

Angiographic image processing to detect and quantify arterial lesions

Maciej Orkisz <u>maciej.orkisz@creatis.insa-lyon.fr</u>

CREATIS, Lyon, France

Marcela Hernández Hoyos

Universidad de los Andes, Bogotá, Colombia

Leonardo Flórez Valencia

Pontificia Universidad Javeriana, Bogotá, Colombia

INSTITUT NA DES SCIENCI APPLIQUÉES LYON

Outline

- Angiographic imaging
- Filtering/denoising
 - Local orientation estimation
 - Medialness measures
- Model-based segmentation/quantification
 - Centerline extraction
 - Boundary extraction
- Lesion detection
- Vascular tree extraction

Outline

- Angiographic imaging
- Filtering/denoising
 - Local orientation estimation
 - Medialness measures
- Model-based segmentation/quantification
 - Centerline extraction
 - Boundary extraction
- Lesion detection
- Vascular tree extraction

- Definition
 - ἀνγεῖον angeion (vessel) and γράφειν graphein (to write)
 - traditionally: procedure performed to view blood vessels after injecting them with a radiopaque dye that outlines them on X-ray (www.medicinenet.com)

2D coronary angiogram

3D coronary CT angiogram

Definition

- ἀνγεῖον angeion (vessel) and γράφειν graphein (to write)
- traditionally: procedure performed to view blood vessels after injecting them with a radiopaque dye that outlines them on X-ray (www.medicinenet.com)

2D coronary angiogram

3D coronary CT angiogram

Definition

- ἀνγεῖον angeion (vessel) and γράφειν graphein (to write)
- traditionally: procedure performed to view blood vessels after injecting them with a radiopaque dye that outlines them on X-ray (www.medicinenet.com)
- more generally: vascular lumen imaging using a contrast agent or some physical property (e.g., motion) to enhance the circulating blood

Angiographic imaging

• examples:

magnetic resonance angiography (CE MRA – gado, TOF MRA...)
 ultrasound (CEUS – microbubbles, Doppler...)

- 0 ...
- angiograms = arteriograms \cup venograms

Creatis

Challenges

- reducing radiation dose
- -noise, low contrast, resolution
- reducing acquisition time _____
- image-intensity range overlapping with other tissues
- anatomical differences (diameters, tortuosity, neighbors)
- other acquisition-specific problems
 - \circ motion artifacts heart beat, breathing
 - $\circ\,$ inhomogeneity of the contrast-agent dilution
 - synchronization
 - \circ motion orientation with respect to imaging geometry (TOF MRA...)
 - o crossings, loss of depth information (2D images)
 - o reconstruction artifacts (e.g., in CTA: streaking, blooming...)
- No general-purpose solution

Applications

- stenosis quantification
 - accurate lumen delineation
 - single vascular segment
- per-operative guidance
 - $\ensuremath{\circ}$ accurate centerline/bifurcation extraction
 - \circ real-time 2D/3D registration
 - $\circ\,$ vascular trees
- computer-aided diagnosis
 - \circ automated localization of lesions
 - calcified/soft plaques
 - aneurysms
 - wall dissection
 - $\ensuremath{\circ}$ assessment of biomechanical behavior
- No general-purpose solution

Outline

- Angiographic imaging
- Filtering/denoising
 - Local orientation estimation
 - Medialness measures
- Model-based segmentation/quantification
 - Centerline extraction
 - Boundary extraction
- Lesion detection
- Vascular tree extraction

- Purposes
 - noise reduction in low-dose/fast acquisitions
 - attenuate artifacts

example: Dual Tree Complex Wavelet Transform

[Zuluaga et al. MICCAI 2009]

- Purposes
 - noise reduction in low-dose/fast acquisitions
 - attenuate artifacts

 $\circ\,$ example: Dual Tree Complex Wavelet Transform

[Zuluaga et al. MICCAI 2009]

- Purposes
 - noise reduction in low-dose/fast acquisitions
 - attenuate artifacts

 $\circ\,$ example: Dual Tree Complex Wavelet Transform

[Zuluaga et al. MICCAI 2009]

Purposes

- noise reduction in low-dose/fast acquisitions
- attenuate artifacts
- enhance structures of interest
 - example: Hessian eigenvalue-based filters

[Orlowski & Orkisz, IRBM 2009]

Specificities

- pixel/voxel-size details to be preserved
- application-dependent (e.g., preserve small calcifications?)

