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ABSTRACT

This work fits in the frames of sparse component analysis

(SCA), informed source separation (ISS) and doping water-

marking. The SCA relies on a strong hypothesis of sparsity of

the sources. In a particular context where the original sources

are available (ISS), we make the distributions of the time-

frequency coefficients of the sources more sparse, through

a doping watermarking that imperceptibly transform the his-

togram of the coefficients. Using the ”sparsified” sources in-

stead of the original ones in a SCA leads to a better estimation

of the number of sources and to a more accurate identification

of the mixing system.

Index Terms— audio, sparse component analysis (SCA),

informed source separation (ISS), doping watermarking

1. INTRODUCTION

In the case where as many mixtures as sources are available,

the Blind Source Separation (BSS) may be performed through

the Independant Component Analysis (ICA) [1], relying on

the sole hypothesis that the sources are mutually indepen-

dent. In the under-determined case, i.e. when the number

or mixtures is lower than the number of sources, another as-

sumption, commonly used in audio source separation, is that

the sources are sparse: there are some ”gaps” of silence in

each source signal. When the signals do not overlap (it is said

that the sources have disjoint orthogonality), it is possible to

perfectly recover all the sources through Sparse Component

Analysis (SCA) [1, 2].

In some signals, audio for example, although there is tem-

poral sparsity, it is usually not enough to perform a good sep-

aration [1]. That is why most studies deal with the sources

in time-frequency domain. Nevertheless, it is not possible to

guarantee the assumption of disjoint orthogonality in most of

the cases.

To overcome the strength of this sparsity hypothesis, some

works developed the concept of “informed source separation”

(ISS) [3, 4, 5], in the particular context where the sources are

available. The principle of ISS is to embed in the mixture

a watermark describing the sources and the mixing process,

that can be extracted by the receiver of the mixture to help the

separation from an under-determined mixture.

In [3], the time-frequency plane is divided in “molecules”

and the watermark is either the energy contribution of each

source to each molecule of the mixture, or a coarse de-

scription of each molecule of each source. This watermark

helps the separation of a linear instantaneous monophonic

mixture of 4 or 5 sources. In the stereophonic case, [4]

embeds through watermarking the mixture matrix and, for

each molecule, the index of the 0, 1 or 2 sources dominat-

ing in the molecule. In reception, thanks to this informa-

tion, each molecule undergoes the separation process as a

(over-)determined mixture.

An ISS based on the modeling of the source signals by

“latent components” was proposed in [5] for convolutive

under-determined mixtures: the time-frequency bins of each

source are a time-varying combination of complex centered

gaussian variables. The watermark contains the parameters

of the model, the mixing filters and the unmixing filters. Us-

ing this information, the separation is performed through a

generalized Wiener fitering.

These methods reach good performance, even for very

under-determined mixtures, but they require a high rate of

watermark (20 kbit/s in [4] to ca. 100 kbit/s in [3]), which

make them unsuitable for compressed audio (actually, the tar-

get application is the audio CD). Another drawback is that

the embedded information are restricted to a particular mix-

ture, both because the watermarking is on the mixture (this

could be changed) and, more deeply, because the watermark

needs the knowledge of the mixing matrix.

Another track in watermarking-aided audio-processing

was developed in the same period, namely the “doping water-

marking” [6, 7, 8]. The principle is to imperceptibly change

the properties of an audio signal, in order to enhance a partic-

ular processing. This was used to “stationarize” audio signals

to enhance acoustic echo cancelation [6], to “gaussianize”

signals for non-linear system identification [7], and to low-
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Fig. 1. From doping to separation.

pass filter the probability density function for application of

the quantization theorem [8]. Unlike conventional water-

marking, the inserted information are not a binary stream,

but a particular property. However, the doping watermarking

must respect the same inaudibility and robustness constraints.

Coming back to source separation, a suitable doping wa-

termarking could increase the sparsity of the sources, without

changing their perceptual characteristics. Hence, any under-

determined mixture of the “sparsified” sources should be eas-

ier to separate by SCA techniques. The goal of this paper

is to show how the source separation of audio signals can be

enhanced by a doping watermarking that imperceptibly “spar-

sifies” the sources.

The targeted application is the case where audio sources

are recorded separately in a studio, mixed in stereo or 5.1 and

finally recorded as CD or compressed files for broadcast. As

illustrated in Fig 1, each source is doped before the mixing,

in order to enhance the SCA from the received mixture. This

approach also belongs to ISS, since the separation relies on a

preliminary acces to the sources.

A ”sparsification” was proposed in [9], which principle

is to set to zero the source time-frequency (TF) coefficients

under the masking theshold (ca. 75 % of the coefficients,

without audible distorsion). This was used as a pre-processing

step in the ISS described in [4], where an ICA is performed in

each TF bin of a stereo mix, based on the assumption of 0 to

2 dominating sources in each bin. It provides a computational

gain, since the amount of TF bins with zero source, which

do not need to be separated, increases. But, as the authors

say, it leads to only few improvement in separation quality,

because the bins for which a perfect separation is allowed (0

to 2 sources) represent only 10 % of the energy of the mix.

