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Figure : Mouse Brain Angiography

We want to perform the segmentation of the 3-D blood network.
Segmentation of the biggest vessels are easily done by classical
methods. The problem comes from the detection of thin tubular
structures with section and intensity comparable to noise.
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At the small scale of thin structures, the only criterium to
discriminate vessels from noise is the tubular geometry. So, we
want to define an energy which contains a geometric prior on
the image we want to get.
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At the small scale of thin structures, the only criterium to
discriminate vessels from noise is the tubular geometry. So, we
want to define an energy which contains a geometric prior on
the image we want to get.

A first approach may consist in taking an energy defined as

E = Eclassical + Egeometric

where we choose the first term as a well known energy
(Rudin-Osher-Fatemi, Modica-Mortola, Mumford-Shah,...) and
the second term is a distance from the given image to an
geometric model.
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The approach

E = Eclassical + Egeometric

has several drawbacks:

1)

2)

3)
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The approach

E = Eclassical + Egeometric

has several drawbacks:

1) ↗ complexity⇒↘ robustness,

2) ↗ complexity⇒↘ interpretation,

3) the Classical Energy contains itself a geometric prior.

We rather incorporate the geometric prior inside the classical
energy.
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For binary images, we proposed an energy based the classical
Modica-Mortola model in such a way that the geometric prior is
incorporated inside the energy.

Anisotropic Bimodal Energy for Segmentation of thin tubes
and its approximation with Γ-convergence, Advances in
Calculus of Variation, V., 2015

This work may also be done for a large class of energies. In this
presentation we will present it in the context of the
Mumford-Shah model.
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Let Ω⊂ Rn be a domain and g : Ω→ R an image,
Mumford-Shah energy is defined as

E(u,K ) =
∫

Ω\K
(u−g)2dx +

∫
Ω\K
|∇u|2dx + H n−1(K ).

where K ⊂ Ω is compact, and u ∈W 1,2(Ω\K ).
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Let Ω⊂ Rn be a domain and g : Ω→ R an image,
Mumford-Shah energy is defined as

E(u,K ) =
∫

Ω\K
(u−g)2dx +

∫
Ω\K
|∇u|2dx + H n−1(K ).

where K ⊂ Ω is compact, and u ∈W 1,2(Ω\K ).

We consider g = α1E and u = g, then

E(α1E ,∂E)≤ E(0, /0)⇔H n−1(∂E)≤ αLn(E).

This means that for a given intensity α, the more the ratio
H n−1(∂E)

Ln(E) is small, the more the set E is good for this energy.
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The ratio H n−1(∂E)
Ln(E) is optimal for the balls. The more a set E has

an isotropic geometry, the less is this ratio. So, if we force the
Mumford-Shah model to detect thin structures, it is impossible to
discriminate the noise from the tubes with same section and
intensity.

1

2

7/1
David Vicente Anisotropic Mumford-Shah Model



The ratio H n−1(∂E)
Ln(E) is optimal for the balls. The more a set E has

an isotropic geometry, the less is this ratio. So, if we force the
Mumford-Shah model to detect thin structures, it is impossible to
discriminate the noise from the tubes with same section and
intensity.
We have to modify the Mumford-Shah energy to favor
anisotropic structures:
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The ratio H n−1(∂E)
Ln(E) is optimal for the balls. The more a set E has

an isotropic geometry, the less is this ratio. So, if we force the
Mumford-Shah model to detect thin structures, it is impossible to
discriminate the noise from the tubes with same section and
intensity.
We have to modify the Mumford-Shah energy to favor
anisotropic structures:

1 Ln(E) can not be changed because it comes from the data
fitting term

∫
Ω\K (u−g)2dx ,

2
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The ratio H n−1(∂E)
Ln(E) is optimal for the balls. The more a set E has

an isotropic geometry, the less is this ratio. So, if we force the
Mumford-Shah model to detect thin structures, it is impossible to
discriminate the noise from the tubes with same section and
intensity.
We have to modify the Mumford-Shah energy to favor
anisotropic structures:

1 Ln(E) can not be changed because it comes from the data
fitting term

∫
Ω\K (u−g)2dx ,

2 H n−1(∂E) comes from H n−1(K ), it is isotropic, we have to
change it.
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We will transform H n−1(K ) in such a way to incorporate a
preference for sets having a direction. Our idea is to associate a
new metric which is elongated in one direction (anisotropic).
Moreover, this metric depends on the point of the domain
(inhomogeneous).
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For a C 1-surface K , we replace H n−1(K ) by∫
K
〈Mν,ν〉

1
2 dH n−1,

ν is an unitary and orthogonal vector to K ,

M is a given riemannian metric, that is M : Ω→ S+
n .
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For a C 1-surface K , we replace H n−1(K ) by∫
K
〈Mν,ν〉

1
2 dH n−1,

ν is an unitary and orthogonal vector to K ,

M is a given riemannian metric, that is M : Ω→ S+
n .

