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S. Djaziri Larbi(1), G. Mahé(2), I. Marrakchi(1,2), M. Turki(1), M. Jaı̈dane(1)

(1)Signals and Systems Laboratory
Ecole Nationale d’Ingénieurs de Tunis
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ABSTRACT

In the last years the research in the field of digital water-
marking evolved toward non conventional watermarking
applications, which we refer to as watermark aided audio
processing. In this paper, we present some of our con-
tributions to this new concept of watermarking for audio
processing, namely doping watermark and witness water-
mark. The doping watermarking modifies the statistical
characteristics of signals in order to satisfy particular con-
ditions of algorithms or systems: it may stationarize, gaus-
sianize a signal or make its characteristic function band-
limited. We further show that a watermark can be used
as a channel witness, to reproduce channel distortions and
hence facilitates channel identification.

1. INTRODUCTION

Digital watermarking was proposed as a powerful way to
protect digital media. Watermarking is a technique that
embeds binary data, the watermark, in the media to be
protected, the host, without introducing degradation, i.e.
in an imperceptible manner.
Recently, and as watermarking is a subcategory of data
hiding, many researchers presented watermarking systems
thought as data transmission channels, where the channel
is the host signal. In these applications, the channel, or
the watermarked media, conveys hidden digital side infor-
mation (which may be totally independent from the host),
intended for a dedicated receiver. Under this communi-
cation model, some watermarking systems have been pro-
posed, where the watermark conveys audio annotation/ in-
dexation information [1] or information related to band-
width extension for narrow band speech transmission [2].

In this paper we present a novel and non conventional
aspect of audio digital watermarking, which lies within
the framework of audio signal enhancement and which
we refer to as watermark aided audio processing. Indeed,
audio signal processing systems have to manage the dif-
ficult audio signals characteristics, e.g. their non station-
arity and high correlation. Watermark aided audio pro-
cessing can be split into two categories: doping water-
marking and witness watermarking. The former is in-
tended to change the audio signal characteristics in or-
der to enhance the efficiency of a particular audio pro-
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cessing system. For example, acoustic echo cancellation
(AEC), nonlinear loudspeaker identification and applica-
tion of the quantization theorem require signals with re-
spectively stationarity, Gaussianity and band-limited char-
acteristic function. The signal may gain these properties
through doping watermarking [3, 4, 5, 6]. Witness water-
marking embeds a watermark in the signal to exploit its
ability to identify the channel conveying the signal better
than the signal itself, thanks to ”good properties”, mainly
whiteness and stationarity [7].

An interesting particularity of this new watermarking
concept is that, except for inaudibility, no further con-
straints are necessary, i.e. neither robustness nor high em-
bedding rates are required.

The paper summarizes our work in the field of water-
mark aided audio processing and it is organized as fol-
lows. In sections 2 to 4 we present doping watermark
concepts, respectively the stationarization, the gaussian-
ization and the low-pass filtering of the probability density
function. Section 5 details an application of the witness
watermark concept in Acoustic Echo Cancelation (AEC).

2. DOPING WATERMARKING
FOR AUDIO STATIONARIZATION

The considered time domain spread spectrum watermark-
ing scheme is shown on Fig.1 (dashed part). The embed-
ded watermark wn is obtained by spectral shaping of the
stationary and white sequence vn. This is done through
an all-pole filter H(z), whose gain matches the attenuated
LPC1 spectral envelope of signal xn

2. Note that H(z) is
updated each N samples frame of xn. The doping water-
mark wn is then added to the host xn to obtain the water-
marked audio xw

n .
Since wn is stationary over each frame, the non sta-

tionarity of xw
n is noticeably reduced. We address here

non stationarities (NS) that consist in abrupt changes over
short durations in the spectral characteristics of signals.
Speech signals are made of rapid succession of noise pe-
riods (unvoiced consonants), periods of relative stability
(vowels) and periods of silence. The transitions between
unvoiced and voiced zones, and vice versa, are considered
as transients. The NS is measured by stationarity indices
(SIs) based on time frequency representations (TFRs). The
SI was proposed in [8] as an efficient NS measure. It

