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Abstract

Introduction: The radiological reading room is undergoing a paradigm shift to a symbiosis of 

computer science and radiology using artificial intelligence integrated with machine and deep 

learning with radiomics to better define tissue characteristics. The goal is to use integrated deep 

learning and radiomics with radiological parameters to produce a personalized diagnosis for a 

patient.

Areas covered: This review provides an overview of historical and current deep learning and 

radiomics methods in the context of precision medicine in radiology. A literature search for ‘Deep 

Learning’, ‘Radiomics’, ‘Machine learning’, ‘Artificial Intelligence’, ‘Convolutional Neural 

Network’, ‘Generative Adversarial Network’, ‘Autoencoders’, Deep Belief Networks”, 

Reinforcement Learning”, and ‘Multiparametric MRI’ was performed in PubMed, ArXiv, Scopus, 

CVPR, SPIE, IEEE Xplore, and NIPS to identify articles of interest.

Expert opinion: In conclusion, both deep learning and radiomics are two rapidly advancing 

technologies that will unite in the future to produce a single unified framework for clinical 

decision support with a potential to completely revolutionize the field of precision medicine.
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1. Introduction

Radiological imaging methods are used to interrogate different regions of body for detection 

and characterization of potential abnormal pathology and aid diagnosis. These radiological 

imaging procedures can produce large volumes of complex digital imaging data from 

regional or whole-body scanning which can make “reading and interpreting” the image data 

very challenging. Recent developments in computer science will lead to a paradigm shift in 

radiology using advanced computational methods in the field of medicine [1–7]. These 

computational methods include advanced machine and deep learning algorithms [8,9] 

coupled with quantitative measures of image texture, called radiomics [10–13].

By incorporating these computational methods, future radiology reading rooms will form a 

unique collaboration between computer scientists and radiologists (human experts). This 

collaboration will enable algorithms to assist radiologists in various aspects of radiological 

decision making, such as, identification, segmentation, characterization of different tissue 

types, and prioritizing diagnosis. For example, large imaging data sets, such as brain, chest, 

abdomen, pelvis and breast could be quickly triaged into different groups by using deep 

learning methods, where the potential ‘worse’ cases are looked at first by a radiologist, 

leading to increased efficacy and confidence of the radiologist. Other data mining methods 

using machine learning can be further developed to integrate radiological parameters with 

other information extracted from different sources such as pathology and clinical history 

using electronic health records [14–17]. The integration of these data types, will give 

clinicians a more complete picture of the state of health in the patient, help with a more 

accurate diagnosis, and improved understanding of the complex nature of the disease. When 

the data is taken together, personalized treatment planning and precision disease prognosis 

can be achieved as shown in Figure 1. The goal of computational radiology is to extract all 

the qualitive and quantitative information within images and develop potential non-invasive 

biomarkers for detection and characterization of a disease in patients. Deep learning and 

radiomics are emerging areas in computational radiology that fulfil this goal.

Deep learning is a renewed area of research that deals with development of deep artificial 

neural networks that were inspired by biological neural networks in our brain [4,6,18–42]. In 

radiology, deep neural networks, like biological neural networks, attempt to learn an 

intrinsic representation of the radiological data, for example, where in MRI, fluid is dark on 

a T1-weighted sequence and bright on T2-weighted sequence. This information can train a 

deep learning algorithm to recognize patterns and perform accurate segmentations. Deep 

learning has produced excellent results in a variety of fields, such as. object detection and 

recognition, text generation, music composition, and autonomous driving to name a few 

[1,2,43–49]. Deep learning has become an active area of research in the field of computer 

assisted clinical and radiological decision support in the recent years, with some excellent 

initial results and recently surveyed [8,9,46].

Radiomics are textural mathematical constructs that capture the spatial appearance of the 

tissue of interest (shape and texture) on different types of images using texture [10–13,50–

53]. The texture features have been correlated to tissue biology in certain applications and 

recently reviewed [54]. Traditionally, radiomic features provide information about the grey-
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scale patterns, interpixel relationships, shape, and spectral properties within regions of 

interest on radiological images [50–53,55,56].

