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A nor-lincar model 1s developed for an epidemic with contact tracing. and its dynamic
is studicd. Wec present the data for the Cuban HIV/AIDS epidemic and fit the non-lincar
model, we obtain estimates for the size of the Cuban HIV epidemic, and for the mean time
for detecting a person that is inflected with HIV.
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1. Tntroduction

The first AIDS case was diagnosed in Cuba in April of 1986. This signalied the start of
the AIDS epidemic in the country. Some HIV seropositives had been detected at the end
of 1985. Earlier the Cuban Government had starled taking preventive measures to try to
contain the possible outhreak of the epidemic. Among these measures was a lotal ban
on the import of blood, and blood byproducts. Once the first cases were confirmed, a
programme hased on the experience with ather sexually transmitted diseases was started.
This programme had among other measures, the tracing of sexual contacts of known HIV
seropositives (HIV+), 10 prevent the spreading of the virus. When a person is detected
as living with HIV, an epidemiological interview is carried out by the Epidemiology
Department of his municipality or by his family doctor (pariner notification), After this
interview the Epidemiology Department tries to locate the sexual partners of the person
through the network of the Health System. The persen living with HIV usually does not
participate in this process, though they normally help in notitying their present partners.
Trving to locate the sexual pariners is a very complex job and one that in some cases
takes a lot of time. This task is onc of high level of priority for the Health System, and it
is something that is in constant supervision to try to determine how effective it is in the
prevention of the spread of HIV. All data used is for the period 1986-2000.

The number of AIDS cases in Cuba is 1284 with 318 females and 966 males. Of the
males 79-3% are homo—bisexuals (we consider the group of homo-bisexuals to be formed
by homosexuals and bisexuals). There have been 874 deaths due to AIDS, Through the
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TABLE 1 HiV+ and AIDS cases and deathts
due to aids by vear Cuba; 19862000

Year  HIV+  AIDS Dealhdue_t_q_a_i_d_s

1986 99 5 2
1987 5 11 4
1988 03 14 &
1989 121 13 5
1990 140 28 23
1991 183 37 17
1992 175 T 32
1993 102 82 55
1994 122 102 62
1995 124 116 80
1996 234 99 92
1997 363 129 59
1998 362 150 98
1999 493 176 122
2000 545 251 142
Total 3231 1284 874

programme a total of 3231 HIV+ individuals have been found, 730 females and 2501
males. Of the males 84-45 are homo—bisexuals. Table 1 gives the new cases detected by
year,

As we can see, the cpidemic is a small one. With a population of around 11 millions we
have a cumulative incidence rate for AIDS of 116-7 per million (7-7 per million per year).
One of the characteristics ol the Cuban programme for the HIV/AIDS epidemic is that
there is an active search of seropositives through the sexual contacts of known HIV-infected
persons: 30% of the seropositives have been found through contact tracing. The rest of the
infected persons are found through a “blind” search of blood donors, pregnant women,
persons with other sexually transmitted diseases. etc. Non-parametric estimation of the
mean time it takes o find a sexual partner notified by a seropositive through contact tracing
has been found to be 54-3 months, with a standard deviation of 0-631 (Fig. 1).

Contact tracing has been used as a method te control endemic contagious diseases
(Hethcote ef al.. 1982; Hethcote & Yorke, 1984). While there is still a debate about
contact tracing for the HIV infection (April & Thévoz, 1995; Rutherford & Woo, 1988)
the resurgence of infectious tuberculosis and vutbreaks of drug-resistant tuberculosis
secondary to HIV induced inmuncdepression is forcing many public health departments to
re-examine this policy (Altman, 1997; CDC, 1991). A model of the HIV epidemic allowing
for contact tracing would help evaluate the etfect of this method of contrel on the size of the
HIV epidemic, and give some idea as to the effectiveness of the Health System in finding
them.

