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Abstract—Nonlinear audio system identification generally relies
on Gaussianity, whiteness and stationarity hypothesis on the input
signal, although audio signals are non-Gaussian, highly correlated
and non-stationary. However, since the physical behavior of
nonlinear audio systems is input-dependent, they should be
identified using natural audio signals (speech or music) as input,
instead of artificial signals (sweeps or noise) as usually done.
We propose an identification scheme that conditions audio signals
to fit the desired properties for an efficient identification. The
identification system consists in (1) a Gaussianization step that
makes the signal near-Gaussian under a perceptual constraint; (2)
a predictor filterbank that whitens the signal; (3) an orthonor-
malization step that enhances the statistical properties of the
input vector of the last step, under a Gaussianity hypothesis; (4)
an adaptive nonlinear model.
The proposed scheme enhances the convergence rate of the
identification and reduces the steady state identification error,
compared to other schemes, for example the classical adaptive
nonlinear identification.

Index Terms—Audio Gaussianization, nonlinear system iden-
tification, orthonormalization.

I. INTRODUCTION

NONLINEAR behavior of acoustic systems is a problem
encountered in various audio applications such as cellular

phones, video conferencing systems and public address sound
reinforcement. Low-cost audio equipments and constraints of
portable communication systems accentuate this phenomenon.
These distortions are a superposition of different mechanical,
electrical and acoustical effects, which can be modeled by
polynomial models for memoryless systems and by Volterra
filters [1], [2], [3] for systems with memory.

For example, loudspeakers are modeled by Volterra filters
with a nonlinearity order of 2 [4] to 3 [5], [6]. Audio amplifiers
have also a nonlinear behavior, which was emulated in [7] for
a tube preamp (as used by electric guitars) by a Volterra model
with nonlinearity order 10.

Classical identification algorithms of nonlinear audio sys-
tems use synthetic signals as inputs. In [8], [9], and in a
context of nonlinear acoustic echo cancellation, the nonlinear
echo path has been identified with a stationary white Gaussian
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Gaël Mahé is with the Laboratory of Informatics Paris Descartes (LIPADE)
at the University Paris Descartes, 45 rue des Saints Pères 75270 Paris Cedex
06, France. e-mail: gael.mahe@mi.parisdescartes.fr

input. For loudspeakers, classical input signals for identifi-
cation are multitones [10], sine sweeps, Maximum Length
Sequences (MLS), wide MLS (interleaving zeros between ±1)
and multiple noises with modulus equal to 1 [11].

However, the physical behavior of nonlinear audio systems
is input-dependent. This was stressed in [12] for speech
communication systems: classical steady-state measurements
(sweeps, tones, noises...) are not sufficient to predict the
subjective performance of a system, so that they should
be replaced by speech-like test stimuli. In a more physical
approach, Klippel [13], [14] showed the relationship between
the properties of the input signal and the physical behavior of a
loudspeaker. For example, the voice coil heating, which gener-
ates nonlinear distortions, depends on the spectral properties of
the stimulus. As a consequence, a full dynamic measurement,
that excites all the nonlinearities to be measured, is performed
with audio-like stimuli.

Hence, audio nonlinear systems should be identified when
they are excited by their real inputs (natural audio signals).
But the properties of audio signals make them unsuitable
for classical identification algorithms, since they are generally
non-Gaussian, non-stationary and highly correlated. This point
was raised in [15] for the efficiency measurement of audio
amplifiers: while synthetic signals cause a different system
behavior than audio, the non-stationarity of audio signals
makes them difficult to use as test input.

Several studies take into account some of the natural inputs
properties. In [16], the authors proposed a decorrelation filter
to turn white the input, which is useful to pilot the adaptive
filter. However, the non-commutativity of the decorrelation
filter, which is linear, and the nonlinear Volterra filter limits
the validity of this method. An identification method was pro-
posed in [17] with high algorithmic complexity, for stationary,
Gaussian but correlated inputs. It consists in a prediction step
followed by an orthogonalization step. This method was tested
in the adaptive identification case for a Volterra system of low
order and in the particular case of an AR(1)1 Gaussian process.
An enhancement was achieved for both transient and steady
states. Nevertheless, this method was not validated for high
order systems nor for non-Gaussian and non-stationary inputs.

Thus, we propose to take fully into account the properties
of audio signals, namely non-Gaussianity, non-stationarity and
high correlation, in the identification of nonlinear audio sys-
tems. In section II, we point out the importance of Gaussianity
in identification algorithms. Then, we propose in section III a

1AR(n): autoregressive process with order n.



2

“Gaussianization” algorithm that aims at making an audio sig-
nal more Gaussian without changing its perceptual properties.
In section IV, we present a new identification structure based
on Gaussianity and taking into account the correlation and the
non stationarity of audio signals. Finally, in section IV, we
present a simulation study and discuss the simulation results.

II. ILL-CONDITIONING IN NONLINEAR SYSTEM
IDENTIFICATION

Speech signals have been shown to be near-Laplacian,
whereas the distribution of music signals depends on the type
and the number of instruments, and tends to be Gaussian
when several instruments are involved [18]. Audio signals
can be considered as generalized Gaussian processes, which
distribution varies from Gaussian to Laplacian.

The PDF2 p(x) of a generalized Gaussian process is given
by

p(x) =
ν.η(ν, σ)

2.Γ(1/ν)
exp[−[η(ν, σ).|x|]ν ], (1)

where σ2 is the variance of x and

η(ν, σ) =
1

σ

[
Γ(3/ν)

Γ(1/ν)

]1/2
, (2)

where Γ(.) is the Gamma function. The larger is the ν factor
the flatter is the PDF. The PDF

• is Laplacian for ν = 1;
• is Gaussian for ν = 2;
• tends to an impulse function for ν −→ 0;
• tends to a uniform distribution for ν −→ +∞.

