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Outcome Prediction in Cancer Therapy

• Outcome prediction prior to or even during the cancer therapy
=⇒ tailoring and adapting a treatment planning.

• To this end, there are diverse information sources :
l Patient’s Demography :

patient gender, patient age, country . . .
l Clinical Characteristics :

tumor stage, tumor location, histology, genomic data . . .
l Medical Imaging :

anatomical images and functional images ⇒ tumor volume,
intensity, texture features . . .
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Difficulties We Have

1. Information sources are imprecise :

l Positron Emission Tomography (PET) is blurring and noisy.

l Clinical characteristics offered by clinicians are in some sense
subjective and inaccuracy.

2. No consensus to determine the most predictive features :

l Dozens of PET imaging features, texture features and clinical
features. Maybe redundant, irrelevant or even interference.

We need a stable prediction rule and feature selection.
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Dempster-Shafer Theory

l Also known as the Theory of Belief Functions and Evidence
Theory.

l An extension of Probability theory and Set-Membership
Approach.

a probability space 
a frame of discernment 

l A powerful framework for reasoning and making decision with
partial (uncertain, imprecise) knowledge.
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Modified EK-NN Classification Rule
Given a query instance Xt and training sample (Xj ,Yj =ωq), evidence regarding
Xt ’s label can be quantified as [Denoeux, 1995] :{

mt ,j(ωq) =α ·exp(−γq ·d2
t ,j)

mt ,j(Ω) = 1−mt ,j(ωq)

A mixed combination rule to fuse K -NNs’ evidence

1. NNs with the same label : Dempster’s rule ⇒ mΓq (ωq)+mΓq (Ω)= 1 ;
2. Between different mΓq , where q = 1, . . . ,c :

◦ Discounting according to each group’s cardinality |Γq | :{
dmΓq

t ({ωq}) = (|Γq |/|Γmax |)η×mΓq
t (ωq)

dmΓq
t (Ω) = 1− (|Γq |/|Γmax |)η×mΓq

t (ωq)

◦ Global fusion via Yager’s rule :{
mt({ωq}) = dmΓq

t ({ωq})×∏
h∈{1,...c}\q dmΓh

t (Ω), ∀q = 1 . . .c
mt(Ω) = 1−∑c

q=1 mt({ωq})
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Modified EK-NN
Examples of mixed combination

Comparing fusion results between different combination rules

• Assume ] 1 ∼ ] 4 are the training samples with the same distance to a query
instance :

CASE 1 : A NORMAL CONFLICTING SITUATION
] 1 ] 2 ] 3 Dempster’s rule Yager’s rule mixed rule

m({ω1}) 0.8 0.8 0.0 0.8276 0.1920 0.7680
m({ω2}) 0.0 0.0 0.8 0.1379 0.0320 0.0080
m(Ω) 0.2 0.2 0.2 0.0345 0.7760 0.2240

CASE 2 : A HIGH CONFLICTING SITUATION
] 1 ] 2 ] 3 ] 4 Dempster’s rule Yager’s rule mixed rule

m({ω1}) 0.8 0.8 0.0 0.0 0.4898 0.0384 0.0384
m({ω2}) 0.0 0.0 0.8 0.8 0.4898 0.0384 0.0384
m(Ω) 0.2 0.2 0.2 0.2 0.0204 0.9232 0.9232
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Modified EK-NN
two-step Classification

Assumption
l Using belief functions :

precise objects ' additional evidence for imprecise objects.

Approach
1. Mass functions constructed via the proposed mixed

combination rule ;
2. Making decision for easy to classify objects

⇒ bigger group of "training pairs" ;
3. Calculating prototypes (i.e., class centers)

⇒ Making decision for imprecise objects.
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Modified EK-NN
A example of two-step Classification
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FIGURE: (b) and (c) are credal partition results for EK-NN and mEK-NN ; (d)-(f) are decision
making results. The error rates are respectively 9.80%, 8.80% and 7.80%.

24/06/2015 – GDR ISIS – Traitement, Analyse, Indexation en Imagerie du Vivant 10



Evidential Feature Selection
Main idea

Requirements
A good feature subset should satisfy three requirements :

l High classification accuracy ;
l Low imprecision and uncertainty (small overlaps between

different classes) ;
l Sparsity to reduce the risk of over-fitting.

