

Outcome Prediction in Cancer Therapy based on Dempster-Shafer Theory and PET Imaging

Chunfeng Lian^{1,2}, Su Ruan², Thierry Denœux¹, Pierre Vera^{3,2}

¹Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7253 Heudiasyc, Compiègne, France

²Université de Rouen, QuantIF – EA 4108 LITIS, Rouen, France

³Centre Henri-Becquerel, Department of Nuclear Medicine, Rouen, France

24/06/2015 - GDR ISIS - Traitement, Analyse, Indexation en Imagerie du Vivant

Contents

Background

- Outcome Prediction in Cancer Therapy
- Difficulties in Outcome Prediction
- Dempster-Shafer Theory

Our Approach

- Modified EK-NN Classification Rule
- Evidential Feature Selection
- Experimental Results
 - $_{\odot}$ on UCI data sets
 - o on Clinical Data Sets

Conclusion

Outcome Prediction in Cancer Therapy

- Outcome prediction prior to or even during the cancer therapy
 → tailoring and adapting a treatment planning.
- To this end, there are diverse information sources :
 - Patient's Demography :

patient gender, patient age, country ...

• Clinical Characteristics :

tumor stage, tumor location, histology, genomic data ...

• Medical Imaging :

anatomical images and functional images \Rightarrow tumor volume, intensity, texture features . . .

Difficulties We Have

- 1. Information sources are imprecise :
 - Positron Emission Tomography (PET) is blurring and noisy.

• Clinical characteristics offered by clinicians are in some sense subjective and inaccuracy.

Difficulties We Have

- 1. Information sources are imprecise :
 - Positron Emission Tomography (PET) is blurring and noisy.

- Clinical characteristics offered by clinicians are in some sense subjective and inaccuracy.
- 2. No consensus to determine the most predictive features :
 - Dozens of PET imaging features, texture features and clinical features. Maybe redundant, irrelevant or even interference.

Difficulties We Have

- 1. Information sources are imprecise :
 - Positron Emission Tomography (PET) is blurring and noisy.

- Clinical characteristics offered by clinicians are in some sense subjective and inaccuracy.
- 2. No consensus to determine the most predictive features :
 - Dozens of PET imaging features, texture features and clinical features. Maybe redundant, irrelevant or even interference.

We need a stable prediction rule and feature selection.

Dempster-Shafer Theory

- Also known as the Theory of Belief Functions and Evidence Theory.
- An extension of Probability theory and Set-Membership Approach.

• A powerful framework for reasoning and making decision with partial (uncertain, imprecise) knowledge.

Contents

Background

- o Outcome Prediction in Cancer Therapy
- Difficulties in Outcome Prediction
- Dempster-Shafer Theory

Our Approach

- Modified EK-NN Classification Rule
- Evidential Feature Selection
- Experimental Results
 - $_{\odot}$ on UCI data sets
 - o on Clinical Data Sets

Conclusion

Modified EK-NN Classification Rule

Given a query instance X_t and training sample $(X_j, Y_j = \omega_q)$, evidence regarding X_t 's label can be quantified as [Denoeux, 1995] :

$$\begin{cases} m_{t,j}(\omega_q) &= \alpha \cdot exp(-\gamma_q \cdot d_{t,j}^2) \\ m_{t,j}(\Omega) &= 1 - m_{t,j}(\omega_q) \end{cases}$$

Modified EK-NN Classification Rule

Given a query instance X_t and training sample $(X_j, Y_j = \omega_q)$, evidence regarding X_t 's label can be quantified as [Denoeux, 1995] :

$$\begin{cases} m_{t,j}(\omega_q) &= \alpha \cdot exp(-\gamma_q \cdot d_{t,j}^2) \\ m_{t,j}(\Omega) &= 1 - m_{t,j}(\omega_q) \end{cases}$$

A mixed combination rule to fuse K-NNs' evidence

1. NNs with the same label : Dempster's rule $\Rightarrow m^{\Gamma_q}(\omega_q) + m^{\Gamma_q}(\Omega) = 1$; 2. Between different m^{Γ_q} , where q = 1, ..., c:

