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Abstract

The increasing use of biomarkers in cancer have led to the concept of personalized medicine for 

patients. Personalized medicine provides better diagnosis and treatment options available to 

clinicians. Radiological imaging techniques provide an opportunity to deliver unique data on 

different types of tissue. However, obtaining useful information from all radiological data is 

challenging in the era of “big data”. Recent advances in computational power and the use of 

genomics have generated a new area of research termed Radiomics. Radiomics is defined as the 

high throughput extraction of quantitative imaging features or texture (radiomics) from imaging to 

decode tissue pathology and creating a high dimensional data set for feature extraction. Radiomic 

features provide information about the gray-scale patterns, inter-pixel relationships. In addition, 

shape and spectral properties can be extracted within the same regions of interest on radiological 

images. Moreover, these features can be further used to develop computational models using 

advanced machine learning algorithms that may serve as a tool for personalized diagnosis and 

treatment guidance.
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Introduction

Radiological imaging techniques are powerful noninvasive tools used for the detection, 

differentiation, and diagnosis of different tissue characteristics in patients. These imaging 
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methods include X-Ray, Computed Tomography(CT), Magnetic Resonance Imaging (MRI), 

Nuclear Medicine (NM) Positron Emission Tomography(PET) and Ultrasound(US). Each of 

these modalities creates different tissue contrast based on whether the tissue is normal or 

abnormal. These different tissue contrast mechanisms are exploited by the radiologist to 

identify patterns to reach a diagnosis. However, each of the radiological images contains 

more information content not visible to the clinician’s eye and this “hidden” information 

creates a “radiological texture” which can provide much more information about the tissue 

of interest than previously thought. Thus, Radiomics was introduced as a “new” method to 

discover and translate the metrics obtained by using texture and other analysis techniques on 

radiological images. However, Radiomics is a new application using established techniques, 

specifically, Texture, Entropy, Haralick and other features1–4. The novel aspect of Radiomics 

is the comparison of these measures to surrogate endpoints and the advent of increased 

computational power available today. The main idea behind Radiomics is that information is 

“hidden” within the radiological images can be extracted using advanced texture and shape 

analysis. From this extraction of data, a high dimensional space is created. Intuitively, 

texture is used by everyone to define objects either visually or by touch. The terms 

commonly used to describe texture are roughness, smoothness, coarseness, etc., but for 

digital data, analytical methods were needed to better “describe” the information content 

within digital objects. Therefore, texture analysis was born, in part, is based on information 

theory developed in 1948 by Claude Shannon and extended by Haralick, Galloway, and 

others that incorporated different statistical measures to include gray level matrix operations 

on the input data1–4.

Historically, one of the first applications of texture analysis was in analyzing aerial 

photographs6 then later applied to medical and other images2,7. Currently, texture feature 

analysis is used in many different areas of research, especially, with increased computational 

power and digital storage capacity8–11. Moreover, given a region of interest, shape based 

features can also be extracted along with texture analysis5.

Recently with the availability of increased computer technology to reduce the computational 

complexity into investigations of using texture and shape analysis led to the development of 

a new area of research termed Radiomics. By definition, Radiomics is the high throughput 

extraction of quantitative features from radiological images creating a high dimensional data 

set followed by data mining for potentially improved decision support12–14, however, 

Radiomics is based on texture, shape and gray level statistics within images to discern 

different relationships compared to clinicopathologic data. But, the correlation to true 

biological meaning is needed. But, through the use of Radiomic features in medical imaging, 

it may be possible to decode tissue pathology that is not normally visible to the naked eye. 

How is this possible? Tumors are spatially and temporally heterogeneous and maybe 

undersampled during medical procedures, for example, during biopsy. Therefore, the whole 

tumor is not completely characterized and this could be detrimental in determining treatment 

options. This challenge can be potentially overcome by using a Radiomics approach which 

is capable of extracting quantitative features over the whole tumor and the results can be 

compared to the tumors pathological results or other information, such as, survival14.
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This article reviews and outlines historical, mathematical, and more recent applications of 

radiomics techniques in detecting tumor characteristics and demonstrates that radiomics 

methods are promising in the near future for clinical applications. Moreover, this review will 

give a summary of the state of the art knowledge of radiomics and texture analysis in 

different cancers, and conclude with an outlook on potential future of radiomics in the era of 

“personalized medicine” cancer therapies.

Radiomics Algorithm

The framework for radiomics use in clinical settings is shown in Figure 1. The first step 

involves radiological image acquisition of MRI, CT, PET, etc., depending on the imaging 

modality used for diagnostic and/or treatment planning. Then, the second step involves 

identifying region of interest in the acquired images. This region of interest can be either 

lesion tissue or a normal tissue depending on the application. The identification and 

segmentation of the tissue of interest is accomplished manually by radiological experts or 

automated segmentation software. The third step involves extraction of radiomic features 

from the region of interest based on the texture and shape properties. This step produces a 

large number of radiomic features based on the statistical, filtering and morphological 

analysis and creates a high dimensional feature space14. Then, the “highly” informative 

features are selected based on the user defined criteria. The final step involves classification 

of the features to defined by the user, for example, distinguishing malignant tumor from 

benign tumors or survival.

Radiomic feature extraction

Radiomic feature extraction methods are based into primarily three categories consisting of 

statistical, filtering and morphological features. In this paper, we discuss the fundamental 

feature extraction methods from all the three categories, however, there are some other 

feature extraction methods such as gray level size zone matrix based features, Minkowski 

functionals, and others used in radiomics applications that will not been discussed here15,16.

Statistical texture features

Statistical texture features characterize the stochastic or random properties of the spatial 

distribution of gray levels within an image using statistical measures, such as, marginal-

probabilities (defined below). Currently, there are two levels of statistical methods used for 

Radiomics, first and higher order methods as shown in figure 2. These statistical methods 

have been applied to different imaging modalities used in several different diseases and are 

outlined below.

First order texture statistics

First order texture statistics are based on the first order histogram that describes distribution 

of voxel intensities in an image. For example, a normalized first order histogram (H) is 

computed by dividing the voxel intensities (I) in an image into B equally spaced bins and 

computing the proportion of voxels in each bin as defined by the equation.

Parekh and Jacobs Page 3

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

Entropy and uniformity are the two commonly used features computed using the histogram. 

Let H be the first order histogram with B bins, then the entropy1 and the uniformity are 

given by the following equations:

(2)

where K is a positive constant and is determined by the units of the application.

However, since we are dealing with bits of information, K =1 and the equation used in most 

digital applications is given as

(3)

and

(4)

Entropy measures the inherent randomness in the gray level intensities of an image. The 

maximum value of entropy (Log2(B)) occurs when all the gray level intensities in an image 

occur with equal probability1. On the other hand, uniformity, measures the uniformity of 

gray level intensities within an image or ROI. For example, the maximum uniformity of one 

occurs when all the pixels in an image or ROI have the same gray level intensity.

Both the first and second order statistics can give different values based on the number of 

bins and the number of bins is a critical parameter defined by the user. If the number of bins 

is selected either too small or very large, then the histogram may not be able to correctly 

represent the underlying distribution with the image or ROI. Several methods exist for 

determining the optimal number of bins without making any assumptions regarding the 

underlying data distribution17,18. However, if different sized ROIs in a study have a different 

number of bins in the first order histograms, then becomes difficult to directly compare the 

results between studies. To potentially overcome this difficulty, another approach would be 

to use the same number of bins for all ROIs. Unfortunately, this leads to an issue of 

dependence of first order statistic features on the size of ROI. For example, if we consider 

two ROIs of sizes 128 and 1024 voxels and bin the gray level intensities within these two 

ROIs into 1024 bins per R0I (as we are using the same number of bins), then the entropy 

values of data distributions with maximum randomness (each voxel has a different intensity) 
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would be equal to 7 for 128 voxel-sized and 10 for 1024 voxel-sized ROIs respectively. 

Optimal binning is a major issue for all statistical approaches, since they depend on the 

preprocessing step of image quantization. Thus, some form of feature normalization is 

required with respect to size in cases when the same number of bins is used for all the ROIs 

and with respect to the of number of bins when different numbers of bins are used for 

different ROIs. Typically, these binning issues are not addressed in many publications.

A number of first order statistical texture features have been applied to applications across 

different medical imaging modalities for characterization of several biological tissues of 

interest5,7,16,19–63,64. Table 1 summarizes the quantitative values of first order entropy for 

different organs and pathologies as reported in the literature. Depending on the organ being 

imaged and the imaging modality, the first order histograms may or may not have been the 

same across all the applications. However, as shown in Table 1, entropy values are higher in 

malignant than in corresponding benign tissue.

Higher order texture statistics

The features generated from first order statistics provide information about the distribution 

of voxel intensities in an image but they do not provide any information about the inter-

voxel relationships within the image. The inter-voxel relationships in an image can be 

quantified using several different techniques, the gray level co-occurrence matrix, gray level 

run length matrix and neighborhood gray tone difference matrix method and they are 

outlined below1–4.

Gray level co-occurrence matrix

The spatial distribution of gray level intensities within an image can be extracted by using 

the gray level co-occurrence matrix (GLCM)2. The GLCM is constructed by considering the 

relationship between voxel pairs and the frequency of each intensity pairs within an image or 

a region of interest 2. The relationship between voxel pairs is characterized by two user 

defined parameters, the distance (d) and angle (θ) and illustrated in Figure 3a using the 

parameter, θ. If the number of gray levels in the image is Ng, the number of possible voxel 

pairs would be Ng × Ng. The frequency of each voxel pair in the image or a region of interest 

is computed and stored in the NgxNg GLCM matrix. The GLCM constructed can be either 

symmetric 2 or asymmetric depending on the ordering of values in voxel pairs. 

Mathematically, the GLCM of an image of size NxxNy with Ng gray levels is given by the 

following equation2:

(5)

where (r, s), (t, v) ∈ Nx × Ny; ; I represents the image as a 

function I Nx × Ny → {1,2, …, Ng}; and |·| denotes the cardinality of a set
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The GLCM obtained from equation (5) is an asymmetric GLCM and can be converted to a 

symmetric GLCM by multiplying by the transpose (Gsym = G × GT).

The range of input parameters is θ ∈{0°, 45°, 90°, 135°}, d ∈ {1, 2, 3,…, n} for a two 

dimensional image and by extending to a three dimensional image, the range for theta 

increases to a total of 13 angles. Figure 3 demonstrates an example 5×5 matrix with the 

corresponding symmetric GLCM for θ = 0° and d = 1.. Therefore, based on different values 

of theta and d, a large number of GLCMs can be produced and for each GLCM, fourteen 

textural features were developed by Haralick, et al2 and current research into texture analysis 

has led to construction of more features, with most recent applications using up to twenty-

two GLCM based features5.

Studies have found no significant differences in changing the number of gray levels (eg, 64, 

128, etc) in the image to define the GLCM based features to determine benign form 

malignant lesions or treatment response65–66. From the twenty-two GLCM texture features. 

The most commonly used features are given below:

(6)

(7)

(8)

(9)

The notation used in the above equations is explained in table 2.

The angular second moment (ASM) feature is the measure of uniformity in an image. A 

uniform image will have a few gray level transitions with the maximum uniformity of one 

representing only a single type of gray level transition through the image. In contrast, the 

entropy feature, increases as different types of gray level transitions are present in an image. 

Visually an image with higher entropy will appear heterogeneous. Similarly, an image with a 

higher contrast feature value will have a higher frequency of large intensity differences 

between each neighbor. A simple example of a high contrast image is a checkerboard. 

Finally, the correlation feature measures the linear dependence between any two neighboring 

voxels throughout the image i.e. an image with higher contrast will generally have lower 

correlation. In addition, texture features obtained from the GLCM are not rotationally 
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invariant. Rotationally invariant features can be obtained by taking mean and range of 

texture values obtained in all directions (four for 2D images and thirteen for 3D volumes). 

Computation of rotationally invariant features for 3D is not straightforward because voxel 

spacing along the third dimension may not be same as voxel spacing in the other two 

dimensions. Thus, using the same value of d (GLCM input parameter) as voxel spacing in all 

three dimensions is very important to achieve rotationally invariant texture features.