Our objective is to madel the contact tracing aspect of the HIV detection systemn.
to ry to obtain some information thal could be useful to the Health System in Cuba in
evaluating the way the programme is working. The authors have studied other models with
this objective in mind in Lounes & de Arazoza (1999), Arazoza er al. (2000), These were
essentially linear models. We will now introduce non linearity to model contact tracing.
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Fi15. 1. Kaplan--Meier for contact tracing,
2. The model

As we noted, the Cuban programme to control the HIV/AIDS epidemic is based in the
active search of persons infected with HIV long before they show any signs of AIDS. Our
objective is not to model how new infections by HIV are generated. but how the HIV-
infected persons are detected. We will consider the following variables:

(1) X{t), the number of H1V infected persons that do not know they are infected at time
r’

(2) Y (). the number of HIV infected persons that know they are infected at time 7,

(3y Z{), the number of persons with A1DS at time ¢,

with the following constant coefficients:

(1) N, sexually active population,

{2y w, the rate of recruitment of new HIV infected persons, infected by X,

(3) o, the rate of recruitment of new HIV infected persons, infected by ¥,

(4) k;, the rate at which the unknown HIV infected persons are detected by the system,
independently of other seropositives (‘random’ search),

(5) ko, the rate at which unknown HIV infected persons are detected by the system,
through contact tracing,

{63} A, the rate at which the HIV positives develop AIDS,

{7} p, the mortalily rate of the sexually active population,

{8) g, the mortality rate of the population with AIDS.
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The dynamics ure described by the following system:

dXx .

E=crNX—|—aNY—(k1+,u.4-f3)X—k2XY.

dy

T RX (BT kXY, %
dZ .

E:ﬁx—l_ﬁy_";‘tlf

and we consider the system only in theregion D = {X 2 0. ¥ 2 0, Z z 0). Tt is clear
that 72 is positively invariant under the flow induced by (1).
We make four comments about (1)

(1)

()

In (1) there are two ways individvals go from ‘unknown HIV infected™ (X} to
‘known HIV infected’ (¥}. One is through the non linear term £> X Y : this is the part
we consider to model contact tracing; the individual is found through his contacts
with persons that are known to live with HTV. The other way they can be detected is
through the term &) X and this term models all the other “random” ways ol searching
for seropositives. It is important to note that 1/4 can be viewed as the mcan time
from infection to detection lor the persons found not through contact tracing.

The term &2 X ¥ modcls contact tracing. The way it is taken indicates that the process
is onc that goes on for a long time and this is the case—the mean time to find a
contact is 54-3 months (Fig. 1). If we consider that the mean time from detection to
ATDS is 86-8 months (Fig. 2) we can see that. in the mean, contacts are found for
more than half the time that a person is living with HIV, before developing A1DS. To
consider one or more classes in the model. one class where contacls are found and
another (hefore AIDS) where contacts are no longer found, would complicate the
model, and it is not clear that it would give more information on the dynamics of the
epidemic. Of course variations are high: some persons have very [ew contacts and
are easy to locate, others have a large number and some are impossible 1o locate.,
Some persons have a lot of ‘casual’ contacts and they do not remember enovngh
information on thesc contacts to make it possible to find them. Others have less
contacts but with a better knowledge of their full name and some times addresses
that make it possible for the Health System to find them. Some contacts, even il they
are found, refuse to be tested for HIV. In general, of more than 15000 contacts, 0%
have been found and tested. In general we try, as a first approximation, to find out
what is the value of £z, and what is the general effect of it in the time a person living
with HIV is detected. The term k2 XY must be taken as an approximation of a more
general term k2(X. ¥) that could be studied in the tuture.

We assume thal the known HIV infected persons are infectious, but at a much lower
rate than those that do not know they are infccted. In this case a” will be taken as a
fraction of .

The passage to AIDS is modelled in a linear way. This could be modelled in a more
generdl way, but for the Cuban case the best fit to an incubation curve 1s still an
exponential, This can be seen in Fig. 3 which gives us the cumulative hazard tunction
for the time to ATDS as a straight line. This corresponds to an exponential model.
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The system has two equilibria one at £5 = (0, 0, §) which is the no-epidemic case, and
P¥ = (X*_Y*. Z* theendemic equilibrium, where

oy +a' Nk . Ty +aNk

oy taNk . _oydaNk oo, P

kato + k) Ckaly —a'NY o'

*

(X" + 7", (2)

witho =aN -k —y, yv=58+u
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The endemic equilibrium is feasible (i.e. P* € D) if and only if