One of the major hurdles for successful translation of radiomics or deep learning algorithms 

from research to clinical practice in precision medicine is their interpretability. For example, 

in radiomics, if an entropy (first order, which is a measure of heterogeneity/disorder) or grey 

level cooccurrence matrix (GLCM) entropy (A higher order measure of heterogeneity/

disorder based on the grey level relationship to each other in certain neighbourhoods) feature 

is measured as 6.5 and if there is no control or normal tissue entropy values for these 

metrics, it would be difficult to attach a biological meaning attached to that entropy value. 

The same value of the radiomic metric could mean that the underlying tissue is 

homogeneous or heterogeneous depending on the number of bins chosen, size of the ROI, 

and other pre-processing steps such as image filtering, which have an impact on the values 

(see below).

Similarly, since deep learning is essentially a ‘blackbox’, when the method segments and 

predicts the underlying tissue as either malignant or benign, deep learning does not provide 

an explanation behind its prediction. The physician’s interpretability would be based on the 

algorithm and whether, they would ‘trust’ the results, which is currently the major challenge.

This article reviews the techniques of radiomics and deep learning, outlining the current 

state of-the-art algorithms for application to precision medicine, their limitations, and 

provides an outlook on the potential future of these two techniques in precision medicine.

2. Deep learning

Deep learning techniques have gained renewed popularity in recent years with the 

development of advanced optimization techniques and an increase in computational 

efficiency. Deep learning has begun to play an integral part in many different aspects of 

modern society and has produced seemly excellent results in a variety of fields, such as, 

object detection and recognition, text generation, music composition, and autonomous 

driving to name a few [2,43–46,48,49]. Advanced deep learning will have an impact in 

precision medicine in the near future using computer assisted clinical and radiological 

decision support. These methods will outline new ways for training, testing, and validation 

of clinical tests for better integration of medicine information and provide a new 

visualization tool for diagnostics. We will focus on an overview and the current state of the 

art in deep learning methods.

Historically, deep learning methods are a subset of machine learning algorithms in computer 

science. Briefly, the goal of machine learning is to learn features and transform these 

features into class labels for segmentation or classification. Machine learning algorithms are 

either supervised or unsupervised and linear or non-linear in nature [57]. The major 

difference between deep learning and conventional machine learning algorithms lies in the 

fact that deep learning algorithms do not require an intermediate feature extraction or 

engineering step in order to learn the relationship between the input x (e.g. grey level 
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intensity values on radiological images) and the corresponding labels y (e.g. the tissue type 

corresponding to these intensity values).

Conceptually, machine learning algorithms model the relationship between the input x and 

labels y using a probability distribution, p over x and y, learning algorithms, in general, can 

be broadly classified into generative and discriminative methods depending on p [57,58]. 

Generative models learn the joint probability distribution (x, y) in order to estimate the 

posterior probability p(y∣x). Some examples of generative deep learning algorithms include 

generative adversarial network, variational autoencoder and deep belief networks [40,59]. In 

contrast, discriminative models estimate the posterior probability p(y∣x) directly without 

calculating the intermediate joint probability distribution. In other words, discriminative 

models learn a direct mapping between x and y. Convolutional neural networks, stacked 

autoencoders, and multilayer perceptron are typical examples of discriminative deep 

learning algorithms [45,46]. If the problem requires us to only predict the labels y from x, 

then discriminative models maybe a better choice, since they are not concerned with 

modelling of (x, y) and more effectively model parameters to P(y∣x), thereby producing a 

classifier with higher accuracy. However, discriminative models may not be used if the input, 

x consists of a large number of missing values or data points and would require data 

imputation. In addition, generative models allow for the generation of new synthetic data 

and model different relationships within the input data. For example, if the goal is to classify 

a lesion as benign or malignant, discriminative deep learning maybe a better choice. 

Whereas, if our goal is to identify intrinsic characteristics of a lesion and model their 

distribution across the patient population, a better choice of algorithm maybe one of the 

generative deep learning algorithms. The commonly used discriminative and generative deep 

learning algorithms for application to precision medicine are discussed below. Figure 2 

provides a brief history and a timeline of major advances in the field of deep learning.

2.1. Types of deep neural networks

2.1.1. Discriminative deep learning models

2.1.1.1. Convolutional neural networks.: Convolutional neural networks (CNN) are the 

most popular neural network architectures applied to computer vision applications [27]. This 

is probably due to the access to available software, such as, Tensorflow, pyTorch, Matlab 

Deep Learning, Keras, and others. The architecture of CNNs is inspired by the hierarchical 

organization of visual cortex [2,29]. CNNs use local connections and weights to analyze the 

2D structure of the input data (e.g. images), followed by pooling operations (e.g. max 

pooling) to obtain spatial invariant features. In addition, CNNs have significantly fewer 

trainable parameters than the corresponding fully connected networks of the same size. 