For many applications, GLCM based features are the most commonly used textural features 

applied to different medical imaging modalities for characterization of biological tissue of 

interest5,16,19–21,26,28,30,31,34,37,39–41,47,49,50,54,56,58–63,65–101. These applications used 

symmetric GLCMs for texture analysis as defined by Haralick et al 2; however recent 

applications of GLCM based features have also used asymmetric GLCMs with some 

success5. Chen et al. compared the GLCMs generated from 2D slices vs. 3D volume on 

breast DCE-MRI and showed that 3D GLCM texture features performed significantly better 

than 2D GLCM texture features in classifying malignant from benign breast lesions65.

Gray level run length matrix

The gray level run length matrix (GLRL) is defined as the number of contiguous voxels that 

have the same gray level value and it characterizes the gray level run lengths of different 

gray level intensities in any direction3. Elements (i,j) in the matrix represents the number of 

times, j, a gray level value, i, appears in the image. Based on the direction angle, θ (4 for two 

dimensions and 13 for three dimensions), different GLRL matrices can be constructed. The 

inter-pixel relationship based on the user defined parameters of angle, θ and run length, j is 

illustrated in figure 4a. Mathematically GLRL of an image of size Nx×Ny with Ng gray 

levels is given by the following equation:

(10)

where (m, n) ∈ Nx × Ny; 

; I represents 

the image as a function: Nx × Ny → {1,2, …, Ng}; and |·| denotes the cardinality of a set

Galloway et al developed five features from the GLRL matrix viz. short runs emphasis 

(SRE), long runs emphasis (LRE), gray level nonuniformity (GLN), run length 

nonuniformity (RLN) and run percentage (RP) given by the following equations:

(11)
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(12)

(13)

(14)

(15)

where Nr is the number of different run lengths measured to compute GLRL matrix and P is 

the total number of voxels in the image. A total of eleven features based on gray level run 

length matrices have been proposed in the literature 3,102,103. Current applications in texture 

analysis use the complete set of eleven features derived from GLRL matrix5.

An example 5×5 input matrix and the corresponding GLRL matrix for horizontal direction 

are shown in figure 4b and 4c respectively. The GLRL matrices are generally normalized (by 

the total number of entries in the matrix) in order to facilitate consistency between different 

scans of different patients as well as different scans for same patient considered across a 

time interval. GLRL matrix based features have also been applied to a number of 

applications across different medical imaging modalities for characterization of biological 

tissue of interest 5,16,19,21,28,30,31,34,37,39,41,42,50,54,58,60–63,69,79.

Neighborhood gray tone difference matrix

The neighborhood gray tone difference matrix (NGTDM) is a texture analysis method based 

on the visual properties of an image 4. Neighborhood gray tone difference matrix (NGTDM) 

is a one dimensional matrix computed such that the each gray level entry, defined as gt, in 

the NGTDM is the summation of the differences between all the pixels with gray level 

value, gt and the average gray level value of its neighborhood. The size of the neighborhood 

is defined by the user. Mathematically, NGTDM of an image (Nx × Ny) with Ng gray levels 

is given using the following set of equations:
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(16)

(17)

Here, ANGT is the average neighborhood gray tone in the neighborhood of the pixel at 

position (i,j), W=(2d+1)2 and d = size of the neighborhood (e.g. 1 in case of 3 × 3 

neighborhood). There are five features derived from the NGTDM and are given by the 

following equations:

(18)

(19)

(20)

(21)

(22)
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where Pi is the probability of occurrence of a gray level value I, n is the number of entries in 

the NGTDM and Nt is the total number of gray levels present in the image.. For example, 

figure 5 demonstrates the application to a 5×5 gray level input matrix.

The NGTDM features have been developed to correlate the quantitative values of texture 

features as closely as possible to the visual interpretation of texture by humans. For example, 

coarseness provides a quantitative measure of local uniformity while contrast provides 

quantitative information about the difference in the intensity levels of neighboring regions. 

Similarly, busyness tells us how “busy” (rapid intensity changes) are the neighborhoods in a 

given image or a region of interest. Furthermore, complexity, as the name suggests, 

quantifies the complexity of the spatial information present in an image. Finally, texture 

strength can be defined as characterizing the visual aesthetics of an image. Images with 

higher texture strength are generally more attractive to look at than images with low texture 

strength. The NGTDM features have been applied to some medical image 

applications 16,49,104.

Morphological features

Morphological features are used in many settings to define the shape of an object. For 

example, the shape of the tumor can be quantified using fractal dimension105,106. Fractal 

dimension is a measurement of irregularity in the shape of the tumor. Different methods 

proposed in the literature for computing the fractal dimension of a pattern are discussed 

in107. Other methods based on volume and surface area of the tumor have been summarized 

in5. However different fractal sets having different textures may have the same fractal 

dimension values. Consequently, Mandelbrot introduced the concept of lacunarity for 

characterization of texture in an image 106. Lacunarity quantifies how fractals fill space, i.e., 

larger the gaps, higher the lacunarity. Different methods proposed in the literature for 

computing the fractal dimension of a pattern are discussed in107. Li et al 108 evaluated four 

methods for computing fractal dimension of parenchymal patterns obtained from 

mammography in assessment of breast cancer risk. The four methods evaluated included 

conventional box counting method, modified box counting method using linear discriminant 

analysis (LDA), global Minkowski method and modified Minkowski method using LDA. 

The authors observed that the advanced methods using LDA resulted in better classification 

between low and high risk patterns (AUC=0.9 for modified box counting method and 

AUC=0.93 for modified Minkowski method). Likewise, Guo et al109 compared five different 

methods for computing the fractal dimension as well as lacunarity analysis of breast regions 

obtained from mammography to classify breast masses from normal parenchyma. The 

fractal dimension methods tested in this study were Reticular cell counting method110, 

differential box counting method111, blanket method112, Fourier power spectrum method113 

and fractional Brownian motion model(FBM) 114. The highest AUC of 0.84 was achieved 

for the FBM method. Moreover, when FBM method was combined with lacunarity, the AUC 

increased to 0.90. Morphological features based on Renyl fractal dimension, shape analysis, 

volume and surface area of the tumor have also been implemented in the literature5,115,116.
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Filtering approaches

The basic idea of filtering approaches is that the original textured image is subjected to some 

form of linear or nonlinear transform, followed by statistical analysis of the transformed 

image to obtain texture information. A comparative study of different filtering approaches 

can be found in117. In this paper, we discuss the filtering techniques commonly used for 

texture analysis of medical images.

Spatial filtering techniques

Spatial filtering techniques are based on neighborhood operations on the original textured 

input images. These neighborhood operations are based on filters or kernels of size n × n, 

where n determines the size of the neighborhood considered by the kernel. Some examples 

of commonly used filters for texture analysis include statistical filters like average filter, 

range filter and entropy filter or edge filters like Prewitt filter, Sobel filter, Laplacian filter 

and Laplacian of Gaussian (LoG) filter. The input image is convolved with the desired kernel 

to produce filtered images highlighting specific texture information in the original texture 

image. The resultant filtered images are analyzed using first order statistics (mean, median, 

standard deviation, etc.). Statistical and edge filtering techniques have been applied to 

medical images for texture analysis in a number of applications7,59,118–126.

Apart from statistical and edge kernels, special kernels have also been designed for 

identifying different types of textures. For example, Laws designed three sets of one 

dimensional convolution masks of different sizes corresponding to different types of textures 

such as level, edge, spot, wave, ripple, undulation and oscillation127,128. All the convolution 

masks were center weighted, symmetric or asymmetric and zero-sum except the level 

convolution masks. Using a vector product between the masks of the same sizes, different 

spatial domain filters or kernels of size 3×3, 5×5 and 7×7 were generated by Laws. Laws 

texture energy measures have been used in filtering input medical images for texture analysis 

in many applications39,129–140. Another example of a specially designed kernel is the fractal 

dimension kernel designed by Al Kadi et al141. Examples of different techniques for filtering 

in the spatial domain have been illustrated in figure 6. The value of n (size of the kernel 

neighborhood) is determined by the spatial resolution of the image being filtered. Higher the 

spatial resolution of the image being filtered, higher the value of neighborhood, n, used for 

filtering. However, further research is required to standardize the size of the neighborhood 

for different resolution images acquired using different imaging modalities.

Multi-resolution image scaling

The frequency of variations in the gray level values in a region of interest is dependent on 

the scale of the region of interest. The frequency content within an image can be analyzed at 

different scales using wavelets142–145. Image texture can be analyzed at different scales by 

representing the image in a pyramid structure. Using discrete wavelet transform, four low 

resolution images can be obtained from the original image viz. ILL, ILH, IHL and IHH. By 

repeatedly applying discrete wavelet transform on ILL at each level, hierarchical pyramid 

structure for different resolutions can be created.
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Texture analysis can be done by computing statistical texture features at each level or 

averaging the results across multiple resolutions. Wavelets have been extensively used in 

multiresolution texture analysis of medical images 5,38,50,58–63,70,73,77,88,140,146. The use of 

multiresolution can decompose the data into different frequency components, thereby 

facilitating the study of each component with a resolution matched to its scale. Figure 7 

illustrates multiresolution scaling on an example breast MRI diffusion weighted image147.

Feature selection

The next step is to select a subset of features that can characterize the tissue of interest. The 

challenge here is that even using one d value and thirteen theta values, a large number of 

GLCM features are extracted. Reduction of these features needs to be done in order to avoid 

the potential problem of overfitting. In the event of overfitting, the statistical model will 

better reflect noise in the image than the original data. There are a number of strategies 

available for countering the problem of overfitting. Tpyically, If a particular set of features 

have been shown to be most relevant in the particular application of interest, then those 

features can be manually selected for subsequent analysis. In addition, by using regression 

analysis, correlations between different features can be analyzed and redundant features 

maybe be removed. Thus, the feature selection procedure can be either supervised or 

unsupervised. In supervised feature selection, most informative features are selected based 

on some ground truth knowledge about the task at hand. As the biological meaning of 

different radiomic features has not yet been established, the ground truth used for feature 

selection is generally the final class label (e.g. benign or malignant). The supervised feature 

selection can be accomplished using a filtering or a wrapper method. Filtering methods 

evaluate one feature at a time for its importance or predictive ability. Some examples of 

filtering methods include Fisher’s criterion, Wilcoxon rank sum test, Student t-test, etc148. 

Parmar et al62 compared the performance of fourteen such feature selection methods in 

predicting overall survival in lung cancer patients using CT scans. They found that the 

Wilcoxon test based method had the best performance and maximum stability. One major 

disadvantage of filtering methods is that they do not consider the dependencies between 

different features that may lead to better prediction. Wrapper methods, on the other hand, 

evaluate subsets of features for their combined predictive power. As a result, wrapper 

methods are capable of examining the dependencies between different features. However, 

due to very high dimensionality of radiomics feature space, evaluation of complete feature 

subset space is computationally NP-hard149. Some examples of computationally efficient 

wrapper methods include greedy forward selection and greedy backward elimination as they 

do not evaluate all possible feature subsets. Finally, supervised feature selection methods are 

prone to overfitting and may not scale well across applications.

The unsupervised feature selection approach is based on dimensionality reduction 

algorithms. Dimensionality reduction algorithms transform the high dimensional feature 

space into a meaningful representation of its intrinsic dimensionality. Dimensionality 

reduction algorithms can be linear or nonlinear. Linear dimensionality reduction algorithms 

assume the high dimensional features to lie on or near a linear subspace of some high 

dimensional topological space while nonlinear dimensionality reduction algorithms do not 

rely on the linearity assumption. Some examples of linear dimensionality reduction 

Parekh and Jacobs Page 12

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithms include principal component analysis (PCA) and multidimensional scaling 

(MDS) 150,151. Examples of nonlinear dimensionality reduction algorithms are Isometric 

mapping (Isomap), locally linear embedding (LLE) and diffusion map152–154. A review on 

different dimensionality reduction algorithms can be found in155. The dimensionality 

reduction algorithms are not prone to overfitting; however, but, they may not always give 

optimal low dimensional representations. In medical imaging, Kassner et alused PCA to 

transform four GLCM textural features obtained from texture analysis of T1-weighted post 

contrast brain images for prediction of hemorrhagic transformation in acute ischemic stroke 

in a set of patients, however, there was no longitudinal data91. Texture was found to be 

potentially useful in discriminating hemorrhagic transformation from non-hemorrhagic 

transformation when compared to visual examination. Both supervised and unsupervised 

feature selection methods have their advantages and disadvantages. Further research is 

required to determine an optimal hybrid approach that combines the advantages of both 

feature selection methods.