(oy +o' Ny o + k) = 0 (3)
(cy +a' Ny — o' Ny > 0. (4)
The JTacobian matrix of the lincar approximation of the system in a neighbourhood of an
equilibrium point P = (X, ¥, Z} is given by
a—-kY oN-kX 0
JXV,ZDy=k+kY —-y+kX 0
8 B -
There is one eigenvalue A3 = —g', that is always strictly negative. that is associated

with the variable Z, We conclude that to study the stability of the equilibria of system (1)
we can restrict ourselves Lo the study of the equilibria of the system

dXx ,

E ZGNX+CENY—(JFC] +Jli+_8)X_k2XY,

dY

Ezkl)(—(,u-i—ﬂ)l’—i—kzXY, _ (3
inthe region P’ = {(X, ¥) | X = 0, ¥ = 0} € D- D'is positively invariant under the flow

induced by (5).
We denote J the jacobian matrix for the system (5) that is formed by the first two rows
and columns of the matrix J(X. ¥, Z). We also denote Qg = (0, 0) and Q% = {(X*, V"),

3. Local stability of (g and &
3.1  Local stabiliry for the point Qg

The jacobian matrix at the point Qp is given by

J1(Qo) = (;:1 a::)

Op. and therefore Py, is locally asymptotically stable {La.s. for short) if and only if the
trace of J) is strictly negative and its determinant strictly positive, i.c.

Op las. &= o—-y <0 and —(oy+ka'N)>D0.

3.2 Local stabilitv for the point 07

O*, and therefore P*, is La.s. if and only if the trace of J, (Q%) is strictly negative and its
determinant strictly positive, i.e.

0F las. & o-y+hb(X =Y <0 and oy +kia’N >0 (6)

REMARK: Qg La.s. implies that either O* does not exist in our domain, and this is the
case if (y —a'N)(o + ki) < 0 or O~ exists, and this is the case if y — a'N < 0and
o + k1 < 0.but Q% is unstable.

Let us suppose that oy + ko' N > 0, then Qp is unstable and from (3) and (4). Q*
exists ifandonly if y —a'N > Oand o + k1 > 0.
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4. Global stability of (0 and O*

Letg : (X, V) — ﬁ then % {e(X. X'+ % {g{X, YYY'} keeps the same sign in
T, and using the Dulac criteria we conclude that there arc no periodic orbits in the set.

4.1 Giobal stabifiry of Qg

Qpislas. ifandonly if o < yund oy + kja'N < 0. We know then that if Q* exists, Q*
is unstable.
Let V be the {function defined on D' by

¥(X.Y)eD. VIX,Y)=yX +a'NY.
Then V is a Lyapunoy function for the point @y on D"
¥(X,¥)eD. VX, V)= X(ay 4+ &' Nk, + ka (e’ N — )Y,

Let V= {{X.V)eD | VX, ¥y =0L AN =[0. ), Y 20land A5 = (X, 7, X =
O}, when Y™ exists, for the last set,

LEMMA 1 (1) Ifa’'N —y < 0, then A" = A7 and D’ contains only Oy,
(2) Ifa'N — p = 0, then A = A7 JAS and D' contains Qg and OF.

Proof. Lookin V'

LEMMA 2 Ifa'N — y < 0, then Qg is globally asymptotically stable (g.a.s.-for short) in
Proof. nLemma I, if ' N~y < O,then VX, V) £ 0and V(X V) =0 (X, Y} &
A1, Along the axis {X = 0]. X’ = 0, we conclude that the largest invariant subset in A is
the singleton { Qg} and from LaSalle’s invariant principle we conclude that Qp is g.a.s. in
T, O
LEMMA 3 ITa'N —y > Otheno + &1 < 0 and Q* exists.

Proof. Supposc g + k) > QL thenwe have -k <=0 <0 <y < a'N.

N
oy +a'Nk <0e=0 < 2 (k) <0= —k <o
¥

’

a'N a'N .
4—(—k1)=>k|(l-———~—) >0=y>aN
4 ¥

and this contradicts the hypothesis. il
LEMMA 4 Ife¢'N —yp = 0, then Qpis gas. in Py =10, X*] x [0, ¥*1 {Q*).