• Discounting according to each group's cardinality $|\Gamma_q|$:

$$\begin{cases} dm_t^{\Gamma_q}(\{\omega_q\}) &= (|\Gamma_q|/|\Gamma_{max}|)^\eta \times m_t^{\Gamma_q}(\omega_q) \\ dm_t^{\Gamma_q}(\Omega) &= 1 - (|\Gamma_q|/|\Gamma_{max}|)^\eta \times m_t^{\Gamma_q}(\omega_q) \end{cases}$$

• Global fusion via Yager's rule :

$$\begin{cases} m_t(\{\omega_q\}) &= dm_t^{\Gamma_q}(\{\omega_q\}) \times \prod_{h \in \{1, \dots, c\} \setminus q} dm_t^{\Gamma_h}(\Omega), \quad \forall q = 1 \dots c \\ m_t(\Omega) &= 1 - \sum_{q=1}^c m_t(\{\omega_q\}) \end{cases}$$

Modified EK-NN Examples of mixed combination

Comparing fusion results between different combination rules

- Assume \sharp 1 \sim \sharp 4 are the training samples with the same distance to a query instance :

CASE 1 : A NORMAL CONFLICTING SITUATION

	♯1	₿2	# 3	Dempster's rule	Yager's rule	mixed rule
$m(\{\omega_1\})$	0.8	0.8	0.0	0.8276	0.1920	0.7680
$m(\{\omega_2\})$	0.0	0.0	0.8	0.1379	0.0320	0.0080
$m(\Omega)$	0.2	0.2	0.2	0.0345	0.7760	0.2240

CASE 2 : A HIG	H CONFLICTING	SITUATION
----------------	---------------	-----------

	♯1	₿2	₿3	♯ 4	Dempster's rule	Yager's rule	mixed rule
$m(\{\omega_1\})$	0.8	0.8	0.0	0.0	0.4898	0.0384	0.0384
$m(\{\omega_2\})$	0.0	0.0	0.8	0.8	0.4898	0.0384	0.0384
$m(\Omega)$	0.2	0.2	0.2	0.2	0.0204	0.9232	0.9232

Modified EK-NN two-step Classification

Assumption

Using belief functions :

precise objects \simeq additional evidence for imprecise objects.

Approach

- 1. Mass functions constructed via the proposed mixed combination rule;
- Making decision for easy to classify objects
 ⇒ bigger group of "training pairs":
- 3. Calculating prototypes (i.e., class centers)
 - \Rightarrow Making decision for imprecise objects.

Modified EK-NN A example of two-step Classification

FIGURE: (b) and (c) are credal partition results for EK-NN and mEK-NN; (d)-(f) are decision making results. The error rates are respectively **9.80%**, **8.80%** and **7.80%**.

Evidential Feature Selection Main idea

Requirements

A good feature subset should satisfy three requirements :

- High classification accuracy ;
- Low imprecision and uncertainty (small overlaps between different classes);
- Sparsity to reduce the risk of over-fitting.

Evidential Feature Selection Main idea

Requirements

A good feature subset should satisfy three requirements :

- High classification accuracy ;
- Low imprecision and uncertainty (small overlaps between different classes);
- Sparsity to reduce the risk of over-fitting.

According to these requirements, we developed an Evidential Feature Selection (EFS) method based on DST and mEK-NN.

Evidential Feature Selection

• The dissimilarity between two training instances *X_i* and *X_j* is measured by a weighted euclidian distance :

$$d_{j,i} = \sqrt{\sum_{\rho=1}^{m} \lambda_{\rho} \cdot \left(d_{j,i}^{\rho}\right)^{2}}$$

 $\implies \lambda_{p}$ is the binary coefficient for feature selection.

