CD8 the sensitivity of the
our biomedical experts is varying between 67.5% and 91.2% and

he positive predictive value (PPV) between 75% and 100%. Thus
he average detection error over all biomedical experts and micro-
raphs is approximately 17%. Although fluorescence images appear
o be easier to analyze due to their homogeneous background,

ig. 7. Comparison between ranking and continuous staining estimation of nine renal ce
rained pathologists and demonstrates the high consistency of the ranking data compared
een pathologist on spots with an averages staining of more than 10%. The absolute
tion of more than 20%. (b) The standard deviation grows linearly with the average

this high detection error indicates the difficulty of this analysis
task. These results corroborates the findings in the ccRCC detection
experiment described in Section 2.1.

2.5. Generating a gold standard

The main benefit of labeling experiments, like the ones
described before, is not to point out the high variability between
pathologists or even their inconsistencies in repeated annotations
of identical data, but to generate a gold standard. In absence of an
objective ground truth measurement process, a gold standard is
crucial for the use of statistical learning, first for learning a clas-
sifier or regressor and second for validating the statistical model.
Section 5 shows an example how the information gathered in the
experiments of Section 2.3 can be used to train a computational
pathology system.
Besides labeling application which are developed for specific
scenarios as the one described in Section 2.3 several other possi-
bilities exist to acquire data in pathology in a structured manner.
Although software for tablet PCs is the most convenient approach

ll carcinoma TMA  spots with MIB-1 staining. The experiment was conducted by 14
 to the conventional direct estimation of the percentage of stained atypical nuclei.
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Fig. 8. Labeling matrix with majority vote (top) and confidence matrix with confidence average (bottom) of five domain experts classifying 180 ccRCC nuclei into atypical
(red)  and normal (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

Fig. 9. A computational pathology framework for investigating the proliferation marker MIB-1 in clear cell renal cell carcinoma. Following the definition in Section 1.1
the  framework consists of three parts: (i) the covariate data X existing of images of TMA  spots was generated in a trial at the University Hospital Zürich. Extensive labeling
experiments were conducted to generate a gold standard comprising atypical cell nuclei and background samples. (ii) Image analysis consisted of learning a relational detection
forest  (RDF) and conducting mean shift clustering for nuclei detection. Subsequently, the staining of detected nuclei was  determined based on their color histograms. (iii)
Using  this system, TMA  spots of 133 RCC patients were analyzed. Finally, the subgroup of patients with high expression of the proliferation marker was compared to the
group  with low expression using the Kaplan–Meier estimator.
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ig. 10. Kaplan–Meier estimators show significantly different survival times for r
anual  estimation from the pathologist (a) (p = 0.04), the fully automatic estimation

log  rank test) for the partitioning of patients into two groups of equal size [45].

o gather information directly in the hospital it is limited by the
ow number of test subjects which can complete an experiment. To
vercome this limitation the number of labelers can be extended
ignificantly by the use of web-based technologies.

Crowd-sourcing services like Amazon Mechanical Turk can be
sed to gather large numbers of labels at a low cost. Applications

n pathology suffer from the main problem, that the labelers are all
on-experts. While crowd-sourcing works well for task based on
atural images [13], it poses considerable problems in pathology
here for example the decision if a nucleus is normal or atyp-

cal is based on complicated criteria [14] which require medical
raining and knowledge. Likewise the recognition of some super-
ellular morphological structures requires years of training and
upervision. Nevertheless crowd-sourcing could be useful in simple
etection tasks like finding nuclei in histological slides. For the task
f image segmentation, Warfield et al. [15] present an expectation
aximization algorithm to estimate a gold standard based on the

nnotations of multiple experts and demonstrate its application in
adiology.

.6. Multiple expert learning

In classical supervised learning, a set of training data
(xi, yi)}i=1,...,n is available which consists of objects xi and their
orresponding labels yi. The task is to predict the label y for a new
est object x. This approach is valid as long as the target variable

 = {y1, . . .,  yn} denotes the ground truth of the application. If this
ondition is met, Y and X = {x1, . . .,  xn} can be used for classifier
earning and evaluation.

Unfortunately, for a large number of real word application
round truth is either not available or very expensive to acquire.
n practice, as a last resort, one would ask several domain experts
or their opinion about each object xi in question to generate a gold
tandard as described in Section 2.5.  Depending on the difficulty of
he task and the experience of the experts this questioning often
esults in an ambiguous labeling due to disagreement between

xperts. In pathology, very challenging scenarios, like assessing the
alignancy of cells, induce not only high inter-expert variability,

ut also the intra expert disagreement is quite large (cf. Section 2.3
nd Fig. 8). Moreover, restricting the dataset to the subset of con-
ell carcinoma patients with high and low proliferating tumors. Compared to the
 the algorithm and (b) compares favorable (p = 0.01) in terms of survival differences

sistently labeled samples results in loss of the majority of data in
these scenarios. Consequently, such a data acquisition procedure
poses a fundamental problem for supervised learning. Especially
in computational pathology there is clearly a need for novel algo-
rithms to address the labeling problem and to provide methods to
validate models under such circumstances.

More formally, each yi is replaced by a D dimensional vector
ȳi = {y1

i
, . . . , yD

i
}, where yd

i
represents the i th label of domain expert

d. To this end one is interested in learning a classifier �(X, Ȳ)  from
the design matrix X and the labeling matrix Ȳ . To date it is an open
research question, how such classifier �(X, Ȳ)  should be formu-
lated.