Proof VIIX. V)% 0 ¥ < V" Ontheline{¥ = ¥*.¥ <« 0 X < X*and
this limits the invariant region in which ¥V’ < 0. Then V is still a Lyapunov function on
£ and verifies V' = 0 on Ny N 0. On the axis {X = 0}, X’ = 0, and we conclude that
the largest invariant subset of D is the singleton {Qp} and again from LaSalle’s invariant
principle we get that Qg is g.a.s. in I}, O
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Ifo + 4 < 0,is £ the basin of Qg or is the basin of @y larger? The answer is in the
following proposition,

PrOPoSITION 1 If o' N — v = 0, then the basin of attraction of Qg 1s a triangle formed
by the axes and a line that goes through the point O and has slope

o+ k& o' Nk .

A
gla’'N —y) |y —u'N :
Proof, Q% is a saddle point with a stable and an unstable manifold both of dimension
one. Let »; be the negative eigenvalue and EY the eigenspace associaled 1o 4y and W* the
manifold that is tangent to Q* + E* at each point. £ is the straight line with slope

o+ kl C!'!qu .

. o T A

Fe'N—y) |y —u'N

and this number is negative. This means that there is 4 triangular region formed by the axes
and E° that forms the basin of Qq. A trajectory that starts in this region cannot leave the
region because the vector field at the axes points inwards and it cannot cross E*. Therefore
this region is invariant and all trajectorics starting inside the region must have Qp as it
ow-limit set, (|

4.2 Global stability of O

In the case where the point QF is feasible the phase porlrail for the system formed by
the first two equations of (1) is divided into three cases according (o the value of o, We
consider the curves ) where X' = 0 and C; where Y' = O in the region D:

(1) o =< 0. In this casc the two curves C| and C; divide the quadrant into four regions
as deneted in Fig. 4. The union of regions 1, 11 and TV {denoted by &) forms
a positively invariant domain. Every trajectory starting in this region stays in the
region and cvery trajectory starting at a point (xg, o)} € & is contained in a compact
set determined by the boundary of & and the line ¥ = yg. Therefore, any trajectory
that enters S stays in it, and the «-limit set of any trajectory in & is the point @~
(there are no other stable critical points and there are no limit cycles). A rajectory
that starts in T must enter &, as X' is negative in I and the vector field is transversal in
the boundary of §. In this case then all trajectories enter S and they have as w-limit
set the point *. Then the point Q" is globally stable.

(2) o = 0 (Fig. 5). In this case the curve C; is a vertical line and is a trajectory of the
system (in reality, three trajectories, two half-lines and the point @*). This divides
the phase plane into two parts that are positively invariant. If a trajectory starts in 1,
then X is decreasing and ¥ is increasing: this implies that the trajectory enters region
IT at a point {x1. y1). as the flow is transversal along Cz. We can then build a rectangle
by taking the rectangle formed by the points {{xg. ¥o). (x1. y1). (x2. ¥1), (x2. yo}ls
where x2 is any value 0 < x» < X*. The trajectory stays inside this rectangle,
therefore its w-limit set is the point (*. A similar analysis can be done if the
trajectory starts at a point in TIT or TV.
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(3) o = 0. As the phase portrait indicates (Fig. 6). if a trajectory starts at a point (xg. yo)
in T then it must cress into region I at a point (x7, ¥ }: then it goes into 11! at a point
{x2, y2) from there it goes into region TV at {x3. y3) and from there back to region
[. This establishes a circular flow. The trajectory stays inside a rectangle of vertices
{{x1. o). {x1, ), (x3. y2). (x3. ¥o)} and as there are no closed orbits the w-limit set

is the point 0.
From the analysis of these three cases we obtain the following theorem.

THEGREM i In the system (5}, if the equilibrium point @* exists in the positive quadrant
and it is locally stable then it is globally asymptetically stable.

From this result we can now look into the global stability of the point P* in system (1).

THEOREM 2 In system (1}, if the equilibrium point P* exists in the region D and it is
locally stable then it is globally asympiotically stable.

