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Segmentation: a double challenge

Difficulties: detect tubular structures
very thin (generally a few pixel thick);
corrupted by noise;
geometrically complex.

Two induced issues
denoising;
enhancement and segmentation.
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Context : ANR project VivaBrain

RMA
Medical teams

Blood flow simulation
Mathematics teams

Virtual images 
simulation
Physics teams

Segmentation
Computer science 
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Segmentation as an inverse problem

Inverse problems are typically ill-posed. A problem is well-posed
according to Hadamard if:

the solution exists;
it is unique;
the solution changes smoothly if the data changes smoothly.

⇒ In 1943, Tikhonov proposed a method to solve ill-posed
problems Ax = y .
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Least squares method

f (x) = ‖Ax − y‖2 = xTATAx − 2yTAx + yT y

A point x minimize f if and only if:

∇f (x) = 2ATAx − 2AT y = 0

⇔ ATAx = AT y

⇔ x̂ = (ATA)−1AT y

In image processsing, A is very large and ill-conditioned
⇒ Tikhonov added a prior term Γ:

f (x) = ‖Ax − y‖2 + λ‖Γx‖2

x̂ = (ATA + λΓTΓ)−1AT y

Γ = I encourages solutions to have low norm;
Γ = ∇ encourages solutions to have low variation;
Γ = ∆ encourages solutions to have low curvature.
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Tikhonov model

The Tikhonov model can be used for image denoising or
restoration. We observe an image f : Ω ⊂ RN 7→ R as:

f = u + n

u =original image
n =additive noise

The solution of the problem is given by the minimization of an
energy-functional composed of two terms:

min
u

1
2

∫

Ω
|∇u|2

︸ ︷︷ ︸
regularization term

+
λ

2

∫

Ω
‖u − f ‖2dx

︸ ︷︷ ︸
data fidelity term
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Varying models

ROF model (1992) : the quadratic regularization is replaced with
an L1 norm, the Total Variation (TV) term

min
u

∫

Ω
|∇u|

︸ ︷︷ ︸
TV term

+
λ

2

∫

Ω
‖u − f ‖2dx

︸ ︷︷ ︸
data fidelity term

2.2. Classical variational problems 19

2.2.1.2 ROF model

In the seminal work of [Rudin et al., 1992], the quadratic regularization of (2.4) was

replaced with an L1 norm:

min
u

⇢Z

⌦
|ru| +

�

2

Z

⌦
(u � f)2dx

�
. (2.9)

This model is often referred to as the ROF model according to Rudin, Osher and Fatemi.

While the original formulation of [Rudin et al., 1992] proposes a constrained optimization

problem, the strictly convex formulation in (2.9) was proposed in [Chambolle and Lions,

1997]. The Total Variation (TV) term represents the sum over all absolute image gradients:

TV(u) =

Z

⌦
|ru| =

Z

⌦

s✓
@u

@x

◆2

+

✓
@u

@y

◆2

, (2.10)

with the 2D image gradient ru =
⇣
@u
@x , @u

@y

⌘T
. We assume here for the moment, that u

can be di↵erentiated at least once. As depicted in Figure 2.1c, the ROF denoising model

according to (2.9) provides a much better result, as it not only removes the noise but also

preserves the edges. This fact is also well known in robust statistics [Huber, 1981]. For

an illustration of this edge preserving e↵ect see Figure 2.2. Here three di↵erent functions

are depicted with di↵erent step sizes. Due to the quadratic regularization in the Tikhonov

model (2.4), the energy with a lot of small steps is significantly lower than one big step.

As a result the Tikhonov model will favor smooth transitions resulting in a blur of the
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Figure 2.2: Comparison of quadratic and TV regularization. TV regularization always
costs the total amount of all jumps, that is here 1 in all three examples. For the quadratic
regularization smaller jumps mean lower costs.