Typical CNN architectures are illustrated in Figure 3.

The conventional CNN architecture has been modified and extended to encompass different 

architectures to improve the state-of-the-art results for applications in computer vision and 

other domains. Some of the most notable architectures for the task of classification or object 

recognition include Alexnet [2], Resnet [6], Densenet [7], and Inception [3]. The comparison 

of different deep learning architectures based on their performance, amount of single pass 

operations, and the number of network parameters has been detailed in [60]. The current 
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state-of-the art CNN techniques for semantic (coarse to fine) segmentation include Segnet 

[4], U-net [5], and their variants.

2.1.1.2. Stacked autoencoders.: Autoencoders are a class of unsupervised neural 

networks that learn intrinsic representations of their input data by attempting to reconstruct it 

[33]. As a result, autoencoders transform the input data into a compact or a low dimensional 

representation of its intrinsic dimensionality. For supervised learning tasks, Autoencoders 

are especially useful when the input data has a large number of unlabelled examples 

compared to labelled examples or the data is sparse in regard to training [61,62]. A typical 

architecture for autoencoders is illustrated in Figure 4.

Some of the typical applications of autoencoders include representation learning (e.g. Sparse 

Autoencoders), classification (e.g. Stacked Sparse Autoencoders), and image denoising (e.g. 

Stacked Denoising Autoencoders [61]). Furthermore, autoencoders have also been extended 

to develop generative neural network model known as Variational Autoencoder [39]. This is 

done by modifying the encoder such that it generates latent vectors that roughly follow a 

unit gaussian distribution. The constraint is enforced by changing the loss function to 

include both, the mean squared error between the input and the output and the Kullback-

Leibler (KL) divergence between the latent vector and unit gaussian distribution. Variational 

autoencoders have begun to find applications in unsupervised and semi-supervised feature 

extraction and segmentation [63–65].

2.1.2. Generative deep learning models

2.1.2.1. Deep belief network.: Deep Belief Networks (DBNs) are a class of generative 

deep neural networks that are composed of multiple layers of stochastic, latent variables 

[66]. Each layer of the DBN acts as a hidden layer for the previous layer and input layer for 

the subsequent layer. In addition, there are no connections between the nodes within each 

layer. Each layer of DBN can be viewed as an unsupervised network such as Restricted 

Boltzmann Machine (RBM) [34] or an Autoencoder [33], which is trained in a greedy 

unsupervised fashion utilizing the outputs from the previous layer. Figure 5 illustrates the 

architecture of a typical DBN.

2.1.2.2. Generative adversarial network.: Generative Adversarial Networks (GANs) are 

currently the most popular generative deep learning architectures [40]. GANs consists of two 

neural network architectures competing against each other in a zero-sum game framework. 

One network generates candidates (generator) while the other evaluates them 

(discriminator). The goal of the generator is to synthesize realistic instances from the input 

data distribution while the goal of the discriminator is to differentiate between the true and 

synthesized instances of the input data distribution. The training objective of the generator is 

to maximize the error rate of the discriminator, which is approximately 50% [40,67]. Once 

trained, the generator learns to map from a latent space to the input data distribution. Figure 

6 illustrates the architecture of a typical GAN. The major application of GANs has been 

image, video and speech synthesis [68–73]. In medical image analysis, GANs have been 

used in medical image synthesis, segmentation, registration, and data augmentation. A 
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detailed review of GANs and their application to medical image analysis can be found in 

[67].

2.1.3. Deep reinforcement learning—Historically, reinforcement learning (RL) is a 

multifaceted area of research where the RL algorithm attempts learning actions to optimize 

some type of action(s) in a defined state-(s) and weight any tradeoffs for most maximal 

reward(s) possible [74,75]. The main elements required for RL are a policy, reward signal, 

value function, and a model of the defined environment [75]. In depth discussion of these 

and other RL aspects are extensively examined in Sutton [75]. Reinforcement learning 

algorithms are goal-oriented algorithms that attempt to maximize a particular reward over 

many actions, where in, the RL algorithm is rewarded or penalized at each action on whether 

it takes a right or a wrong move. Finally, the action is evaluated based on its contribution to 

the final reward [76–85]. For example, finding the right combination of moves to get the 

largest amount of points and win.

