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Abstract

We propose a quantization method that makes a signal correctable after being

corrupted by noise. The principle is to replace each bit level in the binary

representation of each vector of time or time-frequency samples by a codeword

of the same length, provided by an error-correction coder. Hence, assuming that

the amount of errors does not exceed the correction capabilities, decoding each

bit level of the noisy signal can suppress the noise.

We show that the required error correction capability for each bit level can

be determined from the signal and noise probability density functions and the

targeted binary error probability. The codewords are chosen from codebooks

with the adequate error correction capabilities so as to minimize the quadratic

error between the original and the coded signals. For this purpose, we use a

modified matching pursuit algorithm.

Applying this quantization method on a speech signal transmitted over a

noisy channel demonstrates that it is possible to choose a set of coders so that

the noise resulting from the coding-channel-decoding chain is less annoying than

the noise of the channel alone.
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1. Introduction

We consider the transmission of a signal over any noisy channel, be it analog

or digital. Our goal is to find a signal representation that makes it robust to the

channel noise, while staying in the original space of representation. For instance,

for a speech signal, the channel can consist of the whole communication chain

between the microphone and the earpiece in a mobile communication, equating

the global impairment to an additive noise.

This approach differs from the classical source coding [11] plus channel cod-

ing approach, where the final result is a binary stream [17]. It differs also from

the joint source-channel coding, which converts the signal into a representa-

tion in the modulation space [18], [4], [19]. Here, a speech signal (for instance)

remains a speech signal.

Our proposal is however inspired both by source and channel coding. As in

source coding, the representation will be based on a projection into a reduced

set of atoms, with respect to some objective criterion of fidelity to the original

signal. While source coding uses a code-book based on the data that minimizes a

mean square error criterion, we will use a code-book that maximizes the distance

between its elements, so that the latter are robust to noise. For this purpose,

the code-book will be based on error correction codes [2].

The principle is the following. According to the classical binary decomposi-

tion, each vector of n samples is represented as a weighted sum of binary vectors

of dimension n, where the weights are successive powers of 2. Our coding con-

sists in replacing each binary vector by a code word of length n so that the new

vector of n samples is as close as possible to the original one.

We will describe this principle in Section 2. Section 3 is devoted to the

choice of the adequate error correction coders according to the signal and noise

respective distributions. In Section 4, we will specify how to approximate the

signal using these code-books and the decoding process to cancel the channel

noise. The whole method is illustrated in Section 5 by an example of speech

corrupted by impulsive noise.
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2. Principle

2.1. Binary representation of the signal

Let x = [x0, x1, . . . , xn−1] be a block of n samples of a numerical signal in a

given space of representation (e.g. time samples or frequency coefficients). We

consider x ∈ An with A = �−2L + 1, 2L − 1� ⊂ Z, so that x can be written as a

linear combination of L binary vectors:

x = XSx, withX =

L−1∑
i=0

2iXi, (1)

where Xi ∈ F
n
2 = (Z/2Z)n for 0 ≤ i ≤ L − 1 and Sx is a diagonal matrix

containing the signs of x, that is (Sx)ii = sign(xi−1), i = 1, . . . , L.

2.2. Coding and decoding

The principle of the proposed quantization is to replace each vector Xi by

a codeword Ci generated by an error correcting coder C(n, ki), where ki is the

code dimension, yielding a new samples vector x̃:

x̃ = X̃Sx, with X̃ =

L−1∑
i=0

2iCi, (2)

so that the new vector x̃ is as close as possible to x. The definition of ”close” will

be discussed in Section 4. Note that this quantization lets the signs unchanged.

Now let us suppose that the quantized signal x̃ is corrupted by an additive

noise. The resulting signal y can be written as in Equation (1):

y = Y Sy, with Y =
L−1∑
i=0

2iYi, (3)

The original codewords Ci, 0 ≤ i ≤ L − 1, can possibly be retrieved from the

vectors Yi using classical decoding methods, thus allowing to cancel the noise

and recover x̃, assuming Sy = Sx. This decoding process will be specified in

Section 4.
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2.3. Block coded modulations

The choice of coder set will be discussed in detail in Section 3. One can

intuitively foresee that the least significant bits are more sensitive to errors

than the most significant bits. From this perspective, this quantization can be

compared to the block coded modulation (BCM [13]), which jointly optimizes

the coding and the modulation.