TV-L1 model (1992) : the L1 norm is used for the data term

min
u

∫

Ω
|∇u|

︸ ︷︷ ︸
TV term

+ λ

∫

Ω
|u − f |dx

︸ ︷︷ ︸
data fidelity term
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Comparison of different variational denoising models I

Figure: Top: example with artificial Gaussian noise; bottom: CT image
with natural noise. [Unger, 2012]



Introduction Variational methods Primal-dual algorithm Vesselness Conclusion

Comparison of different variational denoising models II

Data fidelity or regularization ?
A priori about the perturbation type ⇒ choice of a data fidelity
A priori about the desired smoothing ⇒ choice of a
regularization

Data fidelity

|u − f | (median): impulse noise - outliers
‖u − f ‖2 (average): gaussian noise

Regularization

|∇u|: denoise + preserve smooth transitions and edges
‖∇u‖2: denoise + preserve smooth transitions
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Convex minimization problem

Problem

min
x∈RN

F (x)

where F : RN → ]−∞,+∞] is a convex energy.

Importance of the convexity ?

If the function is convex then local minimum = global minimum
If the function is non-convex and the initial condition is not well
placed ⇒ the algorithm is stuck in a local minimum
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Proximal point methods I

Proper function
A function is proper if and only if it is not identically equal to +∞
and its domain dom f = {x ∈ RN : f (x) < +∞} is non-empty.

Lower semicontinuous convex function
A function is lower semicontinuous (l.s.c.) if and only if
∀x0 ∈ RN , f (x0) ≤ limx→x0 inf f (x)
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Proximal point methods II

Proximity operator

Let f(x) be a proper l.s.c. convex function, the proximity operator x
associated to a function f is the operator defined by:

proxτ f (x) = argmin
y

{
f (y) +

‖y − x‖2
2τ

}

xp = proxτ f (x) ⇔ ∃gp ∈ ∂f (xp), xp = x − τgp

Proximal point algorithm

xk+1 = xk − τkgk+1, avec gk+1 ∈ ∂f (xk + 1)

Implicit subgradient descent
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Examples of subgradient

If f is differentiable x ∈ RN , then ∂f (x) = {∇f (x)}
If f = |.|, then

∀x ∈ RN , ∂f (x) =

{
{sign(x)} if x 6= 0
[-1,+1] if x = 0
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Several classes of algorithms

Name Problem Algorithm
FB f (x) = g(x) + h(x) xk+1 = proxτkh(xk − τk∇g(xk+1))

g differentiable
ISTA g(x) = ‖Ax − b‖2 xk+1 = proxτkg (xk − τkAT (Axk − b))

(FISTA, Twist h(x) = | · |
Nesterov)

DR f (x) = g(x) + h(x) xk = proxτh yk
(ri dom g) ∩ (ri dom h) yk+1 = yk + λk(proxτg (2xk − yk)− xk)

6= ∅
PPXA f (x) = f1(x) + . . .+ fm(x) For i = 1, . . . ,m

pi,k = proxτk fi yk (pk =
∑

pi,k)
(ri dom f1) ∩ (ri dom f2) yi,k+1 = yi,k + λk(2pk − xk − pi , kk)
. . . ∩ (ri dom fm) 6= ∅ End

xk+1 = xk + λk(pk − xk)

Primal-dual f (x) = g(Kx) + h(x) yk+1 = proxσg∗(yk + σKx̄k)

xk+1 = proxτh(xk − τKT yk+1)
x̄k+1 = xk+1 + θ(xk+1 − xk)



Introduction Variational methods Primal-dual algorithm Vesselness Conclusion

Resume

1 Introduction and context

2 Variational methods for segmentation

3 Primal-dual algorithm

4 Our approach: inclusion of vesselness

5 Conclusion and outlook



Introduction Variational methods Primal-dual algorithm Vesselness Conclusion

Primal-dual algorithm (Chambolle et Pock, 2011)

Let F and G be two proper, l.s.c., convex functions and K a linear
operator, the general problem is defined by:

min
x

F (Kx) + G (x) (1)

By applying the Fenchel-Moreau theorem, we obtain the following
saddle point problem:

min
x

max
y
〈Kx , y〉+ G (x)− F ∗(y) (2)

where F ∗(y) = supx∈X 〈y , x〉 − F (x) is the conjugate function.
The idea consists of perfoming simultaneously an approximate
gradient ascent in the dual variable y and gradient descent in the
primal variable x

y = proxσF∗ ỹ = argmin
y

{‖y − ỹ‖2
2σ

+ F ∗(y)

}

x = proxτG x̃ = argmin
x

{‖x − x̃‖2
2τ

+ G (x)