1

Evidential Feature Selection

• The dissimilarity between two training instances *X_i* and *X_j* is measured by a weighted euclidian distance :

$$d_{j,i} = \sqrt{\sum_{p=1}^{m} \lambda_p \cdot \left(d_{j,i}^p\right)^2}$$

 $\implies \lambda_{p}$ is the binary coefficient for feature selection.

Based on mEK-NN, features are selected through

$$\arg_{\lambda} \min \frac{1}{n} \sum_{i=1}^{n} \sum_{q=1}^{c} \left(Pl_i(\{\omega_q\}) - t_{i,q} \right)^2 + \frac{\rho}{n} \sum_{i=1}^{n} m_i(\Omega) + \delta \times l_0$$

• m_i and Pl_i are the mass and plausibility function;

- label indicator $t_{i,q} = 1$ iff $Y_i = \omega_q$;
- $\circ~\rho$ and δ are two hyper-parameters.

Evidential Feature Selection Specified loss function

$$\arg \min_{\lambda_{1},...,\lambda_{m}} \frac{1}{n} \sum_{i=1}^{n} \sum_{q=1}^{c} (1 - t_{i,q} - \sum_{h \neq q} B_{h}^{i})^{2} + \rho \times \frac{1}{n} \sum_{i=1}^{n} (1 - \sum_{q=1}^{c} B_{q}^{i}) + \delta \sum_{\rho=1}^{m} [1 - \exp(-5\lambda_{\rho})] \quad (1)$$

with

$$B_q^i = A_q^i \prod_{s \in \{1, \dots, c\} \setminus q} (1 - A_s^i)$$

and

$$A_q^i = \left(\frac{|\Gamma_q^i|}{|\Gamma_{max}^i|}\right)^\eta \left(1 - \prod_{j \in \Gamma_q^i} \left[1 - \alpha \exp(-\gamma_q \cdot d_{i,j}^2)\right]\right)$$

⇒ Solved via integer genetic algorithm [Deep et al., 2009].

24/06/2015 - GDR ISIS - Traitement, Analyse, Indexation en Imagerie du Vivant

Evidential Feature Selection A test on synthetic data

• Data generation [Perkins et al., 2003] : There were *n_r* relevant, *n_c* redundant and *n_i* irrelevant features uniformly distributed between [-1,1]. Class label was determined only by relevant features :

$$y = \begin{cases} \omega_1 & \text{if } \max_i(x_i) > 2^{1 - \frac{1}{n_r}} - 1, \\ \omega_2 & \text{otherwise.} \end{cases}$$

where x_i ($1 \le i \le n_r$) is the *i*th relevant feature.

Evidential Feature Selection A test on synthetic data

• Data generation [Perkins et al., 2003] : There were *n_r* relevant, *n_c* redundant and *n_i* irrelevant features uniformly distributed between [-1,1]. Class label was determined only by relevant features :

$$y = \begin{cases} \omega_1 & \text{if } \max_i(x_i) > 2^{1 - \frac{1}{n_r}} - 1, \\ \omega_2 & \text{otherwise.} \end{cases}$$

where x_i ($1 \le i \le n_r$) is the *i*th relevant feature.

• Obtained results :

n. n.		n.	subset size	EK-NN	mEK-NN		
''r		300361 3126		no fs	with fs		
2	2	6	2	14.67	12.67	2.67	
2	2	16	2	17.33	12.00	1.33	
2	2	26	2	23.33	18.67	4.00	
2	2	36	2	28.67	26.67	5.33	
2	2	46	2	29.33	23.33	4.67	

Contents

- Background
 - Outcome Prediction in Cancer Therapy
 - Difficulties in Outcome Prediction
 - Dempster-Shafer Theory

Our Approach

- Modified EK-NN Classification Rule
- Evidential Feature Selection

Experimental Results

- $_{\odot}$ on UCI data sets
- o on Clinical Data Sets

Conclusion

UCI Data Sets feature selection

TABLE: comparing EFS with classical wrapper methods using 10-fold cross validation. The robustness is evaluated via [Somol and Novovicova, 2010].