Classification

The final step in the radiomics framework is the classification of the features for quantifying 

the tissue of interest and prediction. This is done using either a supervised or unsupervised 

classifier. Supervised classifiers require the user to provide input for the patients for which 

the underlying pathology is already known. Using the data provided by the user, supervised 

classifiers learn a classification model to categorize any new patient with unknown 

pathology. Some examples of supervised classifiers include support vector machine (SVM), 

random forest (RF), k-nearest neighbors (kNN), etc156–159.

In contrast to supervised classifiers, unsupervised classifiers do not need any training data. 

Unsupervised classifiers group the patients based on some form of distance metric, such as, 

Euclidean distance, angular distance, etc. Unsupervised classifiers are very useful when the 

goal of classification step is to identify a patient or a group of patients in the database that 

are most similar to the new patient with unknown pathology. The diagnosis and treatment 

details for the known patients may be then used to efficiently diagnose or determine 

outcomes for the patient. Some examples of unsupervised classifiers include k-means 

clustering, hierarchical clustering, consensus clustering, etc 160–162. A recent study 

compared the performance of twelve different supervised classifiers in predicting overall 

survival in lung cancer patients using CT scans and found the random forest classifier to 

have relatively the best performance with low AUC=0.662. However, since Radiomics is a 

new and ever expanding area of research and with the development of better classification 

algorithms, the optimal method is not clearly defined and will depend on the application.

Radiomics applications

In early applications to medical imaging, the majority of methods used Texture analysis, 

which, then evolved into the current application of Radiomics. An extensive review on the 

applications of both texture and radiomics analysis in neurologic pathologies can be found 

in163. In this paper, we reviewing the application of these methods to mostly body and 

cancer applications.
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Lung

a) X-Ray—Texture analysis was first used in 1972 for automatic classification of 

pulmonary disease by Sutton and Hall7. They employed texture measures of symmetry, 

directional gradient and Fourier domain energy on a dataset of 24 patients to classify 

between lung tissue using linear discriminant analysis. The authors observed that the texture 

features based on directional gradient gave the best classification accuracy. The training 

classification accuracy was achieved at 92% while the testing classification accuracy was 

achieved at 84%. This study was directed towards demonstrating the usefulness of texture in 

automatic screening of chest radiographs.

b) Computed Tomography—Al-Kadi and Watson implemented the differential box 

counting based fractal analysis method as well as lacunarity analysis on contrast enhanced 

(CE) CT images for differentiation of aggressive malignant lung tumors from the 

nonaggressive ones on a cohort of 15 patients141. The authors achieved an accuracy of 

83.3% for distinguishing between these two groups using average fractal dimension. The 

authors also observed high correlation between the average fractal dimension and tumor 

uptake of 18FDG obtained using PET.

Ganeshan et al developed texture features using multiscale (fine to coarse) application of 

spatial domain filtering algorithm LoG (Laplacian of Gaussian) followed by extraction of 

statistical features of mean gray intensity (MGI) along with entropy (E) and uniformity (U) 

on unenhanced CT scans of 18 non-smal cell lung cancer patients to correlate with tumor 

glucose metabolism and stage121. The authors found significant associations between coarse 

texture features and tumor standard uptake value (SUV) and fine texture features and tumor 

stage. In another study, Ganeshan et al used the texture feature of uniformity to associate 

with patient survival in a study of 54 patients124. The authors observed that patients with 

coarse texture uniformity of less than 0.62 did not survive more than two and a half years. 

The same research group further extended their research to correlate texture features with 

histopathological markers of angiogenesis and hypoxia on a dataset of 14 patients with 

unenhanced as well as CE CT images 125. The same texture analysis method was employed 

with different statistical features (standard deviation (SD) along with mean (MPP) and 

uniformity (UPP) of positive pixel distribution). The results indicated significant 

associations between texture features and average intensity of tumor staining with 

pimonidazole, tumor Glut-1 expression and tumor CD34 expression. The relationships 

between image features and the histograms generated at different scales using spatial domain 

filtering algorithm, LoG have also been analyzed by the same group to provide clinical 

understanding of results164.

Aerts et al used texture features based on first order statistics, GLCMs, GLRL matrices at 

multiple scales using wavelets on CT images of 1019 patients with non-small cell lung 

cancer or head-and-neck(H&N) cancer to associate radiomic features with primary tumor 

stage as well as patient survival5. The radiomic features of first order statistics energy, shape 

compactness and gray level nonuniformity (GLRL feature) obtained from unscaled data as 

well as wavelet HLH scaled data were found to be most significant. Good to moderate 

prediction concordance indices (CIs) of 0.65, 0.69 and 0.69 were achieved on one lung 
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cancer validation dataset of 225 patients and two H&N datasets of 136 and 95 patients. The 

authors found significant associations between radiomic features and gene expression 

patterns indicating the utility of radiomic features in characterizing underlying biological 

mechanisms. Strong correlations were observed between the radiomic features (GLRL gray 

level non uniformity obtained from unscaled data as well as wavelet HLH scaled data) and 

cell cycling pathways, demonstrating higher proliferation for more heterogeneous tumors.

Recent studies by the same group achieved low AUCs of 0.66 (lung cancer) using random 

forest and CIs of 0.6 (lung cancer) and 0.68 (H&N cancer) using consensus clustering on the 

same set of radiomic features for predicting patient survival, which needs further 

investigation62,63. Moreover, using consensus clustering, the authors also found either no or 

some association between consensus clusters and lung stage (AUC =0.61), lung histology 

(AUC=0.56), H&N stage (AUC=0.77) and H&N histology (AUC=0.58) based on the poor 

AUC. However, these are essentially low AUCs and more research is needed.

The same group used additional texture features based on first order statistics obtained after 

the application of LoG filter in addition to the other radiomic features used previously on a 

cohort of 182 patients to predict probability of distant metastasis in lung adenocarcinoma in 

addition to patient survival59. The authors found thirty five radiomic features to be 

somewhat prognostic for distant metastasis (CI>0.6) and twelve features for patient survival 

(CI=0.55). The authors reported four features based on the LoG filter to be trending for 

potentially prognostic for distant metastasis and patient survival. A recent study by the same 

group tested two new features of entropy ratio and convexity for association with patient 

survival in lung adenocarcinoma using two independent patient cohorts of 61 and 47 

patients64. The authors found significant association between the two features and patient 

survival for only the first cohort.

In summary, statistical features obtained from LoG based spatial domain filtering of tumors 

at coarse level were found to be more predictive in different applications than statistical 

features obtained at fine level. A LoG filter highlights the edges within an ROI, suggesting 

that edges found by the filter using a wider Gaussian were more informative than edges 

produced using a narrow Gaussian. This may be because edges found using a narrow 

Gaussian are more susceptible to noise in the input image, Furthermore, LoG based features 

were also found to be more informative than statistical features based on first order statistics, 

GLCM and GLRL59.

c) PET—Cook et al investigated the texture features obtained from NGTDM extracted from 

FDG PET images of 53 non-small cell lung cancer patients for association with 

chemoradiotherapy response and survival104. The texture features were compared to the 

three survival groups (overall survival (OS), progression free survival (PFS) and local PFS 

(LPFS) obtained using RECIST (Response Evaluation Criteria in Solid Tumors) criteria. 

The authors found the texture features of coarseness, busyness and contrast to significantly 

predict survival in the patient cohort as summarized in Table 3. The authors observed that 

responders had lower coarseness but higher contrast and busyness than non-responders. This 

suggests that the texture obtained for tumors corresponding to responders is less uniform 
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with high frequency of intensity changes i.e. they are more heterogeneous than tumors 

corresponding to nonresponders.

d) PET-CT—Vaidya M et al used FDG-PET/CT dataset of 27 patients for characterization 

of radiotherapy tumor response in non-small cell lung cancer47. Texture features of first 

order statistics and gray level co-occurrence matrix features were combined with the 

SUV/HU (Halsted units) measurements in this study. The model was built using logistic 

regression and resampling methods of cross validation and bootstrapping. The authors 

observed that the first order statistics features obtained from intensity volume histogram 

correlated more strongly with loco-regional control in contrast with the GLCM based 

features which correlated more strongly with local control.

Breast

a) Mammogram—Texture analysis was first used on mammograms in 1986 by Magnin et 

al to evaluate the risk for developing breast cancer 67. GLCM based texture features were 

used in this study. However this study did not yield very good results with reproducibility 

barely reaching 80%. Wei et al successfully implemented GLCM based texture analysis at 

multiple scales using wavelets on 672 ROIs to classify between biopsy proven masses and 

normal parenchyma using linear discriminant analysis70. They achieved an AUC of 0.89 on 

the training set and an AUC of 0.86 on the test set. A study by Chan et al investigated the 

use of texture analysis on mammograms for associating the presence of clustered 

microcalcifications with malignant pathology75. The authors implemented the GLCM 

texture features on a set of 86 mammograms followed by a backpropagation artificial neural 

network classifier to achieve an AUC of 0.88. Multiple studies have since investigated the 

use of texture analysis on mammograms for detection of 

masses39,77,79,81,88,109,115,131,134,165–168 with an average AUC of 0.87 and a maximum AUC 

of 0.96 39 achieved with texture features obtained using first order statistics based features, 

GLCM based features, GLRL matrix based features and Law’s texture energy measures. The 

quantitative values of the fractal dimension obtained from breast mammograms 

corresponding to normal, mass and architectural distortion as reported in the literature are 

summarized in table 4.

b) Ultrasound—Garra et al performed texture analysis (first order statistics, GLCM and 

fractal dimension) on breast ultrasound in a cohort of 80 patients20. The authors were able to 

identify malignant lesions with a sensitivity of 100% and specificity of 80% (78% for 

fibroadenoma, 73% for cysts and 91% for fibrocystic nodules). The best features identified 

in this study were GLCM based contrast with θ = 45° and GLCM based correlation with θ = 

0°. Numerous studies have since used texture analysis to differentiate between benign and 

malignant breast lesions using ultrasound 83,140,146,169.

c) MRI—The first application of texure analysis in breast MRI was in 1997 by Sinha et 

al 76. This study included 43 breast cases (23 benign and 20 malignant) and used eight 

texture features in combination with patient age and the DCE-MRI parameter of maximum 

enhancement to obtain sensitivity and specificity of 93% and 95% respectively. In reality, it 

was Radiomics, since they compared the results to an outcome or clinical variable. 
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Moreover, Gibbs et al implemented GLCM based texture features to differentiate between 

benign and malignant breast tumors on post contrast MRI images from 79 patients85. 

Texture features of variance, entropy and sum entropy were found to be most significant 

using logistic regression analysis and the ROC analysis resulted in an excellent AUC of 

0.92. Similarity, Ertas et al extracted first order statistics from normalized maximum 

intensity-time ratio (nMITR) projection generated using DCE-MRI to classify between 

benign and malignant breast tumors in 46 patients35. The texture features of entropy, mean, 

standard deviation and maximum were observed to be the most significant (p<0.001) with 

excellent AUCs between 0.86 and 0.97.

Nie et al used GLCM based features along with morphological features to distinguish 

between benign and malignant tumors using post contrast MRI images of 71 patients89. The 

authors found the texture features of compactness, normalized radial length entropy, volume 

and GLCM based features of entropy, sum average and homogeneity to most significantly 

differentiate benign and malignant tumors and obtained an AUC of 0.82. The same group 

compared the two feature selection and classification methods of logistic regression and 

artificial neural network for the task of classifying malignant breast tumors from benign 

breast tumors92. The authors found there was no significant difference in the results obtained 

from the two methods.