The principle of BCM is illustrated by Fig. 1. Considering a M -ary mod-

Cm(n, km, tm)

n columns

m lines

C1(n, k1, t1)

Ci(n, ki, ti)

Figure 1: Principle of a block coded modulation.

ulation with M = 2m, this coding exploits the fact that the most significant

bits are less vulnerable to the noise of the transmission channel. To transmit

k1 + k2 + . . .+ km bits, one codes each word of ki bits by a block code of length

n ≥ ki. The resulting m × n binary matrix is then transmitted as n M -ary

symbols. The higher the bit weight, the lower the error rate. Therefore several

codes of decreasing error-correction capabilities are used. Codes with higher

error-correction capabilities encode the lines of least significant bits, while the

lines of most significant bits are encoded by codes with low error-correction

capabilities. In other terms, we have k1 ≤ k2 ≤ . . . ≤ km.

While the classical coding process transforms words of length k into words of

length n > k, our quantization keeps the binary vectors in the same dimension

n, making it similar to a decoding process.

2.4. Comparison with vector quantization

The proposed scheme is a form of vector quantization: instead of quantizing

each sample separately, we code sample vectors. Our method differs however

from the classical approach of vector-quantization [10], [9], [16] in two ways.
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Firstly, while vector-quantizing x would be an application from An to a

subset of An, our quantization consists of L applications from F
n
2 to subspaces

Di of dimensions ki of F
n
2 , which can be independent from each other.

Secondly, while vector quantization relies on code-books built from the data

by minimizing a mean square error criterion, the code-books here are indepen-

dent from the data and are built according to the criterion of maximization of

the Hamming distance between two code-words.

3. Choosing the error correction coders

3.1. Setting the adequate correction capability

Given code-words of length n corrupted with j binary errors, we denote

subsequently by Ndecod(j, n) the corresponding mean number of binary errors

after decoding. Obviously, Ndecod(j, n) depends on the selected coder.

Proposition 1. Consider code-words of length n generated by an error correct-

ing coder with a correcting capability t and transmitted by a binary symmetric

channel with a binary error probability Pe. Then the binary probability of error

after decoding is given by:

P decod
t =

1

n

n∑
j=t+1

Ndecod(j, n)

(
n

j

)
P j
e (1 − Pe)

n−j , (4)

Proof. Let Aj = “j erroneous bits in the word before decoding” and B =

“erroneous bit after decoding”. The probability P decod
t can be written as:

P decod
t =

n∑
j=0

Pr(B|Aj) Pr(Aj) (5)

where:

Pr(Aj) =

(
n

j

)
P j
e (1 − Pe)

n−j (6)

and

Pr(B|Aj) =
1

n
Ndecod(j, n) (7)

Since Ndecod(j, n) = 0 for j ≤ t, it comes (4).
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Figure 2: For BCH codes of length 31 with various correction capabilities, error probability

after decoding vs error probability before decoding.

Figure 2 illustrates the relationship given by Proposition 1 for BCH codes [3]

of length 31. Hence, knowing the error probability for a given bit level in the

binary representation of the signal allows one to set the adequate correction

capability of the coder according to the targeted error probability after decoding.

For this purpose, the error probability before decoding must be determined for

each bit level. These errors depend on the probability density functions of the

signal and of the channel noise.

3.2. Error probabilities at the bit level

We consider here the addition of a signal sample s and a noise sample v,

in the sign plus absolute value representation on L bits, that is ±sL−1 . . . s0

and ±vL−1 . . . v0, respectively, where si and vi ∈ {0, 1} for 0 ≤ i ≤ L − 1. If

their signs are different, we consider the subtraction ||s| − |v||. Let ci denote the
carry at range i resulting from the elementary addition or subtraction at range

i − 1 for i ≥ 1, and set c0 = 0. Then an error occurs on the ith bit if vi �= ci.