[Iris			Seeds	
	Error(%)	Robustness(%)	Subset Size	Error(%)	Robustness(%)	Subset Size
All	2.67	n/a	4	7.62	n/a	7
SFS	4.67	54.55	1	11.90	57.97	2
SBS	5.33	21.05	2	10.95	23.88	3
SFFS	5.33	21.62	3	5.24	54.93	2
\mathbf{EFS}^*	2.00	100	3	4.76	81.18	3
		Wine			Yeast	
	Error(%)	Robustness(%)	Subset Size	Error(%)	Robustness(%)	Subset Size
All	13.04	n/a	13	38.87	n/a	8
SFS	30.50	75	1	61.99	100	1
SBS	6.24	42.47	5	48.35	100	1
SFFS	7.29	57.58	4	36.21	40	5
\mathbf{EFS}^*	5.13	91.89	3	32.51	100	2
		WDBC			Parkinsons	
	Error(%)	Robustness(%)	Subset Size	Error(%)	Robustness(%)	Subset Size
All	7.20	n/a	30	13.37	n/a	22
SFS	14.44	80	1	15.82	33.33	1
SBS	19.67	22.22	2	19.03	23.91	2
SFFS	9.87	25	4	13.79	43.65	3
\mathbf{EFS}^*	5.80	92.37	3	8.63	100	3

24/06/2015 - GDR ISIS - Traitement, Analyse, Indexation en Imagerie du Vivant

UCI Data Sets classification

TABLE: comparing the classification performance. SFFS was used to select features for other methods. For BK-NN [Liu et al., 2013] and CCR [Liu et al., 2014], R_e and R_i represent, respectively, the error rate and imprecision rate.

		Iris	Seeds	Wine	Yeast	WDBC	Parkinson
	ANN	8.00	7.62	9.64	32.57	9.15	9.63
	CART	8.00	7.14	9.09	37.55	10.04	11.21
S	SVM	6.00	7.14	6.83	36.14	8.28	13.26
F .	EK-NN	5.33	6.67	6.18	35.07	9.70	16.39
F ⁺ S	BK-NN (R_e, R_i)	4.00 4.67	2.38 11.90	6.74 5.13	16.31 40.84	7.22 8.44	9.18 13.37
	$\begin{array}{c} \text{CCR} \\ (R_e, R_i) \end{array}$	4.00 4.67	3.81 18.57	3.99 15.33	19.53 36.11	5.99 15.83	16.42 12.26
our	method	2.00	4.76	5.13	32.51	5.80	8.63

Clinical Data Sets Lung Tumor Data

FDG-PET uptakes for lung tumor

- twenty-five patients with stage II-III non small cell lung cancer were treated with curative intent chemo-radiotherapy.
- FDG-PETs : before treatment, after chemotherapy and during radiotherapy.
- definition of recurrence after one year : local/distant recurrence (19 patients) and no recurrence (6 patients).

Clinical Data Sets Esophageal Tumor Data

FDG-PET uptakes for esoph. tumor

- thirty-six patients with esophageal squamous cell carcinomas were treated with chemo-radiotherapy, and followed up in a long term up to five years.
- FDG-PETs : only before treatment is available.
- neither loco regional nor distant recurrence (13 patients) and disease-positive (23 patients).

Clinical Data Sets Feature Extraction

- Three types of PET imaging features.
 - SUV-based features : SUV_{max}, SUV_{mean}, SUV_{peak}, metabolic tumor volume (MTV) and total lesion glycolysis (TLG);
 - texture features : gray level size zone matrix [Tixier et al., 2012];

 longitudinal change : relative difference between baseline features and follow-up features.

Clinical Data Sets Feature Extraction

- Three types of PET imaging features.
 - SUV-based features : SUV_{max}, SUV_{mean}, SUV_{peak}, metabolic tumor volume (MTV) and total lesion glycolysis (TLG);
 - texture features : gray level size zone matrix [Tixier et al., 2012];

- longitudinal change : relative difference between baseline features and follow-up features.
- Patients' clinical characteristics for esophageal tumor data.
 - gender, tumor stage, dysphagia grade, WHO performance status, weight loss, tumor location.