- strongly elongated/oriented/curved objects of interest
- circular cross-sections (if healthy)
- branching structures
- Appearance models
 - implicitly/explicitly cylindrical (ellipsoidal) and homogeneous

- Examples of approaches
 - with explicit estimation of the local orientation

\circ find local orientation

- measure cross-sectional circularity and longitudinal homogeneity
- \circ enhance cross-sectional contrast
- o and/or smooth intensities longitudinally

Examples of approaches

• with explicit estimation of the local orientation

\circ find local orientation

- measure cross-sectional circularity and longitudinal homogeneity
- $\,\circ\,$ enhance cross-sectional contrast
- o and/or smooth intensities longitudinally
- without explicit estimation of the local orientation
 - $\,\circ\,$ calculate derivatives or moments in the global reference frame
 - $\,\circ\,$ diagonalize the appropriate matrix at each location
 - o combine eigenvalues to measure elongation/circularity
 - possibly use eigenvectors to explicitly estimate orientation and switch to the previous approach

- Eigenvalue-based approach
 - Hessian (Frangi, Krissian, Sato, Li, etc.)
 o convolution with 2nd derivatives of a Gaussian kernel
 α ||λ₁|| ≤ ||λ₂|| ≤ ||λ₃|| and λ₁ ≅ 0, λ₂ ≅ λ₃ ≪ 0 if σ ≅ r
 o combine eigenvalues, e.g.:
 - elongation $\lambda_1^2 / \lambda_2 \lambda_3 \rightarrow 0$, circularity $\lambda_2 / \lambda_3 \rightarrow 1$

 \circ multiscale - find σ with strongest response

o sensitive to noise, bifurcations, time-consuming

- Eigenvalue-based approach
 - Inertia (Toumoulin, Hernández Hoyos)

mechanical analogy: voxel gray level = elementary mass
 inertia moments in a (spherical) neighborhood

 $\circ 0 < \lambda_1 \ll \lambda_2 \cong \lambda_3$

sensitive to neighboring bright structures (e.g., calcifications)

Optimally oriented flux (Law, Benmansour, etc.)

 1st derivatives

- Eigenvalue-based approach
 - speeding-up computation [Orlowski & Orkisz, IRBM 2009]
 - $\,\circ\,$ avoid useless diagonalization
 - slow if accurate
 - fast but prone to numerical instability if analytic
 - $\,\circ\,$ analyze matrix invariants
 - \circ set to zero voxels unlikely to meet

 $\lambda_1 \cong 0, \lambda_2 \cong \lambda_3 \ll 0$

70% discarded voxels in coronary CTA

- Explicitly estimating local orientation
 - HD filter [Orkisz et al. MRM 1997]
 - \circ set of parallel "sticks" *j* = 1,..., *n*+1

• selected orientation $\mathcal{G} = \arg \max_{i} \left(\overline{g}_{i} - \alpha \overline{\sigma}_{i}\right), \alpha \in R_{+}$

small average longitudinal variance

 $\overline{\sigma}_i = \frac{1}{n+1} \sum_{j=0}^n \sigma_j$

large average transversal gradient

 $\overline{g}_i = \frac{1}{n} \sum_{i=1}^n \left| \overline{\nabla I}_i \right|$

- Explicitly estimating local orientation
 - HD filter [Orkisz et al. MRM 1997]

 \circ set of parallel "sticks" j = 1, ..., n+1

◦ selected orientation $\mathcal{G} = \arg \max \left(\overline{g}_i - \alpha \overline{\sigma}_i\right), \alpha \in R_+$

small average longitudinal variance

 $\overline{\sigma}_i = \frac{1}{n+1} \sum_{i=0}^n \sigma_i$

large average transversal gradient

© Can detect branching points

 $\overline{g}_i = \frac{1}{n} \sum_{i=1}^n \left| \overline{\nabla I}_i \right|$

- **Oriented operator** [Orkisz *et al*. MGV 2000]
 - directional smoothing: truncated mean within each "stick" for the orientation \mathcal{G} i1 $\sum_{i} k_0 + W$

$$m_{\mathcal{G}}^{j} = \frac{1}{2W+1} \sum_{k=k_{0}-W} I_{k}, \ k_{0} = (L+1)/2$$

- enhancement: Laplacian in the plane \perp to ${\mathcal G}$

$$f = m_{\mathcal{G}}^{0} + n \cdot m_{\mathcal{G}}^{0} - (m_{\mathcal{G}}^{1} + \dots + m_{\mathcal{G}}^{n})$$
$$f = (1 - \gamma) \cdot m_{\mathcal{G}}^{0} - \gamma \cdot (m_{\mathcal{G}}^{1} + \dots + m_{\mathcal{G}}^{n}), \gamma \in [0, 1/2]$$