Instead of using post contrast MRI images, Karahaliou et al used parametric maps derived 

from DCE-MRI (e.g. signal enhancement ratio map) to extract GLCM based features94. The 

authors found the GLCM ASM, GLCM entropy and GLCM sum entropy obtained from 

signal enhancement ratio (SER) map as the most discriminative features producing an AUC 

of 0.92. Agner et al used kernels based on GLCM features along with other filters on the 

DCE MRI images in a dataset containing 41 patients for differentiating malignant from 

benign breast tumors170. The authors created textural kinetic curves by computing the mean 

of the filtered image within the region of interest across the DCE sequence of images. The 

textural kinetic curves were classified using a probabilistic boosting tree and achieved 

sensitivity and specificity of 99% and 76% respectively. In a recent study, Wang et al used 

morphological and GLCM texture features in combination with pharmacokinetic parameters 

obtained from DCE-MRI to classify between benign and malignant breast tumors101. The 

authors found the texture feature of GLCM entropy, GLCM energy and compactness along 

with pharmacokinetic parameters of rate constant (kep) and volume of plasma (vp) to be the 

most discriminative with sensitivity and specificity of 91% and 92% respectively. Cai et al 

used GLCM based texture features from DCE-MRI in combination with ADC, kinetic curve 

features and morphological features to distinguish between benign and malignant breast 

tumors on a cohort of 234 patients99. The authors achieved sensitivity and specificity of 85% 

and 89% respectively. They also tested the same set of features on a validation dataset 

consisting of 93 patients and achieved sensitivity and specificity of 69% and 91% 

respectively98.

Holi et al applied texture analysis (first order statistics, GLCM, GLRL) on T1-weighted pre 

contrast, post contrast and subtraction breast MRI datasets from twenty patients in order to 

associate texture features with histological types of invasive breast cancer (lobular vs. 

ductal) 42. The authors identified the entropy based GLCM features to be the most effective 
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features and were able to achieve a maximum accuracy of 100% using linear discriminant 

analysis (LDA) and nonlinear discriminant analysis (NDA) on the first subtraction and 

contrast images.

A recent study by Ahmed et al performed GLCM based features on breast MRI to predict 

chemotherapy response in 100 breast cancer patients66. The authors found the texture 

features of contrast, variance, difference in variance, sum variance, sum entropy, sum 

average, cluster shade and cluster prominence showed significant difference between 

responders and partial responders of chemotherapy when implemented on post contrast 

images. Parikh et al used multiscale LoG (Laplacian of Gaussian) filter followed by 

extraction of first order statistical features from T2-weighted MRI of 36 patients to predict 

chemotherapy response171. The authors found the texture features of entropy and uniformity 

showed significant different between responders and non-responders with an AUC of 0.84.

In summary, post contrast enhanced MRI was the most frequently used image for texture 

analysis of breast tumors. This is consistent with the clinical environment where radiologists 

also use post contrast enhanced MRI to discern textural features corresponding to breast 

tumors.

The quantitative values of the texture features obtained using post contrast enhanced breast 

MRI images for benign and malignant lesions reported in the literature are summarized in 

table 5. The quantitative texture values of entropy, energy, etc obtained from various studies 

maybe difficult to compared due to several reasons. For example, the use of different magnet 

strengths (1.5 or 3T), differnent preprocessing steps, binning methods, and gray level 

normalization. However, a trend in the quantitative values can still be observed, for example, 

entropy, energy (uniformity), and contrast values tend to be increased compared to benign 

and/or normal tissue. These metrics may provide an insight into the heterogeneity of the 

tumor tissue. Based on the current literature, It may be inferred that malignant tumor tissue 

is more heterogeneous (high entropy, low uniformity and high contrast) than benign tumor 

tissue and seen in pathological samples172. This correlation is the impetus for further 

Radiomics research in developing noninvasive tools for clinical decision.

Liver

a) Computed Tomography—Mir et al implemented texture analysis based on GLCMs 

and GLRL on the liver CT images of 60 patients to classify the CT images as normal liver, 

clearly visible malignancy and invisible malignancy69. The authors found the texture 

features of entropy (normal: 1.65±0.12, visible malignancy: 2.13±0.17, invisible 

malignancy: 1.64±0.08), local homogeneity (normal: 2.30±0.25, visible malignancy: 

1.48±0.21, invisible malignancy: 2.23±0.15) and gray level distribution (normal: 5.54±0.31, 

visible malignancy: 2.09±0.61, invisible malignancy: 4.72±0.54) to be the most significant. 

Chen et al used fractal analysis along with GLCM based features to classify the liver tumors 

as hemangioma or hepatoma in a dataset of 30 patients80. Using modified probabilistic 

neural network classifier, the authors were able to achieve classification accuracy of 83%. In 

a study by Gletsos et al, GLCM based features were used to classify the CT focal liver 

lesions of 147 patients into four classes (normal, hepatic cysts, hemangioma and 

hepatocellular carcinomas) 86. The authors used three sequentially placed feed forward 
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neural networks and achieved excellent accuracies of 97%, 100% and 82% in classifying the 

normal from abnormal, hepatic cysts from others and hemangioma from hepatocellular 

carcinomas respectively. Huang et al173 used autocovariance function on a dataset of 164 

liver CT images to classify malignant (hepatocellular carcinomas and colorectal metastases) 

lesions from benign lesions and achieved moderate sensitivity and specificity of 75% and 

88% respectively.

b) MRI—Jirak et al extracted first order statistical and GLCM based texture features using 

T2-weighted MRI images obtained from 43 patients to classify between healthy and 

cirrhotic liver26. The authors achieved classification error around 8%. Along with T2-

weighted MRI images, Mayerhoefer et al also extracted texture features (first order statistics, 

GLCM, GLRL matrix) from T1-weighted images to classify focal liver lesions achieving 

error rates of 12–18% on T2-weighted images and 16–18% to T1-weighted images41. 

Fujimoto et al used entropy of ADC to classify normal from abnormal fibrosis stage (AUC 

=0.94, p<0.001, entropy cutoff = 1.30) 46. ADC maps were created using diffusion weighted 

MRI (b =0 and 1000 s/mm2). O’ Connor et al quantified tumor heterogeneity using first 

order statistics on voxel-wise Ktrans, ve and vp and fractal dimension analysis on DCE-MRI 

data obtained from 10 patients with 26 colorectal cancer liver metastases to predict 

shrinkage in tumor volume in response to bevacizumab and cytotoxic chemotherapy45. The 

authors found the median ve, tumor enhancing fraction (Ef) and microvascular uniformity 

obtained using fractal dimension to be the most significant features and the median 

classification error was achieved at 12%.

c) Ultrasound—Texture analysis was first implemented on liver ultrasound images in 1985 

by Raeth et al to classify liver into normal, diffuse parenchymal and malignant disease on a 

dataset of 71 patients with an accuracy of 96%19. Wu et al used multiresolution fractal 

analysis to classify between normal liver, hepatoma and cirrhosis on a dataset of 40 patients 

and achieved an accuracy of 90%68. The authors observed that multiresolution fractal 

analysis features outperformed the GLCM based texture features as well as Laws texture 

energy measures. Sujana et al extracted first order statistical features along with GLCM and 

GLRL matrix based features to classify liver ultrasound images from 113 patients into 

normal, hemangioma and malignant categories21. Using artificial neural network, the 

authors were able to achieve classification accuracy of 100%. Horng et al developed a new 

texture analysis method called texture feature coding to classify liver ultrasound images into 

normal, hepatitis and cirrhosis on 120 patients (30 training and 90 test images) 84. The 

authors achieved an accuracy of 86.7% as compared to 75.7% obtained by the same group 

using GLCM, texture spectrum and fractal dimension based features71. Yoshida et al used 

multiresolution analysis on a dataset of 44 patients and obtained an AUC of 0.92 in 

classifying malignant from benign lesions29.

Numerous studies have since used texture analysis to classify focal hepatic lesions using 

ultrasound132,136,174–180. A comparative study of different texture analysis approaches 

implemented in the literature can be found in 181. A recent implementation by Mitrea et al 

extracted GLCM based texture features from the Laws texture energy images obtained from 
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filtering liver ultrasound images and achieved an accuracy of 90% in liver cancer 

detection139.

Colorectal cancer

a) Computed Tomography—A study by Ganeshan et al investigated the use of texture 

analysis of liver on 28 patients with colorectal cancer119. The authors used multiscale (fine 

to coarse) application of the spatial domain filtering algorithm LoG (Laplacian of Gaussian) 

followed by extraction of first order statistical features. The authors observed that the 

relative scale texture parameter correlated inversely with the corresponding PET SUV metric 

(r=−0.59, p=0.007) and hepatic phosphorylation index(HPFI) (r=−0.59, p=0.006). There was 

apositive correlation with the total hepatic perfusion (THP) (r=0.51, p=0.02-) and hepatic 

portal perfusion (HPP) (r=0.45,0.05) for patients without liver metastases. The same 

research group used the same set of texture features obtained from liver CT to predict 

survival in patients with colorectal cancer120. The texture feature of uniformity was obtained 

for the scale ratios of 1.5 (fine) to 2.5 (course) and 2 (medium) to 2.5(coarse) were observed 

to be significant (p<0.005) prognostic factors for surival. Goh et al extracted fractal 

dimension based features from colorectal perfusion CT images of 20 patients to differentiate 

between colon cancer and normal bowel182. The authors found the fractal dimension and 

fractal abundance were significantly (p≤0.001) higher for colon cancer (1.71±0.07 and 

7.82±0.62) than normal bowel (1.61±0.07 and 6.89±0.47). Cui et al used fractal dimension 

analysis on CT images obtained from 228 patients to classify the status of lymph nodes in 

rectal cancer as benign or malignant183. The authors were able to classify the malignant 

nodes from benign nodes with an accuracy of 88%.

Ganeshan et al used their previously developed multiscale texture analysis algorithm on 

dynamic contrast enhanced CT of the liver obtained from 27 patients to classify between 

node negative and not positive non metastatic colororectal cancer122. The authors observed 

significant difference in entropy and uniformity of the node negative and node positive 

patients. Using fine texture entropy of the images obtained between 26 and 30 seconds after 

contrast injection, the authors were able to achieve sensitivity and specificity of 100% and 

71% respectively in identifying node positive patients (entropy cutoff ≤ 0.0807). The same 

group used texture analysis of the colorectal tumor obtained from contrast enhanced CT of 

57 patients to define biomarkers for 5-year survival126. The authors used the texture features 

of fine scale entropy, uniformity, kurtosis, skewness and standard deviation to define the five 

year survival rate with the corresponding cutoffs at less than 7.89 for entropy, greater than 

0.01 for uniformity, less than 2.48 for kurtosis, greater than 20.38 for skewness and less than 

61.83 for standard deviation.

Head and Neck

a) Computed Tomography—Leijenaar et al 60 chose four radiomic features (Energy, 

compactness, GLRL non uniformity and wavelet GLRL non uniformity obtained by Aerts et 

aldescribed previously5 to investigate their prognostic ability on 542 oropharyngeal 

squamous cell carcinoma (OPSCC) patientsthat underwent CT.. The features were weighted 

in a Cox model to develop and test a prognostic index for validation of the radiomic 

signatures. The authors observed that the Kaplan-Meiyer survival curves were significantly 
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different (p<0.05) between low and high radiomic signature predictions using a log-rank 

test, however, the C-index was 0.628 which is lower than reported in previous reports (C 

index=0.686 and 0.685)5

b) PET—El Naqa et al explored the GLCM texture and features on a cohort of nine Head & 

Neck patients and 14 cervical cancer patients undergoing chemoradiotherapy and imaged 

with PET90. The most discriminative features from the GLCM included energy, contrast, 

local homogeneity and entropy. The authors were able to achieve moderate to high AUCs of 

0.76 (cervical cancer) and 1.0 (H&N) and 0.76 (cervical cancer) on the very small datasets 

indicating a potential usefulness of texture in PET imaging. For cervical cancer, the GLCM 

entropy of the CTV (clinical tumor volume) was much lower (3.6) than that of the tumor 

(5.3). Similar trend was observed for H&N cancer as well where entropy of the CTV was 3.8 

and that of the tumor was 4.7.