A theoretical analysis is presented here to exhibit the impor-
tance of input Gaussianity in nonlinear systems identification.
In the literature, nonlinear distortions are generally modeled by
polynomial structures (for nonlinear memoryless systems) or
truncated Volterra series (for nonlinear systems with memory)
which are identified using optimal or adaptive algorithms.
These algorithms are sensitive to the ill-conditioning of the
observation matrix, even if the input is white. This concerns
a matrix inversion problem for optimal identification and a
convergence problem in the adaptive case.

In the following, a particular attention is paid to the influ-
ence of the input PDF on the conditioning of these observation
matrices.

A. Polynomial systems
In the case of a polynomial system identification, the

observation vector is Xk = [1, xk, x
2
k, ..., x

N
k ]⊤ where xk is

the input signal and N refers to the polynomial order. For a
stationary process,

Cx = E[XkX
⊤
k ],

is the symmetric matrix defined by

Cx =


1 m1 m2 . . mN

m1 m2 m3 . . mN+1

m2 m3 . . mN+1 mN+2

. . . mN+1 mN+2 .

. . mN+1 mN+2 . .
mN mN+1 mN+2 . . m2N

 ,
(3)

2PDF : probability density function.
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Fig. 1. For a polynomial system, condition number K(Cx) according to
the nonlinearity order, for different generalized Gaussian processes.

where mi = E[xik] is the ith order moment and E[.] denotes
the expectation value. With language misuse and for simplicity,
we will call the matrix Cx “correlation matrix”.

The identification performance are closely related to the
conditioning of the matrix Cx which depends on the PDF
of the input signal xk. The conditioning of Cx is evaluated
through its logarithmic condition number [19]

K(Cx) = log10

(
|λmax|
|λmin|

)
, (4)

where λmax and λmin are respectively the largest and the
smallest eigenvalues of the matrix Cx.

We compared K(Cx) for various orders and values of the
form factor ν of a generalized Gaussian PDF (Fig. 1). The
theoretical values were computed for the Gaussian, Laplacian
and uniform cases.

Applying the Price theorem [20] on a zero mean Gaussian
process xg , we may deduce all the higher order moments from
σ2
xg = E[(xg)2]

mg
2p+1 = E[(xg)2p+1] = 0,

mg
2p =

(2p− 1)!

2p−1(p− 1)!
σ2p
xg , (5)

where p > 0. Similarly, for a zero mean Laplacian process xl:

ml
2p+1 = E[(xl)2p+1] = 0,

ml
2p =

(2p)!

2p
σ2p
xl , (6)

where σ2
xl = E[(xl)2]. For a zero mean uniform process xu:

mu
2p+1 = E[(xu)2p+1] = 0,

mu
2p =

3pσ2p
xu

2p+ 1
, (7)

where σ2
xu = E[(xu)2]. As depicted on Fig. 1, the larger is

the shape factor ν, the better is the matrix conditioning, for
all considered values of N .
Thus, we expect to achieve better nonlinear identification for
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Fig. 2. Condition number of the estimated matrix R̂x (50.000 samples) according to the correlation factor ρ, for Volterra systems S1 (left, M = 2 and
N = 3) and S2 (right, M = 2 and N = 2).

Gaussian inputs than for Laplacian inputs. Ideally, the uniform
distribution provides the best conditioning.

B. Volterra systems

Some nonlinear systems with memory, like loudspeakers,
are modeled by Volterra series. Let N be the polynomial order
and M the memory length of a Volterra model. We denote by
Xk the Volterra input vector defined by

Xk = Zk ⊘ Zk ⊘ ...⊘ Zk︸ ︷︷ ︸
N times

, (8)

where Zk = [1, xk, xk−1, ..., xk−M+1]
⊤. ⊘ denotes a modi-

fied Kronecker product, whose resulting redundant terms are
omitted. Xk is a vector of length (M+N)!

N !M ! and it contains only
products belonging to the set {xm1

k xm2

k−1...x
mM

k−M+1/m1+m2+
...+mM ≤ N} [21].

As for polynomial systems, we will call the matrix Rx =
E[XkX

⊤
k ] “correlation matrix”. It was shown in [22] that for

an i.i.d 3 process, the conditioning of the correlation matrix
Rx increases exponentially with the nonlinearity order N and
the memory length M and has the upper bound [K(Cx)]

M :

K(Rx) < [K(Cx)]
M . (9)

Unlike polynomial systems, the observation matrix Rx for
Volterra systems contains auto-correlation terms of the input
signal xk (like E[xkxk−i]) and cross-correlation terms (for
example E[xpkx

q
k−i]). For correlated processes, an upper bound

for the conditioning of the matrix Rx is difficult to determine
theoretically.

To show the influence of the input correlation on the
conditioning of the correlation matrix, we compare on Fig. 2
the conditioning of the matrix Rx for first order correlated
Gaussian and Laplacian [23] processes (AR(1)) according to
the correlation factor ρ for the two following Volterra systems:

3i.i.d: independent and identically distributed.

• S1 : a Volterra system of order N = 3 and memory
M = 2 (containing 15 coefficients)

• S2 : a Volterra system of order N = 2 and memory
M = 2 (containing 10 coefficients).

As expected, Fig. 2 shows that the condition number increases
with the correlation of the input signal in both cases (Gaussian
and Laplacian processes). Furthermore, we notice that:

• for low correlation, the correlation matrix is better con-
ditioned for the Gaussian process than for the Laplacian
process

• for high correlation, the condition numbers are quietly
the same for both processes.

Hence, only for low correlated processes, the input Gaussianity
enhances the conditioning of the involved correlation matrices.