The carry ci+1 depends on si, vi and ci, in a manner that depends on the signs

of s and v, and on their relative absolute values, as indicated in Tables 1 and 2.
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ci

sivi
00 01 11 10

0 0 0 1 0

1 0 1 1 1

Table 1: Carry ci+1 if s and v have

the same sign.

ci

aibi
00 01 11 10

0 0 1 0 0

1 1 1 1 0

Table 2: Carry ci+1 if s and v have

different signs. a = max(|s|, |v|) and
b = min(|s|, |v|) .

Proposition 2. Consider a signal sample s corrupted by a noise v. In a sign-

plus-absolute-value binary representation:

1. The error probability on the ith bit si is given by:

Pe(i) = βi +
1

2
(ρ+i + ρ−i )(1− 2βi), (8)

where

βi � Pr(vi = 1) = Pr(2i ≤ |v| < 2i+1) +
1

2
Pr(|v| ≥ 2i+1) (9)

ρ+i � Pr(ci = 1 | sign(v) = sign(s)) (10)

ρ−i � Pr(ci = 1 | sign(v) �= sign(s)); (11)

2. The conditional probabilities ρ+i and ρ−i are 0 for i = 0 and, for i ≥ 0,

they satisfy

ρ+i+1 = ρ+i (αi + βi − 2αiβi) + αiβi (12)

ρ−i+1 = Pr
(
b ≥ 2i | a ≥ 2i, sign(v) �= sign(s)

)
× {(1 − γi − δi + 2γiδi)θi,i − (1− γi)δi}

(13)

where, we have set a � max(|v|, |s|) and b � min(|v|, |s|),

αi � Pr(si = 1) = Pr(2i ≤ |s| < 2i+1) +
1

2
Pr(|s| ≥ 2i+1) (14)

γi = Pr(ai = 1 | a ≥ 2i, sign(v) �= sign(s)) (15)

δi = Pr(bi = 1 | b ≥ 2i, sign(v) �= sign(s)) (16)

and where θi,j is defined for j ≥ i, by θ0,j = 0, ∀ j and for j ≥ i ≥ 1,

θi,j =
1

2
(θi−1,j + δi−1) Pr(b ≥ 2i−1 | a ≥ 2j, sign(v) �= sign(s)) (17)
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The proof of Proposition 2 is given in Appendix, with more details for the

expressions of γi, δi and θi,j .

From this proposition, knowing the signal and noise probability density func-

tions allows to compute the error probability at each bit weight. As an example,

let us compute it for Laplacian signal and noise, which has the advantage of

allowing easy calculations (reminding that the probabilities involved in Propo-

sition 2 imply bi-dimensional integration).

Let:

f :R× N→ R

(σ, i) �→ exp

(
−2i
√
2

σ

)
(18)

Considering a signal and a noise with zero mean and standard deviations σs

and σv, respectively, one can easily derive from Proposition 2 and basic integral

calculus the following formulas:

αi = f(σs, i)− 1

2
f(σs, i+ 1) (19)

βi = f(σv , i)− 1

2
f(σv, i+ 1) (20)

γi = 1− 1

2

f(σs, i+ 1) + f(σv, i+ 1)− f(σsv , i+ 1)

f(σs, i) + f(σv , i)− f(σsv , i)
(21)

δi = 1− f(σsv , i+ 1)

2f(σsv, i)
(22)

θi≥1,j≥i = (θi−1,j + δi−1)

× 1

2

f(σv , i− 1)f(σs, j) + f(σs, i− 1)f(σv, j)− f(σsv , j)

f(σs, j) + f(σv, j)− f(σsv , j)
(23)

ρ−i+1 = f(σsv , i) {(1 − γi − δi + 2γiδi)θi,i − (1− γi)δi} (24)

where 1/σsv = 1/σs + 1/σv.

The resulting error probability is represented on Fig. 3. The independence

assumptions on which the proof of Proposition 2 is based are not perfectly

verified (especially ai and bi independence), which explains the small difference

between the theoretical and the empirical curves.
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Figure 3: Error probability at each bit weight for a Laplacian signal of standard deviation

0.1 × 215 corrupted by a Laplacian noise of standard deviation 0.01 × 215. The empirical

probabilities are obtained from a simulation on 106 samples.