Esophageal cancer

a) PET—Tixier et al used first order texture features from the GLCM, GLRL matrix and 

NGTDM on a PET dataset to classify between response in 41 esophageal cancer patients 

treated with chemoradiation16. The authors found the texture features of GLCM entropy 

(sensitivity=79%, specificity=91%) and GLCM angular second moment (sensitivity=88%, 

specificity=73%) along with size (sensitivity=76%, specificity=91%) and intensity 

variabilities (sensitivity=76%, specificity=91%) of uniform zones were the most 

discriminative between responders and non-responders compared to the SUVmax 

(sensitivity=46%, specificity=91%).

Adnexal lesion

a) MRI—Kierans et al extracted first order statistical features of entropy from ADC maps to 

classify between benign and malignant adnexal lesions in 37 patients51. The average entropy 

ADC was significantly higher for malignant (4.94±0.4) than benign (4.54±0.44) lesions. 

However, the sensitivity (66.7%) and specificity (82.4%) of the entropy ADC was low in 

diagnostic performance.

Prostate lesions

a) MRI—Wibmer et al performed GLCM texture analysis on T2-weighted and diffusion 

weighted MRI of prostate obtained from 147 patients and compare with the Gleason score as 

well as cancer detection184. The authors used five GLCM features of inertia, entropy, energy, 

correlation and homogeneity for analysis. According to the authors, the texture features of 

cluster shade and cluster prominence “over-emphasize” the other GLCM features such as 

energy, entropy, homogeneity and contrast and hence were not used. There were a total of 

186 cancerous lesions in the 147 patients with 143 lesions in posterior zone (PZ) and 43 

lesions in transition zone (TZ). The authors observed similar trend in the GLCM texture 

features obtained from PZ tissue in both ADC map and T2WI as well as from TZ tissue in 

ADC map. For all these cases, the GLCM texture features of entropy and inertia were 

significantly higher for cancer while the remaining three features were significantly lower 

for cancer than non-cancerous tissue (p<0.008). Furthermore, the authors observed that only 

the GLCM texture features inertia (p=0.001) and correlation (p=0.04) obtained from T2-
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weighted were significantly different between TZ cancerous and non-cancerous tissue. 

Moreover, when compared to Gleason score, GLCM energy was lower while GLCM entropy 

was higher for increased Gleason scores (p<0.05 for all inter-score GLCM feature values).

Discussion

Radiomics and texture analysis have been widely used for diagnosis and prognosis in many 

different applications. In fact, some of the initial applications of texture analysis date back to 

1970s. The most commonly implemented features across all the applications are based on 

GLCMs. The reason behind the popularity of GLCMs as the texture analysis method of 

choice is because the GLCM features analyze the inter-voxel relationships in both voxels 

that are in immediate neighborhood as well as voxels that are far apart. Moreover, GLCMs 

are easy to implement and the features are more intuitive to interpret. In spite of being the 

most popular method, the features identified as the most predictive GLCM features are not 

consistent across different applications. In fact, the most predictive GLCM features are not 

even consistent within the same organ, same modality and the same diagnostic application. 

For example, in breast MRI, the texture features identified as the most important for 

diagnosis were not consistent across different implementations in the literature. Sinha et al76 

observed the GLCM features of difference entropy, contrast, sum entropy and inverse 

difference of moments to be the most predictive, Gibbs et al85 observed the GLCM features 

of variance, entropy and sum entropy as the most predictive and Nie et al89 observed the 

GLCM features of entropy, sum average and homogeneity as the most predictive in 

classifying benign from malignant breast lesions. Moreover, all the studies demonstrated 

excellent results. The variations in the radiomics results may arise from the image 

preprocessing steps such as segmentation, image quantization (for statistical features), 

neighborhood size (for statistical and filtering features) or the modeling steps of feature 

selection and classification.

The development of a texture feature set that is consistent across different modalities, organs 

and pathologies may not be possible or practical. This is because different modalities 

highlight separate characteristics of the tissue of interest. Furthermore, different organs may 

have distinct inherent texture. However, it is very important to develop a consistent feature 

subspace for each application even though different applications may have different feature 

subspaces. Furthermore, consistency in feature subspaces is also required to understand and 

correlate the texture features with tissue biology. For example, if the entropy values of 

benign and malignant tumors are significantly different for one region and not for another, it 

is not possible to establish any correlation between tumor biology and texture values. Thus, 

extensive research on large patient datasets is required to standardize the radiomics 

workflow.

Five year view

Radiomics is a relatively new field of research even though it uses established methods for 

feature extraction. As discussed earlier, extensive research is required to evaluate the 

preprocessing steps such as quantization for the statistical methods. In the next five years, a 

consensus will be achieved on the optimal method for data binning as well as feature 
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normalization for the statistical methods. On the other hand, a standard for optimal 

neighborhood sizes for different image resolutions corresponding to different imaging 

modalities will be established for filtering techniques. Establishing the standards for these 

parameters will require extensive theoretical research along with practical validations. Once 

the standards for feature extraction are established, the next step would include 

standardization of feature selection and classification methods.

The majority of texture analysis studies have focused on extracting features from a single 

slice or 3D volume using a specific imaging modality. However, extracting texture features 

from a combined dataset of multiple images obtained from multiparametric imaging 

methods (e.g. MRI) or obtained from different modalities (e.g. PET-CT) might be able to 

better correlate with tissue biology. Representation learning of multispectral datasets has 

already been achieved in the computer vision community using advanced machine learning 

methods such as deep learning185,186. In the next five years, we will also see radiomic 

feature representations emerge based on these advanced machine learning techniques. In 

conclusion, as the field of radiomics matures, radiological reports will also evolve into 

mineable patient data spaces built using imaging biomarkers, finally realizing the goal of 

precision medicine for providing an improved decision support system.

References

1. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal. Jul; 
1948 27(3):379–423.

2. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE 
Transactions on Systems, Man and Cybernetics. 1973; (6):610–621.

3. Galloway MM. Texture analysis using gray level run lengths. Computer graphics and image 
processing. 1975; 4(2):172–179.

4. Amadasun M, King R. Textural features corresponding to textural properties. IEEE Transactions on 
Systems, Man and Cybernetics. 1989; 19(5):1264–1274.

5. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging 
using a quantitative radiomics approach. Nature communications. 2014; 5:4006.

6. Kaizer, H. Tech Note. Boston University Research Lab; Boston, Massachusetts: 1955. A 
quantification of textures on aerial photographs; p. 121

7. Sutton RN, Hall EL. Texture measures for automatic classification of pulmonary disease. IEEE 
Transactions on Computers. 1972; (7):667–676.

8. Bardeen JM, Carter B, Hawking SW. The Four laws of black hole mechanics. Commun Math Phys. 
1973; 31(2):161–170.

9. Bekenstein JD. Black Holes and Entropy. Physical Review D. Apr 15; 1973 7(8):2333–2346.

10. Sonntag, R.; Borgnakke, C.; Van Wylen, G. Fundamentals of thermodynamics. the University of 
Michigan: Wiley; 1998. 

11. Eisert J, Cramer M, Plenio MB. Area laws for the entanglement entropy. Reviews of Modern 
Physics. Feb 04; 2010 82(1):277–306.

12. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from 
medical images using advanced feature analysis. European Journal of Cancer. 2012; 48(4):441–
446. [PubMed: 22257792] 

13. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 
Nov; 2012 30(9):1234–1248. [PubMed: 22898692] 

14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. 
Radiology. 2015:151169.

Parekh and Jacobs Page 23

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Larkin TJ, Canuto HC, Kettunen MI, et al. Analysis of image heterogeneity using 2D Minkowski 
functionals detects tumor responses to treatment. Magnetic Resonance in Medicine. 2014; 71(1):
402–410. [PubMed: 23440731] 

16. Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity characterized by textural features on 
baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal 
cancer. Journal of Nuclear Medicine. 2011; 52(3):369–378. [PubMed: 21321270] 

17. Knuth KH. Optimal data-based binning for histograms. 2006 arXiv preprint physics/0605197. 

18. Shimazaki H, Shinomoto S. A method for selecting the bin size of a time histogram. Neural 
computation. 2007; 19(6):1503–1527. [PubMed: 17444758] 

19. Raeth U, Schlaps D, Limberg B, et al. Diagnostic accuracy of computerized B-scan texture analysis 
and conventional ultrasonography in diffuse parenchymal and malignant liver disease. Journal of 
Clinical Ultrasound. Feb; 1985 13(2):87–99. [PubMed: 3920275] 

20. Garra BS, Krasner BH, Horii SC, Ascher S, Mun SK, Zeman RK. Improving the distinction 
between benign and malignant breast lesions: the value of sonographic texture analysis. Ultrasonic 
Imaging. 1993; 15(4):267–285. [PubMed: 8171752] 

21. Sujana H, Swarnamani S, Suresh S. Application of artificial neural networks for the classification 
of liver lesions by image texture parameters. Ultrasound in medicine & biology. 1996; 22(9):1177–
1181. [PubMed: 9123642] 

22. Brinkmann G, Melchert UH, Lalk G, et al. The total entropy for evaluating 31P-magnetic 
resonance spectra of the liver in healthy volunteers and patients with metastases. Invest Radiol. 
Feb; 1997 32(2):100–104. [PubMed: 9039582] 

23. Mayr NA, Yuh WT, Arnholt JC, et al. Pixel analysis of MR perfusion imaging in predicting 
radiation therapy outcome in cervical cancer. Journal of Magnetic Resonance Imaging. 2000; 
12(6):1027–1033. [PubMed: 11105046] 

24. Bernasconi A, Antel SB, Collins DL, et al. Texture analysis and morphological processing of 
magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial 
epilepsy. Annals of neurology. 2001; 49(6):770–775. [PubMed: 11409429] 

25. Hayes C, Padhani AR, Leach MO. Assessing changes in tumour vascular function using dynamic 
contrast-enhanced magnetic resonance imaging. Nmr in Biomedicine. Apr; 2002 15(2):154–163. 
[PubMed: 11870911] 

26. Jirak D, Dezortová M, Taimr P, Hájek M. Texture analysis of human liver. Journal of Magnetic 
Resonance Imaging. 2002; 15(1):68–74. [PubMed: 11793459] 

27. Bernasconi A. Advanced MRI analysis methods for detection of focal cortical dysplasia. Epileptic 
disorders: international epilepsy journal with videotape. Sep; 2003 5(Suppl 2):S81–84. [PubMed: 
14617425] 

28. Bonilha L, Kobayashi E, Castellano G, et al. Texture analysis of hippocampal sclerosis. Epilepsia. 
2003; 44(12):1546–1550. [PubMed: 14636326] 

29. Yoshida H, Casalino DD, Keserci B, Coskun A, Ozturk O, Savranlar A. Wavelet-packet-based 
texture analysis for differentiation between benign and malignant liver tumours in ultrasound 
images. Physics in Medicine and Biology. Nov 21; 2003 48(22):3735–3753. [PubMed: 14680270] 

30. Chabat F, Yang G-Z, Hansell DM. Obstructive Lung Diseases: Texture Classification for 
Differentiation at CT 1. Radiology. 2003; 228(3):871–877. [PubMed: 12869685] 

31. Herlidou-Meme S, Constans J, Carsin B, et al. MRI texture analysis on texture test objects, normal 
brain and intracranial tumors. Magnetic resonance imaging. 2003; 21(9):989–993. [PubMed: 
14684201] 

32. Chang YC, Huang CS, Liu YJ, Chen JH, Lu YS, Tseng WY. Angiogenic response of locally 
advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from 
dynamic contrast-enhanced MRI. Phys Med Biol. Aug 21; 2004 49(16):3593–3602. [PubMed: 
15446790] 

33. de Lussanet QG, Backes WH, Griffioen AW, et al. Dynamic contrast-enhanced magnetic resonance 
imaging of radiation therapy-induced microcirculation changes in rectal cancer. International 
journal of radiation oncology, biology, physics. Dec 1; 2005 63(5):1309–1315.