Deep reinforcement learning is a rapidly growing area rapidly growing area in the field of 

reinforcement learning with groundbreaking results, such as speech recognition [86], 

playing Atari [87] and AlphaGo [88]. In deep reinforcement learning, deep learning 

algorithms are trained to identify the current state and predict the next best move (e.g. a 

CNN can be trained to capture the computer screen of a game as the current state, and then 

predict which button to press on the keyboard to maximize the final score in the game) [87].

Deep reinforcement learning algorithms have begun to find applications in landmark 

detection and treatment response prediction in the field of computational radiology [83–85]. 

In landmark detection, deep reinforcement learning is used to search for a landmark (e.g. 

pancreas) in the body, making it faster than the standard search algorithms [85]. In treatment 

response assessment, deep reinforcement learning algorithms can be trained to predict the 

effect of a drug on patient’s treatment and whether they will respond to treatment or not 

[83].

2.2. Deep neural networks – looking under the hood

One of the major hurdles for successful translation of deep learning algorithms from 

research to practice in precision medicine is their interpretability. A large number of studies 

have shown that deep neural networks can be easily fooled [89–92], which makes their 

interpretability even more important for radiological applications.

Deep neural networks are like a black box. i.e. we don’t know how the deep neural networks 

organize, integrate and interpret the imaging information. For example, when radiologists 

develop an intrinsic representation of ‘fat’ in their brain, they store it as ‘bright on T1 and 

dark on T2’. Similarly, an intrinsic representation of ‘fluid’ would be stored as ‘dark on T1 

and bright on T2’. The main question here is ‘How do deep neural networks encode the 

input intrinsic representations?’.

In the recent years, a large number of studies have attempted to open the deep learning black 

box, with excellent results, with Activation Maximization [93], Deconvolutional Network 

[94], Network Inversion [95], and Network Dissection [96] comprising the major techniques 
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developed to improve network interpretability. A detailed review of these techniques can be 

found in [97]. Here, we will provide an overview of these techniques in the following 

subsections.

2.2.1. Activation maximization—The idea behind activation maximization is to 

identify input patterns that maximize the activation of a particular neuron. By identifying the 

optimal set of input patterns for different neurons in the network, it would be possible to 

decode what these neurons represent in terms of the input space. As an example, for a 

network trained to recognize faces, the method of activation maximization would be useful 

in identifying neurons that specialize in recognizing different facial features such as nose, 

eyes, and mouth. The interpretability of the visualization of input patterns using activation 

maximization have received significant interest in the recent years leading to improved 

algorithms [98].

2.2.2. Deconvolutional network—Deconvolutional networks interprets the 

convolutional networks from the point of view of the input image, as opposed to individual 

neurons for activation maximization [94,99,100]. Deconvolutional networks highlight the 

patterns of the input image that activate individual neurons in each layer, providing a tool to 

interpret the network and identify any problems with the trained network.

2.2.3. Network inversion—The techniques of activation maximization and 

deconvolutional networks were concerned with interpreting the network from a neuronal 

perspective. On the other hand, network inversion attempts to analyze the activation pattern 

from the perspective of a layer. Network inversion, as the name suggests, attempts to 

reconstruct the input from an arbitrary layer’s activation patterns [95]. Network inversion 

provides a tool to interpret the information a specific layer would store. In recent years, 

many different methods for network inversion have been proposed such as Hoggles [101] 

and up-convolutional neural networks [102] that are capable of reconstructing inputs from 

feature spaces generated by any algorithm such as Histogram of Gradients (HoG) [103], 

Scale Invariant Feature Transform (SIFT) [104], or convolutional neural networks [27].

2.2.4. Network dissection—The techniques of activation maximization, 

deconvolutional networks, and network inversion provided tools to understand the activation 

patterns of a specific neuron or a layer. However, these methods do not provide a semantic 

interpretation of these activation patterns. Consequently, Bau et al. [96] proposed the 

technique of network dissection, which attempts to associate every neuron in the 

convolutional neural network with a semantic concept.