Recently, Smyth et al. and Raykar et al. [16,17] presented
promising results based on expectation maximization where the
hidden ground truth is estimated in turn with the confidence in
the experts. Also along this lines Whitehill et al. [18] introduced
a probabilistic model to simultaneously infer the label of images,
the expertise of each labeler, and the difficulty of each image. An
application for diabetes especially for detecting hard exudates in
eye fundus images was published by Kauppi et al. [19]. Although a
number of theoretical results exist [20–22],  empirical evidence is
still lacking to establish that these approaches are able to improve
over simple majority voting [23,24] in real world applications.

A further, promising line of research investigates the question if
such a classifier �(X, Ȳ)  can be learned in an on-line fashion, espe-
cially when the new labels come from a different domain expert. An
affirmative answer would show a high impact in domains where
specific models can be trained for years by a large number of
experts, e.g. medical decision support.

In summary, extending supervised learning to handle domain
expert variability is an exciting challenge and promises direct
impact on applications not only in pathology but in a variety of
computer vision tasks where generating a gold standard poses a
highly non trivial challenge.

2.7. Public datasets with labeling information
The availability of public datasets with labeling information is
crucial for the advance of an empirical science. Although a com-
prehensive archive like the UCI machine learning repository [25]
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oes not exist for computational pathology, there are a number of
atasets and initiatives which disseminate various kinds of data.

.7.1. Immunohistochemistry
The most comprehensive database for antibodies and human

issue is by far the Human Protein Atlas [26,27]. Comprising spots
rom tissue micro arrays of 45 normal human tissue types, it con-
ains anywhere from 0–6 images for each protein in each tissue
ype. The images are roughly 3000 × 3000 pixels in size, with
ach pixel approximately representing a 0.5 × 0.5 �m region on the
icroscopy slide.
A segmentation benchmark for various tissue types in bioimag-

ng was compiled by Manjunath et al. [28], including 58
istopathological H&E stained images of breast cancer. The dataset
rovides labels from a single expert for the tasks of segmentation
nd cell counting. Finally, Maree et al. [29] presented an approach
ased on shared randomized vocabularies to search in such tissue

mage databases.

.7.2. Cytology
Automation in cytology is the oldest and most advanced branch

n the field of image processing in pathology. Reason therefore
re that digital imaging is rather straightforward and that sin-
le cells on a homogeneous background are more easily detected
nd segmented than in tissue. As a result, commercial solutions
re available since decades. Nevertheless especially the classifica-
ion of detected and segmented nuclei still poses large difficulties
or computational approaches. Lézoray and Cardot [30] published
0 color microscopic images from serous cytology with hand seg-
entation labels. For bronchial cytology Meurie et al. [31] provide

ight color microscopic images. Ground truth information for three
lasses (nucleus, cytoplasm, and background pixels) is also avail-
ble for each image. Pixels have a label specifying their classes
2: nucleus, 1: cytoplasm, 0: background). A dataset of 3900 cells
as been extracted from microscopical image (serous cytology) by
ézoray et al. [32]. This database has been classified into 18 cellular
ategories by experts.

.7.3. Fluorescence microscopy
A hand-segmented set of 97 fluorescence microscopy images

ith a total of 4009 cells has been published by Coelho et al. [33];
aree et al. [34] presented 93 pairs of images corresponding to N-

nd C-terminal green fluorescent protein fusions of cDNAs. For flu-
rescence microscopy, the simulation of cell population images is
n interesting addition to validation with manual labels of domain
xperts. Nattkemper et al. [12] and Lehmussola et al. [12] present
imulation frameworks for synthetically generated cell population
mages. The advantage of these techniques is the possibility to con-
rol parameters like cell density, illumination and the probability
f cells clustering together. Lehmussola et al. [35] supports also the
imulation of various cell textures and different error sources. The
bvious disadvantage are (i) that the model can only simulate what
t encodes and therefore can not represent the whole variability of
iological cell images and (ii) that these methods can only simulate
ell cultures without morphological structure. The later disadvan-
age also prevents their use in tissue analysis. Although the thought
f simulated tissue images in light microscopy is appealing, cur-
ently no methods exist which could even remotely achieve that
oal.

. Imaging: from classical image processing to statistical
attern recognition
In recent years, a shift from rule based expert system towards
earned statistical models could be observed in medical infor-

ation systems. The substantial influence that machine learning
 Imaging and Graphics 35 (2011) 515– 530 523

had on the computer vision community is also reflecting more
and more on medical imaging in general and histopathology in
particular. Classifiers for object detection and texture description
in conjunction with various types of Markov random fields are
continuously replacing traditional watershed based segmentation
approaches and handcrafted rule-sets. Just recently, Monaco et al.
[36] successfully demonstrated the use of pairwise Markov mod-
els for high-throughput detection of prostate cancer in histological
sections. An excellent review of state-of-the-art histopathological
image analysis methodology was  compiled by Gurcan et al. [37].

As with most cutting edge technologies, commercial imaging
solutions lag behind in development but the same trend is evi-
dent. Rojo et al. [38] review commercial solutions for quantitative
immunohistochemistry in the pathology daily practice.

Despite the general trend towards probabilistic models, very
classical approaches like mathematical morphology [39] are still
used with great success. Recently, Lézoray and Charrier [40] pre-
sented a framework for segmentation based on morphological
clustering of bivariate color histograms and we  [41] devised an
iterative morphological algorithm for nuclei segmentation. Besides
common computer vision tasks like object detection, segmentation
and recognition, histopathological imaging poses domain specific
problems such as estimating staining of nuclei conglomerates [42]
and differentiation nuclei by their shape [43].