4. Coding and decoding

In [7], each binary vector Xi was replaced by the codeword Ci minimizing

the Hamming distance, as in a classical channel decoding. While this criterion

is very adequate in a purely binary setting, the �2 norm is more appropriate

to measure real-valued signal distortion. Accordingly, the set of codewords

{Ci}0≤i≤L−1 in (2) is determined in this paper so as to minimize the quadratic

error ‖x − x̃‖22, which also reads as ‖X − X̃‖22. Note that for audio or image

signals, perceptual criteria could be chosen, involving however more complexity.

To proceed, let us consider a set of error correcting coders
{C(n, ki)}0≤i≤L−1

,

where ki is the code dimension. Let {D0, D1, . . . , DL−1} be the corresponding

set of code-books, where each code-book Di is a 2ki × n binary matrix. Let H

be the vertical concatenation of D0, 2D1, . . . 2
iDi . . . 2

L−1DL−1 and set

Γ = {α = (α0, . . . , αL−1) |αi ∈ F
2ki
2 and ‖αi‖1 = 1, ∀ i ∈ [0, L− 1]}.
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Then the optimal vector X̃ is:

X̃opt = α̂H (25)

where

α̂ = argmin
α∈Γ

‖X − αH‖22 (26)

The high dimension of this optimization problem makes it difficult to solve.

We therefore use a classical greedy algorithm, as the basic matching pursuit [5,

12] which we have adapted to our case in Algorithm 1 below. At the end

of the algorithm, the final residue gives ‖RL‖ = ‖X − X̃‖. Unfortunately,

when running this algorithm, the norm of the residue ‖Ri‖ increases with each

iteration i. This can be explained by the following expression of the quantization

error:

‖X − X̃‖2 = ‖X‖2 − 2〈X |X̃〉+ ‖X̃‖2

= ‖X‖2 − 2

L−1∑
i=0

〈X |2iCi〉+ ‖
L−1∑
i=0

2iCi‖2. (27)

Maximizing the scalar product 〈2L−iCi|Ri−1〉 favors codewords with higher

Hamming weights, which increases the third term of (27). Consequently, the

scalar product should be penalized by the Hamming weight of the codeword.

Algorithm 1: Modified matching pursuit algorithm for the quantization.

The notation 〈U |V 〉 stands for the scalar product between vectors U and V .

Data: the vector X to be quantized

Result: the quantized vector X̃

X̃0 ← 01×n ; R0 ← X

for i← 1 to L do

CL−i ← argmaxC∈DL−i
〈2L−iC|Ri−1〉

Ri ← Ri−1 − 2L−iCL−i

X̃i ← X̃i−1 + 2L−iCL−i

end

return X̃ = X̃L
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This penalization can be seen when minimizing ‖X − X̃‖2 incrementally,

i.e. by replacing in Algorithm 1 the maximization of 〈2L−iC|Ri−1〉 by the

minimization of the norm of the new residue Ri:

‖Ri‖2 = ‖Ri−1‖2 − 2〈Ri−1|2L−iC〉+ ‖2L−iC‖2

= ‖Ri−1‖2 − 2L−i+1
(〈Ri−1|C〉 − 2L−i−1wC

)
, (28)

where wC denotes the Hamming weight of C. Hence, minimizing the norm of

the residue Ri at each iteration means maximizing the scalar product 〈Ri−1, C〉
penalized by the Hamming weight of C.

This incremental decrease of the quantization error does not necessarily guar-

antee the global minimization of ‖X−X̃‖2. Consequently, we propose to replace

in Algorithm 1 the maximization of 〈2L−iC|Ri−1〉 by the maximization of:

Jλ,i(C,Ri−1) = 〈C|Ri−1〉 − λ2L−iwC . (29)

In other words, the previous idea of incremental minimization of the residue is

a particular case of this approach, with λ = 1/2. The factor 2L−i in (29) is used

to put wC to the same scale as 〈C,Ri−1〉.
The value of λ minimizing the final quantization error resulting from the

modified Algorithm 1 can be empirically found: for a given set of coders, one has

to code a large number of random vectors from An with the modified matching

pursuit algorithm with various values of λ around 1/2. As an example, we

consider n = 31 and a set of BCH coders with dimension 21 for the four most

significant bits, and 16 for the other bit weights. For various probability density

functions, we ran the modified Algorithm 1 on 103 vectors for λ between 0 and

4, and for each value of λ we computed the average quadratic quantization error,

from which we deduced the signal to coding noise ratio (SNR). As illustrated

by Fig. 4, the maximum SNR is reached for λ = 1.