3. Radiomics

Radiomics has been widely applied to many different precision medicine applications across 

different organs and modalities. Recent reviews on the mathematical background and 

applications of radiomics can be found in [54] with limitations of radiomics discussed in 

[105]. The current state-of-the art techniques in radiomics deal with extraction of first and 

higher order statistical features from radiological images [50–53,55,56]. We will overview 

some of the newer advancements in the field of radiomics followed by a detailed discussion 
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on the interpretability of radiomics in the following subsections. A brief history of radiomics 

has been illustrated in Figure 7.

3.1. Multiparametric radiomics

Traditionally, radiomics was developed for extraction of features from a single modality (e.g. 

CT scans on patients with lung cancer). The field of radiomics is rapidly expanding towards 

application to a multiparametric imaging setting, where multiple different imaging 

sequences are acquired on a patient for a more complete diagnosis. As a result, novel 

multiparametric radiomic (MPRAD) methods were recently developed to integrate all the 

imaging information present within the multiparametric data set resulting in new metrics of 

radiomic features [106]. The MPRAD features were based on the extraction of inter-tissue-

signature relationships in high dimensional multiparametric imaging data, as opposed to the 

inter-voxel relationships extracted by conventional radiomic features in single images or 

regions of interest, as illustrated in Figure 8. The MPRAD allows for better tissue 

delineation between tissue types and allows for improves quantitative radiomic measures for 

diagnostic use in precision medicine.

Multiparametric radiomics on breast lesions have resulted in higher classification between 

malignant and benign breast lesions with a sensitivity and specificity of 82.5% and 80.5% 

with an AUC of 0.87 [106]. More importantly, using multiparametric radiomics, there was 

an increase of 9%-28% in the AUC over single radiomic methods. In brain patients with 

acute stroke, multiparametric radiomics were able to distinguish the perfusion-diffusion 

mismatch more completely than single parameter radiomics [106]. Figure 9 illustrates the 

use of multiparametric radiomics on both a benign and malignant lesion.

3.2. Interpretability of radiomics

Interpretability of radiomic features has been a major limitation of radiomics since its 

inception. This is partly because the radiomic features are not standardized and the difficulty 

relating to the underlying biology of the tissue of interest. For example, radiomic features 

extracted from a region of interest (ROI) are dependent on the size of the ROI and the 

number of grey levels and bins selected for image quantization as detailed in the following 

subsections.

3.2.1. Dependence on the size of ROI—Consider the first order features of entropy 

and uniformity, given by the following equations:

Entropy = − Σi = 1
B H(i)log2H(i) (1)

and

Uniformity = Σi = 1
B H(i)2 (2)

Here, H is the first order histogram with B number of bins.
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The range of values that the first order entropy feature can take varies between 0 and log2 N, 

where N is the number of voxels in the tissue. Similarly, the range of values that the 

uniformity feature can take varies between (1/N) and one. For example, consider a 5 × 5 

sized ROI. The minimum heterogeneity or maximum uniformity for this ROI occurs when 

all the voxels have the same intensity value. In this case, the value of (1) = 1 and H(i) = 0 for 

all i ∈ {2,3, …, B}. Consequently, the entropy and uniformity values for this ROI are 0 and 

1, respectively. But, the maximum heterogeneity or minimum uniformity occurs when all the 

voxels have different intensity values. In this case, the value of (i) = 1
25  for all i ∈ {1,2, …, 

B}. As a result, the entropy and uniformity value for this ROI are log2 25 = 4.64 and 0.04, 

respectively.

The dependence between the size of the ROI and radiomic features has been observed in a 

large number of studies and reviewed in [105]. There are two potential methods for 

overcoming this limitation: radiomic feature mapping and feature normalization.

Radiomic feature mapping (RFM) transforms radiological images into texture images using 

statistical kernels based on first and second order statistics [13]. The RFM computes a 

radiomic value for every voxel in the radiological image, thereby negating the effect of size 

dependence. However, computation of RFMs has a high time complexity. For second order 

GLCM features, the time complexity for computing RFM using a W × W sized sliding 

window is O(N2,G2,W2) for an N × N radiological image quantized to G gray levels. 

Recently, using deep convolutional neural networks were preliminarily successful in 

synthesizing entropy feature maps in MRI breast cancer studies [107].

The radiomic features can also be normalized to the size of the ROI. For example, the 

equation for computing first order entropy can be modified to

Entropy = −
(Σi = 1

B H(i)log2H(i))
log2 N (3)

where N represents the number of voxels in the ROI.