According to these requirements, we developed
an Evidential Feature Selection (EFS) method

based on DST and mEK-NN.
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Evidential Feature Selection
l The dissimilarity between two training instances Xi and Xj is

measured by a weighted euclidian distance :

dj ,i =
√√√√ m∑

p=1
λp ·

(
dp

j ,i

)2

=⇒ λp is the binary coefficient for feature selection.

l Based on mEK-NN, features are selected through

argλmin
1
n

n∑
i=1

c∑
q=1

(Pli({ωq})− ti ,q)
2+ ρ

n

n∑
i=1

mi(Ω)+δ× l0

◦ mi and Pli are the mass and plausibility function ;
◦ label indicator ti ,q = 1 iff Yi =ωq ;
◦ ρ and δ are two hyper-parameters.
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Evidential Feature Selection
Specified loss function

arg min
λ1,...,λm

1
n

n∑
i=1

c∑
q=1

(1− ti ,q −
∑
h 6=q

Bi
h)

2+ρ× 1
n

n∑
i=1

(1−
c∑

q=1
Bi

q)

+δ
m∑

p=1
[1−exp(−5λp)] (1)

with
Bi

q =Ai
q

∏
s∈{1,...c}\q

(1−Ai
s)

and

Ai
q =

( |Γi
q |

|Γi
max |

)η1− ∏
j∈Γi

q

[
1−αexp(−γq ·d2

i ,j)
] .

=⇒ Solved via integer genetic algorithm [Deep et al., 2009].
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Evidential Feature Selection
A test on synthetic data

l Data generation [Perkins et al., 2003] :
There were nr relevant, nc redundant and ni irrelevant features uniformly
distributed between [-1,1]. Class label was determined only by relevant
features :

y =
{
ω1 if maxi(xi)> 21− 1

nr −1,

ω2 otherwise.

where xi (1≤ i ≤ nr ) is the i th relevant feature.

l Obtained results :

nr nc ni subset size EK-NN
mEK-NN

no fs with fs
2 2 6 2 14.67 12.67 2.67
2 2 16 2 17.33 12.00 1.33
2 2 26 2 23.33 18.67 4.00
2 2 36 2 28.67 26.67 5.33
2 2 46 2 29.33 23.33 4.67
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UCI Data Sets
feature selection
TABLE: comparing EFS with classical wrapper methods using 10-fold cross
validation. The robustness is evaluated via [Somol and Novovicova, 2010].

Iris Seeds 

Error(%) Robustness(%) Subset Size Error(%) Robustness(%) Subset Size 

All 2.67 n/a 4 7.62 n/a 7 

SFS 4.67 54.55 1 11.90 57.97 2 

SBS 5.33 21.05 2 10.95 23.88 3 

SFFS 5.33 21.62 3 5.24 54.93 2 

EFS* 2.00 100 3 4.76 81.18 3 

Wine Yeast 

Error(%) Robustness(%) Subset Size Error(%) Robustness(%) Subset Size 

All 13.04 n/a 13 38.87 n/a 8 

SFS 30.50 75 1 61.99 100 1 

SBS 6.24 42.47 5 48.35 100 1 

SFFS 7.29 57.58 4 36.21 40 5 

EFS* 5.13 91.89 3 32.51 100 2 

WDBC Parkinsons 

Error(%) Robustness(%) Subset Size Error(%) Robustness(%) Subset Size 

All 7.20 n/a 30 13.37 n/a 22 

SFS 14.44 80 1 15.82 33.33 1 

SBS 19.67 22.22 2 19.03 23.91 2 

SFFS 9.87 25 4 13.79 43.65 3 

EFS* 5.80 92.37 3 8.63 100 3 

Lung Cancer+ 

Error(%) Robustness(%) Subset Size 

All 32.00 n/a 52 

SFS 16.00 78.64 2 

SBS 36.00 32.76 9 

SFFS 28.00 94.27 2 

EFS* 0 97.92 4 
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UCI Data Sets
classification
TABLE: comparing the classification performance. SFFS was used to
select features for other methods. For BK-NN [Liu et al., 2013] and
CCR [Liu et al., 2014], Re and Ri represent, respectively, the error rate and
imprecision rate.