Parekh and Jacobs Page 24

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Xu Y, Sonka M, McLennan G, Guo J, Hoffman E. MDCT-based 3-D texture classification of 
emphysema and early smoking related lung pathologies. IEEE Transactions on Medical Imaging. 
2006; 25(4):464–475. [PubMed: 16608061] 

35. Ertas G, Gulcur HO, Tunaci M. Improved lesion detection in MR mammography: three-
dimensional segmentation, moving voxel sampling, and normalized maximum intensity-time ratio 
entropy. Acad Radiol. Feb; 2007 14(2):151–161. [PubMed: 17236988] 

36. Jackson A, O’Connor JP, Parker GJ, Jayson GC. Imaging tumor vascular heterogeneity and 
angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clinical Cancer 
Research. 2007; 13(12):3449–3459. [PubMed: 17575207] 

37. Caban JJ, Yao J, Avila NA, Fontana JR, Manganiello VC. Texture-based computer-aided diagnosis 
system for lung fibrosis. Proc SPIE 6514, Medical Imaging: Computer-Aided Diagnosis. 
2007:651439.

38. Depeursinge, A.; Sage, D.; Hidki, A., et al. Lung tissue classification using wavelet frames. 29th 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007. 
p. 6259-6262.

39. Karahaliou A, Skiadopoulos S, Boniatis I, et al. Texture analysis of tissue surrounding 
microcalcifications on mammograms for breast cancer diagnosis. Br J Radiol. Aug; 2007 80(956):
648–656. [PubMed: 17621604] 

40. Kontos D, Bakic PR, Carton A-K, Troxel AB, Conant EF, Maidment AD. Parenchymal texture 
analysis in digital breast tomosynthesis for breast cancer risk estimation: a preliminary study. 
Academic radiology. 2009; 16(3):283–298. [PubMed: 19201357] 

41. Mayerhoefer ME, Schima W, Trattnig S, Pinker K, Berger-Kulemann V, Ba-Ssalamah A. Texture-
based classification of focal liver lesions on MRI at 3.0 Tesla: A feasibility study in cysts and 
hemangiomas. Journal of Magnetic Resonance Imaging. 2010; 32(2):352–359. [PubMed: 
20677262] 

42. Holli K, Lääperi A-L, Harrison L, et al. Characterization of breast cancer types by texture analysis 
of magnetic resonance images. Academic radiology. 2010; 17(2):135–141. [PubMed: 19945302] 

43. Chuah, TK.; Poh, CL.; Sheah, K. Quantitative texture analysis of MRI images for detection of 
cartilage-related bone marrow edema. Conference proceedings: … Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 
Medicine and Biology Society. Annual Conference; 2011; 2011. p. 5112-5115.

44. Cui J-L, Wen C-Y, Hu Y, Li T-H, Luk KD-K. Entropy-based analysis for diffusion anisotropy 
mapping of healthy and myelopathic spinal cord. Neuroimage. 2011; 54(3):2125–2131. [PubMed: 
20951216] 

45. O’Connor J, Rose C, Jackson A, et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC 
liver metastasis shrinkage following bevacizumab and FOLFOX-6. British journal of cancer. 2011; 
105(1):139–145. [PubMed: 21673686] 

46. Fujimoto K, Tonan T, Azuma S, et al. Evaluation of the mean and entropy of apparent diffusion 
coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and 
inflammatory activity grade. Radiology. 2011; 258(3):739–748. [PubMed: 21248235] 

47. Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image 
characteristics for radiotherapy tumor response in lung cancer. Radiotherapy and Oncology. 2012; 
102(2):239–245. [PubMed: 22098794] 

48. Chen Y, Pham TD. Sample entropy and regularity dimension in complexity analysis of cortical 
surface structure in early Alzheimer’s disease and aging. Journal of neuroscience methods. May 
15; 2013 215(2):210–217. [PubMed: 23558334] 

49. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour 
heterogeneity in 18F-FDG PET/CT imaging by texture analysis. European journal of nuclear 
medicine and molecular imaging. 2013; 40(1):133–140. [PubMed: 23064544] 

50. Leijenaar RT, Carvalho S, Velazquez ER, et al. Stability of FDG-PET Radiomics features: An 
integrated analysis of test-retest and inter-observer variability. Acta Oncologica. 2013; 52(7):
1391–1397. [PubMed: 24047337] 

Parekh and Jacobs Page 25

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Kierans AS, Bennett GL, Mussi TC, et al. Characterization of malignancy of adnexal lesions using 
ADC entropy: comparison with mean ADC and qualitative DWI assessment. Journal of Magnetic 
Resonance Imaging. 2013; 37(1):164–171. [PubMed: 23188749] 

52. Foroutan P, Kreahling JM, Morse DL, et al. Diffusion MRI and novel texture analysis in 
osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS One. 2013; 
8(12):e82875. [PubMed: 24358232] 

53. Sato JR, Takahashi DY, Hoexter MQ, Massirer KB, Fujita A. Measuring network’s entropy in 
ADHD: a new approach to investigate neuropsychiatric disorders. Neuroimage. Aug 15.2013 
77:44–51. [PubMed: 23571416] 

54. Suoranta S, Holli-Helenius K, Koskenkorva P, et al. 3D texture analysis reveals imperceptible MRI 
textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. 
PLoS One. 2013; 8(7):e69905. [PubMed: 23922849] 

55. Cao MQ, Suo ST, Zhang XB, et al. Entropy of T2-weighted imaging combined with apparent 
diffusion coefficient in prediction of uterine leiomyoma volume response after uterine artery 
embolization. Acad Radiol. Apr; 2014 21(4):437–444. [PubMed: 24594413] 

56. Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim JH, Sohn CH. Glioma: application of whole-tumor texture 
analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One. 
2014; 9(9):e108335. [PubMed: 25268588] 

57. Suo ST, Chen XX, Fan Y, et al. Histogram analysis of apparent diffusion coefficient at 3.0 T in 
urinary bladder lesions: correlation with pathologic findings. Acad Radiol. Aug; 2014 21(8):1027–
1034. [PubMed: 24833566] 

58. Parmar C, Velazquez ER, Leijenaar R, et al. Robust radiomics feature quantification using 
semiautomatic volumetric segmentation. PloS one. 2014; 9:e102107. [PubMed: 25025374] 

59. Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in 
lung adenocarcinoma. Radiotherapy and Oncology. 2015; 114(3):345–350. [PubMed: 25746350] 

60. Leijenaar RT, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic 
signature in oropharyngeal squamous cell carcinoma. Acta Oncologica. 2015:1–7.

61. Panth KM, Leijenaar RT, Carvalho S, et al. Is there a causal relationship between genetic changes 
and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible 
GADD34 tumor cells. Radiotherapy and Oncology. 2015; 116:462–466. [PubMed: 26163091] 

62. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine Learning methods for 
Quantitative Radiomic Biomarkers. Scientific reports. 2015; 5:13087. [PubMed: 26278466] 

63. Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and Prognostic Signatures 
specific for Lung and Head & Neck cancer. Scientific reports. 2015; 5:11044. [PubMed: 
26251068] 

64. Grove O, Berglund AE, Schabath MB, et al. Quantitative Computed Tomographic Descriptors 
Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung 
Adenocarcinoma. PloS one. 2015; 10(3):e0118261. [PubMed: 25739030] 

65. Chen W, Giger ML, Li H, Bick U, Newstead GM. Volumetric texture analysis of breast lesions on 
contrast-enhanced magnetic resonance images. Magnetic Resonance in Medicine. 2007; 58(3):
562–571. [PubMed: 17763361] 

66. Ahmed A, Gibbs P, Pickles M, Turnbull L. Texture analysis in assessment and prediction of 
chemotherapy response in breast cancer. Journal of Magnetic Resonance Imaging. 2013; 38(1):89–
101. [PubMed: 23238914] 

67. Magnin IE, Cluzeau F, Odet CL, Bremond A. Mammographic texture analysis: an evaluation of 
risk for developing breast cancer. Optical Engineering. 1986; 25(6):156780–156780.

68. Wu C-M, Chen Y-C, Hsieh K-S. Texture features for classification of ultrasonic liver images. IEEE 
Transactions on Medical Imaging. 1992; 11(2):141–152. [PubMed: 18218367] 

69. Mir A, Hanmandlu M, Tandon S. Texture analysis of CT images. IEEE Engineering in Medicine 
and Biology Magazine. 1995; 14(6):781–786.

70. Wei D, Chan HP, Helvie MA, et al. Classification of mass and normal breast tissue on digital 
mammograms: multiresolution texture analysis. Medical Physics. 1995; 22(9):1501–1513. 
[PubMed: 8531882] 

Parekh and Jacobs Page 26

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



71. Sun Y, Horng M-H, Lin X, Wang J-Y. Ultrasonic image analysis for liver diagnosis. IEEE 
Engineering in Medicine and Biology Magazine. Nov-Dec;1996 15(6):93–101.

72. Lucht R, Brix G, Lorenz W. Texture analysis of differently reconstructed PET images. Physics in 
medicine and biology. 1996; 41(10):2207–2219. [PubMed: 8912391] 

73. Petrick N, Chan HP, Wei D, Sahiner B, Helvie MA, Adler DD. Automated detection of breast 
masses on mammograms using adaptive contrast enhancement and texture classification. Medical 
Physics. 1996; 23(10):1685–1696. [PubMed: 8946366] 

74. Sahiner B, Chan H-P, Petrick N, et al. Classification of mass and normal breast tissue: a 
convolution neural network classifier with spatial domain and texture images. IEEE Transactions 
on Medical Imaging. 1996; 15(5):598–610. [PubMed: 18215941] 

75. Chan H-P, Sahiner B, Petrick N, et al. Computerized classification of malignant and benign 
microcalcifications on mammograms: texture analysis using an artificial neural network. Physics 
in Medicine and Biology. 1997; 42(3):549–567. [PubMed: 9080535] 

76. Sinha S, Lucas-Quesada FA, Debruhl ND, et al. Multifeature analysis of Gd-enhanced MR images 
of breast lesions. Journal of Magnetic Resonance Imaging. 1997; 7(6):1016–1026. [PubMed: 
9400844] 

77. Wei D, Chan H-P, Petrick N, et al. False-positive reduction technique for detection of masses on 
digital mammograms: Global and local multiresolution texture analysis. Medical Physics. 1997; 
24(6):903–914. [PubMed: 9198026] 

78. Freeborough P, Fox NC. MR image texture analysis applied to the diagnosis and tracking of 
Alzheimer’s disease. IEEE Transactions on Medical Imaging. 1998; 17(3):475–478. [PubMed: 
9735911] 

79. Sahiner B, Chan H-P, Petrick N, Helvie MA, Goodsitt MM. Computerized characterization of 
masses on mammograms: The rubber band straightening transform and texture analysis. Medical 
Physics. 1998; 25(4):516–526. [PubMed: 9571620] 

80. Chen E, Chung P-C, Chen C-L, Tsai H-M, Chang C-I. An automatic diagnostic system for CT liver 
image classification. Biomedical Engineering, IEEE Transactions on. 1998; 45(6):783–794.

81. Mudigonda NR, Rangayyan RM, Desautels JL. Gradient and texture analysis for the classification 
of mammographic masses. IEEE Transactions on Medical Imaging. 2000; 19(10):1032–1043. 
[PubMed: 11131493] 

82. Kovalev V, Kruggel F, Gertz H-J, Von Cramon DY. Three-dimensional texture analysis of MRI 
brain datasets. IEEE Transactions on Medical Imaging. 2001; 20(5):424–433. [PubMed: 
11403201] 

83. Sivaramakrishna R, Powell KA, Lieber ML, Chilcote WA, Shekhar R. Texture analysis of lesions 
in breast ultrasound images. Computerized medical imaging and graphics. 2002; 26(5):303–307. 
[PubMed: 12204234] 

84. Horng MH, Sun YN, Lin XZ. Texture feature coding method for classification of liver sonography. 
Computerized medical imaging and graphics: the official journal of the Computerized Medical 
Imaging Society. Jan-Feb;2002 26(1):33–42. [PubMed: 11734372] 

85. Gibbs P, Turnbull LW. Textural analysis of contrast-enhanced MR images of the breast. Magnetic 
Resonance in Medicine. 2003; 50(1):92–98. [PubMed: 12815683] 

86. Gletsos M, Mougiakakou SG, Matsopoulos GK, Nikita KS, Nikita AS, Kelekis D. A computer-
aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural 
network classifier. Information Technology in Biomedicine, IEEE Transactions on. 2003; 7(3):
153–162.

