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e Medical imaging framework

© Statistical framework and equivalence tests

e Hierarchical classification using multiple equivalence tests with spatial constraints

@ Application to DCE images sequence
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© Medical imaging framework
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Medical imaging framework

Micro-vascularization

Tumors may have pathologic angiogenesis leading to abnormal vascularization.

Perfusion imaging gives access to functional modification of micro-vascularization.

Include DCE-CT, DCE-MRI, or DCE-US.
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Medical imaging framework

Perfusion imaging

Experimental design

Blood flow
with contrast agent

\ /€T cross section
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Medical imaging framework

Perfusion imaging

Experimental design

Blood flow
with contrast agent
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Medical imaging framework

Perfusion analysis

Quantitative analysis uses either
@ descriptors from direct evaluation on the dynamic curves;

o compartmental models / system of PDE's;

@ blood flow model / Volterra equation of the first type or Laplace deconvolution.
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Medical imaging framework

Perfusion analysis

Quantitative analysis uses either
@ descriptors from direct evaluation on the dynamic curves;

o compartmental models / system of PDE's;

@ blood flow model / Volterra equation of the first type or Laplace deconvolution.

140

Noisy signals

intensity

120

However

all methods suffer from
LOW Signal to Noise Ratio

and
movements

==signal 1

==signal 2
signal 3

=—true signal

time
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LOW Signal to Noise Ratio is due to instrumental noise of imaging devices:

o X-radiation control in DCE-CT;
o trade-off between spatial and time resolution in DCE-MRI.
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Medical imaging framework

Region Of Interest (ROI)

Averaging signals by building ROls of multiple voxels improves Signal to Noise Ratio
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Medical imaging framework

Region Of Interest (ROI)

Averaging signals by building ROls of multiple voxels improves Signal to Noise Ratio
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However may suffer from bad homogeneity

due to mixing different tissues / signals because of :

@ hard visual perception when drawing manual ROlIs ;

@ bad comparisons when building automatic ROls:
o BAD representation (PCA, basis decomposition, etc) or modelization;
o BAD choice of distance.
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Medical imaging framework

Medical objective
Improve Signal to Noise Ratio by building automatic ROls

o controlling temporal homogeneity without prior
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. . . locally
@ controlling spatial homogeneity .
at large distance.

GOAL: Realize a spatial clusterization which protects temporal structures taking into account

that images show neighborhood properties: smoothness, piecewise constant, etc.
June 2015
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Statistical framework and equivalence tests

Statistical context and statistical objective

Statistical context

We observe a random vector of R”, /X = /X + ¥ at each location x € X. Assuming
@ ¢¥i.i.d. and E(e¥) =0;

@ X=CGu...uCg;
o if xe G for k=1,...,K, then E(/X) := i* = iy;

@ if k+ ¢, then C,n Cp =@ and iy # ip.
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Statistical framework and equivalence tests

Statistical context and statistical objective

Statistical context

We observe a random vector of R”, /X = /X + ¥ at each location x € X. Assuming
@ ¢¥i.i.d. and E(e¥) =0;

@ X=CGu...uCg;
@ if xe G for k=1,..., K, then E(/¥) := i* = ig;
@ if k+ ¢, then C,n Cp =@ and iy # ip.

v

@ X is a spatial grid of pixels (image) and /* is a grey-level intensity vector;

@ X is a geographic grid of area and /¥ is utility (electricity, water) consumption;

@ X is internet graph and [~ is traffic intensity on node.
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Statistical framework and equivalence tests

Statistical context and statistical objective

Statistical context

We observe a random vector of R”, /X = /¥ + & at each location x € X. Assuming
@ X i.id. and E(¢¥) = 0;

@ X=CGu...uCg;
@ if xe G for k=1,..., K, then E(/¥) := i* = ig;

@ if k+ ¢, then C,n Cp =@ and iy # ip.

| \

@ X is a spatial grid of pixels (image) and /* is a grey-level intensity vector;
@ X is a geographic grid of area and /¥ is utility (electricity, water) consumption;

@ X is internet graph and /¥ is traffic intensity on node.

| \

Objective

Realize a unsupervised classification to recover the partition Ci, ..., Cx such that

‘ X,y € X belong to the same cluster if and only if ¥ =Y. ‘

.
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Statistical framework and equivalence tests

State of the arts of unsupervised classi

Main categories:

@ Model-based methods:
o Mixture of Gaussians or more complex distributions.
@ Distance-based methods:

o K-means;
o Hierarchical clustering.