1LPC: Linear Predictive Coding.
2An auditory model is used in case of music signals
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Fig. 1. Time domain watermarking system (dashed) as a pre-
processing step of a generic AEC (full line).

is computed as a distance between different TFRs of the
signal: at each instant n, two TFR subimages I1(n; τ, f)
and I2(n; τ, f) with equal duration p are extracted on both
sides of the instant n, then normalized and compared through
a distance, here the Küllback divergence [4]:

SI(n) =

p∫
τ=0

+∞∫
−∞

(I1(n; τ, f)− I2(n; τ, f)) log
I1(n; τ, f)

I2(n; τ, f)
dfdτ.

If the signal characteristics have no changes at instant n,
SI(n) is near zero, while it peaks otherwise.
We depict on Fig.2b the SIs of an original and a water-
marked speech sequence containing an unvoiced/voiced
transition (Fig.2a). As expected, the SI value at the tran-
sition area (about n = 220) has been significantly re-
duced. The same stationarizing effect is obtained with
watermarked music [4]. Thus, the watermark acts as a
doping signal to enhance audio stationarity.

The proposed preprocessing by adding a doping wa-
termark was tested with a monophonic AEC as depicted
on Fig.1. In audio-conferencing, the communication qual-
ity is altered by the acoustic coupling between loudspeak-
ers and microphones, which results in an echo transmit-
ted through the microphones. The role of an AEC is to
identify the echo path impulse response (IR) to reduce the
echo.
On Fig.1, the echo path is modeled by a FIR filter F . The
AEC taps Gn are updated with the NLMS algorithm ac-
cording to the residual echo en = yn − ŷn, where yn is
the echo and ŷn is the estimated echo. The AEC input is
the received audio signal xw.
Adaptive algorithms are very sensitive to the non station-
arity and correlation of the audio input: they interpret
peaky variations of the residual echo as channel variations,
which results in an altered quality of the transmitted sig-
nal after echo removal.
The AEC of Fig.1 reached an ERLE3 enhancement of
ca. 5 dB in the steady state [4] compared to the conven-
tional AEC. The preprocessing improved the AEC robust-
ness to short segment transients and led to the stabilization
of the ERLE, insuring a nearly constant audio quality.

Note that wn does not convey any particular informa-
tion, it has just to be white and stationary. In the follow-
ing, the watermark design is entirely focused on shaping
the signal properties, released from the conventional con-
cept of binary information.

3ERLE: Error Return Loss Enhancement
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Fig. 2. (a) Unvoiced/voiced transition (syllable ”sa”). (b) SIx
(dotted) and SIxw : stationarity improvement to ca 50%.

3. DOPING WATERMARKING
FOR AUDIO GAUSSIANIZATION

Why audio gaussianization?
For nonlinear system identification (e.g. loudspeaker), sev-
eral algorithms need input Gaussianity. For example, the
robustness of the polynomial identification is closely re-
lated to the conditioning of the observation matrix Rx =
E[XnX

t
n] (where Xn = [1, xn, ..., x

p
n]

t, xn denotes the
input signal and p is the nonlinearity order) which de-
pends on the Probability Density Function (PDF) of the
input signal [5]. For all nonlinearity orders, Rx is bet-
ter conditioned for a Gaussian PDF than for a Laplacian
one. For nonlinear systems with memory, an identification
method was proposed in [9]. Based on orthogonalization
using the Hermite polynomials basis, this method relies
on the hypothesis of input Gaussianity.

Usually, simple inputs such as one or two tones, white
Gaussian noises and sine sweep signals [10] are used for
nonlinear identification or characterization. But to capture
different aspects of the nonlinear distortions in audio sys-
tems, which are physically input dependent [10], the iden-
tification or characterization should be done with audio
signals. However, the latter have Generalized Gaussian
distributions [11]. Therefore, we proposed an algorithm
that makes audio signals more Gaussian [5].