In the following, we show that such a property is however
required for performance enhancement of nonlinear system
identification (polynomial and Volterra).

C. Conditioning enhancement through orthogonalization

A powerful way to improve the conditioning is to orthogo-
nalize the observation matrix Cx or Rx. For any PDF of the
input, this may be achieved through the Gram-Schmidt proce-
dure [9]. If the system is memoryless and the input is Gaussian,
the orthogonalization may be performed more simply using a
set of Hermite polynomials {H0(x),H1(x), ...,HN (x)} [1],
where the higher order moments can be expressed using only
the signal variance.

If the system has memory (Volterra system) and the input
is Gaussian, this holds only if the input is white. In the case
of a Gaussian correlated input, the latter has to be whitened as
proposed in [17]. The backward prediction errors of respective
orders 0, 1, . . . ,M − 1 form the input vector of the new
identification system. One can then orthogonalize this vector
using Hermite polynomials.
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Fig. 3. Speech frames (2000 samples, sampling frequency 8 kHz) with a
nearly Gaussian distribution (top) and a nearly Laplacian distribution (bottom).

D. Variability of the PDF of audio signals

Audio signals are globally generalized Gaussian but this
should be locally verified. We present in Fig. 3 and 4 respec-
tively the PDF of 2000 samples of a speech signal sampled at
8 kHz (250 ms) and a music signal sampled at 44.1 kHz (45
ms), which vary from one frame to another between Gaussian
and Laplacian processes. Particulary, for voiced (speech) or
tonal (music) zones, the PDF is near a Gaussian distribution.
Consequently, in an adaptive identification of a nonlinear
system, since the performance depends on the local properties
of the signal, one may expect this variability of the local PDF
to lead to a variability of the conditioning and, consequently,
of the identification performance.

E. Conclusion

We have shown in this section that the performance of
nonlinear system identification depends on the conditioning
of the observation matrix and, hence, on the PDF of the input.
For memoryless systems, the flatter is the distribution, the
better is the conditioning. Considering generalized Gaussian
distributions between Laplacian and Gaussian, as audio can
be modeled, this means that the identification should perform
better with Gaussian inputs. For systems with memory and
correlated input, the conditioning is bad whatever the PDF
is. However, the Gausiannity is again a desirable property,
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Fig. 4. Music frames (2000 samples, sampling frequency 44.1 kHz) with a
nearly Gaussian distribution (top) and a nearly Laplacian distribution (bottom).

since it allows a simple orthonormalization of the input, which
minimizes the condition number.
Thus, we propose in the following an audio Gaussianization
procedure and an identification scheme based on this built
Gaussianity and on an input orthonormalization.

III. AUDIO GAUSSIANIZATION

Since the Gaussianity of the input is a desirable property for
nonlinear system identification, we propose in the following
a specific ”doping” technique to ”force” audio signals to be
Gaussian [24], [25].

A. Gaussianization procedure

The proposed transformation of audio signals from their
empirical distribution to a Gaussian distribution is performed
over non overlapping frames.
We associate to the sequence X of length L the corresponding
empirical cumulative distribution function

F emp
X (xk) = P [X ≤ xk]

=
|{X ≤ xk}|

L
, k = 1, · · · , L. (10)

The distribution of the signal is turned into the Gaussian
distribution with the same mean value mx and variance σ2

x

through a histogram equalization similar to the basic one used
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Fig. 5. Gaussian target and empirical cumulative distribution functions for
a speech frame of 10 000 samples.

in image processing [26]. Denoting F target the cumulative
distribution function of the target Gaussian distribution, for
k = 1 toL, we add a small value gk to each xk, so that
xwk = xk + gk verifies:

F target(xwk ) = F emp
X (xk), (11)

as shown in Fig. 5. Then we get the Gaussiannized signal

xwk = xk + gk, (12)

where gk is the Gaussianization signal, called the doping
watermark [24].

B. Perceptual limits of Gaussianization

To avoid local power peaks of the Gaussianization signal
gk (mainly due to the variability of the short-term PDF),
the Gaussianization is performed on long frames, typically
L = 10 000. Thus, the Gaussianization is an off-line proce-
dure. However, the inserted Gaussianization signal gk is clearly
audible. One reason is that the PDF of speech and some music
signals is much higher than the Gaussian PDF around zero.
Consequently, for segments of x with values around zero, the
shifts gk are of the same order as the initial values xk.

To study the audibility of the Gaussianization signal, we
evaluate in Table I the Zero Crossing Rate4 (ZCR) and the
Signal to Gaussianization signal Ratio (SGR) defined as

SGR = 10 log10[Px/Pg], (13)

where Px and Pg are respectively the power of the signal xk
and the power of the Gaussianization signal gk. Three different
types of segments are then considered: voiced, unvoiced and
silent, for speech; tonal, noisy and silent, for music.
As shown on Table I and unsurprisingly, the SGR is the
worst for silent segments. The ZCR is much higher for
unvoiced segment than for voiced segments, which leads to
a worse SGR. Hence, in order to reduce the power of the

4The zero crossing rate is the ratio between the number of zero crossings
and the total number of samples in a signal segment.

ZCR SGR[dB]
unvoiced segments 0.35 -0.77

silent segments - -7.96
voiced segments 0.014 6.46

TABLE I
EVALUATION OF THE ZCR AND THE SGR FOR VOICED, UNVOICED AND

SILENT SEGMENTS OF A SPEECH SIGNAL.

Signal Signal duration (s) χdB Quality
Speech 1.2 -18 estimated MOS=3.87

Pop music 2 -16 ODG=-0.758
Classical music 1.5 -16 ODG=-0.18

Guitar 2.38 -16 ODG=-1.13

TABLE II
PEAQ (ODG) AND PESQ (ESTIMATED MOS) EVALUATIONS FOR SOME

AUDIO SIGNALS AFTER GAUSSIANIZATION PROCESSING.