Choice of the number K of clusters:

@ penalization techniques like GAP (Tibshirani, Walther, Hastie, '01)

Actual limitations:

@ Difficulty to select the number K of clusters:

o Repeat the same method for different values of K: time consuming;
o Need assumptions on the distribution inside a cluster (e.g. log-concave).

Choice of distance (e.g. Euclidean distance, Correlation coefficient);
Choice of representation (e.g. PCA, spectral embedding, basis decomposition);
Seeds in K-means;

Generic methods which don’t take into account spatial regularity.
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Statistical framework and equivalence tests

Unsupervised classification under spatial constraint: Motivations

Idea 1: Highlight equality

"

o Build a test such that "=" should be the research hypothesis that is ;.

Idea 2: Build a universal dissimilarity measure

@ Dissimilarity measure derived from the " =" multi-comparison p-value.

Idea 3: Use local spatial homogeneity

o Use neighboring information through a greedy aggregation (low complexity) to take
into account the regularity of x — /* over the grid X.

Idea 4: Deal with global spatial homogeneity

o Ensure global structure recognition by changing the neighboring information
(higher complexity but with less information).
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Statistical framework and equivalence tests

Main tool: Equivalence testing

Given two subsets X and Y of X, XnY =g,
@ Empirical mean over X (resp. Y) is denoted /X (resp. IY);
o DXV = XY,

o dX¥ = E(DXY).

We want to compare i* and /¥ and we test d¥ := ;X — /¥ = 0 or not.
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Statistical framework and equivalence tests

Main tool: Equivalence testing

Given two subsets X and Y of X, XnY =g,
@ Empirical mean over X (resp. Y) is denoted /X (resp. IY);
o DXV = XY,

o dX¥ = E(DXY).

We want to compare i* and /¥ and we test d¥ := ;X — /¥ = 0 or not.
V.

Traditional test:

Ho:d¥ =0 v.S. Hy:d¥ %0
Non-equivalence is the research hypothesis: NOT OUR PURPOSE.
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Statistical framework and equivalence tests

Main tool: Equivalence testing

Given two subsets X and Y of X, XnY =g,
@ Empirical mean over X (resp. Y) is denoted /X (resp. IY);
o DXV = XY,

o dX¥ = E(DXY).

We want to compare i* and /¥ and we test d¥ := ;X — /¥ = 0 or not.

Traditional test:

Ho:d¥ =0 v.S. Hy:d¥ %0
Non-equivalence is the research hypothesis: NOT OUR PURPOSE.

v
Equivalence test: reverse the hypothesis

Ho:d¥ #0 V.S, Hi:d¥ =0
Equivalence is the research hypothesis: OUR PURPOSE.
Equivalence test does not provide strict equivalence but an equivalence up to a given "margin” A.
v
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Statistical framework and equivalence tests

An example of equivalence test: TOST

Gaussian example: Two One-Side Tests (Walker and Nowacki 2011), n=1

Not Equivalent —! < Equivalent ——— | < Not Equivalent
yyﬂ{
-A [+ A
—C,—>< C —>
Decide H B/2 a/2
ecide Hj— e
Refuse Hj— [
D2
Refuse Hj— —
Refi H R,
efuse H— +— =
-1 Iid if
Bs case if a<p
B 1 lid case C,,>A
6
v

Observations not having their confidence interval in [-A, +A] are declared under #;

June 2015 14 / 34
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Statistical framework and equivalence tests

Multiple equivalence tests

Multiple equivalence test

Given Vj, J=1,...,Jp strict linear subspaces of R”, we consider the equivalence tests
Hy :dXY e V) {0} V.s. Hy:dXY = 0.