The associated anisotropic energy is

EM(u,K ) =
∫

Ω\K
(u−g)2dx +

∫
Ω\K
|∇u|2dx +

∫
K
〈Mν,ν〉

1
2 dH n−1,

where K is a compact C 1-surface and u ∈W 1,2(Ω\K ).
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In this talk we will give answers to the questions:

1)

2)

3)
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In this talk we will give answers to the questions:

1) Is this problem well-posed?

2) How construct a good approximation of this energy for
numerics?

3)
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In this talk we will give answers to the questions:

1) Is this problem well-posed?

2) How construct a good approximation of this energy for
numerics?

3) How construct the metric M?
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To prove existence of a solution for the associated minimizing
problem, we introduce a relaxation of the model.
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To prove existence of a solution for the associated minimizing
problem, we introduce a relaxation of the model.
We recall that u ∈ SBV (Ω) if

i) u ∈ L1(Ω),

ii) Du is a Radon measure,

iii) Du = ∇u ·dx + (u+−u−) ·dH n−1xJu.
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To prove existence of a solution for the associated minimizing
problem, we introduce a relaxation of the model.
We recall that u ∈ SBV (Ω) if

i) u ∈ L1(Ω),

ii) Du is a Radon measure,

iii) Du = ∇u ·dx + (u+−u−) ·dH n−1xJu.

SBV (Ω) is a Banach space and Ju has the following structure.

Theorem

If u ∈ SBV (Ω), then Ju is H n−1-rectifiable, i.e. Ju = N ∪C with

H n−1(N) = 0,

C =
∞⋃

i=1

Γi is a countable union of C 1 compact surface.
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We give the relaxed formulation

EM(u,K ) =
∫

Ω\K
(u−g)2dx +

∫
Ω\K
|∇u|2dx +

∫
K
〈Mν,ν〉

1
2 dH n−1.

↓

E r
M(u) =

∫
Ω

(u−g)2dx +
∫

Ω
|∇u|2dx +

∫
Ju

〈Mνu,νu〉
1
2 dH n−1,

where u ∈ SBV (Ω) and νu is unitary and orthogonal to Ju.
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We use the direct method of calculus of variations.

Théorème [Ambrosio, ’95, lower semicontinuity]

If (uk )k ⊂ SBV (Ω) satisfies

sup
k

{∫
Ω
|∇uk |2dx + H n−1(Juk )

}
< ∞

and (uk )k converge ?-weakly to u ∈ SBV (Ω), then (∇uk )k

converge to ∇u in L1(Ω) and∫
Ω
|∇u|2dx ≤ lim inf

k→∞

∫
Ω
|∇uk |2dx ,

H n−1(Ju)≤ lim inf
k→∞

H n−1(Juk ).
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Theorem [Ambrosio, ’95, compactness]

Let (uk )k ⊂ SBV (Ω) be as in the previous theorem. If ‖uk‖∞ is
uniformely bounded in k , then there exists a subsequence of
(uk )k which converges ?-weakly to u ∈ SBV (Ω).
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Theorem [Ambrosio, ’95, compactness]

Let (uk )k ⊂ SBV (Ω) be as in the previous theorem. If ‖uk‖∞ is
uniformely bounded in k , then there exists a subsequence of
(uk )k which converges ?-weakly to u ∈ SBV (Ω).