© Good results

Over tested in multiscale

⊖ Time-consuming in 3D

but easy to parallelize (GPU)

Creatis

- Other oriented (2D) operators
 - Ribbon [Florin et al. MICCAI 2005]

 $v = \mu_1 - \mu_2$

- Cores [Fridman et al. MICCAI 2003]
- [Krissian et al. 2000], [Gülsün & Tek, MICCAI 2008]
- Flux and MFlux [Lesage *et al.* MedIA 2009]
 o sum of directional gradients

Outline

- Angiographic imaging
- Filtering/denoising
 - Local orientation estimation
 - Medialness measures
- Model-based segmentation/quantification
 - Centerline extraction
 - Boundary extraction
- Lesion detection
- Vascular tree extraction

- Centerline what for?
 - visualization
 - measurement (length, diameters, ...)

- Centerline what for?
 - visualization
 - measurement (length, diameters, ...)
 - initialization of contour/surface segmentation
 → automated quantification
- Main approaches for centerline extraction
 - skeletonization (if presegmentation available)
 - tracking in a prediction/estimation scheme
 - \circ deterministic
 - \circ stochastic
 - minimum-cost paths

Centerline tracking with extensible-skeleton model

[Hernández Hoyos et al. MGV 2005, IJCARS 2006]

• multi-scale eigen-analysis of the inertia matrix

Creatis

- Prediction
 - displacement along the current orientation e_i

- Estimation
 - correction: influence of internal and external forces

- I point initialization
- Stopping criterion = volume boundary

Possible difficulties: long stenoses

- Minimum cost paths
 - two or more initialization points
 - front propagation

o Dijkstra [Flórez Valencia et al. MICCAI 2012]

• Fast Marching [Benmansour et al. ISRACAS 2009]

- energy minimization
$$E(C) = \int_{0}^{L} P(C(s)) ds$$

Minimum cost paths

- 2 or more initialization points
- front propagation

o Dijkstra [Flórez Valencia et al. MICCAI 2012]

• Fast Marching [Benmansour et al. ISRACAS 2009]

$$U_{pl}(p) = \inf_{C(0)=pl; \ C(L)=p} \left(E(C) \right) = \inf_{C(0)=pl; \ C(L)=p} \left(\int_0^L P(C(s)) ds \right)$$

- Minimum cost paths
 - 2 or more initialization points
 - front propagation

o Dijkstra [Flórez Valencia et al. MICCAI 2012]

• Fast Marching [Benmansour et al. ISRACAS 2009]

- Eikonal equation
$$\|\nabla U_{pl}(x)\| = P(x)$$
 and $U_{pl}(pl) = 0$

- Minimum cost paths
 - 2 or more initialization points
 - front propagation
 - o Dijkstra [Flórez Valencia et al. MICCAI 2012]
 - Fast Marching [Benmansour et al. ISRACAS 2009]
 - backtracking

Segmentation: boundaries

- Contour extraction in cross-sectional planes
 - adaptive isocontours [Hernández Hoyos *et al*. MGV 2005, IJCARS 2006] – thresholding
 - deformable contours

o explicit [Hernández Hoyos et al. Radiographics 2002, Desbleds

○ implicit [Baltaxe et al. IEEE EMBC] – Fast Marching

- Contour extraction in cross-sectional planes
 - Fast Marching [Baltaxe et al. IEEE EMBC 2007]

standard speed function

proposed function

- a. high-contrast boundary is not reached
- b. leakage through low-contrast breaches

Creatis

blue = reference**red** = method

Workshop Imagerie du Vivant

blue = reference red = method

Workshop Imagerie du Vivant

- Continuous surface from discrete contours
 - RGC model [Azencot & Orkisz, Graph Mod 2003, Flórez-Valencia *et al*. ICIP 2006, MICCAI 2009]
 - piece-wise constant parameters
 - $\,\circ\,$ curvature and torsion of the axis helix
 - derivatives of the Fourier coefficients of the contours
 - parameter identification
 - Kalman filter
 - direct access to measures
 - diameters
 - areas
 - \circ quantification

Creatis

- Continuous surface from discrete contours
 - RGC model [Azencot & Orkisz, Graph Mod 2003, Flórez-Valencia *et al*. ICIP 2006, MICCAI 2009]