3.1. Preprocessing vs. algorithmic invariance

Brightfield microscopic imaging often produces large differ-
ences of illumination within single slides or TMA  spots. These
variations are caused by the varying thickness of the slide or
by imperfect staining. Such problems can be overcome either by
preprocessing the image data or by designing and integrating
invariance into the algorithmic processing to compensate for these
variations.

Inconsistencies in the preparation of histology slides render it
difficult to perform a quantitative analysis on their results. A nor-
malization approach based on optical density and SVD projection
was proposed by Macenko et al. [44] for overcoming some of the
known inconsistencies in the staining process. Slides which were
processed or stored under very different conditions are projected
into a common, normalized space to enable improved quantitative
analysis.

Preprocessing and normalization methods usually not only
reduce noise induced differences between samples but often also
eliminate the biological signal of interest. As an alternative to such
an irreparable information loss during data acquisition, algorithms
with illumination invariance or with compensation of staining
artifacts are designed which are robust to these uncontrollable
experimental variations.

Relational detection forests [45] provide one possibility to over-
come this problem of information loss. Especially designed for
detection of cell nuclei in histological slides, they are based on the
concept of randomized trees [46]. The features, which are selected
for this framework center around the idea that relation between
features are more robust than thresholds on single features. A sim-
ilar idea was  applied by Geman et al. [47] to gene chip analysis
where similar problems arise, due to the background noise of dif-
ferent labs. Contrary to absolute values, relations between DNA
expressions are rather robust to preparation artifacts.

Object detection is commonly solved by training a classifier on
patches centered at the objects of interest [48], e.g., the cell nuclei in
medical image processing of histological slides. When considering

only the relation between rectangles within these patches, such
data preprocessing results in illumination invariant features which
produce the same response for high and low contrast patches as
long as the shape of the object is preserved. It has to be noted,
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hat such illumination invariant features fail for inverted images
ue to the directionality of the relation. In general, illumination

nvariance speeds up the whole analysis process because neither
mage normalization nor histogram equalization are required.

The feature base proposed in [45] is defined as follows: The coor-
inates of two rectangles R1 and R2 are sampled uniformly within

 predefined window size w:

i = {cx1, cy1, cx2, cy2}, ci∼U(x|0, w) (1)

or each rectangle the intensities of the underlying gray scale image
re summed up and normalized by the area of the rectangle. The
eature f(s, R1, R2) evaluates to a boolean value by comparing these
uantities:

 (s, R1, R2) =

⎧⎨
⎩

1 if
∑

i|xi ∈ R1

xi

n1
<
∑

i|xi ∈ R2

xi

n2

0 otherwise

(2)

here xi is the gray value intensity of pixel i of sample s = {x1, x2, . . .,
n} and n1, n2 denote the number of samples in R1, R2, respectively.
rom a general point of view this definition is similar to gener-
lized Haar features but there exist two main differences: (i) the
uantity of interest is the boolean relation between the rectangles
nd not the continuous difference between them and hence (ii) it
s superfluous to learn a threshold on the difference to binarize the
eature.

For example, a window size of 65 × 65 pixels was chosen in
he validation experiments. Sampling two corners (x1, y1, x2, y2)
f each of the two rectangles and taking into account their flip-
ing invariance, results in ((644)/4)

2 ≈ 2 × 1013 possible features.
utting this number into perspective, the restriction of the detec-
or to windows of size 24 × 24 leads to ∼6.9 × 109 features which
ignificantly exceeds the 45,396 Haar features from classical object
etection approaches [48].

For such huge feature spaces it is currently not possible
o exhaustively evaluate all features while training a classifier.
pproaches like AdaBoost [49] which yield very good results for up

o hundreds of thousands of features are not applicable any more.
hese problems can be overcome by employing randomized algo-
ithms [45,50] where features are sampled randomly for learning
lassifiers on these random projections.

.2. Inter-active and online learning for clinical application

Day-to-day clinical application of computational pathology
lgorithms requires adaptivity to a large variety of scenarios. Not
nly are staining protocols and slide scanners constantly updated
nd changed but common algorithms like the quantification of pro-
iferation factors have to work robustly on various tissue types. The
etection of multiple objects like nuclei in noisy images without an
xplicit model still amounts to one of the most challenging tasks
n computer vision. Methods which can be applied in an plug-and-
lay manner are still not available to date.

Fuchs and Buhmann [51] present an inter-active ensemble
earning algorithm based on randomized trees, which can be
mployed to infer an object detector in an inter-active fashion.
n addition this learning method can cope with high dimensional
eature spaces in an efficient manner and in contrast to classical
pproaches, subspaces are not split based on thresholds but by
earning relations between features.

Incorporating the knowledge of domain experts into the process
f learning statistical models poses one of the main challenges in

achine learning [52] and computer vision. Data analysis applica-

ions in pathology share properties of online and active learning
hich can be termed inter-active learning. The domain expert

nterferes with the learning process by correcting falsely classi-
 Imaging and Graphics 35 (2011) 515– 530

fied samples. Algorithm 1 sketches an overview of the inter-active
learning process.

In recent years online learning has been of major interest to a
large variety of scientific fields. From the viewpoint of machine
learning, Blum [53] summarizes a comprehensive overview of
existing methods and open challenges. In computer vision online
boosting has been successfully applied to car detection [54], video
surveillance [55] and visual tracking [56]. One of the first inter-
active frameworks was  developed by Raman et al. [57] and applied
to pedestrian detection.