Proof. The proof rests on the global stability of the point @ for the system (1). Integrating
the last equation in (1) we obtain

¢
Z{t)y = (ﬁf e (X + V(s ds + Z(I{))) e "t =0 =
oy
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By L’Hopital’s rule, if lim X{r} = X% and rIim Y(r) = ¥° then
=20 20

X+ Y XY+ vt
lim Z(t):limﬁ( ():'— ())zﬁ( - )
s F—— I 7
As the point % is globally asymptotically stable in the system (3), then XY = X* and

Y9 = ¥* and we have

X* 4+ Y+ _
lim Z(t) = u =7
f—rs

Now let (X (1), Y(#), Z(¢)) be a solution of {1). Then
(X, Yy, Zop —{X" . Y* . Z'} |l € 11X (1) — X* ||
HY) = Yoo + 1Z() — Z7¥Ix

and this tends to (. |

5. Application to the Cuban HIV/AIDS data

We will use the model (1) (o fit the data for the known HIV positives and AIDS cases in
Cuba. We use the following values tor the parameters:
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Fii 6. The case ¢ = (L

X (0y = 230, estimated from the number of HIV positives that were found after 1986
and were already infecled at that time,

¥ (0) = 94, number of HIV positives that were alive at the end of 1986,

Z((h = 3, number of ATDS cascs that were alive at the end of 1986,

i = 00053, yearly mortality rale for the HIV+ cases for 1991-1997, (S.D. =
0-002 54), computed from the number of death for HIV infected persons not related
to ATDS,

i’ e [0-66, 0-85], obtained from the 95% confidence interval for the median of the
survival time to AIDS,

a N = 0-3594 is obtained from parameter 4 in Arazoza et al. (2000).

We fit the model! to the data to obtain values for &', k1, &7 and £ by minimizing a relative
error function. As traditional optimization methods failed to work properly we used a
genetic algerithm appreach. To compute standard errors for the parameters. 300 fitiing
runs were made using different values for ¢ and i taken randomly from their cenfidence
interval.

We obtain the values shown in Table 2 {a’ = ¢ «).
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TABLE 2 Parameters

Parameler  Mean Standard deviation

¥ 00579 00355
k1 03743 003979
ko 00000227 000003467
il 0-107 88 0001 67

=

=

8
T T T T T T T T
1986 1988 1990 1992 1994 1996 1898 2HH)

Year

F15. 7. Cuban HIV epidemic.

In Fig. 7 (known HIV) and Fig. & (AIDS) we can see the data and the curve given by the
medel using the mean value for the parameters.

6. Discussion

From the values we have obtained, we can see that k7 is the parameter that varies the most
(relatively), The value of the equilibrium point P* is very sensitive to these variations,
as ko appears in the denominator of (2). [f we take a value for &2 in the upper half of
the confidence interval, for example k> = 0-000085, we get the endemic point P =
(487, 2665, 420). but if we take the mean value we get £; = (1996, 11030, 1872). This
gives us an epidemic that can go from a rate of 324 per million to one of 1356 per million.
Points P|" and P} are in the region D, and as conditions given in (6) are satisfied they are
globally asymptotically stable following Theorem 2.

Point P} gives us a total of 324 per million as the rate of persons living with HIV/AIDS
at the equilibrium, and 38 per million living with AIDS. The level found for the number
of unknown HIV infected persons (487} is consistent with the one found in Arazoza ef al.
(20000 where it was found that the number of unknown HIV infected persons for the year
1997 was in the interval [342, 486].
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Yaar

F1G. 8. Cuban AIDS epideinic.

k, may be considered as the inverse of the average time from infection to detection
for a person that is detected not through contact tracing but through one of the “blind” or
‘random” types of search for seropositives. In this case, for an optimal value of k|, the valuc
we get 15 34 months or 2.85 vears. In Arazoza er al. (2000) a similar coefficient was found
but including also contact tracing, and at that time we obtained a value of 26 months or 2.2
years for the average time between infection and.detection. We can see here that contact
tracing is an important element in the control of the epidemic—without contact tracing
a person infected with HIV is not aware of his infection for almost three years; contact
tracing helps reduce this time by 23%.

Parameter k5 is crucial for the size of the epidemic; the Health System should continue
to improve the efficiency of contact tracing.

The results obtained from the model give indications that any search method that is
based on targeting a group that has been in contact with persons that carry the human
immunodeficiency virus is far more important in the control of the epidemic than a method
that is directed to the general population. Special emphasis should be devoted to instrument
such scarch methods if the HIV/AIDS is 1o be controlled.
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