We denote p1 (X :Y),...,p (X :Y) the corresponding p-values.
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Statistical framework and equivalence tests

Multiple equivalence tests

Multiple equivalence test

Given Vj, J=1,...,Jp strict linear subspaces of R”, we consider the equivalence tests
'Hé :d*Y e V)~ {0} Vv.s. Hy:dXY =0.
We denote p1 (X :Y),...,p (X :Y) the corresponding p-values.

|

Intersection-Union Test (IUT)

Ho=JHd vs.  Hi=NHi
J J
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Statistical framework and equivalence tests

Multiple equivalence tests

Multiple equivalence test

Given Vj, J=1,...,Jp strict linear subspaces of R”, we consider the equivalence tests
'Hé :d*Y e V)~ {0} Vv.s. Hy:dXY =0.
We denote p1 (X :Y),...,p (X :Y) the corresponding p-values.

Intersection-Union Test (IUT)

Theorem (Berger and Hsu (1996))

If R; are a-level rejection regions of ’H(J), R =Ny Ry is a a-level rejection region for IUT.
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Statistical framework and equivalence tests

Multiple equivalence tests

Multiple equivalence test

Given Vj, J=1,...,Jp strict linear subspaces of R”, we consider the equivalence tests
Hy :dXY e V) {0} V.s. Hy:dXY = 0.

We denote p1 (X :Y),...,p (X :Y) the corresponding p-values.

Intersection-Union Test (IUT)

Theorem (Berger and Hsu (1996))

If R, are a-level rejection regions of ’H(J), R =Ny Ry is a a-level rejection region for IUT.

Let p (resp. p;) be the p-value for Ho (resp. ’Hé): if R=Ny R, then p = max,(py).
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Statistical framework and equivalence tests

Multiple equivalence tests

Multiple equivalence test

Given Vj, J=1,...,Jy strict linear subspaces of R"”, we consider the equivalence tests
Hy - dXY e V,\ {0} V.s. Hy:dXY =0.
We denote p1 (X :Y),...,p (X :Y) the corresponding p-values.

Intersection-Union Test (IUT)
J

Theorem (Berger and Hsu (1996))

If R, are a-level rejection regions of ’H(J), R =Ny Ry is a a-level rejection region for IUT.

Let p (resp. p;) be the p-value for Ho (resp. ’Hé): if R=Ny R, then p = max,(py).

Universal dissimilarity measure

The universal dissimilarity measure is max,(p,).
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constraints

e Hierarchical classification using multiple equivalence tests with spatial constraints
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constraints

Neighboring clustering with universal dissimilarity measure max,(p,).
An image with 25 pixels

5x5 grid image

e grid X :={1,...,25}.
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constraints

Neighboring clustering with universal dissimilarity measure max
An image with 25 pixels

5x5 grid image 25x25 dissimilarity sparse matrix P(®):

12345678 0910111213141516171819 202122232425

e grid X :={1,...,25}.
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constraints

Neighboring clustering with universal dissimilarity measure max,(p,).

Initialization

5x5 grid image 25x25 dissimilarity sparse matrix OF

w

o PO = x={1,...,25);

© VO (x) = {{n}.{s}. (e}, {w}} for x e X,

o PO(x,y):=p(x:y) for y e VO (x);

o dim(P(®) = 25x25 BUT less than 4x25 non-zero elements.
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constraints

Neighboring clustering with universal dissimilarity measure max,(p,).

Iteration t to t + 1: example of t =0

5x5 grid image 25x25 dissimilarity sparse matrix P©:.
':' ol .:. 5

Optimization step

(X,Y) =argmin(P(®)) fort=0: X={x}and Y ={e}
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constraints

Neighboring clustering with universal dissimilarity measure max,(p,).

