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Introduction

Segmentation: a double challenge

Difficulties: detect tubular structures
@ very thin (generally a few pixel thick);
@ corrupted by noise;

@ geometrically complex.

Two induced issues

@ denoising;

@ enhancement and segmentation.




Introduction

Context : ANR project VivaBrain
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Variational methods

Segmentation as an inverse problem

Foreground

% Measurement y
Signal x

Background ——> | Direct model | ——>» %

Inverse problem

Inverse problems are typically ill-posed. A problem is well-posed
according to Hadamard if:

o the solution exists;

@ it is unique;

@ the solution changes smoothly if the data changes smoothly.

= In 1943, Tikhonov proposed a method to solve ill-posed
problems Ax = y.



Variational methods

Least squares method

f(x)=Ax —y|? =x"ATAx =2y TAx +yTy

A point x minimize f if and only if:

Vf(x) =2ATAx —2ATy =0

s ATAx=ATy

e x=(ATA ATy
In image processsing, A is very large and ill-conditioned
= Tikhonov added a prior term T:

f(x) = [|Ax =y + AlIrx|?

R=(ATA+ AT 1Ay
o I = I encourages solutions to have low norm;

e [ = V encourages solutions to have low variation;
e [ = A encourages solutions to have low curvature.



Variational methods

Tikhonov model

The Tikhonov model can be used for image denoising or
restoration. We observe an image f : Q ¢ RV = R as:

f=u+n

u =original image
n =additive noise

The solution of the problem is given by the minimization of an
energy-functional composed of two terms:

1
min /]Vu]z + A/Hu—f]zdx
u 2 Q 2 Q
————

regularization term data fidelity term




Variational methods

Varying models

ROF model (1992) : the quadratic regularization is replaced with
an L1 norm, the Total Variation (TV) term

mln/\VuH— /Hu—f|| d
L

TV term data fidelity term

JIV 2|2z = 0.02
[IV alde = 1
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TV-L1 model (1992) : the L1 norm is used for the data term

m|n/\VuH— /\/ |u— f|dx
vJa Q
—_— —_————

TV term data fidelity term



Variational methods

Comparison of different variational denoising models |

Figure: Top: example with artificial Gaussian noise; bottom: CT image
with natural noise. [Unger, 2012]



Variational methods

Comparison of different variational denoising models

Data fidelity or regularization ?

@ A priori about the perturbation type = choice of a data fidelity

@ A priori about the desired smoothing = choice of a
regularization

Data fidelity

o |u— f| (median): impulse noise - outliers

o |lu— f||? (average): gaussian noise

A\

Regularization

e |Vu|: denoise + preserve smooth transitions and edges

o ||Vul?: denoise + preserve smooth transitions




Variational methods

Convex minimization problem

min F(x
xERN ()

where F : RN — ]—o00, +00] is a convex energy.

Importance of the convexity 7

non-convex
convex

If the function is convex then local minimum = global minimum
If the function is non-convex and the initial condition is not well
placed = the algorithm is stuck in a local minimum



Variational methods

Proximal point methods |

Proper function
A function is proper if and only if it is not identically equal to +oo
and its domain dom f = {x € RN : f(x) < +o0} is non-empty.

A\

Lower semicontinuous convex function

A function is lower semicontinuous (I.s.c.) if and only if
Vxg € RN, f(x0) < limy_,x, inf ()

A

A\




Variational methods

Proximal point methods Il

Proximity operator

Let f(x) be a proper l.s.c. convex function, the proximity operator x
associated to a function f is the operator defined by:

2
Prox.f(x) = arg myin {f(y) + Hy27_x||}

Xp = ProX;f(x) < Jgp € 8f(XP)J Xp =X —TE&p

Proximal point algorithm

Xk4+1 = Xk — Tk€k+1, avec gx+1 € Of(xi +1)

Implicit subgradient descent



Variational methods
Examples of subgradient

t € 0f(x)

F(x) + (y = xIt)

o If f is differentiable x € RV, then 9f(x) = {Vf(x)}
e If f =1, then

Vx € RN, 0f (x) = { {?fnﬁ%} :?i i 8



Variational methods

Several classes of algorithms

Name Problem Algorithm
FB ) =800 T A() | xeex = prox, (e — V8 (R 12))
g differentiable
ISTA g(x) = |Ax — b|? Xkp1 = prox,, , (xx — AT (Axc — b))
(FISTA, Twist h(x) =|-|
Nesterov)
DR f(x) = g(x) + h(x) Xk = Prox., Yk
(ridom g) N (ridom h) Yi+1 = Yk + Mk(prox, o (2xk — yi) — xk)
#0
PPXA f(x)=AX)+ ...+ fm(x) | Fori=1,....,m
Pik = ProxX, ¢ Yk (Pk = - pik)
(ridom f1) N (ridom f2) Yik+1 = Yik + M(2px — xx — pi, k)
...N(ridomfy) £ 0 End
Xk+1 = Xk + Ae(pe — xk)
Primal-dual f(x) = g(Kx) + h(x) Yi+1 = ProX, g« (v + o Kxk)