Gaussianization signal, we proposed to exclude silent and
unvoiced/noisy segments from the Gaussianization procedure.
Since this is not sufficient to make the watermark inaudible, we
achieved a perceptual masking through an iterative limitation
of the variance of the Gaussianization signal.

C. Gaussianization under perceptual constraint

The inaudibility is preserved by reaching a target variance
(σtarget

g )2 for the Gaussianization signal g, through an iterative
adjustment of the maximum value of |g|, denoted gmax.

As a first step, we fix an arbitrary authorized maximum
value gmax, which will be used to define the search interval
of a dichotomy process to find the optimal value goptmax. We
transform the PDF of x under the constraint |g| < gmax, which
provides a variance σ2

g for g.
As a second step, we perform the following test:

• if σg < σtarget
g −ϵ (ϵ is an arbitrary small value) then we

fix g1max = gmax and repeat the multiplication of gmax

by 2 and the PDF transformation under the constraint
|g| < gmax, until we get σg > σtarget

g . Let g2max = gmax

• if σg > σtarget
g + ϵ then we fix g2max = gmax and

we repeat the division of gmax by 2 and the PDF
transformation under the constraint |g| < gmax until we
get σg < σtarget

g . Let g1max = gmax .

In both cases we get an interval [g1max, g
2
max] in which we

search by dichotomy the optimal value gmax that verifies |σg−
σtarget
g | < ϵ.

How to determine σtarget
g ? Since the PSD of gk is roughly

parallel to the PSD of xk, the target variance must be at least
13 dB under the variance of x, according to [27]. We set:

σtarget
g = χσx,

where the attenuation factor χ was fixed after informal sub-
jective tests and chosen to guarantee the imperceptibility of g.
Finally, after Gaussianization of voiced (for speech) or tonal
(for music) segments according to the process described above,
we concatenate silent and unvoiced (or non-tonal) segments,
which are not Gaussianized.
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D. Audio quality evaluation of Gaussianized signals

Perceptually, the Gaussianized signal and the original one
must be the same. Audio quality is preferably evaluated
through formal subjective measures. Nevertheless, for a rapid
and low-cost evaluation, they can be replaced by objective
measures like PEAQ (Perceptual Evaluation of Audio Quality)
for music [28] and PESQ (Perceptual Evaluation of Speech
Quality) for speech [29].

For PEAQ measures, an ODG (Objective Difference Grade)
score is computed which is in [−4, 0]. The score 0 indicates
an imperceptible difference between the original signal and
its processed version. The value −4 refers to the highest
degradation level.

For PESQ measures, the quality evaluation is done through
an estimated MOS (Mean Opinion Score) which is in [1, 4.5].
The value 4.5 corresponds to the best fidelity to the original
signal and the value 1 refers to the highest degradation.

The ODG and the estimated MOS values, relative re-
spectively to music and speech signals after Gaussianization
under a perceptual constraint fixed through the choice of
χ, are displayed in Table II. These results indicate that the
Gaussianization modifies slightly the audio quality.

E. Gaussianity measurement

The Gaussianity of a signal may be measured by its
Kurtosis, which equals 3 for a Gaussian distribution. For the
previous pop-music signal, we estimated the Kurtosis for non-
overlapping frames of 10 000 samples, for the original signal
x and the signal Gaussianized under the inaudibility constraint
expressed by χdB = −16 dB. As shown by Fig. 6, the Kurtosis
of the Gaussianized signal xw is closer to 3 than that of the
original signal x for most of the frames. The variability of the
estimated Kurtosis around 3 results from the exclusion of the
silent and noisy segments from the Gaussianization.

F. Conclusion

We have shown in section II that the Gaussianity of the
input is a desirable property for identification of nonlinear
systems. Since audio signals are generally non-Gaussian, we
have proposed a Gaussianization method that makes an audio
signal more Gaussian (but not fully Gaussian), while ensuring
its perceptual fidelity to the original. We show in the following
how this leads to higher performance in nonlinear system
identification.

IV. NONLINEAR AUDIO SYSTEM IDENTIFICATION RELYING
ON INPUT GAUSSIANITY

As stressed in [14] for loudspeakers, the nonlinear behavior
of audio systems varies in time according to the input signal
and to the excited physical effect of the system (heating for
example). Hence, the system identification has to be adaptive,
in order to observe these variations. Moreover, the transient
state of the identification has to be as short as possible in
order to observe the early behavior of the system.

However, the proposed Gaussianization is an off-line pro-
cess, since it is performed on large segments of an audio
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Fig. 6. Estimated Kurtosis evolution of original and Gaussianized signals
(non-overlapping frames of 10 000 samples).

signal. Thus, for an off-line identification task, the signal has
to be fully Gaussianized before identifying the system. For
a real-time identification (for example with a compensation
purpose), the Gaussianization is suitable in the context of
playing/broadcasting recorded material, and not in nonlinear
acoustic echo cancellation for example.

A. Classical system identification scheme

We consider here a nonlinear system A which is identified
by an adaptive nonlinear filter Ak (polynomial or Volterra
model). The input and output of the nonlinear (NL) system are
denoted respectively by xk and yk and the estimated output
ŷk is

ŷk = A⊤
k Xk, (14)

where Ak = [1, a1, ..., aq]
⊤. The structure of the input vector

Xk and its length q are related to the nonlinear model (for
polynomial model q = N + 1). The estimation error is

ek = yk − ŷk. (15)

Ak is the adaptive filter updated with a normalized Least-Mean
Square (NLMS) algorithm [30] and driven by the input vector
Xk as follows

Ak+1 = Ak +
µ

∥Xk∥2
ekXk, (16)

where µ is the adaptation step size.
In this paper, the NLMS algorithm was chosen as an

example to illustrate the proposed methodology, but other
identification algorithms could be used.