Iteration t to t + 1: example of t =0

5x5 grid image 25x25 dissimilarity sparse matrix OF

Optimization step

(X,Y) =argmin(P(®)) fort=0: X={x}and Y ={e}

Update phase 1 - downsizing by 2

Remove two columns and two lines of P(t) corresponding to X and Y.
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constraints

Neighboring clustering with universal dissimilarity measure max,(p,).

Iteration t to t + 1: example of t =0

5x5 grid image 24x24 dissimilarity sparse matrix >1OF

Update phase 2 - upsizing by 1: Update partition, neighbors and dissimilarity matrix

e C=XuY; new cluster
o P+ _ () \ X\ Y U C; new partition
o VD (C) = VO X)uV®D(Y)\ X\ Y; new neighbors
o |PH(C,Z) =p(C: Z) for Z e VED(C) new dissimilarities
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constraints

From local to global clustering with universal dissimilarity measure

Local clustering uses spatial regularity
@ Starts from a partition made of all voxels as singletons;
@ Builds, iteratively, successive partitions by aggregating two clusters at each step;

@ Provides a hierarchical sequence of partitions with decreasing sizes from N to 1.
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constraints

From local to global clustering with universal dissimilarity measure

Local clustering uses spatial regularity
@ Starts from a partition made of all voxels as singletons;
@ Builds, iteratively, successive partitions by aggregating two clusters at each step;

@ Provides a hierarchical sequence of partitions with decreasing sizes from N to 1.

Global clustering

When local clustering stops, process continues by changing the neighborhood structure:

@ neighbors of neighbors

V(X):= |J VYY) {X}.

YeV(X)

@ all other clusters
V(X) =P (X}
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constraints

Automatic selection of number of clusters

With s clusters, we fix type | error to « and search for c,(s) s.t.

P[min PN < ¢, (s)] = IP[ min {p(C,SN_s) 3 CZ(N_S))} < ca(s):l =«

1<k, b<s
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constraints

Automatic selection of number of clusters

With s clusters, we fix type | error to « and search for c,(s) s.t.

P[min PN < ¢, (s)] = IP[ min {p(C,SN_s) 3 CZ(N_S))} < ca(s):l =«

1<k, b<s

As p(X:Y):= J:TéxJo ps(X:Y)

Control function

If p-values p; are uniform (abs. cont. tests), assuming independence of the p-values:

Cal(s) = (1= (1-a)?SC=h — foralls=N,...1.
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constraints

Automatic selection of number of clusters

With s clusters, we fix type | error to « and search for c,(s) s.t.
{p(Ck(N—s) . Ce(N_S))} < ca(s)] =

Pmin PV < co ()] =P| mi
[min ca(s)] 1<nk1,|lpSs

As p(X:Y):= J:Téxjo ps(X:Y)

forall s=N,..., 1.

Control function
If p-values p; are uniform (abs. cont. tests), assuming independence of the p-values

ca(s) = (1 - (1- o)D)k,

— Control with Type | error 0=0.05
Local dissimilarity function
== Global dissimilarity function

p-values

3
Iterations

02
2405

ws  mw zs zw oz oz oz s s ww 2
June 2015
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Note that c.(.) does not depend on A. Only p-values depend on A.
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constraints

Automatic selection of number of clusters

With s clusters, we fix type | error to « and search for c,(s) s.t.
{p(Ck(N—s) . Ce(N_S))} < ca(s)] =

Pmin PV < co ()] =P| mi
[min ca(s)] 1<nk1,|lpSs

As p(X:Y):= J:Téxjo ps(X:Y)

forall s=N,..., 1.