Xk+1 = pl'OXTh(Xk - TKT)/k+1)
k41 = X1 + O(Xu41 — Xk)
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Primal-dual algorithm

Primal-dual algorithm (Chambolle et Pock, 2011)

Let F and G be two proper, l.s.c., convex functions and K a linear
operator, the general problem is defined by:

mXin F(Kx) + G(x) (1)

By applying the Fenchel-Moreau theorem, we obtain the following
saddle point problem:

min max(Kx, ) + G(x) — F(7) (2)

where F*(y) = sup,cx(y,x) — F(x) is the conjugate function.
The idea consists of perfoming simultaneously an approximate
gradient ascent in the dual variable y and gradient descent in the
primal variable x

2
y = proX, g« y = argmin {Hy Il + F*(y)}
y 20

_ g2
X = prox,g X = arg min {HXXH + G(x)}
x 2T



Primal-dual algorithm

ROF model |

The proximity operator for the primal variable can be computed as:

S
X = prox )?:argmin{H A + 5 X—f|]2}
x 27

TGTV 12 2 H
To solve this minimization problem we look to the corresponding
Euler-Lagrange equation:

L= £+ Ax 1) =0

Thus, the solution is given by the following:

X+ A7f
1+ A7

X =



Primal-dual algorithm
ROF model Il

We finally have to compute the proximity operator for the dual
update as:

Y = ProX,p« y = arg myin {Hygayuz + F*(Y)}
Now, we have to determine the conjugate F* of F by duality :
F(Kx) = [[Vxll21 = sup{(§, Vx)x= : [€ij] < 1Vi,j}
=sup{—(divE,x)x : |&j| < 1Vi,j}
= Slgp<p,><>x —op(p)

where P = {p = —div{ € X :|§ ;| <1Vi,j} and dp(p) defined

by:
0 sipe P
op(p) = { i
+oo sipgP
So I_—*(y) — (SP(y) and Yy = maX(yl,U;I)



Primal-dual algorithm

TV-L1 model

The proximity operator for the dual variable prox, g« is the same.
The proximity operator for the primal can be computed as:

. = %I
X = prox,g,,_,,(X) = arg min {27_ + A|x — ]|

with the corresponding Euler-Lagrange equation:

1 x—f

;(x—x)—l-/\m:O

As a result, we arrive at the following soft thresholding schema:

X—717A fX—Ff>7)\
X=X X+7\ fXxX—-—Ff<—-7)
f if [x—Ff <7\



Primal-dual algorithm

Results (grey level and color)

Originial

ROF lambda=4. THL1lambds=1 ROF lamnbida=8 T¥Llambda=2
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Vesselness

How to detect tubular structures ?

The segmentation can use the differential properties of the image
Gradient = geometric information of objects (edges, texture,...)
Hessian = shape characteristics of objects (tube, plane, blob,...)

By eigenvalue analysis, the Hessian matrix can be decomposed into
three eigenvalues A1, A2, A3 ( A1 < A2 < A3). For an ideal tubular
structure in a 3D image, we have:
|A1’ ~0
|A1] < A2
| A2| = | A3

g
H
(Do

- &
double-cone —— double-cone

Bright plane 4 N N
Bright string



Vesselness

Frangi's vesselness function (1998)

0 if/\2>00r)\3>0
V(x) = T | s
(1—e 2a2)-e 262 .(1—e 20*) otherwise

A2
A3
A1

Rp = — =1
VW

S =|Holl =/}

R, differentiates between plane- and line-like objects, Rg
differentiates blob-like ones, and S accounts for the intensity
difference between objects and background.

Ra =




Vesselness
Inclusion of vesselness to the model

ROF model:

- 2
mum/Q]Vu\ + A /QHu fl|=dx

vesselness

TV-L1 model:

min Vul + A /u—fdx
in [ 190 A [lu=r

vesselness
where A = Ageg [ + (1 — @)V(x)] and « € [0, 1]

V(x) = Frangi's vesselness = matrix !



Vesselness

Synthetic 2D image results

originel TYLZlambida= 15 (0.97436,0.93954] TYL 1 lambda=2(0.38523,0 43957)

T —— P e e pies pemn o ey
noisy(0.99322,0.97592) TYL2weighted by vesselness (0.7545,0.99998) TYL1weighted by vesselness (0.99648,0.99733)




Vesselness

Retinal image results (DRIVE database)

Original image Vesselness TV-L1 ROF

To segment, we have to modify the data fidelity
= Chan-Vese model

Data fidelity = / lulPlley — FI2 + 11 — ul®llca — F]|? dx
Q ~~

region of interest background
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Conclusion

Conclusion and outlook

2D Results:

Include vesselness = detect tubular structures
Enhancement

X Segmentation

Outlook:

@ Include the Chan-Vese model to the fidelity = segment vessels

@ Test on 3D synthetic images




Useful links
@ olivia.miraucourt@orange.fr
@ http://olivia.miraucourt.pagesperso-orange.fr
@ http://numtourcfd.univ-reims.fr
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