For the analysis purpose, we consider here that the system
and the model have the same structure. Then, the system
output is

yk = A⊤Xk + nk, (17)

where A is the NL system and nk is an additive white Gaussian
noise.
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B. The proposed identification structure

Based on the conclusions of sections II and III, we propose
the identification method depicted on Fig. 7 for both memo-
ryless NL systems and NL systems with memory. Note that
the second block and the first part of the third block concern
only the identification of NL systems with memory.

Whereas orthogonalization was already proposed in [17],
we propose here to further improve the conditioning of the
matrix involved in the identification system (block 4) through
an orthonormalization step.

1) Gaussianization (block 1): This first block consists in
the Gaussianization of the audio signal xk as detailed above.
The input Gaussianity is necessary for the following orthonor-
malization block.

2) Predictor filterbank (block 2): It consists in computing
the prediction errors {w(0)

k , w
(1)
k , w

(M−1)
k } of respective orders

0, 1, ...,M−1. This step was proposed in [17] to orthogonalize
Gaussian correlated signals for the identification with Volterra
structure. Note that this second pre-processing step concerns
only systems with memory and it does not need the hypothesis
of input Gaussianity.

3) Orthonormalization (block 3): The goal of this block
is to form an orthonormal basis fitted to the NL model
(polynomial or Volterra) so that the correlation matrix is the
identity matrix with an optimal conditioning equal to 1.

• For memoryless systems5, the goal is to form an orthonor-
mal basis relative to the polynomial basis B(N)(xwk ) =
{1, xwk , (xwk )2, ..., (xwk )N}. We first normalize xw:

x̃wk = xwk /σ̂xw (18)

where σ̂2
xw is the estimated variance of xw, com-

puted on quasi-stationary frames (typically 10 to 30 ms
for speech). As the input signal xw is a Gaussian-
ized signal, the corresponding orthogonal polynomial
basis is the Hermite polynomial basis H(N)(x̃wk ) =
{H0(x̃

w
k ),H1(x̃

w
k ), ...,HN (x̃wk )}, where Hi denotes the

5Referring to Fig. 7, Vk = Xk .

ith Hermite polynomial. If the identification is driven by
H(N)(x̃wk ), its performance depend on the conditioning
of E[H(N)(x̃wk )H

(N)(x̃wk )
⊤] (diagonal matrix). To get

an optimal conditioning, we use the normalized Hermite
polynomial basis H̃(N) = {H̃0, H̃1, ..., H̃N}, where:

∀ i, H̃i(z) = Hi(z)/
√
i!

In other terms, we form the vector Uk = H̃(x̃wk ), so that
E[UkU

⊤
k ] is the identity matrix, with conditioning equal

to 1.
The relationship between vectors Xw

k and Uk is then

Uk = ΓXw
k , (19)

where Γ is a (N +1)× (N +1) lower triangular matrix.
• For systems with memory: We propose in the following

to do some modifications to the previous identification
structure for the identification of nonlinear systems with
memory, based also on input Gaussianity hypothesis. This
idea is inspired from the Wiener G-functionals [2] which
are derived from the Volterra kernels by polynomials
combination. The statistical orthogonality properties of
the involved kernels improve the conditioning of the
correlation matrix only for white and Gaussian inputs.
To overcome the non-Gaussianity and the high correlation
of audio signals, we have introduced stages of Gaus-
sianization (block 1) and forward prediction filterbank
(block 2).
The goal of block 3 is to form an orthonormal basis
relative to the vector Wk = [1, w

(0)
k , w

(1)
k , w

(M−1)
k ]⊤. We

first normalize each w
(i)
k as described above (Eq. (18)),

which provides W̃k = [1, w̃
(0)
k , w̃

(1)
k , . . . , w̃

(M−1)
k ]⊤. We

apply the modified Kronecker product to the vector W̃k

to get the vector Vk:

Vk = W̃k ⊘ ...⊘ W̃k, (20)

which elements are of the form
∏

i,j(w̃
(i)
k )j . From Vk,

we derive a new orthonormal vector Uk which elements
are of the form

∏
i,j H̃j(w̃

(i)
k ) [2]. As in the memoryless

case, E[UkU
⊤
k ] is the identity matrix, with conditioning

equal to 1.
Hence, Uk can be written as Uk = QVk, where Q
is a lower triangular matrix. Since W̃k may be written
as the product of a lower triangular matrix by Zk =
[1, xk, xk−1, ..., xk−M+1]

⊤, according to the properties
of the modified Kronecker product, Vk is also the product
of a lower triangular matrix by Xk (defined by Eq. (8)).
Thus, the relationship between vectors Xk and Uk is
again Uk = ΓXk, where Γ is a lower triangular matrix.
Note that the input Gaussianity hypothesis is necessary
only for this orthonormalization step of the vector Vk.
This proposed step is less complicated than the proposed
method in [17] where the identifcation system is over-
parametrized.

4) Adaptive NL model (block 4): The output of the adaptive
identification structure of block 4, driven by the vector Uk

provided by block 3, is ŷk = ψ⊤
k Uk. ψk is an adaptive filter
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updated with a NLMS algorithm as follows

ek = yk − ψ⊤
k Uk

ψk+1 = ψk +
µo

∥Uk∥2
ekUk, (21)

where ek is the estimation error and µo is the step size.
The three previous pre-processing steps give to the new

observation vector Uk better orthogonality properties than
the initial vector Xk. Indeed, the obtained correlation matrix
E[UkU

⊤
k ] which drives the identification is theoretically the

identity matrix.