Control function
If p-values p; are uniform (continuous tests), assuming independence of the p-values

ca(s) = (1 - (1- o)D)k,

— Control with Type | error 0=0.05
Local dissimilarity function
== Global dissimilarity function

p-values

3
Iterations

02
2405

275
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Note that c.(.) does not depend on A. Only p-values depend on A.
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Application to DCE images sequence

© Application to DCE images sequence
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Application to DCE images sequence

Statistical framework

Notations

Given two sets of voxels X and Y, XnY =g

1 1
TX] ZxeX - Tv] ZyeY 4

DX¥ . XY ~ N(dXY | 1dy),
p(X:
where
XY ﬁerX = ﬁZer ¥ > 1 1
d*’ = e , p(X:Y):=7+7.
p(X:Y) IX| 1Y

M;(DXY) denotes the projection of DX over the 2/-bins piecewise constant vectors.

Multi-resolution equivalence tests for dynamics comparison

Hy [N (DX)P 40 vs. Hi: |0 (D)[*=0.
in this case :
py(X:Y) =P (x*(27,A%n) < [N, (D*)]?).

see Baraud et al (2003) for traditional test.
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Application to DCE images sequence

Simulation: chess board

2 clusters in a 50 x 50 image

signals

m

I\
WJ.
'ﬂ‘ | ll,
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Application to DCE images sequence

Simulation: chess board

2 clusters in a 50 x 50 image

signals
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Application to DCE images sequence

Simulation: chess board

Data informat

@ Spatial resolution: 50 x 50 voxels;

@ Temporal resolution: 100 times points;

@ Noise level: o =1.

w
Parameter setting
@ A=1; margin
@ « =0.05. Type | error
v
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Application to DCE images sequence

Simulation: chess board

@ Spatial resolution: 50 x 50 voxels; -

p-values

@ Temporal resolution: 100 times points;

@ Noise level: o =1.

4 -
o A-1; margin B I T
O @=00s Type | error ) Type | error control
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Application to DCE images sequence

Simulation: chess board

@ Spatial resolution: 50 x 50 voxels; -

p-values

@ Temporal resolution: 100 times points;

@ Noise level: o =1.

w =
arameter settin o
@ A=1; margin st . i i i i i
O @=00s Type | error ) Type | error control
+ times
¢ b b e & 00
Local step: 100 clusters Estimated curves
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Application to DCE images sequence

Simulation: chess board

Data informat o

@ Spatial resolution: 50 x 50 voxels; -

p-values

@ Temporal resolution: 100 times points;

@ Noise level: o =1.

y =

d |
e A=k margin e )
® a=0.05 e | error | Type | error control

?
X Intensity

v times
T T T T T
0 20 40 60 80 100

Global step: 2 clusters Estimated curves
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Application to DCE images sequence

A much harder case

Simulation: chess board

Global: 3 clusters

Local: 89 clusters

Intensity
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Application to DCE images sequence

DCE-MRI: Ovarian malignant tumor (192 x 128 voxels, 119 times points)
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Application to DCE images sequence

DCE-MRI: Ovarian malignant tumor (A =32 x 119, a = 0.05)

T T T
24300 24400 24500 Iterations

Type | error control

NON DESTINE A L'USAGE MEDICAL

Global step: 94 clusters
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Application to DCE images sequence

DCE-MRI: Ovarian malignant tumor (A =3.5% x 119, « = 0.05)

a

T T T T T T
24300 24350 24400 24450 24500 Iterations

NON DESTINE A L'USAGE MEDICAL Type I error Control

Global step: 64 clusters

Yves ROZENHO Unsupervised clustering under spatial constraints using equivalence tests
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Application to DCE images sequence

DCE-MRI: Ovarian malignant tumor (A =42 x 119, a = 0.05)

24400 24450 24500 Iterations

Type | error control

NON DESTINE A L'USAGE MEDICAL

Global step: 51 clusters
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Application to DCE images sequence

Influence of the parameters

Parameter tuning
e A: from 2 to 4;
@ «: from 0.001 to 0.1;

800 250
a
" © 200 —0.001
£ 600 2
3 z
S (Eu 150
© Qo
§ 400 8
= < 100
o o
3 200 3
E E 50
p=4 P-4
0 0
2 25 3 35 4 2 25 3 35 4
A A

Only A has a major contribution on the number of clusters !
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