Audio Gaussianization method

The proposed gaussianization method, detailed in [5], is
based on slight changes of audio sample values (preserv-
ing inaudibility) so that the obtained PDF matches a nor-
mal distribution. We proposed a transformation of speech
signals from the empirical distribution to a Gaussian dis-
tribution, performed over non overlapping frames. Each
sample xn of the audio signal is transformed into xg

n =
xn + wn, where wn is the additive gaussianizing water-
mark, so that

F target(xg
n) = F emp(xn), (1)

where F target and F emp are respectively the target nor-
mal cumulative distribution function and the empirical cu-
mulative distribution function.
The signal wn added through the gaussianization process
is still audible because the PDF of audio is much higher
than the Gaussian one around zero. The noise is particu-
larly noticeable for silent and unvoiced areas. In order to
reduce the gaussianization signal, we proposed to exclude
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Fig. 3. Kurtosis evolution of original and gaussianized (dashed)
signals (frame size=104 samples).

the silent and unvoiced segments from the gaussianization
process and we achieved a perceptual frequency masking
by an iterative limitation of the maximum amplitude of
wn. This embedded signal represents the doping water-
mark for audio gaussianization.
The Gaussianity is measured by estimating the Kurtosis
(which equals 3 for a Gaussian input) for original and
gaussianized audio signals. The Kurtosis was evaluated
for a pop-music signal by disjoint frames of 10.000 sam-
ples. As shown in Fig.3, the Kurtosis of xg

n is closer to 3
than that of xn for most of the frames. Consequently, the
condition number of Rx is between those of a Gaussian
signal and the original speech. This leads to a more robust
identification and a significant reduction of the estimation
error (25 dB in the studied example), while identifying a
memoryless nonlinear system [5].

4. DOPING WATERMARKING
AND QUANTIZATION THEOREM

According to the quantization theorem [12], the PDF of a
sampled signal can be recovered from the signal quantized
with step q if 1/q is lower than two times the maximum
frequency of the characteristic function4. If the original
signal is digital, i.e. with a discrete PDF, the quantization
theorem turns into the sub-quantization theorem [6]: if the
characteristic function of a quantized signal x equals zero
for frequencies |ν| > 1

2K in
[
− 1

2 ;
1
2

]
, then the PDF of x

can be recovered from that of xQ resulting from the sub-
quantization of x with factor K.

Characteristic functions of audio signals generally spread
all over the frequency space. Thus, the PDF should be
low-pass filtered, with cut-off frequency 1

2K , in order to
apply the quantization or the sub-quantization theorem.
In [6], we proposed a doping watermarking scheme for
digital signals aiming at limiting the characteristic func-
tion to [− 1

2K ; 1
2K ]. The principle is to add an inaudible

noise w to x, so that the PDF of xw = x + w equals the
target low-pass filtered PDF.
In practice, instead of PDF we consider histograms of long
frames (e.g.10.000 samples) of audio signal. The low-pass
filtered histogram is rounded to integer values so that its
total number of samples equals the length N of the frame.
We transform iteratively x into a signal xw so that the his-

4Fourier transform of the PDF

signal K dKS × 104

x z
speech 4 69 4.3

8 197 5.9
violin 4 7.3 1.4

8 13 1.3

Table 1. PDF recovery error.

togram of xw, hxw , equals the target histogram htarget.
Initially, xw = x. Then, for i = minx → maxx :
− If hxw(i) > htarget(i), then we select randomly the ex-
cess samples xw

n of value i, give them the value i+ 1 and
actualize hxw(i+ 1).
− If hxw(i) < htarget(i), then we select randomly the
missing samples xw

n in the class i+1, give them the value
i and actualize hxw(i+1). If there are not enough samples
in the class i+1 we select the remainder in the class i+2
and so on.
At the end of the algorithm, hxw = htarget.
The doping watermark w is all the more audible as K is
high. For speech, w is almost inaudible for K = 4 (PESQ
[13] Mean Opinion Score > 4), whereas for violin K can be
set up to 8 (PEAQ [14] Objective Difference Grade ≃ −0.5) [6].