87. Mahmoud-Ghoneim D, Toussaint G, Constans J-M, Jacques D. Three dimensional texture analysis 
in MRI: a preliminary evaluation in gliomas. Magnetic resonance imaging. 2003; 21(9):983–987. 
[PubMed: 14684200] 

88. Pereira RR Jr, Marques PMA, Honda MO, et al. Usefulness of texture analysis for computerized 
classification of breast lesions on mammograms. Journal of digital imaging. 2007; 20(3):248–255. 
[PubMed: 17122993] 

89. Nie K, Chen J-H, Hon JY, Chu Y, Nalcioglu O, Su M-Y. Quantitative analysis of lesion 
morphology and texture features for diagnostic prediction in breast MRI. Academic radiology. 
2008; 15(12):1513–1525. [PubMed: 19000868] 

Parekh and Jacobs Page 27

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



90. El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for 
predicting cancer treatment outcomes. Pattern recognition. 2009; 42(6):1162–1171. [PubMed: 
20161266] 

91. Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ. Prediction of hemorrhagic 
transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR 
images. Journal of Magnetic Resonance Imaging. 2009; 30(5):933–941. [PubMed: 19856407] 

92. McLaren CE, Chen WP, Nie K, Su MY. Prediction of malignant breast lesions from MRI features: 
a comparison of artificial neural network and logistic regression techniques. Acad Radiol. Jul; 
2009 16(7):842–851. [PubMed: 19409817] 

93. Mayerhoefer ME, Welsch GH, Riegler G, et al. Feasibility of texture analysis for the assessment of 
biochemical changes in meniscal tissue on T1 maps calculated from delayed gadolinium-enhanced 
magnetic resonance imaging of cartilage data: comparison with conventional relaxation time 
measurements. Invest Radiol. Sep; 2010 45(9):543–547. [PubMed: 20661144] 

94. Karahaliou A, Vassiou K, Arikidis NS, Skiadopoulos S, Kanavou T, Costaridou L. Assessing 
heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer 
diagnosis. The British Journal of Radiology. 2010; 83(988):296–309. [PubMed: 20335440] 

95. Korfiatis PD, Karahaliou AN, Kazantzi AD, Kalogeropoulou C, Costaridou L. Texture-based 
identification and characterization of interstitial pneumonia patterns in lung multidetector CT. 
IEEE Transactions on Information Technology in Biomedicine. 2010; 14(3):675–680. [PubMed: 
19906596] 

96. Mayerhoefer ME, Stelzeneder D, Bachbauer W, et al. Quantitative analysis of lumbar intervertebral 
disc abnormalities at 3.0 Tesla: value of T(2) texture features and geometric parameters. NMR 
Biomed. Jun; 2012 25(6):866–872. [PubMed: 22161807] 

97. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. 
Radiology. 2013; 269(1):8–14. [PubMed: 24062559] 

98. Cai H, Liu L, Peng Y, Wu Y, Li L. Diagnostic assessment by dynamic contrast-enhanced and 
diffusion-weighted magnetic resonance in differentiation of breast lesions under different imaging 
protocols. BMC Cancer. 2014; 14:366. [PubMed: 24885156] 

99. Cai H, Peng Y, Ou C, Chen M, Li L. Diagnosis of breast masses from dynamic contrast-enhanced 
and diffusion-weighted MR: a machine learning approach. PLoS One. 2014; 9(1):e87387. 
[PubMed: 24498092] 

100. Stember JN, Deng FM, Taneja SS, Rosenkrantz AB. Pilot study of a novel tool for input-free 
automated identification of transition zone prostate tumors using T2- and diffusion-weighted 
signal and textural features. Journal of magnetic resonance imaging: JMRI. Aug; 2014 40(2):
301–305. [PubMed: 24924512] 

101. Wang TC, Huang YH, Huang CS, et al. Computer-aided diagnosis of breast DCE-MRI using 
pharmacokinetic model and 3-D morphology analysis. Magn Reson Imaging. Apr; 2014 32(3):
197–205. [PubMed: 24439361] 

102. Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture 
analysis. Pattern Recognition Letters. 1990; 11(6):415–419.

103. Dasarathy BV, Holder EB. Image characterizations based on joint gray level—run length 
distributions. Pattern Recognition Letters. 1991; 12(8):497–502.

104. Cook GJ, Yip C, Siddique M, et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in 
Non–Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? 
Journal of Nuclear Medicine. 2013; 54(1):19–26. [PubMed: 23204495] 

105. Mandelbrot BB. How long is the coast of Britain. Science. 1967; 156(3775):636–638. [PubMed: 
17837158] 

106. Mandelbrot, BB. The fractal geometry of nature. Vol. 173. Macmillan; 1983. 

107. Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Medical image analysis. 2009; 
13(4):634–649. [PubMed: 19535282] 

108. Li H, Giger ML, Olopade OI, Lan L. Fractal analysis of mammographic parenchymal patterns in 
breast cancer risk assessment. Academic radiology. 2007; 14(5):513–521. [PubMed: 17434064] 

Parekh and Jacobs Page 28

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



109. Guo Q, Shao J, Ruiz VF. Characterization and classification of tumor lesions using computerized 
fractal-based texture analysis and support vector machines in digital mammograms. International 
journal of computer assisted radiology and surgery. 2009; 4(1):11–25. [PubMed: 20033598] 

110. Gagnepain J, Roques-Carmes C. Fractal approach to two-dimensional and three-dimensional 
surface roughness. Wear. 1986; 109(1):119–126.

111. Sarkar N, Chaudhuri B. An efficient differential box-counting approach to compute fractal 
dimension of image. IEEE Transactions on Systems, Man and Cybernetics. 1994; 24(1):115–120.

112. Peleg S, Naor J, Hartley R, Avnir D. Multiple resolution texture analysis and classification. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 1984; (4):518–523. [PubMed: 
21869220] 

113. Pentland AP. Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis 
and Machine Intelligence. 1984; (6):661–674. [PubMed: 22499648] 

114. Mandelbrot BB, Van Ness JW. Fractional Brownian motions, fractional noises and applications. 
SIAM review. 1968; 10(4):422–437.

115. Rangayyan RM, Mudigonda NR, Desautels JL. Boundary modelling and shape analysis methods 
for classification of mammographic masses. Medical and Biological Engineering and Computing. 
2000; 38(5):487–496. [PubMed: 11094803] 

116. Rose CJ, Mills SJ, O’Connor JP, et al. Quantifying spatial heterogeneity in dynamic contrast-
enhanced MRI parameter maps. Magnetic Resonance in Medicine. 2009; 62(2):488–499. 
[PubMed: 19466747] 

117. Randen T, Husoy JH. Filtering for texture classification: A comparative study. IEEE Transactions 
on Pattern Analysis and Machine Intelligence. 1999; 21(4):291–310.

118. Ganeshan B, Miles KA, Young R, Chatwin C. Hepatic entropy and uniformity: additional 
parameters that can potentially increase the effectiveness of contrast enhancement during 
abdominal CT. Clinical radiology. 2007; 62(8):761–768. [PubMed: 17604764] 

119. Ganeshan B, Miles KA, Young RC, Chatwin CR. In search of biologic correlates for liver texture 
on portal-phase CT. Academic radiology. 2007; 14(9):1058–1068. [PubMed: 17707313] 

120. Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR. Colorectal Cancer: Texture 
Analysis of Portal Phase Hepatic CT Images as a Potential Marker of Survival 1. Radiology. 
2009; 250(2):444–452. [PubMed: 19164695] 

121. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell 
lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour 
glucose metabolism and stage. Cancer Imaging. 2010; 10(1):137–143. [PubMed: 20605762] 

122. Ganeshan B, Burnand K, Young R, Chatwin C, Miles K. Dynamic contrast-enhanced texture 
analysis of the liver: initial assessment in colorectal cancer. Investigative radiology. 2011; 46(3):
160–168. [PubMed: 21102348] 

123. Wachinger C, Navab N. Entropy and Laplacian images: Structural representations for multi-modal 
registration. Medical Image Analysis. 2012; 16(1):1–17. [PubMed: 21632274] 

124. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-
small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. 
European radiology. 2012; 22(4):796–802. [PubMed: 22086561] 

125. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non–small cell lung cancer: 
histopathologic correlates for texture parameters at CT. Radiology. 2013; 266(1):326–336. 
[PubMed: 23169792] 

126. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer 
heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a 
biomarker of 5-year survival. Radiology. 2013; 266(1):177–184. [PubMed: 23151829] 

127. Laws KI. Rapid texture identification. Proc SPIE 0238, Image Processing for Missile Guidance. 
1980:376–381.

128. Laws, KI. PhD Dissertation. Los Angeles, California: Image Processing Institute, University of 
Southern California; 1980. Textured image segmentation. 

129. Cox G, Hoare F, de Jager G. Experiments in lung cancer nodule detection using texture analysis 
and neural network classifiers. Third South African Workshop on Pattern Recognition. 1992; 
31:136–142.

Parekh and Jacobs Page 29

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



130. Miller P, Astley S. Classification of breast tissue by texture analysis. Image and Vision 
Computing. 1992; 10(5):277–282.

131. Chu Y, Li L, Goldgof DB, Qui Y, Clark RA. Classification of masses on mammograms using 
support vector machine. Proc SPIE 5032, Medical Imaging: Image Processing. 2003:940–948.

132. Poonguzhali S, Ravindran G. Automatic classification of focal lesions in ultrasound liver images 
using combined texture features. Information Technology Journal. 2008; 7(1):205–209.

133. Awad J, Krasinski A, Parraga G, Fenster A. Texture analysis of carotid artery atherosclerosis from 
three-dimensional ultrasound images. Medical Physics. 2010; 37(4):1382–1391. [PubMed: 
20443459] 

134. Dheeba J, Tamil Selvi S. Classification of malignant and benign microcalcification using SVM 
classifier. International Conference on Emerging Trends in Electrical and Computer Technology 
(ICETECT). 2011:686–690.

135. Barata C, Marques JS, Mendonça T. Bag-of-features classification model for the diagnose of 
melanoma in dermoscopy images using color and texture descriptors. Image Analysis and 
Recognition. 2013:547–555.

136. Virmani J, Kumar V, Kalra N, Khandelwa N. Pca-SVm based caD System for Focal liver lesions 
using B-mode ultrasound Images. Defence Science Journal. 2013; 63(5):478–486.

137. Pereyra LC, Rangayyan RM, Ponciano-Silva M, Azevedo-Marques PM. Fractal analysis for 
computer-aided diagnosis of diffuse pulmonary diseases in HRCT images. IEEE International 
Symposium on Medical Measurements and Applications (MeMeA). 2014:1–6.

138. Dilger S, Judisch A, Uthoff J, Hammond E, Newell J, Sieren J. Improved pulmonary nodule 
classification utilizing lung parenchyma texture features. Proc SPIE 9414, Medical Imaging: 
Computer-Aided Diagnosis. 2015:94142T.

139. Mitrea D, Nedevschi S, Abrudean M. Classification of the liver tumors Using Co-Occurrence 
Matrices of textural Microstructures. Journal of Communication and Computer. 2015; 12:6–12.

140. Singh BK, Verma K, Thoke A. Adaptive Gradient Descent Backpropagation for Classification of 
Breast Tumors in Ultrasound Imaging. Procedia Computer Science. 2015; 46:1601–1609.

141. Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT 
images. IEEE Transactions on Biomedical Engineering. 2008; 55(7):1822–1830. [PubMed: 
18595800] 

142. Haar A. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen. 1910; 69(3):
331–371.

143. Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on pure and 
applied mathematics. 1988; 41(7):909–996.

144. Daubechies, I. Ten lectures on wavelets. Vol. 61. Society for Industrial and Applied Mathematics; 
1992. 

145. Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 1989; 11(7):674–693.