Ensemble methods like boosting [49] and random forests
[58,46] celebrated success in a large variety of tasks in statistical
learning but in most cases they are only applied offline. Lately,
online ensemble learning for boosting and bagging was investi-
gated by Oza [59] and Fern and Givan [60]. The online random forest
as proposed by Elgawi [61] incrementally adopts new features.
Updating decision trees with new samples was  described by Utgoff
[62,63] and extended by Kalles and Morris [64] and Pfahringer
et al. [65]. Update schemes for pools of experts like the WINNOW
and Weighted Majority Algorithm were introduced by Littlestone
[66,67] and successfully employed since then.

In many, not only medical domains, accurate and robust object
detection specifies a crucial step in data analysis pipelines. In
pathology for example, the detection of cell nuclei on histolog-
ical slides serves as the basis for a larger number of tasks such
as immunohistochemical staining estimation and morphological
grading. Results of medical interest such as survival prediction are
sensitively influenced by the accuracy of the object detection algo-
rithm. The diagnosis of the pathologist in turn leads to different
treatment strategies and hence directly affects the patient. For most
of these medical procedures the ground truth is not known (see Sec-
tion 2) and for most problems biomedical science lacks orthogonal
methods which could verify a considered hypothesis. Therefore,
the subjective opinion of a medical doctor is the only gold standard
available for training such decision support systems.

Algorithm 1. Schematic workflow of an inter-active ensemble
learning framework. The domain expert interacts with the algo-
rithm to produce a classifier (object detector) which satisfies the
conditions based on the experts domain knowledge.

Data: Unlabeled InstancesU = {u , . . . , u }1 n
1 %(e.g. ima ge) Input : Domain Expert  E

Output: Ensemble Classifier  C

2 whil e (expert is unsatisfied with cu rrent result) do
3 classify all samples u  ;i
4 whil e (expert  corrects falsely predicted sample

u with labell  ) doi i
5 update weights of the base classifiers
6 learn new base classifiers
7 end
8 end
9 return  C

In such scenarios the subjective influence of a single human
can be mitigated by combining the opinions of a larger number
of experts. In practice consolidating expert judgments is a cumber-
some and expensive process and often additional experts are not
available at a given time. To overcome these problems online learn-
ing algorithms are capable of incorporating additional knowledge,

so-called side-information, when it becomes available.

In an ideal clinical setting, a specialized algorithm for cell nuclei
detection should be available for each subtype of cancer. By using
and correcting the algorithm several domain experts as its users
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ontinuously train and update the method. Thereby, the combined
nowledge of a large number of experts and repeated training over

 longer period of time yields more accurate and more robust clas-
ifiers than batch learning techniques.

The described setting differs from the conventional views of
nline learning and active learning insofar that new samples are
either chosen at random nor proposed for labeling by the algo-
ithm itself. In addition, the adversary is not considered malicious
ut it is also not completely trustworthy. The domain expert reacts
o the classification of unlabeled data and corrects wrongly classi-
ed instances. These preconditions lead to the success or failure of
ifferent combination rules.

It has to be noted, that these kind of machine learning
pproaches are in sharp contrast to classical rule based expert
ystems [68] which are still used by a number of commercial med-
cal imaging companies. For these applications the user has to be
n image processing expert who chooses dozens of features and
hresholds by hand to create a rule set adapted to the data. Con-
rary to that strategy, in an inter-active learning framework the
ser has to be a domain expert, in our case a trained pathologists.
eature extraction and learning of statistical models is performed
y the algorithms so that the expert can concentrate on the biomed-

cal problem at hand. Inter-active learning frameworks like [54,51]
how promising results, but further research especially on long
erm learning and robustness is mandatory to estimate the reli-
bility of these methods prior to an application in clinical practice.

.3. Multispectral imaging and source separation

Multispectral imaging (MSI) [69,70] for immunohistochemically
tained tissue and brightfield microscopy seems to be a promising
echnology although a number of limitations have to be kept in

ind.
To date, double- or triple-staining of tissue samples on a sin-

le slide in brightfield (non-fluorescence) microscopy poses still a
ajor experimental challenge. Traditionally, double staining relied

n chromogens, which have been selected to provide maximum
olor contrast for observation with the unaided eye. For visually
ood color combinations, however, technically feasible choices
lways include at least one diffuse chromogen, due to the lack
f appropriate chromogen colors. Additional problems arise from
patial overlapping and from unclear mixing of colors. Currently,
hese problem are addressed by cutting serial sections and by
taining each one with a different antibody and a single colored
abel. Unfortunately, localized information on a cell-by-cell basis
s almost surely lost with this approach. In the absence of larger
tructures like glands, registration of sequential slices proved to be
ighly unreliable and often not feasible at all. Multispectral imaging
ields single-cell-level multiplexed imaging of standard immuno-
istochemistry in the same cellular compartment. This technique
ven works in the presence of a counter stain and each label can be
nmixed into separate channels without bleed-through. Image pro-
essing in pathology would profit from multispectral imaging even
n experiments with a single foreground stain, due to the possibility
o accurately separate the specific signal from the background.

Practical suggestions for immunoenzyme double staining pro-
edures for frequently encountered antibody combinations like
abbit/mouse, goat/mouse, mouse/mouse, and rabbit/rabbit are
iscussed in [70]. The suggested protocols are all suitable for a clas-
ical red-brown color combination plus blue nuclear counter stain.
lthough the red and brown chromogens do not contrast very well
isually, they both show a crisp localization and can be unmixed by

pectral imaging.