If M satisfies

i) ellipticity:

∃λ> 0,∃Λ> 0,∀(x ,v)∈Ω×Rn, λ|v|2≤〈M(x)v,v〉≤Λ|v|2,

ii) Hölder-regularity:

∃α> 0,∃C≥ 0,∀(x ,y)∈Ω2, ‖M(x)−M(y)‖≤C|x−y |α.

then we adapt the two previous theorems and prove that there
exits a minimizer u ∈ SBV (Ω) of E r

M.
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We have

MinE r
M ≤MinEM,

u is a minimizer of E r
M

H n−1(Ju \ Ju) = 0

}
⇒ (u,Ju) is a minimizer of EM.
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In general H n−1(Ju \ Ju) = 0 is not true. For example, we may
construct a function SBV such that Ju = S and Ju = S∪V as
below

To prove that a minimizer of the relaxed problem provides a
minimizer of the initial problem, it remains to prove that this
situation is impossible.
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The bad situation for Ju is due to the fact that the complexity of
S is increasing at its boundary. More precisely, we introduce the
local entropy as follows

Ix (ρ) =
1

ρn−1

(
H n−1(Ju ∩Bρ(x)) +

∫
Bρ(x)
|∇u|2dx

)
.
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The bad situation for Ju is due to the fact that the complexity of
S is increasing at its boundary. More precisely, we introduce the
local entropy as follows

Ix (ρ) =
1

ρn−1

(
H n−1(Ju ∩Bρ(x)) +

∫
Bρ(x)
|∇u|2dx

)
.

We have the typical behavior

if x ∈ S then Ix (ρ) is decreasing when ρ→ 0,
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The bad situation for Ju is due to the fact that the complexity of
S is increasing at its boundary. More precisely, we introduce the
local entropy as follows

Ix (ρ) =
1

ρn−1

(
H n−1(Ju ∩Bρ(x)) +

∫
Bρ(x)
|∇u|2dx

)
.

We have the typical behavior

if x ∈ S then Ix (ρ) is decreasing when ρ→ 0,

if x ∈ V then Ix (ρ) tends to +∞ when ρ→ 0.
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A minimizer u of the relaxed problem satisfies the following.

Definition

A function u ∈ SBV (Ω) is said (Λ,c)-quasi minimizer of a free
boundary problem if for any x ∈ Ω and v ∈ SBV (Ω) such as
{u 6= v} ⊂ Bρ(x), we have∫

Bρ(x)
|∇u|2dx + H n−1(Ju ∩Bρ(x))

≤
∫

Bρ(x)
|∇v |2dx + ΛH n−1(Jv ∩Bρ(x)) + cρ

n.

18/1
David Vicente Anisotropic Mumford-Shah Model



Theorem [Bucur, Luckhaus, ’14, Monotonicity formula]

Let u ∈ SBV (Ω) a (Λ,c)-quasi minimizer of a free boundary
problem, then

ρ→ I (ρ)∧ cΛ2−n

n−1
+ (n−1)cρ

is decreasing in a neighborhood of 0+.

This yields

Theorem

Let u ∈ SBV (Ω) a (Λ,c)-quasi minimizer of a free boundary
problem, then H n−1(Ju \ Ju) = 0.

So, a solution of the relaxed problem provides a regular solution.
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To give a formulation of this problem more suitable for numerics
we replace the C 1 surface K ⊂ Ω by a smooth function
z : Ω→ [0;1]. It is a sort of diffusion of the surface in the
following sense:

z(x)≈
{

1 if x is closed to K ,
0 otherwise,
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We approximate

EM(u,K ) =
∫

Ω
(u−g)2dx +

∫
Ω\K
|∇u|2dx +

∫
K
〈Mν,ν〉

1
2 dH n−1,

by

Eε(u,z) =
∫

Ω

(
(u−g)2 + |∇u|2(1− z)2 + ε〈M∇z,∇z〉+ z2

4ε

)
dx .

This functional is defined on W 1,2(Ω)×W 1,2(Ω) and it is elliptic.
So, it may be minimized by a non linear heat equation.
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To justify this approximation, we prove the following result.

Theorem (Γ-convergence)

If (εk )k converges to 0+ then the functionals (Eεk )k

Γ-converges to EM.

If (uk ,zk ) is a minimizer of Eεk , then there exists a subsequence
of (uk ,zk )k which converges almost everywhere to (u,0) and u
is a minimizer of EM.
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The proof of Γ-convergence is divided in two steps.

Theorem (lim-inf of Γ-convergence)

If (εk )k converges to 0+ and (uk ,zk )k converges almost
everywhere to (u,0), then

lim inf
k→∞

Eεk (uk ,zk )≥ E r
M(u).

We reduce to dimension one by using a Slicing Property of SBV
functions.