In the first part, we will propose a another process of

“sparsification” and analyze the “sparsified” signals in terms

of sparsity and quality. The second part will study how this

“sparsification” can help in SCA, principally for identification

of the number of sources and of the mixing system.

2. SPARSIFICATION

The distributions of time-frequency coefficients of audio sig-

nals may be approximated by complex Generalized Gaus-

sian distributions, with a form factor varying between 0.2 and

0.4 [1]. Our goal is to enhance the sparsity of any audio signal

through reducing the form factor of its distribution.

2.1. Principle of sparsification

Denoting β the form factor of the original distribution and

β′ = β/λ, with λ > 1, the target form factor, the target prob-

ability density function of the modulus of the time-frequency

coefficients is :

ftarget(|z|) =
β′

α′Γ(1/β′)
exp

(

−
∣

∣

∣

z

α′

∣

∣

∣

β′
)

where, denoting α the scale factor of the original distribution,

α′ = α

√

Γ(3/β)Γ(1/β′)

Γ(1/β)Γ(3/β′)

in order to maintain the same variance.

The principle of sparsification is similar to histogram

equalization in image processing or “gaussianization” in [7].

Sparsifying the audio signal means transforming each time-

frequency coefficient modulus |S(m, k)| into |S̃(m, k)|, so
that :

Ftarget(|S̃(m, k)|) = Femp(|S(m, k)|)

where Ftarget is the cumulative distribution function associ-

ated to ftarget and Femp is the empirical cumulative distribu-

tion function computed from {|S(m, k)|}.

2.2. Algorithm

1. Compute the time frequency representation S(m, k),
using non-overlapping windows of length 32 ms;

2. Estimate the form factor β of the distribution of

|S(m, k)| through the moments method [10], assuming

a Generalized Gaussian distribution;

3. Fix the target form factor β′ < β and ∀m, k compute

|S̃(m, k)|0 = F−1

target

(

Femp(|S(m, k)|)
)

;

4. Implement in the time domain (see subsection 2.3) the

transformation |S(m, k)| → |S̃(m, k)|0, leading to a

signal s̃ with time-frequency representation |S̃(m, k)|

2.3. Implementation in the time domain

For eachmth frame of lengthN , the ratio |S̃(m, k)|0/|S(m, k)|
gives the frequency response |H(m, k)| of the filter that must

be applied to the frame. Themth frame of the sparsified signal

s̃ is computed as follows

1. Symetrize the impulse response DFT−1(|H(m, k)|) to
get a linear phase filter h(m, n) with maximum value

for n = (N − 1)/2.

2. Compute FFT of h(m, n) on 2N samples→ H2N (m, k)



3. Concatenate the mth frame of s with the second half of

the preceding and the first half of the next→ s′m

4. Compute FFT of s′m → S2N (m, k)

5. Get S̃2N (m, k) = H2N (m, k)S2N (m, k)

6. The mth frame of s̃ equals the second half of

DFT−1(S̃2N (m, k)).

This filtering includes a part of the frames before and af-

ter the current frame of s, whereas the targeted |S̃(m, k)|0
was computed only from the current frame of s. As a con-

sequence, the actual values of |S̃(m, k)| are slightly different
from the foreseen values. But taking directly the IFFT of the

targeted |S̃(m, k)|0 would have lead to an undesirable circu-

lar convolution.

This synthesis of the sparsified signal s̃ by disjoint blocks

may however lead to clicks at the inter-blocks transitions, due

to the change of filter coefficients. This phenomenon is par-

ticularly noticeable for signals with powerful low-frequency

components and a high sampling frequency. For this reason,

we smooth the inter-frames transitions by synthesizing s̃ with
slightly overlapping blocks.

2.4. Results: sparsity of the sparsified signals

The sparsification described above was tested for a target

β′ = β/2 on various speech and music signals. We will

present here the results for speech, for which the algorithm

could be run on a large database. The corpus is composed of

96 source signals from the TIMIT database [11], each con-

sisting in 3 sentences pronounced by the same speaker (96

different speakers), sampled at 16 kHz, truncated to 5, 2 or

1s. The 96 × 3 sentences are all different and phonetically

balanced.

After running the algorithm, we estimated the form fac-

tors of |S̃(m, k)|0, and |S̃(m, k)|, denoted respectively by

β0

s̃ and βs̃, through the moments method. For each source,

β0

s̃ ≃ βs̃, with an error around 0.01. Fig 2 shows the cou-

ples (β, βs̃) for source durations of 1 and 5 s. For each β, βs̃

is clearly greater than the target value β/2. This may be ex-

plained by the fact that the traditional histogram equalization

is known to fail in reaching exactly a target distribution, espe-

cially with few samples, and by a possible inaccuracy of the

method of estimation of the form factor. The first hypothesis

is reinforced by the fact that the values of βs̃ are higher for

1s than for 5s. However, the goal of reducing the form factor

was reached in all cases.