  Iris Seeds Wine Yeast WDBC Parkinson Lung Cancer+ 

S

F

F

S

 

 

+

 

ANN 8.00 7.62 9.64 32.57 9.15 9.63 16.00 

CART 8.00 7.14 9.09 37.55 10.04 11.21 16.00 

SVM 6.00 7.14 6.83 36.14 8.28 13.26 16.00 

EK-NN 5.33 6.67 6.18 35.07 9.70 16.39 24.00 

BK-NN  

(𝑅𝑒, 𝑅𝑖) 

4.00 

4.67 

2.38 

11.90 

6.74 

5.13 

16.31 

40.84 

7.22 

8.44 

9.18 

13.37 

24.00 

0 

CCR  

(𝑅𝑒, 𝑅𝑖) 

4.00 

4.67 

3.81 

18.57 

3.99 

15.33 

19.53 

36.11 

5.99 

15.83 

16.42 

12.26 

24.00 

4.00 

our method 2.00 4.76 5.13 32.51 5.80 8.63 0 
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Clinical Data Sets
Lung Tumor Data

Lung Tumors        

Recurrence: Case 1 

Recurrence: Case 2 

Non-Recurrence: Case 1’ 

t0 t1 t2 
Before Treatment After Chemotherapy During Radiotherapy 

FDG-PET uptakes for lung tumor

l twenty-five patients with stage
II-III non small cell lung cancer
were treated with curative
intent chemo-radiotherapy.

l FDG-PETs : before treatment,
after chemotherapy and during
radiotherapy.

l definition of recurrence after
one year : local/distant
recurrence (19 patients) and
no recurrence (6 patients).
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Clinical Data Sets
Esophageal Tumor Data

Esophageal Tumors before Treatment t0 

Disease-free: Case 1 

Disease-free: Case 2 Disease: Case 2’ 

Disease: Case 1’ 

Target tumor 

FDG-PET uptakes for esoph. tumor

l thirty-six patients with
esophageal squamous cell
carcinomas were treated with
chemo-radiotherapy, and
followed up in a long term up to
five years.

l FDG-PETs : only before
treatment is available.

l neither loco regional nor distant
recurrence (13 patients) and
disease-positive (23 patients).
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Clinical Data Sets
Feature Extraction

l Three types of PET imaging features.
m SUV-based features : SUVmax , SUVmean, SUVpeak , metabolic

tumor volume (MTV) and total lesion glycolysis (TLG) ;
m texture features : gray level size zone matrix [Tixier et al., 2012] ;

m longitudinal change : relative difference between baseline
features and follow-up features.

l Patients’ clinical characteristics for esophageal tumor data.
m gender, tumor stage, dysphagia grade, WHO performance

status, weight loss, tumor location.
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Clinical Data Sets
results
TABLE: Comparing feature selection performance using leave-one-out cross-validation. EFS∗
denotes the proposed method.

Method
Lung Tumor Data Esophageal Tumor Data

Accuracy Robustness subset size Accuracy Robustness subset size
All features 76±44 n/a 52 64±49 n/a 29
SFS 84±37 60 3 53±44 51 3
SFFS 72±46 54 4 81±40 53 3
SVMRFE 92±28 57 5 75±44 80 5
EFS∗ 100±0 94 4 81±40 92 3

TABLE: Comparing classification performance. mEK-NN∗ denotes the proposed classification
method.

Classifier
Lung Tumor Data Esophageal Tumor Data

without EFS with EFS without EFS with EFS
ANN 68±48 92±28 67±48 83±38
SVM 76±44 100±0 64±49 81±40
EK-NN 68±48 96±20 64±49 83±38
mEK-NN∗ 56±51 100±0 53±44 89±32
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Conclusions

l More information about this presentation :
m C.Lian, S.Ruan and T.Denœux, "An evidential classifier based on

feature selection and two-step classification", Pattern Recognition,
Vol. 48, pages 2318-2327, 2015.

m C.Lian, S.Ruan, T.Denœux and P.Verra, "Outcome prediction in
tumor therapy based on Dempster-Shafer Theory", IEEE-ISBI, New
York, USA, pages 63-66, April 2015.

l Future work :
m Tackling imbalanced learning problem and small sample size

effect, so as to improve the performance ;
m Evaluating the proposed method on larger clinical data sets.
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