Recently, Shafiq-ul-Hasan et al. [108] extended this measure for feature normalization by 

voxelsize across all the features and demonstrated their technique in limited CT lung cancer 

studies [109].

In the future, these methods need to be validated across multiple modalities and organs.

4. Dependence on the image binning and gray level quantization

There is an inherent dependence between the number of gray levels or bins used for 

radiomic analysis and the corresponding radiomics features. This dependence can be seen 

from Equations (1) and (2) where the number of bins is used as an input variable for the 

computation of entropy and uniformity. Figure 10 demonstrates the dependence of entropy 
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on binning and the neighbourhood parameter used for image filtering. When there is an 

increase in binning, it leads to loss of information and image contrast.

The dependence between grey level quantization and GLCM features was evaluated by 

Shafiqul-Hasan et al. [108] for certain second order features. The authors found that the 

radiomic features had either linear, quadratic, or cubic relationship with the number of grey 

levels for the selected set of features. The authors further proposed modified equations for 

computation of different radiomic features and tested their efficacy on different phantoms. 

However, grey level quantization actually changes the information present in the radiological 

images. Apart from mathematical dependence, there is also an intrinsic dependence between 

gray level quantization and radiomic features, which has not yet been addressed in any 

study. For example, if we consider an extreme case of quantization of a radiological image to 

one gray level, we would lose all the information present in the image.

This information loss in radiological images cannot be corrected by mathematically 

modifying the radiomic formula, but by selecting an optimal number of gray levels. 

Currently, no standardized method exists for the selection of number of gray levels that 

would minimize the loss of information in the resultant quantized image. In the future, 

standardization of radiomics would only be possible by standardizing the procedure for 

selection of the optimal gray level or a range of ideal gray levels for quantization of 

radiological images for use across multiple platforms.

5. Discussion

Deep learning and radiomics methods are influencing a paradigm shift in precision 

radiology research In the recent years, deep learning methods have found applications in 

many research areas of medical image analysis, ranging from image acquisition to image 

registration, segmentation, and classification [8,9]. Radiomics has provided a new 

quantitative metric based on the texture of the gray levels in the image to assist in detection 

and characterization of different pathologies. By combining radiomics and deep learning 

together, they have the potential to completely revolutionize the field of radiology and usher 

in a new area of personalized imaging medicine [107].

The current state-of-the-art techniques in radiomics face some challenges in terms of 

interpretability, standardization, and visualization. The preprocessing step of gray level 

quantization is an active area of research in radiomics. This quantization of the image could 

potentially alter the intrinsic information present in the radiological image. These changes in 

the radiological images cannot be mathematically corrected and may produce incorrect 

results in terms of texture features. In the future, quantitative radiomic metrics need to be 

developed that are similar to signal-to-noise and contrast-tonoise ratios, which would to 

measure the information loss between the original and quantized radiological images. In 

addition, a standardized tolerance level would need to be defined to ensure correctness of 

radiomic results. Finally, there is active research in linking the texture features to the biology 

of the tissue of interest. This link to biology may be accelerated with the introduction of 

multiparametric radiomics, where multiple images with known biology properties can be 
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related directly to the texture features. Whereas, in the past, only single images could be 

used.

Recent reports have shown that deep learning methods, particularly CNN, are capable of 

capturing the textural information present in the radiological images in the initial 

convolutional layers. This textural information could be visualized using advanced 

techniques for network interpretability to better understand the meaning of different 

radiomic methods. For example, visualizing the difference in the texture feature for images 

with low versus high entropy values would be very informative for heterogeneity of a tissue. 

In addition, CNNs could potentially completely replace current methods for generating 

radiomic data from radiological images as shown by preliminary work in this direction 

[107]. Deep learning methods have shown excellent success in computer vision research 

with the development of novel architectures such as Resnet [6], Densenet [7], and Inception 

[3]. However, these architectures are optimized for application to computer vision (e.g. 