Detection and segmentation of nuclei, glands or other struc-
ures constitute a crucial processing steps in various computational
athology frameworks. With the use of supervised machine learn-
 Imaging and Graphics 35 (2011) 515– 530 525

ing techniques these tasks are often performed by trained classifiers
which assign labels to single pixels or small image patches. Natu-
rally one can ask if MSI  could improve this classification process and
if the additional spectral bands contain additional information? A
study conducted by Boucheron et al. [71] set out to answer this
question in the scope of routine clinical histopathology imagery.
They compared MSI  stacks with RGB imagery with the use of several
classifier ranging from linear discriminant analysis (LDA) to support
vector machines (SVM). For H&E slide the results indicate perfor-
mance differences of less than 1% using multispectral imagery as
opposed to preprocessed RGB imagery. Using only single image
bands for classification showed that the single best multispectral
band (in the red portion of the spectrum) resulted in a performance
increase of 0.57%, compared to the performance of the single best
RGB band (red). Principal components analysis (PCA) of the multi-
spectral imagery indicated only two significant image bands, which
is not surprising given the presence of two  stains. These results
[71] indicate that MSI  provides minimal additional spectral infor-
mation than would standard RGB imagery for routine H&E stained
histopathology.

Although the results of this study are convincing it has to be
noted that only slides with two  channels were analyzed. For triple
and quadruple staining as described in [70] MSI  could still encode
additional information which should lead to a higher classification
performance. Similar conclusions are drawn in [72], stating that
MSI  has significant potential to improve segmentation and clas-
sification accuracy either by incorporation of features computed
across multiple wavelengths or by the addition of spectral unmix-
ing algorithms.

Complementary to supervised learning as described before,
Rabinovich et al. [73] proposed unsupervised blind source sepa-
ration for extracting the contributions of various histological stains
to the overall spectral composition throughout a tissue sample. As
a preprocessing step all images of the multispectral stack were
registered to each other considering affine transformations. Sub-
sequently it was  shown that non-negative matrix factorization
(NMF) [74] and independent component analysis (ICA) [75] com-
pare favorable to color deconvolution [76]. Along the same lines
Begelman et al. [77] advocate principal component analysis (PCA)
and blind source separation (BSS) to decompose hyperspectral
images into spectrally homogeneous compounds.

In the domain of fluorescence imaging Zimmermann [78]
assembled an overview of several source separation methods. The
main difficulty stems from the significant overlap of the emission
spectra even with the use of fluorescent dyes. To this end, New-
berg et al. [79] have conducted a study on more than 3500 images
from the Human Protein Atlas [26,27]. They conclude that subcel-
lular locations can be determined with an accuracy of 87.5% by the
use of support vector machines and random forests [58,46]. Due to
the spread of Type-2 diabetes there is growing interest in pancre-
atic islet segmentation and cell counting of  ̨ and ˇ-cells [80]. An
approach which is based on the strategies described in Sections 3.1
and 3.2 is described in [81].

It is an appealing idea to apply source separation techniques
not only to multispectral imaging but also to standard RGB images.
This approach could be useful for a global staining estimation of the
separate channels or as a preprocessing step for training a classifier.
Unfortunately, antigen–antibody reactions are not stoichiometric.
Hence the intensity/darkness of a stain does not necessarily corre-
late with the amount of histochemical reaction products. With the
exception of Feulgen staining also most histological stains are not
stoichiometric. van der Loos [70] also state that the brown DAB

reaction product is not a true absorber of light, but a scatterer
of light, and has a very broad, featureless spectrum. This optical
behavior implies that DAB does not follow the Beer–Lambert law,
which describes the linear relationship between the concentration
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f a compound and its absorbance, or optical density. As a con-
equence, darkly stained DAB has a different spectral shape than
ightly stained DAB. Therefore attempting to quantify DAB inten-
ity using source separation techniques is not advisable. Contrary
o this observation, employing a non-linear convolution algorithm
s preprocessing for a linear classifier, e.g. for segmentation could
e of benefit.

.4. Software engineering aspects

One of the earliest approaches for high performance computing
n pathology used image matching algorithms based on decision
rees to retrieve images from a database [82]. The approach was
pplied to Gleason grading in prostate cancer. Web-based data
anagement frameworks for TMAs like [83] facilitate not only stor-

ge of image data but also storage of experimental and production
arameters throughout the TMA  workflow.

A crucial demand on software engineering is the ability to scale
utomated analysis to multiple spots on a TMA  slide and even
ultiple whole microscopy slides. Besides cloud computing one

ossibility to achieve that goal is grid computing. Foran et al. [84]
ave demonstrated the feasibility of such a system by using the
aGrid infrastructure [85] for grid-enabled deployment of an auto-
ated cancer tissue segmentation algorithm for TMAs.
A comprehensive list of open source and public domain software

or image analysis in pathology is available at www.computational-
athology.org.

. Statistics: survival analysis and machine learning in
edical statistics

The main thrust of research in computational pathology is
o build fully probabilistic models of the complete processing
ipelines for histological and medical data. In medical research this
early always also includes time to event data, where the event

s either overall survival, specific survival, event free survival or
ecurrence free survival of patients. Statistics and machine learning
ithin this scope is defined as survival analysis.