2.5. Results: quality of the sparsified signals

The sparsification consists in a filtering varying frame by

frame. A distortion measure should encompass the impair-

ments due both to the frequency response at each frame and

Fig. 2. Estimated form factor βs̃ of the sparsified signal vs

estimated form factor β of the original signal, for 96 sources.

to the variability of the frequency response between two suc-

cessive frames. The best way to measure the audibility of

this type of complex distortion would be formal subjective

tests, resulting in mean opinion scores (MOS) indicating for

each source the perceived degradation of the sparsified signal

compared to the original one.

At this stage of the study, we estimated the MOS through

PESQ [12], for the 96 previous sources. PESQ provides

scores between 1 (very annoying impairment) and 4.5 (no

perceptible impairment). The histograms of the estimated

MOS, for durations of 1 and 5 s, are represented on Fig. 3.

They show that the distortion due to the sparsification is al-

most inaudible for all the sources for a duration of 5 s. If the

duration is shorter, the few number of samples may result in

an original distribution of |S(m, k)| far from the Generalized

Gaussian hypothesis, which implies more distortion of the

signal to reach the target Generalized Gaussian distribution.

3. SEPARATION OF THE SPARSIFIED SIGNALS

In SCA approaches, source separation techniques are usu-

ally divided in three steps: (i) identification of the number

of sources in the mixtures; (ii) identification of the mixing

system; (iii) source separation itself. The quality of the last

step is directly related to the accuracy of the former. We will

now verify the improvement achieved in the first two steps,

when using the doping watermark.

To make the comparison, we will used the ICA+SCA

based approach, proposed in [13, 14]. One reason for this

choice is that this method showed to be less susceptible to

overlapping source signals, so it tends not to favor the pro-

posed approach. Let us summarize the ICA+SCA method for

a stereo mixing situation:
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1. Compute FFT of the mixing signals using the same pa-

rameters as in the sparsification process.

2. Divide the FFT data in blocks and for each block ap-

ply ICA to the mixing signals. The ICA method will

provide a ”local separation matrix”W2×2.

3. Compute and store all the θi obtained by:

θi = tan−1
[W−1]2,i

[W−1]1,i

, i = 1, 2 (1)

4. Apply K-means [15], or other clustering method in θ ,

finding the number of clusters that better fits the data.

This number will be the amount the sources present in

the mixture.

5. The centroid of each cluster will indicate a value of

θ that will be related with the direction of one of the

columns of the mixing matrix.

3.1. Estimation of the number of sources

The test was run choosing sources randomly among the previ-

ous 96 sources. The number of sources varied between 2 and

8, and the mixture was stereo. 400 simulations were done.

The results are shown in Fig. 4. For samples of 5 seconds,

more than 98% of correct estimations are obtained in both

cases. In the case of samples of 1 second, we verified an im-

provement of the use of the sparsified sources with the grow

of the number of sources in the mixture. These results show

that is possible to use a smaller amount of samples for the

estimation, therefore decreasing the time consumption of this

part of the process.
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Fig. 4. Percentage of correct estimations of the number of

sources in the mixture. Average of the results of 400 simula-

tions. a: case with 1s sources. b: case with 5s sources.

3.2. Estimation of the mixing matrices

The same test was run, now considering that the number of

sources is known. In this case, the comparison concerns the

quality of the estimation of the mixing matrix. The results

are shown using the average values of 200 simulations for

each number of sources. The Angular Mean Error (AME)

was calculated between the directions of the columns of the

estimated and the original mixing matrices. Both the results

with 5 and 1 second (see Fig. 5), show better estimations for

the sparsified source.
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4. CONCLUSION

We have shown that it is possible to increase the sparsity of

the time-frequency representation of an audio signal, through

a simple histogram equalization, that preserve the audio



quality of the signal. A source separation method based on

ICA+SCA have exhibited better performance with ”sparsi-

fied” signals than with the original ones, in terms of identi-

fication of the number of sources and of the mixing system.

The next steps of this work will be to explore to which extent

the sources can be ”sparsified” with respect to the inaudibility

constraint and to complete the source separation process until

the separation itself. This could lead to applications in ”active

listening”, where a listener can act separately on each source

of a record.

At this stage, the proposed method cannot be compared to

the ones described in the introduction in terms of separation

efficiency, but we can already note two advantages : 1) it is

not limited by the watermarking rate constraint; 2) it is not

specificaly dedicated to a particular mixing matrix, since the

source signals are sparsified for any mix.

Many BSS techniques depend on the distributions of the

source signals. Beyond the case presented here, assuming

however that the sources are available, the proposed doping

watermarking opens many possibilities of controling the dis-

tribution of the source signals and, thus, controling the be-

haviour of various BSS algorithms.
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