Imagenet) for red, green, and blue images and may not be optimized for application to 

medical image analysis, where, they are based in a gray level scale. The direct translation of 

these architectures to the medical domain may not produce optimal results, especially for 

multiparametric and multimodal imaging datasets. Domain knowledge about the underlying 

task could provide the essential bridge for translating these deep learning architectures for 

application to medical imaging methods. Some initial translation has been shown from 

Kaggle in the diabetic retinopathy challenge based on optical imaging [110]. There are two 

major components in a typical deep learning framework where domain knowledge could 

improve the efficacy of deep learning in medical image analysis. The first component deals 

with image pre-processing (e.g. normalization) prior to training deep neural networks. Many 

applications have demonstrated that scale standardization is essential for training and testing 

machine and deep learning algorithms [111,112].

The second component is the neural network architecture itself. A typical example of a deep 

learning architecture developed for the specific task of semantic segmentation is U-net [5].

The translation from vision to medical image analysis applications presents some unique 

challenges. For example, the segmentation or classification problem is normally formulated 

as a binary problem, where in, the heterogeneity within the normal or abnormal tissue is not 

evaluated. This problem can be potentially resolved by annotating all possible classes within 

each tissue type. However, this solution is both impractical and computationally expensive 

as it would require experts to carefully annotate each image with all possible tissue classes. 

As a result, unsupervised deep learning approaches such as Autoencoders [33], Generative 

Adversarial Networks [40], or Deep Belief Networks [66] could be applied to characterize 

the underlying tissue heterogeneity.

Deep learning methods currently face some challenges, such as, interpretability, 

optimization, and validation (in a prospective sense). There have been major advances with 

the development of algorithms that could potentially open the deep learning ‘black box’ for 

a number of deep neural networks. These techniques include Activation Maximization [93], 

Deconvolutional Network [94], Network Inversion [95], and Network Dissection [96]. The 

techniques of activation maximization and deconvolutional network deal with the network 
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interpretation from a neuronal perspective, network inversion attempts to reconstruct the 

input from the network’s point of view, and network dissection associates every neuron in 

the convolutional neural network with a semantic concept. Recently, a novel interface was 

proposed by combining the existing techniques for interpreting deep neural networks and 

treating them as fundamental and composable building blocks for such interfaces [113]. 

However, these methods are yet to be translated to clinical and radiological data for 

application to precision medicine. In the future, we will see these techniques being translated 

to understand algorithms developed for analyzing clinical and radiological data in addition 

to newer specialized techniques developed specifically for understanding such datasets. In 

addition, some deep learning models are easily fooled by introduction of adversarial patches 

[92]. Recently, newer architectures are being developed to produce deep networks resilient 

to adversarial attacks [114].

Optimization of the deep neural network architecture presents a significant challenge. The 

search space of network parameters is generally very big and maybe impractical to 

empirically evaluate the complete search space to develop the optimal neural network 

architecture for a specific task. For this purpose, newer methods are being developed to 

efficiently compute optimal neural network architectures (e.g. Adanet [115]). Adanet 

adaptively optimizes both the structure of the network and the weights for each connection. 

Furthermore, the deep networks trained with or without advanced optimization algorithms 

such as Adanet are still trained at one particular point in time with a limited sized dataset. 

The neural networks should be able to automatically update their architecture as they 

encounter more data (similar to human brain). This type of network is referred to as life-long 

learning and recently reviewed describing several different methods proposed in the 

literature for life-long learning [116]. In the future, deep learning methods for clinical 

decision support system would not just be a single neural network but a hybrid framework 

incorporating algorithms for decision support, network interpretability, network optimization 

and lifelong learning.

In conclusion, both deep learning and radiomics are two rapidly advancing technologies that 

may unite in the future to produce a single unified framework for clinical decision support 

with a potential to completely revolutionize the field of precision medicine.

Deep learning and radiomics are rapidly taking over in many areas of research and is a 

relatively new field of research, even though it uses methods developed decades ago. The 

embrace of deep learning has been in the development of economical and increased 

computational methods with early success in many different areas. However, extensive 

research is required to evaluate how the network is working at each layer and the transfer of 

the weights into the nodes. Optimization of network hyperparameters, such as, batch 

normalization, regularization, fitting parameters, etc., Similarly, for radiomics, the major 

challenge is the link to biology and function. There are several major steps that need to be 

addressed, such as. preprocessing steps such as quantization, optimal methods for data gray 

level and binning, as well as optimal neighborhood sizes for different image resolutions. 