.1. Censoring and descriptive statistics

Most difficulties in survival statistics arise from the fact, that
early all clinical datasets contain patients with censored survival
imes. The most common form of censoring is right censored data
hich means that the death of the patient is not observed during

he runtime of the study or that the patient withdrew from the
tudy, e.g. because he moved to another location.

The nonparametric Kaplan–Meier estimator [86] is frequently
sed to infer the survival function from right censored data. This
rocedure requires first the survival times to be ordered from the
mallest to the largest such that t1 ≤ t2 ≤ t3 ≤ . . . ≤ tn, where tj is the

 th largest unique survival time. The Kaplan–Meier estimate of the
urvival function is then obtained as

ˆ(t) =
∏

j:t(j)≤t

(
1 − dj

rj

)
(3)

here rj is the number of individuals at risk just before tj, and dj is

he number of individuals who die at time tj.

To measure the goodness of separation between two or more
roups, the log-rank test (Mantel–Haenszel test) [87] is employed
o assesses the null hypothesis that there is no difference in the
 Imaging and Graphics 35 (2011) 515– 530

survival experience of the individuals in the different groups. The
test statistic of the log-rank test (LRT) is �2 distributed:

�̂2 =

(
m∑

i=1

(d1i − ê1i)

)2

m∑
i=1

v̂1i

(4)

where d1i is the number of deaths in the first group at ti and
e1i = r1j(di/ri) where di is the total number of deaths at time t(i),
rj is the total number of individuals at risk at this time, and r1i
the number of individuals at risk in the first group. Fig. 10 depicts
Kaplan–Meier plots for two subgroups each and the LRT p-values.
The associated data is described in detail in Section 5.

4.2. Survival analysis

Survival analysis as a branch of statistics is not restricted to
medicine but analyzes time to failure or event data and is also appli-
cable to biology, engineering, economics, etc. Particularly in the
context of medical statistics, it is a powerful tool for understand-
ing the effect of patient features on survival patterns within specific
groups [88]. A parametric approach to such an analysis involves the
estimation of parameters of a probability density function which
models time.

In general the distribution of a random variable T (representing
time) is defined over the interval [0, ∞ ). Furthermore, a standard
survival function

S(t) = 1 − p(T ≤ t0) = 1 −
∫ t0

0

p(t) dt (5)

is specified based on the cumulative distribution over T. S(t) models
the probability of an individual surviving up to time t0. The hazard
function h(t), the instantaneous rate of failure at time t, is defined
as

h(t) = lim
�t→0

P(t < T ≤ t + �t|T > t)
�t

= p(T = t)
S(t)

. (6)

The model is further extended by considering the effect of
covariates X on time via a regression component. In medical statis-
tics, such effects are modeled by Cox’s most popular proportionality
hazards model [89]:

h(t|x) = h0(t) exp(xT ˇ). (7)

h0(t) is the baseline hazard function, i.e., the chance of instant death
given survival till time t, x is the vector of covariates and  ̌ are the
regression coefficients.

4.3. A Bayesian view of survival regression

Bayesian methods are gaining more and more popularity in
machine learning in general and in medical statistics in special.
A big advantage in survival analysis is the possibility to investi-
gate the posterior distribution of a model. Especially in regularized
survival regression models [57] it is possible to derive a poste-
rior distribution also on zero coefficients, i.e. for biomarkers which
hence were not included in the model.

A common choice of distribution for modeling time is the
Weibull distribution ( )

p(t|˛w, �w) = ˛w

1
�w

t˛w−1 exp − 1
�w

t˛w , (8)

where ˛w and �w are the shape and scale parameters, respectively.
The Weibull distribution models a variety of survival functions

http://www.computational-pathology.org
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nd hazard rates in a flexible way and it is also the only distri-
ution which captures both the accelerated time model and the
roportionality hazards model [90]. Based on the definition (8) and
ssuming right-censored data [88], the likelihood assumes the form

(
{

ti

}N

i=0
|˛w, �w) =

N∏
i=1

(
˛w

�w
t˛w−1
i

)ıi
exp
(

− 1
�w

t˛w
i

)
, (9)

here ıi = 0 when the i th observation is censored and 1 otherwise.
urthermore, to model the effect of covariates x on the distribution
ver time, Cox’s proportional hazards model can be applied with
ovariates having a multiplicative effect on the hazard function.

.4. Higher order interactions

A reoccurring question in biomedical research projects and
specially in TMA  analysis studies interactions of markers and their
nfluence on the target. Two modern approaches within the scope
f computational pathology try to solve this question from a fre-
uentist [91] and a Bayesian [57] point of view.

The most frequent approach for modeling higher order interac-
ions (like pairs or triplets of features, etc.) instead of modeling just
he main effects (individual features) are polynomial expansions
f features. For example the vector x = {x1, x2, x3} can be expanded
p to order 2 as x

′ = {x1, x2, x3, x1 : x2, x1 : x3, x2 : x3, x1 : x2 : x3}.
i : xj denotes the concatenation of the feature vectors xi, xj. Addi-
ional flexibility is built into this model by including a random effect
n � in the following manner:

 = xt
 ̌ + �, where �∼N(0, �2). (10)

To include the covariate effect the likelihood of Eq. (9) is modi-
ed as follows:

({ti}N
i=0|xi, ˛w, �w) =

N∏
i=1

[
˛w

�w
t˛w−1
i

exp(�i)

]ıi

· ˙exp

(
− 1

�w
t˛w
i

exp(�i)

)

These kind of models can be seen as enhancement of generalized
inear models [92] and are called random-intercept models. For a
ully Bayesian treatment of the model, suitable priors have to be
efined for the parameters of the model, namely ˛w , �w , � and ˇ.
seful priors for this model are described in [57].