Clinical Data Sets results

TABLE: Comparing feature selection performance using leave-one-out cross-validation. **EFS*** denotes the proposed method.

Method	L	ung Tumor D	ata	Esophageal Tumor Data			
	Accuracy	Robustness	subset size	Accuracy	Robustness	subset size	
All features	76±44	n/a	52	64±49	n/a	29	
SFS	84±37	60	3	53±44	51	3	
SFFS	72±46	54	4	81±40	53	3	
SVMRFE	92±28	57	5	75±44	80	5	
EFS*	100±0	94	4	81 ± 40	92	3	

TABLE: Comparing classification performance. **mEK-NN*** denotes the proposed classification method.

Classifier	Lung Tum	or Data	Esophageal Tumor Data		
	without EFS	with EFS	without EFS	with EFS	
ANN	68±48	92±28	67±48	83±38	
SVM	76±44	100±0	64±49	81±40	
EK-NN	68±48	96±20	64±49	83±38	
mEK-NN*	56±51	100±0	53±44	89±32	

24/06/2015 - GDR ISIS - Traitement, Analyse, Indexation en Imagerie du Vivant

Contents

- Background
 - Outcome Prediction in Cancer Therapy
 - Difficulties in Outcome Prediction
 - Dempster-Shafer Theory

Our Approach

- Modified EK-NN Classification Rule
- Evidential Feature Selection
- Experimental Results
 - $_{\odot}$ on UCI data sets
 - o on Clinical Data Sets

Conclusion

Conclusions

- More information about this presentation :
 - C.Lian, S.Ruan and T.Denœux, "An evidential classifier based on feature selection and two-step classification", *Pattern Recognition*, Vol. 48, pages 2318-2327, 2015.
 - C.Lian, S.Ruan, T.Denœux and P.Verra, "Outcome prediction in tumor therapy based on Dempster-Shafer Theory", *IEEE-ISBI*, New York, USA, pages 63-66, April 2015.

Conclusions

- More information about this presentation :
 - C.Lian, S.Ruan and T.Denœux, "An evidential classifier based on feature selection and two-step classification", *Pattern Recognition*, Vol. 48, pages 2318-2327, 2015.
 - C.Lian, S.Ruan, T.Denœux and P.Verra, "Outcome prediction in tumor therapy based on Dempster-Shafer Theory", *IEEE-ISBI*, New York, USA, pages 63-66, April 2015.
- Future work :
 - Tackling imbalanced learning problem and small sample size effect, so as to improve the performance;
 - Evaluating the proposed method on larger clinical data sets.

Thanks for Your Attention.

chunfeng.lian@utc.fr

References I

Deep, K., Singh, K. P., Kansal, M., and Mohan, C. (2009). A real coded genetic algorithm for solving integer and mixed integer optimization problems. *Applied Mathematics and Computation*, 212(2) :505–518.

Denoeux, T. (1995).

A k-nearest neighbor classification rule based on dempster-shafer theory. *Systems, Man and Cybernetics, IEEE Transactions on*, 25(5) :804–813.

Liu, Z.-g., Pan, Q., and Dezert, J. (2013). A new belief-based k-nearest neighbor classification method. *Pattern Recognition*, 46(3):834–844.

Liu, Z.-g., Pan, Q., Dezert, J., and Mercier, G. (2014). Credal classification rule for uncertain data based on belief functions. *Pattern Recognition*, 47(7) :2532–2541.

Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting : Fast, incremental feature selection by gradient descent in function space. *The Journal of Machine Learning Research*, 3 :1333–1356.

References II

Somol, P. and Novovicova, J. (2010).

Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(11) :1921–1939.

Tixier, F., Hatt, M., Le Rest, C., Le Pogam, A., Corcos, L., and Visvikis, D. (2012). Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18f-fdg pet.

Journal of Nuclear Medicine, 53(5):693-700.