Establishing the standards for both of these methods will require more research along with 

validation studies.
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In the next five years, we will witness deep learning and radiomic methods transform 

medical imaging and its application to personalized medicine. These techniques will evolve 

to hybrid systems based on combinations of the different networks and advanced radiomic 

methods for a more complete diagnosis.

In conclusion, as deep learning and radiomics methods mature, their use will become part of 

clinical decision support systems and can be used to rapidly mine patient data spaces and 

radiological imaging biomarkers to move medicine towards the goal of precision medicine 

for patients.
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Article highlights

• Deep Learning and Radiomics are creating a paradigm shift in radiology and 

precision medicine by developing a new area of research to be used for 

precision medicine.

• Development and identification of biological correlation to deep learning 

features and networks are needed for wide spread implementation of deep 

learning in precision medicine.

• Development and identification of biological correlation to radiomics features 

are needed for wide spread implementation of radiomics in precision 

medicine.

• Further research is needed to determine the optimal processing steps needed 

for reproducible application of deep learning to different imaging 

applications, for example, imaging modality, optimization of 

hyperparameters, network size, and type of network (CNN, SAE, etc) just to 

name a few.

• One of the major hurdles for successful translation of deep learning 

algorithms from research to practice in precision medicine is their 

interpretability to physicians.

• Prospective trials and follow up studies are needed to fully define the impact 

of deep learning and radiomics for diagnosis and precision medicine in 

patients.

Parekh and Jacobs Page 19

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2019 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Conceptual computational radiology framework for personalized radiological diagnosis and 

prognosis. There are three major components of the proposed framework – image 

segmentation, feature extraction and integrated clinical decision support model.

Parekh and Jacobs Page 20

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2019 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The timeline of major advancements in the field of deep learning.
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Figure 3. 
Illustration of convolutional neural architecture (CNN) architecture for classification of a 

radiological image for clinical diagnosis. (a) The CNN architecture shown here consists of 

two convolutional layers (each followed by a max-pooling layer), followed by two fully 

connected (dense) layers for image classification. (b) An example of a patch-based CNN 

applied to a multiparametric brain MRI dataset for segmentation of the different brain tissue 

types.
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Figure 4. 
Illustration of an autoencoder used to learn a low dimensional representation of the high 

dimensional multiparametric MRI brain dataset by attempting to reconstruct it.
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Figure 5. 
Illustration of a Deep Belief Network (DBN) with two hidden layers for segmentation of an 

example multiparametric MRI brain dataset. Each layer is pre-trained in an unsupervised 

fashion using Restricted Boltzmann Machines (RBMs) utilizing the outputs from the 

previous layer. The output from DBN segmentation on the example dataset is shown in the 

output layer.
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Figure 6. 
Illustration of the generative adversarial network (GAN) architecture. GANs consists of two 

neural network architectures competing against each other in a zero-sum game framework. 

One network generates candidates (generator) while the other evaluates them 

(discriminator). The goal of the generator is to synthesize realistic instances from the input 

data distribution while the goal of the discriminator is to differentiate between the true and 

synthesized instances of the input data distribution.
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Figure 7. 
The timeline of important advancements in the field of texture and radiomics.
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Figure 8. 
Illustration of the differences between GLCM radiomic features from conventional single 

image and multiparametric radiomics. (a). Single image radiomics features extract the inter-

pixel relationships in-plane of a radiological image whereas, (b). the multiparametric 

radiomics extract the inter-tissue-signature relationships across multiple radiological images.
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Figure 9. 
Illustration of multiparametric radiomic feature maps obtained from single and 

multiparametric radiomic analysis in a benign and malignant lesion. Top Row: Example of a 

patient with a benign lesion, where the straight yellow arrow highlights the lesion. There are 

clear differences between the single and multiparametric entropy radiomic images, where 

the multiparametric clearly demarcates the lesion. Bottom Row: Similar analysis on a patient 

with a malignant lesion (yellow arrow). Again, the multiparametric entropy map improves 

tissue delineation between the glandular and lesion tissue.
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Figure 10. 
(a). Illustration of the dependence of the entropy value from the neighborhood size used for 

image filtering and image binning on a (b). CT image (Soft tissue window). (c). The curves 

of entropy vs bins appear to follow a distinct pattern where in the entropy values vary 

linearly with the log of number of bins within a certain range and remain more or less 

constant outside that range. The value of the entropy consistently increases with the increase 

in the size of the neighborhood filter.
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