.5. Mixtures of survival experts

Frequently, sub-groups of patients specified by characteristic
urvival times have to be identified together with the effects of
ovariates within each sub-group. Such information might hint at
he disease mechanisms. Statistically this grouping is represented
y a mixture model or specifically by a mixture of survival experts.

To this end, Rosen and Tanner [93] define a finite mixture-
f-experts model by maximizing the partial likelihood for the
egression coefficients and by using some heuristics to resolve the
umber of experts in the model. More recently, Ando et al. [94]
uggest a maximum likelihood approach to infer the parameters
f the model and they use Akaike’s information criterion (AIC) to
etermine the number of mixture components.

A Bayesian version of the mixture model [95] analyzes the model
ith respect to time but does not capture the effect of covariates.
n the other hand the work by Ibrahim et al. [96] performs vari-
ble selection based on the covariates but ignores the clustering
spect of the modeling. Similarly, Paserman [97] defines an infinite

ixture model but does not include a mixture of experts, hence

mplicitly assuming that all the covariates are generated by the
ame distribution with a common shape parameter for the Weibull
istribution.
 Imaging and Graphics 35 (2011) 515– 530 527

Raman et al. [57] unify the various important elements of this
analysis into a Bayesian mixture-of-experts (MOE) framework to
model survival time, while capturing the effect of covariates and
also dealing with an unknown number of mixing components. To
infer the number of experts a Dirichlet process prior on the mixing
proportions is applied, which solves the issue of determining the
number of mixture components beforehand [98]. Due to the lack
of fixed-length sufficient statistics, the Weibull distribution is not
part of the exponential family of distributions and hence the regres-
sion component, introduced via the proportionality hazards model,
is non-standard. Furthermore, the framework of Raman et al. [57]
includes sparsity constraints to the regression coefficients in order
to determine the key explanatory factors (biomarkers) for each
mixture component. Sparseness is achieved by utilizing a Bayesian
version of the Group-Lasso [99,100] which is a sparse constraint for
grouped coefficients [101].

5. The computational pathology pipeline: a holistic view

This chapter describes a genuine computational pathology
project, which has been designed following the principles described
in the previous sections. It is an ongoing project in kidney can-
cer research conducted at the University Hospital Zürich and ETH
Zürich. Parts of it were published in [102] and [45], where also
algorithmic details of the computational approach can be found.

Fig. 9 depicts a schematic overview of the project subdivided
into the three main parts which are discussed in the following.

5.1. Data generation

The data generation process consists of acquiring images of the
TMA  spots and of annotating these images by pathologists. The
TMA  spots represent the covariates X in the statistical model and
the detection and classification labels for nuclei denote the target
variable Y.

The tissue microarray block was generated in a trial study at the
University Hospital Zürich. TMA  slides were immunohistochem-
ically stained with the MIB-1 (Ki-67) antigen and scanned on a
Nanozoomer C9600 virtual slide light microscope scanner from
HAMAMATSU. The magnification of 40 × resulted in a per pixel res-
olution of 0.23 �m.  The tissue microarray was tiled into single spots
of size 3000 × 3000 pixel, representing one patient each.

Various strategies can be devised to estimate the progression
status of cancerous tissue: (i) we could first detect cell nuclei and
then classify the detected nuclei as atypical or normal [41]; (ii) the
nucleus detection phase could be merged with the normal/atypical
classification to simultaneously train a sliding window detector for
atypical nuclei only. To this end samples of atypical nuclei were
collected using the labeling experiments described in Section 2.3.
Voronoi sampling [45] was  used to generate a set of negative back-
ground patches which are spatially well distributed in the training
images. Hence a Voronoi tessellation is created based on the loca-
tions of the positive samples and background patches are sampled
at the vertices of the Voronoi diagram. In contrast to uniform
rejection sampling, using a tessellation has the advantage that the
negative samples are concentrated on the area of tissue close to the
nuclei and few samples are spent on the homogeneous background.
(The algorithm should not be confused with Lloyd’s algorithm [103]
which is also known as Voronoi iteration.) The result of the data
generation process is a labeled set of image patches of size 65 × 65
pixel.
5.2. Image analysis

The image analysis part of the pipeline consists of learning a
relational detection forest [45] based on the samples extracted in
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he previous step. The feature basis described in Section 3.1 is used
o guarantee illumination invariance.

The strong class imbalance in the training set is accounted for
y randomly subsampling the background class for each tree of the
nsemble. The model parameters are adjusted by optimizing the
ut of bag (OOB) error [46] and they consist of the number of trees,
he maximum tree depth and the number of features sampled at
ach node in a tree.

For prediction each pixel of a TMA  spot is classified by the rela-
ion detection forest. This analysis step results in a probability map
here the gray value at each position encodes the probability of

eing the location of a atypical nucleus. Finally, weighted mean
hift clustering is conducted with a circular box kernel based on
he average radius r of the nuclei in the training set. This process
ields the final coordinates of the detected atypical nuclei.

A simple color model is learned to differentiate a stained nucleus
rom a non-stained nucleus. Located on the labeled nuclei, color
istograms are calculated for both classes using all pixels within a
adius r of a considered location. A test nucleus is then classified
ased on the distance to the centroid histograms of both classes.
he final staining estimation per patient is achieved by calculating
he percentage of stained atypical nuclei.