Approximation of Functionals Depending on Jumps by
Elliptic Functionals via Gamma-Convergence,1990,
Ambrosio-Tortorelli
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The second step of the proof consists in showing that the
previous lower bound is optimal. For that, we recall the upper
and lower Minkowski contents of a set.

M ?(S) = limsup
ρ→0+

Ln({x ∈ Ω: dist(x ,S) < ρ})
2ρ

,

M?(S) = lim inf
ρ→0+

Ln({x ∈ Ω: dist(x ,S) < ρ})
2ρ

,

when it coincides, we call it the Minkowski contents of a set
M (S).
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We introduce an anisotropic and inhomogeneous version of the
Minkowski content.

M ?
M(S) = limsup

ρ→0+

Ln({x ∈ Ω: distM(x ,S) < ρ})
2ρ

where distM is the distance associated to the dual metric of M.

Theorem

If (εk )k converges to 0+ and u ∈ SBV (Ω), then there exists
(uk ,zk )k converging to (u,0) a.e. such as

limsup
k→∞

Eεk (uk ,zk )≤
∫

Ω
(u−g)2dx +

∫
Ω
|∇u|2dx + M ?

M(Ju).
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Theorem, Geometric Measure Theory, Federer

If W is a closed and (n−1)-rectifiable subset of Rn, then

M (W ) = H n−1(W ).

We generalize this result to the global setting of an anisotropic
and inhomogeneous metric as follows.

Theorem
If M is elliptic and Holder regular and if W is a closed and
(n−1)-rectifiable subset of Rn, then

MM(W ) =
∫

W
〈Mν,ν〉dH n−1,

where ν is an unitary and orthogonal vector to W .

26/1
David Vicente Anisotropic Mumford-Shah Model



According to the Entropy Decay Property, we prove the following.

Theorem

If u ∈ SBV (Ω) is a quasi minimizer of a free boundary problem
then

MM(Ju) =
∫

Ju

〈Mνu,νu〉dH n−1,

where ν is an unitary and orthogonal vector to W .

Theorem, Upper Γ-limit

For any u ∈ SBV (Ω), there exists (uk ,zk )k converging a.e. to
(u,0) a.e.

limsup
k→∞

Eεk (uk ,zk )≤
∫

Ω
(u−g)2 +

∫
Ω
|∇u|2 +

∫
Ju

〈Mνu,νu〉dH n−1.
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We give a definition adapted to dimension 2. For that, we search
for an unitary vector field c : Ω→ S1 following the direction of
the tubes.

Kc

Figure : Vector field c along a tube K
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We introduce

F(c) =
∫

Ω
〈Dg,c〉2dx +

∫
Ω
|Dc|pdx

(Pc) : min{F(c) : c(x) ∈ S1 a.e. x ∈ Ω, c ∈W 1,p(Ω)}.
If we set p > 2 then, Sobolev embedding Theorem ensures that
c is α-Holder regular with α = 1− 2

p . It is easy to prove that a
solution c0 of (Pc) exists and we set

M = Id + µ tc0c0,

where µ > 0 corresponds to the elongation of its unit ball.
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In dimension 3, the previous approach is not adapted. In fact, a
vector field can avoid lateraly a tube without penalizing the
regularization term

∫
Ω |Dc|pdx .

Figure : Vector field c avoiding lateraly a tube K
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To overpass this problem, we introduce the second order
derivative of H of g and the following minimization problem

F(M) =
∫

Ω
‖M−H‖2dx +

∫
Ω
‖DM‖pdx

and the following minimization problem

(PH) : min{F(M) : M satisfies Ellipticity condition,M∈W 1,p(Ω)}.

If we assume that H ∈ L2(Ω), then it easy to prove that this
problem admits a solution M0. As for the 2D case, we assume
that p > 3 and Sobolev embedding Theorem ensures that M0

satisfies Holder regularity.
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To sum things up, this approach has been developed for

Modica-Mortola Energy,

Anisotropic Bimodal Energy for Segmentation of thin
tubes and its approximation with Γ-convergence,
Advances in Calculus of Variation, V., 2015

Mumford-Shah Energy, (Thesis Manuscript (in writing),
HAL-01132067 (for the first part of this talk)).

It may be extended to another variational problems. The
principle is to include the geometric prior inside the
regularization term of the energy.
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Thank you for your attention!
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