Decoding the quantized signal corrupted by an additive noise can be done

using the same matching pursuit algorithm as for coding, but this does not

explicitly use the properties of the error correcting codes. Another approach

consists in decomposing each received block y of n samples according to (3),

11
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Figure 4: Signal to coding noise ratio (SNR) according to the value of the penalization factor λ

in the modified matching pursuit algorithm, for two distributions of the signal.

and retrieving the original codewords Ci, 0 ≤ i ≤ L − 1, from the vectors Yi

using classical decoding methods. This approach may benefit from the low com-

putational complexity of these methods. Using the formalism of Subsection 2,

the estimated block x̂ is given by:

x̂ = X̂Sy, with X̂ =

L−1∑
i=0

2iX̂i, (30)

where

∀ 0 ≤ i ≤ L− 1, X̂i = decod(Yi), (31)

where decod(·) denotes an error decoding function providing the closest code-

word.

Note that only the absolute value of each sample can be corrected this way,

since the signs of the noisy block y are kept. If a signal sample is corrupted by

a stronger noise sample having an opposite sign, this may create a peaky error.

That is why we propose the following sign correction. For each sample that was

erroneous in y, we correct the sign according to an adaptive linear prediction
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from the neighboring past and future samples. If the opposite of the corrected

sample is closer from its predictor than the corrected sample itself, we replace

the latter by its opposite. See Algorithm 2 for details.

Algorithm 2: Joint adaptive prediction and sign correction for samples

which absolute value was corrected. We use the normalized least mean

square algorithm [15] to identify the prediction coefficients a.

Data: the absolute-value-corrected samples x̂(n)

Result: the samples x̂(n) with corrected signs

Set adaptation step µ and model order p

a← 12p×1/2p

for i← 0 to N do

V ← [x̂(n− p) . . . x̂(n− 1)x̂(n+ 1) . . . x̂(n+ p)]

x̂pred ← V a

if x̂(n) �= y(n) then

if |x̂pred + x̂(n)| < |x̂pred − x̂(n)| then
x̂(n)← −x̂(n)

end

end

e← x̂(n)− x̂pred

a← a+ µeV �/‖V ‖2
end

5. Application to speech denoising

As indicated by Fig. 4, the coding SNR can be low, depending on the signal

distribution and on the chosen set of coders. A trade-off must be found between

the coding noise and the ability to correct errors, so that the signal after the

coding-channel-decoding chain is better than after the channel alone. According

to the experiments of [6], it seems difficult to have a global SNR of the coding-

channel-decoding chain better than that of the channel alone. That is why the

proposed technique is practically appropriate for two cases.
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The first case is that of artificial signals built from the code-books, to which

the notion of fidelity to an original signal does not strictly apply. This was

almost the case studied in [7]: although the coded alarms where built from

recordings of real alarms, with a low coding SNR, they respected the expected

features of such alarms, namely their time-frequency signatures.

The second case concerns sounds and images, and consists of a channel which

impairment is perceptually more annoying than that of the coding-channel-

decoding chain, although it may be better in terms of SNR. In this section, we

will present experimental results for this case: we will consider speech over a

channel adding sporadic noise, occurring by bursts.

The signal is a 4s speech signal from a male speaker, sampled at 8000 Hz,

which distribution can be modeled by a Laplacian law [8]. We consider a Lapla-

cian noise occurring with a probability of 5%, having the same variance as the

speech signal. Using Proposition 2 with formulas (18) to (24), we computed the

theoretical error probability at each bit level. Then, from these probabilities,

using Proposition 1, we deduced the theoretical error probability after decod-

ing for each bit level and each correction capability, when using BCH codes of

length 31. These probabilities are represented by Fig. 5. From these results, we

chose error correcting capabilities in order to have an error probability around

10−3 for all bit weights: from the most significant bit to the least significant bit,

the error correcting capabilities are 0, 1, 2, 3, . . . , 3.

In the experiment, we considered a noise occurring by bursts with random

length following a Gaussian law of mean 10 samples and standard deviation 2.