C. Studied schemes for comparative performance analysis

Using the classical adaptive identification algorithm NLMS
and for exact modeling (same order for the NL system and
model), the transient and steady state behaviors can be studied
through the time variation of the deviation vector ∆Ak =
A−Ak. Using (15), (16) and (17) it is easy to show that

∆Ak+1 =

(
I− µ

XkX
⊤
k

∥Xk∥2

)
∆Ak − µnk

Xk

∥Xk∥2
, (22)

where I refers to the identity matrix of rank q.
For the proposed method, we remind that the estimation error
is

ek = yk − ŷk

= A⊤Xg
k + nk − ψ⊤

k Uk. (23)

We denote by Ao
k the adaptive filter that identifies the NL

system A in the proposed scheme. Ao
k is updated as

Ao
k = Γ⊤

k ψk, (24)

where Γk denotes the transform matrix computed for the signal
frame to which belongs the kth sample.
Using (21), (23) and (24), we can show that

∆Ao
k+1 =

(
I− µoΓ

⊤
k UkU

⊤
k Γ−⊤

k

∥Uk∥2

)
∆Ao

k − µonk
Γ⊤
k Uk

∥Uk∥2
,

(25)
where ∆Ao

k = A−Ao
k.

We first study the convergence in the stationary case. The
NLMS algorithm can be replaced by the LMS algorithm,
which means replacing µ/∥Xk∥2 and µo/∥Uk∥2 by µ and
µo, respectively, in the previous equations.
In this case, under the independence assumption between Xk

and ∆Ak and for a small step size µ, taking the expectation
value of both sides of (22) leads to

E[∆Ak+1] =
(
I− µE

[
XkX

⊤
k

])
E[∆Ak]. (26)

The mean convergence depends on the conditioning of the
matrix E

[
XkX

⊤
k

]
[31].

Similarly, under the independence assumption between Uk and
∆Ao

k and for a small step size µo we can deduce from (25) :

E[∆Ao
k+1] =

(
I − µoE

[
Γ⊤
k UkU

⊤
k Γ−⊤

k

])
E[∆Ao

k]. (27)

Since Γk is triangular, the conditioning of E
[
Γ⊤
k UkU

⊤
k Γ−⊤

k

]
is the same as that of E

[
UkU

⊤
k

]
, which is equal to 1, so that

the proposed method provides the maximal convergence rate.

In the case of natural audio signals, in spite of the orthonor-
malization step, Uk is not stationary, so that the LMS algorithm
is not convenient. Coming back to the NLMS algorithm,
equations (26) and (27) become respectively:

E[∆Ak+1] =

(
I − µE

[
XkX

⊤
k

∥Xk∥2

])
E[∆Ak]. (28)

E[∆Ao
k+1] =

(
I − µoE

[
Γ⊤
k UkU

⊤
k Γ−⊤

k

∥Uk∥2

])
E[∆Ao

k]. (29)

Hence, the convergence depends on the conditioning of R̃x =

E
[
XkX

⊤
k

∥Xk∥2

]
and R̃u = E

[
UkU

⊤
k

∥Uk∥2

]
, respectively. One may

expect that the latter is better conditioned than the former and
thus provides a faster convergence, but this should be verified
experimentally.

In the steady state, the identification performance is evalu-
ated through the classical Mean Square Deviation

MSD(k) = E[∥∆Ak∥2].

From (22) and under independence hypothesis between Xk

and ∆Ak, we get

E[∥∆Ak+1∥2] = E

[
∆A⊤

k (I − µ(2− µ)
XkX

⊤
k

∥Xk∥2
)∆Ak

]
+

µ2σ2
nE

[
1

∥Xk∥2

]
︸ ︷︷ ︸

P ν
k

, (30)

where σ2
n denotes the variance of the noise n.

Similarly, from equation (27), we get

E[∥∆Ao
k+1∥2] =

E

[
(∆Ao

k)
⊤(I − µo(2− µo)

∥Γ−1
k Uk∥2Γ−1

k UkU
⊤
k Γ−⊤

k

∥Uk∥4
)∆Ao

k

]

+(µo)2σ2
nE

[
∥Γ⊤

k Uk∥2

∥Uk∥4

]
︸ ︷︷ ︸

P
γ
k

. (31)

From equations (31) and (30) one can see that the steady state
performances of the proposed method and the classical adap-
tive filter depend crucially on the instantaneous values of P γ

k =
(µo)2σ2

nE
[
∥Γ⊤

k Uk∥2/∥Uk∥4
]

and P ν
k = µ2σ2

nE
[
1/∥Xk∥2

]
respectively. As Ao

k is computed in a more stationary context
where E[∥Uk∥2] ≃ 1, P γ

k is expected to have smoother
variations than P ν

k for which ∥Xk∥ presents high and rapid
variations.
The experimental protocol presented in table III is used for
the following simulations.