146. Chen D-R, Chang R-F, Kuo W-J, Chen M-C, Huang Y-L. Diagnosis of breast tumors with 
sonographic texture analysis using wavelet transform and neural networks. Ultrasound in 
medicine & biology. 2002; 28(10):1301–1310. [PubMed: 12467857] 

147. Akhbardeh A, Jacobs MA. Comparative analysis of nonlinear dimensionality reduction 
techniques for breast MRI segmentation. Medical physics. 2012; 39(4):2275–2289. [PubMed: 
22482648] 

148. Duda, RO.; Hart, PE. Pattern classification and scene analysis. Vol. 3. Wiley; New York: 1973. 

149. Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied 
relations in linear systems. Theoretical Computer Science. 1998; 209(1):237–260.

150. Pearson KL III. On lines and planes of closest fit to systems of points in space. The London, 
Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1901; 2(11):559–572.

151. Torgerson WS. Multidimensional scaling: I. Theory and method. Psychometrika. 1952; 17(4):
401–419.

Parekh and Jacobs Page 30

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



152. Coifman RR, Lafon S, Lee AB, et al. Geometric diffusions as a tool for harmonic analysis and 
structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences of 
the United States of America. 2005; 102(21):7426–7431. [PubMed: 15899970] 

153. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear 
dimensionality reduction. Science. 2000; 290(5500):2319–2323. [PubMed: 11125149] 

154. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 
2000; 290(5500):2323–2326. [PubMed: 11125150] 

155. Van Der Maaten L, Postma E, Van den Herik J. Dimensionality reduction: a comparative. J Mach 
Learn Res. 2009; 10:66–71.

156. Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. IEEE Transactions on 
Systems, Man and Cybernetics. 1985; (4):580–585.

157. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information 
Theory. 1967; 13(1):21–27.

158. Breiman L. Bagging predictors. Machine learning. 1996; 24(2):123–140.

159. Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273–297.

160. MacQueen J. Some methods for classification and analysis of multivariate observations. 
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 1967; 
1(14):281–297.

161. Fred, AL.; Jain, AK. Data clustering using evidence accumulation. 16th International Conference 
on Pattern Recognition; 2002; 2002. p. 276-280.

162. McQuitty LL. Hierarchical linkage analysis for the isolation of types. Educational and 
Psychological Measurement. 1960; 20(1):55–67.

163. Kassner A, Thornhill R. Texture analysis: a review of neurologic MR imaging applications. 
American Journal of Neuroradiology. 2010; 31(5):809–816. [PubMed: 20395383] 

164. Miles KA, Ganeshan B, Hayball MP. CT texture analysis using the filtration-histogram method: 
what do the measurements mean? Cancer Imaging. 2013; 13(3):400–406. [PubMed: 24061266] 

165. de Melo RH, Vieira EdA, Conci A. Characterizing the lacunarity of objects and image sets and its 
use as a technique for the analysis of textural patterns. Advanced concepts for intelligent vision 
systems. 2006:208–219.

166. Nandi R, Nandi AK, Rangayyan RM, Scutt D. Classification of breast masses in mammograms 
using genetic programming and feature selection. Medical and Biological Engineering and 
Computing. 2006; 44(8):683–694. [PubMed: 16937210] 

167. Tourassi GD, Delong DM, Floyd CE Jr. A study on the computerized fractal analysis of 
architectural distortion in screening mammograms. Physics in medicine and biology. 2006; 51(5):
1299–1312. [PubMed: 16481695] 

168. Rangayyan RM, Nguyen TM. Fractal analysis of contours of breast masses in mammograms. 
Journal of Digital Imaging. 2007; 20(3):223–237. [PubMed: 17021926] 

169. Chen D-R, Chang R-F, Huang Y-L, Chou Y-H, Tiu C-M, Tsai P-P. Texture analysis of breast 
tumors on sonograms. Seminars in Ultrasound, CT and MRI. 2000; 21(4):308–316.

170. Agner SC, Soman S, Libfeld E, et al. Textural kinetics: a novel dynamic contrast-enhanced 
(DCE)-MRI feature for breast lesion classification. Journal of Digital Imaging. 2011; 24(3):446–
463. [PubMed: 20508965] 

171. Parikh J, Selmi M, Charles-Edwards G, et al. Changes in primary breast cancer heterogeneity may 
augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. 
Radiology. Jul; 2014 272(1):100–112. [PubMed: 24654970] 

172. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor Heterogeneity and Branched Evolution 
Revealed by Multiregion Sequencing. New England Journal of Medicine. 2012; 366(10):883–
892. [PubMed: 22397650] 

173. Huang Y-L, Chen J-H, Shen W-C. Diagnosis of hepatic tumors with texture analysis in 
nonenhanced computed tomography images. Academic radiology. 2006; 13(6):713–720. 
[PubMed: 16679273] 

174. Poonguzhali, S.; Ravindran, G. Performance evaluation of feature extraction methods for 
classifying abnormalities in ultrasound liver images using neural network. IEEE 28th Annual 

Parekh and Jacobs Page 31

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



International Conference of the Engineering in Medicine and Biology Society; 2006; 2006. p. 
4791-4794.

175. Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N. Neural network based focal liver lesion 
diagnosis using ultrasound images. Computerized Medical Imaging and Graphics. 2011; 35(4):
315–323. [PubMed: 21334176] 

176. Virmani, J.; Kumar, V.; Kalra, N.; Khadelwal, N. A rapid approach for prediction of liver cirrhosis 
based on first order statistics. 2011 International Conference on Multimedia, Signal Processing 
and Communication Technologies (IMPACT); 2011. p. 212-215.

177. Jeon JH, Choi JY, Lee S, Ro YM. Multiple ROI selection based focal liver lesion classification in 
ultrasound images. Expert Systems with Applications. 2013; 40(2):450–457.

178. Virmani J, Kumar V, Kalra N, Khandelwal N. SVM-based characterisation of liver cirrhosis by 
singular value decomposition of GLCM matrix. International Journal of Artificial Intelligence 
and Soft Computing. 2013; 3(3):276–296.

179. Virmani J, Kumar V, Kalra N, Khandelwal N. Prediction of liver cirrhosis based on 
multiresolution texture descriptors from B-mode ultrasound. International Journal of 
Convergence Computing. 2013; 1(1):19–37.

180. Xian, G-m. An identification method of malignant and benign liver tumors from ultrasonography 
based on GLCM texture features and fuzzy SVM. Expert Systems with Applications. 2010; 
37(10):6737–6741.

181. Virmani J, Kumar V, Kalra N, Khandelwal N. A comparative study of computer-aided 
classification systems for focal hepatic lesions from B-mode ultrasound. Journal of medical 
engineering & technology. 2013; 37(4):292–306. [PubMed: 23701435] 

182. Goh V, Sanghera B, Wellsted DM, Sundin J, Halligan S. Assessment of the spatial pattern of 
colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. 
European radiology. 2009; 19(6):1358–1365. [PubMed: 19190914] 

183. Cui C, Cai H, Liu L, Li L, Tian H, Li L. Quantitative analysis and prediction of regional lymph 
node status in rectal cancer based on computed tomography imaging. European radiology. 2011; 
21(11):2318–2325. [PubMed: 21713526] 

184. Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for 
differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers 
with different Gleason scores. European radiology. 2015; 25(10):2840–2850. [PubMed: 
25991476] 

185. Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 2013; 35(8):1798–1828. [PubMed: 
23787338] 

186. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–444. [PubMed: 
26017442] 

187. Cui JL, Wen CY, Hu Y, Li TH, Luk KD. Entropy-based analysis for diffusion anisotropy mapping 
of healthy and myelopathic spinal cord. Neuroimage. Feb 1; 2011 54(3):2125–2131. [PubMed: 
20951216] 

Parekh and Jacobs Page 32

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key Issues

• Radiomics is a new field of research and targeted for precision 

medicine.

• The mathematical basis for radiomics is well grounded in texture, 

shape, and information theory.

• Development and identification of radio-clinicopathologic features to 

radiomics features are critical for wide spread use of radiomics in 

precision medicine.

• Further research is needed to determine the optimal processing steps 

needed for reproducible application of radiomics to different imaging 

applications, for example, imaging modality, histogram binning, voxel 

spacing, size of the image or ROI, and size of the spatial filtering 

kernel, to name a few.

• Standardization of “relevant” radiomic features for clinical application 

is needed for improved diagnostic ability; most studies to date have low 

to moderate AUCs. Thus, every step of the radiomics framework needs 

extensive analysis, validation and standardization for radiomics to 

achieve its true potential as a decision support system.

• Advanced data algorithms will be needed to identify the significant 

features in the high dimensional feature space created by the radiomics 

method.

• Prospective trials and follow up studies are needed to fully define the 

impact of radiomics for diagnosis and precision medicine.
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Figure 1. 
Illustration of the radiomics algorithm. (a) Initial Computed Tomography (CT) scan. (b) 

Segmentation is performed on the lesion using a region of interest(ROI). (c) Radiomic 

features are extracted from the ROI based on the gray level patterns, inter-voxel 

relationships, and shape. (d) A subset of the extracted radiomic features is selected for 

classification (e) The selected features are used as inputs into a classification model to 

produce a diagnosis or correlation to a prognostic marker. Data from5,12.
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Figure 2. 
Illustration of statistical texture feature extraction. (a) Segmented tumor image (b) 

Segmented tumor image quantized to four intensity levels (c) First order statistical features 

corresponding to first order histogram (d) Higher order statistical features corresponding to 

1. GLCM (gray level co-occurrence matrix), 2. GLRLM (gray level run length matrix) and 

3. NGTDM (neighborhood gray tone difference matrix). Data from16.
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Figure 3. 
(a) Illustration of the inter-pixel relationships characterized by the user defined parameter, θ 
(b) An example 5 × 5 matrix with gray values ranging from 1 to 5. (c) The resultant 

symmetric gray level co-occurrence matrix (GLCM) obtained by multiplying the 

asymmetric GLCM with its transpose.
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Figure 4. 
(a) Illustration of the inter-pixel relationships characterized by the user defined parameters, 

angle θ and run length j. (b) Example 5 × 5 matrix with values ranging from 1 to 5. (c) 

Resultant gray level run length matrix (GLRL) for run lengths of 1 to 5 and θ = 0°.

Parekh and Jacobs Page 37

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a) Illustration of the neighborhood around the pixel of interest based on the user defined 

neighborhood parameter, d (b) Example 5×5 input matrix with values ranging from 1 to 5. 

(c) Neighborhood gray tone difference matrix for d=1.
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Figure 6. 
Illustration of different techniques used for spatial domain filtering (a) statistical kernel (e.g. 

median filter) (b) Edge kernel (e.g. Laplacian of Gaussian filter) (c) Special kernel (e.g. 

Fractal dimension filter). Data from59,141,170
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Figure 7. 
Multiresolution methods applied to a diffusion-weighted image (b=500): a) the original size 

256×256; b) compressed image (64×64) at different levels. c) For compression 2D 

biorthogonal spline wavelets were used. d(h)j, d(v)j and d(d)j respectively are detail 

components corresponding to vertical, horizontal, and diagonal. aj, is the approximation 

(coarse) component at decomposition level. Data from 147
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Table 2

Notation used in the equations for computing texture features using gray level co-occurrence matrix

Gnorm Normalized gray level co-occurrence matrix

Gx Marginal probability matrix obtained by summing the rows of Gnorm

Gy Marginal probability matrix obtained by summing the columns of Gnorm

μx Mean of Gx

μy Mean of Gy

σx Standard deviation of Gx

σy Standard deviation of Gy
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Table 3

Summary of coarseness, contrast, busyness and complexity values corresponding to responders and non-

responders of NSCLC obtained using Lung PET as reported in the literature104.

Pathology Coarseness Contrast Busyness Complexity

Responders 0.01 0.11 0.76 1938

Non-responders 0.03 0.04 0.37 1926
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Table 4

Summary of fractal dimension values corresponding to different breast tissue classes obtained using 

mammogram as reported in the literature109,167.

Tissue class Fractal dimension

Normal 2.64

Mass 2.39

Architectural distortion 2.52
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