Consequently, to scatter the error, we used interleaving with a 20× 31 matrix.

The complete process is summarized by Fig. 6.

The resulting theoretical and empirical error probabilities before and after

decoding are represented on Fig. 7. Thanks to these low binary error proba-

bilities after decoding, the channel noise is almost canceled: only rare isolated

samples are erroneous. Considering the global transmission chain however, the

coding-channel-decoding process replaced the sporadic annoying noise of the

channel by a continuous quantization noise. We estimated the perceptual effect

14
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Figure 5: For a speech signal corrupted by a Laplacian noise with the same variance occurring

with a probability of 5%, theoretical error probability after decoding for each bit level and

each correction capability t, using BCH codes of length 31. The probability before decoding

corresponds to the correction capability 0.
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Figure 6: Communication chain through a noisy channel, including the proposed coding and

interleaving.
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Figure 7: For a speech signal corrupted by a Laplacian noise with same variance and prob-

ability of occurrence 5%, error probabilities before and after decoding, using BCH codes of

length 31 and error correcting capabilities 0, 1, 2, 3, . . . , 3 from the most significant bit to the

less significant bit.

through the instrumental quality evaluation provided by PESQ [1]. As indi-

cated by the middle line of Table 3, the quality of the coded speech is poor, but,

considering the global communication chain, introducing the coding-decoding

process enhances the audio quality of the received speech. Note that the rare

errors remaining after decoding are sufficient to noticeably impair the decoded

speech relatively to the coded speech.

The perceptual quality of the quantized speech can be improved through a

spectral reshaping of the quantization noise. Since the latter is a white noise,

quantization noise shaping can be performed by filtering the signal to be coded

by a flattening filter and applying to the coded signal a coloring filter having the

inverse frequency response, so that the quantization noise has a power spectral

density with the same shape as that of the signal [14]. The same processing have

to be done before and after the decoder. Fig. 8 summarizes this proposition.

The flattening filter should ideally adapt to the signal, based on a block-by-block
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Figure 8: Communication chain through a noisy channel, including the proposed coding,

interleaving and noise spectral shaping.

spectral analysis or on an adaptive model identification. On the other hand,

it must be identical in the coding and the decoding parts. Since the signal to

be decoded is corrupted by the channel noise, fulfilling these two features is

not possible without regularly transmitting the filter coefficients. Consequently,

we used a fixed flattening filter roughly adapted to the long-term spectrum of

speech, of transfer function 1− 0.8z−1.

Since this filtering modifies the signal and noise distributions, even with a

gain factor preserving the variance, the theoretical model used to build Fig. 5

and to choose the error correction capabilities does not hold anymore, so that we

chose the latter from the empirical error probabilities before decoding and from

Fig. 2, so as to get an error probability around 10−3 after decoding, as in the

previous case. Fig. 9 represents the error probabilities before and after coding.

The resulting mean opinion scores estimated by PESQ are given by the last line

of Table 3. The proposed rough noise shaping yields a clear enhancement of

the coded speech. Since the decoder does not correct the errors as well as in

the previous case, the overall quality enhancement of the whole communication

chain is however not so high.

The audio files can be heard at:

https://helios2.mi.parisdescartes.fr/~mahe/Recherche/robustSignals/

6. Conclusion

We have proposed a quantization method that makes a signal correctable af-

ter being corrupted by noise, by approximating it as a concatenation of weighted
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Figure 9: For a speech signal corrupted by a Laplacian noise with same variance and proba-

bility of occurrence 5%, error probabilities before and after decoding, in the communication

chain of Fig. 8, using BCH codes of length 31 and error correcting capabilities 1, 3, . . . , 3 from

the most significant bit to the less significant bit.

x̃ vs. x x̂ vs. x̃ x̂ vs. x x+ v vs. x

without shaping 1.98 2.99 1.83 1.55

with shaping 2.51 2.78 2.14 1.55

Table 3: Mean Opinion Score estimations from PESQ for the coded signal x̃, the decoded

signal x̂ and the signal + noise x+ v without coding-decoding.
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sums of error correcting codes. The required error correction capability can be

fully determined by the signal and noise probability density functions and the

targeted binary error probability of each bit weight. A trade-off has to be found

between the error correction power and the quantization noise created by cod-

ing: the higher the error correction capabilities, the lower the signal to coding

noise ratio.