V. SIMULATION RESULTS AND DISCUSSION

A. Memoryless systems

For performance evaluation of the proposed identification
structure for polynomial systems, a polynomial system of
order N = 7 is identified by an adaptive polynomial filter
of order N . The system coefficients are generated using a
normal distribution with unit variance. The input is a speech
signal sampled at 8 kHz and the additive observation noise
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”C”=Classical adaptive identification method with non
Gaussianized input xk

-identified output

yk = A⊤Xk + nk (32)

-block 4 (and block 3.1 if system with memory)
- NLMS algorithm

ek = yk −A⊤
k Xk

Ak+1 = Ak +
µ

∥Xk∥2
ekXk. (33)

-Deviation vector in exact modeling

∆Ak = A−Ak (34)

”G”= classical adaptive identification method with
Gaussianized input xw

k
-identified output

yk = A⊤Xw
k + nk (35)

- blocks 1 and 4 (and block 3.1 if system with memory)
- NLMS algorithm

ek = yk −A⊤
k Xw

k

Ak+1 = Ak +
µ

∥Xw
k ∥2

ekX
w
k . (36)

-Deviation vector in exact modeling

∆Ak = A−Ak (37)

”O”= proposed adaptive identification method with original
input xk (not Gaussianized)
-identified output

yk = A⊤Xk + nk (38)

- blocks 3.2 and 4 (and blocks 2 and 3.1 if system with
memory)
- Observation vector: Uk = ΓXk

- NLMS algorithm

ek = yk −A⊤
k Uk

Ψk+1 = Ψk +
µo

∥Uk∥2
ekUk. (39)

-Deviation vector in exact modeling

∆Ao
k = A−Ao

k (40)

”GO” = proposed adaptive identification method with
Gaussianized input xw

k
-identified output

yk = A⊤Xw
k + nk (41)

- blocks 1, 3.2 and 4 (and blocks 2 and 3.1 if system with
memory)
- Observation vector: Uk = ΓXw

k
- NLMS algorithm

ek = yk −A⊤
k Uk

Ψk+1 = Ψk +
µo

∥Uk∥2
ekUk. (42)

-Deviation vector in exact modeling

∆Ao
k = A−Ao

k (43)

TABLE III
STUDIED SCHEMES FOR PERFORMANCE EVALUATION OF THE PROPOSED IDENTIFICATION STRUCTURE FOR NL SYSTEMS (WITH STEP SIZES µ AND µo).

nk is white and Gaussian with a variance fixed according to
an SNR = 40 dB. The Gaussianization is done over non
overlapping frames of 10 000 samples under the inaudibility
constraint (χ = −18 dB). The variance involved in the
computation of the orthonormal basis is estimated on 256
samples frames.

1) Transient behavior analysis: We compare in Fig. 8 the
condition numbers of the estimated matrices R̃x and R̃u for
original and Gaussianized speech computed over frames of
256 samples. The period 256 corresponds to the updating rate
of the transformation matrix Γ.
As illustrated in Fig. 8, the proposed identification method
with a Gaussianized input improves the conditioning6. The
condition number is reduced by a factor 1000 compared to the
classical method with non-Gaussianized speech. The classical
method with Gaussianized speech and the orthonormalization
without Gaussianization provide intermediate results.
However, even for the Gaussianized speech signal the condi-
tion number is not equal to 1. This can be explained by the
imperfect Gaussianity of the Gaussianized signal and by the
fact that we optimized the conditioning of E[UkU

⊤
k ] and not

that of R̃u = E
[
UkU

⊤
k

∥Uk∥2

]
.

We display in Fig. 9 the time variations of the MSD re-

6Note that on Fig. 8 the conditioning peak at frame 7 corresponds to silent
zones where the Gaussianization has no effect.

lated to original and Gaussianized speech with the classical
identification method (’C’ and ’G’ respectively) and with the
proposed identification method (’O’ and ’GO’ respectively)
respectively. Fig. 9 shows the enhancement of the convergence
rate achieved by the proposed identification structure ’GO’.
This is related to the best conditioning of the observation
matrix R̃u for Gaussianized input. Note that the Gaussianity
does not seem to be as crucial as the identification structure for
the convergence rate, though this structure relies on a Gaussian
hypothesis.

2) Steady state analysis and performances: The steady
state performances are also studied here through the MSD,
but after convergence.
From equations (31) and (30), the steady state performances
of the proposed method and of the classical adaptive fil-
ter depend crucially on the instantaneous values of P γ

k =
(µo)2σ2

nE
[
∥Γ⊤

k Uk∥2/∥Uk∥4
]

and P ν
k = µ2σ2

nE
[
1/∥Xk∥2

]
respectively. These quantities are displayed in Fig. 10.
As expected, P γ

k has smoother variations and lower values
than P ν

k . Consequently, as illustrated in Fig. 9, the MSD in the
steady state reaches lower values with the proposed method.

B. Systems with memory

A Volterra system of order N = 3 and memory M = 3
is considered in the following under the same simulation
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Fig. 8. For a polynomial system, condition number of the estimated matrices
R̃x (schemes ’C’ and ’G’) and R̃u (schemes ’O’ and ’GO’), computed over
32ms frames.

conditions as in subsection V-A. Knowing that speech signals
are highly correlated and non stationary, the prediction errors
are computed over 20 ms frames where speech is assumed
locally stationary. The same updating rate is imposed to the
transformation matrix Γ.

1) Transient behavior analysis: First, the Volterra system is
identified by an adaptive Volterra filter with N = 3 and M = 3
(same order and memory). To point out the enhancement of
the convergence rate achieved by the proposed identification
structure, we plot on Fig. 11 the time variations of the MSD for
the proposed identification structure and the classical adaptive
identification where the system is excited by speech signal
without pre-processing (’C’ or ’O’) or by Gaussianized speech
(’G’ or ’GO’).

Fig. 11 shows that the best convergence rate is obtained
for the proposed identification structure driven by the Gaus-
sianized speech signal. The enhancement achieved by the
proposed identification structure in the transient state is due
to the better conditioning of the matrix R̃u compared to the
matrix R̃x as shown in Fig. 12. Note that the compliance
with the Gaussian hypothesis is more crucial here than in the
memoryless example.
However, the conditioning of the estimated matrix for Gaus-
sianized speech with the proposed identification structure
is not equal to 1, for the reasons given in the case of a
memoryless system and because the prediction errors are not
perfectly orthogonal.