.3. Survival statistics

The only objective endpoint in the majority of TMA  studies is
he prediction of patient survival, i.e., of the number of months a
atient survived after disease diagnosis. The experiments described

n Section 2.3 document the large disagreement between patholo-
ists for the estimation of staining. Hence, fitting an algorithm to
he estimates of a single pathologist or to a consensus voting of a
ommittee of pathologist is not desirable.

To this end the proposed computational pathology framework
s validated against the right censored clinical survival data of the
33 ccRCC patients. In addition these results were compared to the
stimations of an expert pathologist specialized on renal cell car-
inoma. He analyzed all spots in an exceptional thorough manner
hich required him more than two hours. This time consuming

nnotation exceeds the standard clinical practice significantly by
 factor of 10–20 and, therefore, the results can be viewed as an
xcellent human estimate for this dataset.

Fig. 10 shows Kaplan–Meier plots of the estimated cumula-
ive survival for the pathologist and the computational pathology
ramework. The farther the survival estimates of the two  groups
re separated the better is the group estimation. Quantifying
his difference with a log-rank test shows that the proposed
ramework performs favorable (p = 0.0113) to the trained pathol-
gist (p = 0.0423) and it can differentiate between the survival
xpectancy of the two groups of patients.

.4. Framework properties

The presented computational pathology framework can be char-
cterized by the following properties: (i) Simplicity: It can be used
n a plug-and-play fashion to train object detectors in near real
ime for large variety of tasks. (ii) Novel feature basis: The intro-
uced relational features are able to capture shape information,
hey are illumination invariant and extremely fast to evaluate. (iii)
andomization: The randomized tree induction algorithm is able to
xploit the richness of the intractable large feature space and to
ake advantage of it by increasing diversity of the ensemble. (iv)

eal world applicability: The proposed algorithms perform well not
nly on renal cancer tissue but also in fluorescent imaging of pan-
reatic islets [81] and in quantifying staining in murine samples
104].
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6. Future directions

6.1. Histopathological imaging

One promising research direction in medical image analysis
points to online learning and interactive learning of computer
vision models. Histopathology covers not only a broad and hetero-
geneous field but also new biomarkers, antibodies and stainings
are developed on a daily basis. To this end, real world applications
have to quickly adapt to changing tissue types and staining modal-
ities. Domain experts should be able to train these models in an
interactive fashion to accustom novel data. For example, a classi-
fier for object detection can be trained by clicking on novel objects
or correcting for false detections.

A necessary prerequisite for research in computational pathol-
ogy proved to be the scanning of whole slides and TMAs. Huisman
et al. [105] describe a fully digital pathology slide archive which
has been assembled by high-volume tissue slide scanning. The Peta
bytes of histological data which will be available in the near future
pose also a number of software engineering challenges, includ-
ing distributed processing of whole slides and TMAs on clusters
or in the cloud, multiprocessor and multicore implementations of
analysis algorithms and facilitating real time image processing on
GPUs.

6.2. Clinical application and decision support

In today’s patient care we  observe the trend to integrate
pathological diagnoses in web based patient files. Avatar based
visualization proved to be helpful not only for medical experts
but also for a new generation of patients who  are better informed
and demand online and appropriately visualized information about
their own  disease state and treatment procedures.

Furthermore this approach can be extended for decision support
by statistical models which are able to utilize this unified view of
patients incorporating data from a large variety of clinical sources,
e.g. pathology, cytology, radiology, etc.

6.3. Pathology @ home

Real-time, in vivo cancer detection on cellular level appears
as a futuristic dream in patient care but could be a reality in a
few years. Shin et al. [106] constructed a fiber-optic fluorescence
microscope using a consumer-grade camera for in vivo cellular
imaging. The fiber-optic fluorescence microscope includes a LED
light, an objective lens, a fiber-optic bundle, and a consumer-
grade DSLR. The system was used to image an oral cancer cell
line, a human tissue specimen and the oral mucosa of a healthy
human subject in vivo. The fiber-optic microscope resolved indi-
vidual nuclei in all specimens and tissues imaged. This capability
allowed qualitative and quantitative differences between normal
and precancerous or cancerous tissues to be identified. In combi-
nation with a computational pathology framework, this technique
would enable real time classification of cancerous cells in epithelial
tissues. Such a portable and inexpensive system is especially inter-
esting for patient care in low-resource settings like the developing
world.

Constructing a microscope for mobile phones defines the future
of patient care in remote sites with centralized analysis support.
Breslauer et al. [107] built a mobile phone-mounted light micro-
scope and demonstrated its potential for clinical use by imaging
sickle and P. falciparum-infected red blood cells in brightfield and

M. tuberculosis-infected sputum samples in fluorescence with LED
excitation. In all cases the resolution exceeded the critical level that
is necessary to detect blood cell and microorganism morphology.
This concept could provide an interesting tool for disease diagnosis
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nd screening, especially in rural areas where laboratory facilities
re scarce but mobile phone infrastructure is available.

.4. Standards and exchange formats

One of the major obstacles for wide spread use of computational
athology is the absence of generally agreed upon standards and
xchange formats. This deficit not only handicaps slide process-
ng management and whole slide digital imaging [108], but it also
xtends to statistical models and analysis software. Standardized
xchange formats would support project specific combinations
f object detectors, staining estimation algorithms and medical
tatistics. It would be very much desirable if at least the research
ommunity would agree on a few simple interfaces for data and
odel exchange.

.5. Further reading

All links and references presented in this review together with
oftware, statistical models and a blog about the topic are available
rom www.computational-pathology.org.
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