We have shown on an example of speech transmission over a noisy channel

that it is possible to choose a set of coders so that the noise resulting from the

coding-channel-decoding chain is less annoying than channel noise alone.

The barrier to breakdown is the trade-off between the error correction ca-

pability of the proposed system and the noise generated by the quantization, in

order to guarantee that the signal at the output of the coding-channel-decoding

chain is less noisy (or has a better quality according to a given criterion) than

the signal only undergoing the noisy channel. For audio or image signals, per-

ceptual criteria could be used when choosing the codewords. Another possible

track is to build codebooks having the same properties as those provided by

error correcting coders, but being adapted to the data to be coded, as in source

coding.

The Octave scripts used for this article can be downloaded from:

https://helios2.mi.parisdescartes.fr/~mahe/Recherche/robustSignals/

Appendix: proof of Proposition 2

Proof. Let us first prove (8):

Pe(i) = Pr(vi �= ci) (32)

= Pr(vi = 0)Pr(ci = 1) + Pr(vi = 1)Pr(ci = 0)

assuming vi and ci independent

= βi + Pr(ci = 1)(1− 2βi) (33)
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Assuming that the probability having v and s with the same sign is the same

as having v and s with different signs, it comes (8).

If |v| < 2i, vi = 0; if 2i ≤ |v| < 2i+1, vi = 1; if |v| ≥ 2i+1, vi = 1 with a

probability of 1/2. This leads to (9). The same rationale holds with s for (14).

Equation (12) derive directly from Table 1, assuming that si, vi and ci are

mutually independent when v and s have the same sign.

Let us now prove (13). In the following, we recall that we have set a =

max(|s|, |v|) and b = min(|s|, |v|), and we introduce the notation

Prc(·) = Pr(· | sign(s) �= sign(v)),

to simplify the expressions. From Table 2, it comes:

ρ−i+1 = Prc(ci = 1, si = vi) + Prc(aibi = 01)

= Prc(ci = 1, si = vi | a ≥ 2i)Prc(a ≥ 2i)

+ Prc(aibi = 01 | a ≥ 2i)Prc(a ≥ 2i)

(34)

In the first term, we discarded the case a < 2i, because it makes impossible

ci = 1. For the second term, we only consider the case a ≥ 2i, since otherwise

b < 2i and thus bi = 0. We assume that, knowing {sign(v) �= sign(s), a ≥ 2i},
the events {ci = 1} and {si = vi} are independent. Note that, although this

could intuitively seem always true whenever {sign(v) �= sign(s)}, we empirically

found that it is false without the condition {a ≥ 2i}. In this case,

ρ−i+1 = Prc(ci = 1 | a ≥ 2i) Prc(si = vi | a ≥ 2i) Prc(a ≥ 2i)

+Prc(aibi = 01 | a ≥ 2i)Prc(a ≥ 2i)
(35)

Let us consider the first term of (35) and let

θi,j � Prc(ci = 1 | a ≥ 2j) for j ≥ i (36)

For i = 0, θi,j = 0, and, following the calculation of (34) and (35) for i ≥ 0,

θi+1,j = Prc(ci = 1, si = vi | a ≥ 2j) + Prc(aibi = 01 | a ≥ 2j)

= θi,jPrc(si = vi | a ≥ 2j) + Prc(aibi = 01 | a ≥ 2j), (37)
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under the assumption that knowing {sign(v) �= sign(s), a ≥ 2j , j ≥ i}, the events
{ci = 1} and {si = vi} are independent.