2) Steady state performances: We display in Fig. 13 the
time evolution of P γ and P ν . The same analysis as in the
previous case stands. Thus, the proposed identification scheme
provides the lowest MSD in the steady state.

Loudspeakers are modeled as nonlinear systems with mem-
ories longer than 3 [4], [32]. For a sampling frequency of
44.1 kHz, a memory length of 256 (ca. 6 ms) was used in
[32]. To point out the effectiveness of the proposed identi-
fication scheme in such a more realistic case, we identified
a Volterra system of nonlinearity order N = 3 and memory
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O
GO
C
G

Fig. 9. For a polynomial system, MSD time variation for classical identi-
fication and for the proposed method, for original speech and Gaussianized
speech. (N = 7, µ = µo = 0.02, SNR = 40 dB and χ = −18 dB).
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Fig. 10. For a polynomial system, time variation of P γ (’O’ and ’GO’)
and P ν (’C’ and ’G’) for 256 samples frames (N = 7, µ = µo = 0.02,
SNR = 40 dB and χ = −18 dB).

length M = 50 (6 ms for 8 kHz sampling frequency). The
performance is evaluated through the SER 7 (Signal to Error
Ratio) measure.

Fig. 14 displays the SER time evolution in steady state
(after convergence) of the four studied identification schemes
of table III. The enhancement of the proposed identification
scheme is ensured even for this larger memory system, where
a gain of ca. 15 dB is reached most of the time compared to
the classical identification without Gaussianization.

3) Under-modeling case: For a more realistic situation of
under-modeling, a Volterra system (N = 3 and M = 50) is
identified by a Volterra filter of order N = 2 and memory
M = 40. Hence, we identify only 903 coefficients from all
of the 24804 system coefficients. We compare in Fig. 15 the
SER time evolution of the four studied identification schemes.

7The SER is defined as SER = 10 log(Px/Pe) where Px = E[x2
k] is

the signal power and Pe = E[e2k] is the estimation error power.
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Fig. 11. For a system with memory, MSD time variation for classical iden-
tification and for the proposed method, for original speech and Gaussianized
speech (µ = 0.1, N = 3, M = 3, SNR = 40 dB and χ = −18 dB).
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Fig. 12. For a system with memory, condition number of the estimated
matrices R̃x (schemes ’C’ and ’G’) and R̃u (schemes ’O’ and ’GO’),
computed over 32ms frames.

A gain of ca. 6 dB is reached most of the time, compared
to the classical identification without Gaussianization, and ca.
2 dB compared to orthonormalization without Gaussianization.
Then, the proposed adaptive identification structure guarantees
a noticeable enhancement of the identification quality in both
cases of exact modeling and under-modeling.

VI. CONCLUSION

Nonlinear audio system identification methods generally do
not take into account audio characteristics: non-stationarity,
non-Gaussianity and high correlation.
We have proposed an identification structure suitable for
memoryless systems (of polynomial type) and systems with
memory (of Volterra type) fitted to these audio properties.
The proposed identification scheme combines audio Gaussian-
ization, whitening and orthonormalization relying on the Gaus-
sianity. We have shown that this pre-processing of the input of
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Fig. 13. For a system with memory, time variation of P γ (O and GO) and
P ν (C and G) for original and Gaussianized speech for 256 samples frames.
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Fig. 14. NL system with memory (N = 3, M = 50), exact modeling case:
Signal to Error Ratio for the classical and the proposed identification methods,
for speech with and without Gaussianization (µ = 0.1, SNR = 40 dB and
χ = −18 dB).

an adaptive filter enhances significantly the convergence rate
and the identification performance in steady state.

Because of the inaudibility constraint of the Gaussian-
ization, the signal after this step does not fully match the
Gaussianity hypothesis assumed by the following steps of the
process, which reduces the identification performance, com-
pared to a perfectly Gaussian signal. This constraint however
stands only if the NL system must be identified in real-time,
for example for a NL-compensation purpose. In the case of
an off-line identification (eg. loudspeaker characterization),
the noise added by the Gaussianization does not need to be
inaudible, which allows a perfect Gaussianity. One should
however verify that the amount of added noise does not
significantly change the physical behavior of the NL system,
compared to the original signal.
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APPENDIX
MODIFIED KRONECKER PRODUCT

A. Volterra models

The principle of Volterra structures is to represent any
nonlinear, causal and time invariant system with finite memory
by finite Volterra series [2]. For a system with memory M ,
we consider the following truncated model of order N

yk =

N∑
j=1

M−1∑
i1=0

...

M−1∑
ij=0

hj(i1, ..., ik).xk−i1 ...xk−ij

 , (44)

where xk, yk and hj represent respectively the system input, its
output and the Volterra kernel of order j. Note that in equation
(44), there are redundant terms of the form xk−i1 ...xk−ij .

B. Mathematical representation of a Volterra filter

The input-output relationship (44) is equivalent to

yk = Θ⊤Xk, (45)

where Θ is the vector containing unique coefficients (after
merging redundant terms) of kernels and Xk contains the
corresponding products of the input signal necessary for output
evaluation. It can be represented through the input vector
corresponding to the linear part

Zk = [1, xk, xk−1, ..., xk−M+1]
⊤ (46)

as
Xk = Ω(Zk ⊗ Zk ⊗ ...⊗ Zk︸ ︷︷ ︸

Nterms

), (47)

where ⊗ denotes the Kronecker product and Ω is the trans-
formation eliminating the redundant terms.

The modified Kronecker product of the n-dimensional vec-
tor Y = [y1, ..., yn]

⊤, denoted by Y ⊘ Y , is the sub-vector of
Y ⊗ Y of dimension n(n+1)

2 as

Y ⊘ Y = Ω(Y ⊗ Y ). (48)

This vector representation is used in this article.
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