}
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ROF model I

The proximity operator for the primal variable can be computed as:

x = proxτGTV−L2
x̃ = argmin

x

{‖x − x̃‖2
2τ

+
λ

2
‖x − f ‖2

}

To solve this minimization problem we look to the corresponding
Euler-Lagrange equation:

1
τ

(x − x̃) + λ(x − f ) = 0

Thus, the solution is given by the following:

x =
x̃ + λτ f

1 + λτ
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ROF model II

We finally have to compute the proximity operator for the dual
update as:

y = proxσF∗ ỹ = argmin
y

{‖y − ỹ‖2
2σ

+ F ∗(y)

}

Now, we have to determine the conjugate F ∗ of F by duality :

F (Kx) = ‖∇x‖2,1 = sup{〈ξ,∇x〉X∗ : |ξi ,j | ≤ 1 ∀i , j}
= sup{−〈div ξ, x〉X : |ξi ,j | ≤ 1 ∀i , j}
= sup

p
〈p, x〉X − δP(p)

where P = {p = − div ξ ∈ X : |ξi ,j | ≤ 1∀i , j} and δP(p) defined
by:

δP(p) =

{
0 si p ∈ P

+∞ si p /∈ P

So F ∗(y) = δP(y) and y = ỹ
max(1,|ỹ |)
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TV-L1 model

The proximity operator for the dual variable proxσF∗ is the same.
The proximity operator for the primal can be computed as:

x = proxτGTV−L1
(x̃) = argmin

x

{‖x − x̃‖2
2τ

+ λ‖x − f ‖
}

with the corresponding Euler-Lagrange equation:

1
τ

(x − x̃) + λ
x − f

|x − f | = 0

As a result, we arrive at the following soft thresholding schema:

x =





x̃ − τλ if x̃ − f > τλ

x̃ + τλ if x̃ − f < −τλ
f if |x̃ − f | ≤ τλ
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Results (grey level and color)
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How to detect tubular structures ?

The segmentation can use the differential properties of the image
Gradient = geometric information of objects (edges, texture,. . .)
Hessian = shape characteristics of objects (tube, plane, blob,. . .)

By eigenvalue analysis, the Hessian matrix can be decomposed into
three eigenvalues λ1, λ2, λ3 ( λ1 ≤ λ2 ≤ λ3). For an ideal tubular
structure in a 3D image, we have:

|λ1| ≈ 0
|λ1| � |λ2|
|λ2| ≈ |λ3|
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Frangi’s vesselness function (1998)

V(x) =




0 if λ2 > 0 or λ3 > 0

(1− e−
−R2

A
2α2 ) · e−

−R2
B

2β2 · (1− e
−−S2

2γ2 ) otherwise

with

RA =

∣∣∣∣
λ2
λ3

∣∣∣∣

RB =
|λ1|√
|λ2λ3|

S = ‖Hσ‖ =
√

Σjλ
2
j

RA differentiates between plane- and line-like objects, RB

differentiates blob-like ones, and S accounts for the intensity
difference between objects and background.
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Inclusion of vesselness to the model

ROF model:

min
u

∫

Ω
|∇u| + λ︸︷︷︸

vesselness

∫

Ω
‖u − f ‖2dx

TV-L1 model:

min
u

∫

Ω
|∇u| + λ︸︷︷︸

vesselness

∫

Ω
|u − f |dx

where λ = λReg [α + (1− α)V(x)] and α ∈ [0, 1]

V(x) = Frangi’s vesselness = matrix !
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Synthetic 2D image results
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Retinal image results (DRIVE database)

Original image Vesselness TV-L1 ROF

To segment, we have to modify the data fidelity
⇒ Chan-Vese model

Data fidelity =

∫

Ω
‖u‖2‖c1 − f ‖2︸ ︷︷ ︸
region of interest

+ ‖1− u‖2‖c2 − f ‖2︸ ︷︷ ︸
background

dx
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Conclusion and outlook

2D Results:
Include vesselness ⇒ detect tubular structures
3 Enhancement
7 Segmentation

Outlook:
Include the Chan-Vese model to the fidelity ⇒ segment vessels
Test on 3D synthetic images
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Useful links
olivia.miraucourt@orange.fr
http://olivia.miraucourt.pagesperso-orange.fr
http://numtourcfd.univ-reims.fr
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