- Deformable surface initialized by the centerline
 - simplex model (mesh)

$$E_{simplex} = \int_{\Omega} E_{int}(t) + E_{ext}(t) dt$$

- the internal force preserves
 continuity and smoothness
- the external forces attract the model to the boundaries in the image
- specific cylindrical forces preserve overall shape

$$\begin{aligned} \mathbf{v}_i^{t+1} &= \mathbf{v}_i^t + \gamma (\mathbf{v}_i^t - \mathbf{v}_i^{t-1}) + \lambda \left(\mathbf{f}_i^{\text{int}} + \beta \mathbf{f}_i^{\text{ext}} \right) \\ &+ (1 - \lambda) \left(\mathbf{f}^{\text{axial}}(\mathbf{v}_i^t) + \mathbf{f}^{\text{radial}}(\mathbf{v}_i^t) \right) \end{aligned}$$

Creatis

Outline

- Angiographic imaging
- Filtering/denoising
 - Local orientation estimation
 - Medialness measures
- Model-based segmentation/quantification
 - Centerline extraction
 - Boundary extraction
- Lesion detection
- Vascular tree extraction

Stenosis quantification

- Stenosis degree is not the only risk factor
 - risk depends on plaque composition

- need to detect all lesions regardless their nature
 - \odot attract user's attention
 - display together with stenosis degree

- No deterministic model of the lesions
 - variable shape and locations, overlapping intensity range
 - modality-dependent appearance
- Machine learning
 - supervised requires many representative labels
 - $\,\circ\,$ all types of lesions
 - \circ normality
 - unsupervised no labels needed
 - semi-supervised labels only for normality
 - based on cross-sections [Zuluaga *et al*. IJCARS 2011, MICCAI 2011, IRBM 2014]

Creatis

Density-level detection

- content density of probability distribution in feature space
 - \circ high = normality : *h* > ρ

 \circ outliers = abnormalities : *h* ≤ ρ

- $\circ
 ho$ is unknown !
- seek normality and deduce

abnormalities from the complement

 \circ find a function *f* such that *f* > 0 best approximates *h* > ρ

- use an empirical risk function
- solve the problem using Support Vector Machine
- Unsupervised version (DLD-SVM)
 - \circ TPR = 0.86 , underestimates lesions
 - \circ TNR = 0.82, detects bifurcations as abnormalities

Creatis

DLD-SVM

- Semi-supervised version
 - LPU = learning from positive and unlabeled samples

reasonable accuracy with a small number of labeled samples
 tends to overestimate abnormalities (unseen normal samples)
 can iteratively include new knowledge

Semi-supervised version

• LPU = learning from positive and unlabeled samples

Outline

- Angiographic imaging
- Filtering/denoising
 - Local orientation estimation
 - Medialness measures
- Model-based segmentation/quantification
 - Centerline extraction
 - Boundary extraction
- Lesion detection
- Vascular tree extraction

Tree extraction

- What about branching points?
 - ignored may disturb
 - $\,\circ\,$ centerline location and orientation
 - \circ boundary detection quantification
 - \circ lesion detection

• whole tree is needed to fully automate a CAD system

Examples of approaches

- recursive tracking
 - \circ extract mother branch in its full extent
 - detect branching points and extract each daughter branch, etc.
- minimum-cost paths
 - \circ find end-points
 - $\,\circ\,$ connect them to the root

Tree extraction : recursive tracking

- Creatis
- Connected components analysis [Carrillo et al. IJCARS 2006]
 - surface of an adaptive spherical cell

- Limitations
 - tends to stop on stenoses
 - trade-off between detecting bifurcations and tracking

Tree extraction : minimum-cost paths

- Creatis
- Geodesic voting [Rouchdy&Cohen, ICPR 2008]
 - one starting point / multiple end-points
 - paths converge towards vessels
 - counting paths that pass through each pixel

- continuity is guaranteed
- how to scatter the end-points?
- how to reduce computational time?

Tree extraction : minimum-cost paths

- Geodesic voting [Zuluaga et al. PMB 2014]
 - 3D images of bone lacuno-canalicular networks
 - Voronoi tesselation from lacunae centroids

 starting point at the centroid
 - \circ end-points on the dilated Voronoi-cell sufrace

Creatis

Conclusions

- Use simple algorithms where applicable and keep sophisticated ones for difficult regions
 - evaluate existing solutions
 - detect difficult cases
- Semi-automatic methods
 - smart interaction (and visualization)
- Performance comparison
 - challenges
 - open data and metadata
 - open source