The algorithm used for gaussianization (section 3) could
have been used too. For a given value of K, the perceptual
result is identical. The main difference is that the previous
algorithm, based on the minimization of the difference be-
tween the actual and the target cumulative functions, does
not lead exactly to hxw = htarget, which is guaranteed by
construction here. This performance is reached at the ex-
pense of a higher complexity, so that the choice between
the two algorithms depends on the required accuracy of
the PDF transformation.

The PDF recovery error after sub-quantization with
rate K is measured, for the original signal x and the wa-
termarked signal xw, through the Kolmogorov-Smirnov
distance dKS between the original and the recovered PDF
using the sub-quantization theorem. As illustrated in ta-
ble 1 [6], the doping watermark reduces significantly the
recovery error.

5. WITNESS WATERMARKING FOR AEC

In section 2, the sensitivity of adaptive algorithms to the
non-stationarity of the input was faced by reducing the in-
put non-stationarity through doping watermarking. Here,
we propose to identify the echo path directly from the wa-
termark itself, in order to take advantage of its good prop-
erties. In other words, the watermark is used as a witness
of the acoustic channel.

The AEC of Fig.1 is then so modified to obtain the
proposed Watermarked AEC (WAEC) of Fig.4, which is
based on the coupling of two adaptive filters. The input
to the first stage is the watermarked speech xw

n . wn is ob-
tained by filtering the white and stationary sequence vn
through Hn(z), an adaptive perceptual filter derived from
the NLMS adapted whitening filter of xn.
The first stage is a conventional AEC using the prewhiten-
ing filter αnH

−1
n (z), where αn is the numerator of Hn(z).
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Fig. 4. Proposed Watermarked AEC

It extracts a rough estimation Gn of the echo path F . Sub-
stracting Gt

nV
′
n from the residual echo of this first stage

provides a new reference echo signal for the second adap-
tive filter Gw

n

ern = F tV ′
n + νf

n + (F −Gn)
t Xf

n , (2)

which is the echo of the watermark vn plus a noise that
should be low if Gn is close enough to F . In this equa-
tion, vectors are denoted by capital letters, i.e. V ′

n =
[v′n, v

′
n−1, · · · , v′n−P ]

t and superscripts f and t denote re-
spectively signals filtered by αnH

−1
n (z) and vector trans-

position. Filters Gn and Gw
n have P taps and are supposed

to be the same length as the echo path F .
Driven by the known watermark v′n = αnvn, the sec-

ond adaptive filter Gw
n estimates then the actual echo path,

taking advantage of the optimal properties of vn. The
residual echo of the second stage is then

ewn = (F −Gw
n )

t V ′
n + (F −Gn)

t Xf
n + νf

n (3)

Since the adaptive filter Gw
n is driven by the nearly whiteand stationary sequence v′n, it provides a better identifica-

tion of the echo path F .
Finally, the actual transmitted residual echo is

etrn = (F −Gw
n )

t︸ ︷︷ ︸
deviation D

Xw
n + νn. (4)

The performance of the WAEC and the AEC of Fig.1
are compared on Fig.5. The WAEC performs better than
the AEC, as the MSD5 is much lower (ca -15 dB in the
mean) and the ERLE is significantly higher. These results
indicate the significant AEC enhancement reached by ex-
ploiting the watermark as a channel witness.

6. CONCLUSION

In this paper, some of our contributions to the new concept
of watermark aided signal processing were presented. The
doping watermark modifies imperceptibly audio charac-
teristics, namely Gaussianity, stationarity or characteris-
tic function bandwidth to fulfill assumptions required by
audio processing algorithms. The witness watermark un-
dergoes the same distortion as the audio source and it is
then used more efficiently to reduce the distortion. The
application field of this new concept is large, it concerns
as well linear and nonlinear identification -such as AEC
and loudspeaker distortions analysis- as audio quantiza-
tion. Doping and witness watermarking, for watermark
aided audio processing, seem to be new concepts which
deserve further theoretical and practical investigations.

5Mean squared deviation MSD=E[DtD].
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