To achieve the calculation of (35) and (37), we need to compute Prc(si = vi |
a ≥ 2j) and Prc(aibi = 01 | a ≥ 2j), for j ≥ i. In the following, we assume that

knowing {sign(v) �= sign(s), a ≥ 2j , j ≥ i}, ai and bi are independent. Then,

Prc(si = vi | a ≥ 2j) = Prc(ai = bi = 0 | a ≥ 2j) + Prc(ai = bi = 1 | a ≥ 2j)

may be rewritten for j ≥ i, as

Prc(si = vi | a ≥ 2j) =

(1 − Prc(ai = 1 | a ≥ 2j))(1− Prc(bi = 1 | b ≥ 2i))Prc(b ≥ 2i | a ≥ 2j)

+ Prc(ai = 1 | a ≥ 2j)Prc(bi = 1 | b ≥ 2i)Prc(b ≥ 2i | a ≥ 2j) (38)

For j > i, Prc(ai = 1 | a ≥ 2j) = Prc(bi = 1 | b ≥ 2j) = 1/2. For j = i, let

γi � Prc(ai = 1 | a ≥ 2i) (39)

δi � Prc(bi = 1 | b ≥ 2i) (40)

Equation (38) can be re-written:

Prc(si = vi | a ≥ 2j) =



(1− γi − δi + 2γiδi)Prc(b ≥ 2i | a ≥ 2i) for j = i

1
2Prc(b ≥ 2i | a ≥ 2j) for j > i

(41)

Let us now calculate, for j ≥ i:

Prc(aibi = 01 | a ≥ 2j) = (1 − Pr(ai = 1 | a ≥ 2j))Prc(bi = 1 | b ≥ 2i)

× Prc(b ≥ 2i | a ≥ 2j)

=



(1− γi)δiPrc(b ≥ 2i | a ≥ 2i) for j = i

1
2δiPrc(b ≥ 2i | a ≥ 2j) for j > i

(42)
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Substituting formulas (41) and (42) in (35) and (37), we get:

ρ−i+1 = Prc(b ≥ 2i | a ≥ 2i)
{
(1− γi − δi + 2γiδi)θi,i + (1 − γi)δi

}
(43)

= (Prc(2
i ≤ |v| < |s|) + Prc(2

i ≤ |s| < |v|)
× {(1 − γi − δi + 2γiδi)θi,i + (1− γi)δi

} (44)

θi+1,j =
1

2
Prc(b ≥ 2i | a ≥ 2j)(θi,j + δi) (45)

Hence we got Eq. 13 and 17, respectively.

It remains to compute γi, δi and Prc(b ≥ 2i | a ≥ 2j):

γi =
Prc(ai = 1)

Prc(a ≥ 2i)

=
Prc(|v| < |s|, si = 1) + Prc(|s| < |v|, vi = 1)

Prc(|v| < |s|, |s| ≥ 2i) + Prc(|s| < |v|, |v| ≥ 2i)

=


 Prc(|v| < |s|, 2i ≤ |s| < 2i+1) + 1

2Prc(|v| < |s|, |s| ≥ 2i+1)

+Prc(|s| < |v|, 2i ≤ |v| < 2i+1) + 1
2Prc(|s| < |v|, |v| ≥ 2i+1)




Prc(|v| < |s|, |s| ≥ 2i) + Prc(|s| < |v|, |v| ≥ 2i)
, (46)

using the same rationale as for (14) and (9).

Similarly,

δi =
Prc(bi = 1)

Prc(b ≥ 2i)

=
Prc(|v| < |s|, vi = 1) + Prc(|s| < |v|, si = 1)

Prc(|v| < |s|, |v| ≥ 2i) + Prc(|s| < |v|, |s| ≥ 2i)

=


 Prc(|v| < |s|, 2i ≤ |v| < 2i+1) + 1

2Prc(|v| < |s|, |v| ≥ 2i+1)

+Prc(|s| < |v|, 2i ≤ |s| < 2i+1) + 1
2Prc(|s| < |v|, |s| ≥ 2i+1)




Prc(|v| < |s|, |v| ≥ 2i) + Prc(|s| < |v|, |s| ≥ 2i)
, (47)

Finally,

Prc(b ≥ 2i | a ≥ 2j)

=
Prc(b ≥ 2i, a ≥ 2j)

Prc(a ≥ 2j)

=
Prc(|v| < |s|, |v| ≥ 2i, |s| ≥ 2j) + Prc(|s| < |v|, |s| ≥ 2i, |v| ≥ 2j)

Prc(|v| < |s|, |s| ≥ 2j) + Prc(|s| < |v|, |v| ≥ 2j)
(48)

Now we have all elements for the calculation of Eq. 13 and 17.
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