M1 info: Bases du Traitement du Signal et des images

Examen final - Durée: 2h

8 janvier 2016

Documents, calculatrices et téléphones interdits.

Les différentes sous-parties peuvent être traitées dans l'ordre qui vous conviendra, mais ne dispersez pas les réponses d'une même sous-partie dans la copie.

1 Questions de cours

Rappel: Toutes les réponses doivent être clairement rédigées et justifiées.

1.1 Signaux 1D (3 points)

- a) Qu'est-ce qui différencie le spectre d'un signal analogique périodique de celui d'un signal analogique apériodique d'énergie finie ?
- **b)** Soit le spectre d'amplitude représenté sur la figure 1, nul en dehors de l'intervalle $[0; \nu_0]$.
 - Pourquoi ne peut-il être celui d'un signal réel ?
 - Pourquoi ne peut-il être celui d'un signal échantillonné?

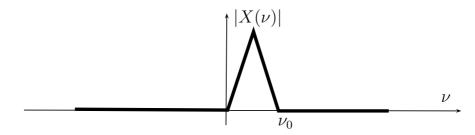


FIGURE 1 – Un étrange spectre d'amplitude.

c) Qu'appelle-t-on la réponse impulsionnelle d'un filtre numérique?

1.2 Image (4,5 points)

- a) Donner le principe du filtrage dans les images.
- **b)** A quelle opération correspond le filtrage linéaire dans le domaine fréquentiel ? dans le domaine spatial ?

c) Donner le principe général de ces opérations dans l'espace discret.

2 Exercices

Rappel: Toutes les réponses doivent être clairement rédigées et justifiées.

2.1 Exercice Image (2,5 points)

Sur la figure jointe, en considérant que l'image originale est l'image A, retrouvez le type de traitement appliqué pour passer de A vers B puis de B vers C.

2.2 Echantillonnage 1D (3 points)

Soit x le signal analogique tel que :

$$x(t) = 2\nu_0(\operatorname{sinc}^2(\pi\nu_0 t) - \operatorname{sinc}(\pi\nu_0 t))$$

La transformée de Fourier de x est une fonction **réelle** de la fréquence, représentée sur la figure 2.

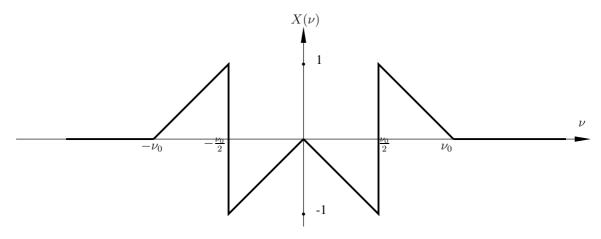


FIGURE 2 – Spectre de x(t).

- a) On échantillonne x(t) à la fréquence d'échantillonnage $2\nu_0$. Représenter le spectre du signal échantillonné, $X_e(\nu)$. Que vaut le signal reconstruit $\tilde{x}(t)$?
- **b**) Mêmes questions pour la fréquence d'échantillonnage ν_0 .

2.3 Analyse spectrale et filtrage numériques 1D (7 points)

Soit un filtre numérique défini par l'équation aux différences suivante :

$$y(n) = x(n) - x(n-1) + x(n-2) - ry(n-1) - r^{2}y(n-2)$$

a) Calculer la fonction de transfert H(z) de ce filtre.

- **b)** Le coefficient r est fixé à 0,9.Le diagramme pôles-zéros de ce filtre est représenté sur la figure 3. Les zéros ont pour arguments $\pm \pi/6$ et les pôles ont pour arguments $\pm \pi/3$.
 - Le filtre est-il stable?
 - Tracez l'allure du module de la réponse fréquentielle |H(f)|.

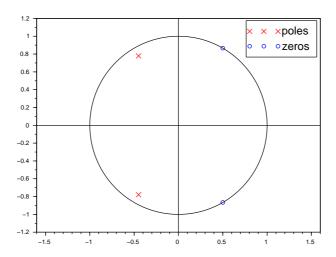


FIGURE 3 – Diagramme pôles-zéros.

c) Soit un signal discret x composé de trois sinusoïdes aux fréquences $f_1=1/6$ et $f_2=1/3$ et $f_3=1,1/3$, de même amplitude :

$$x(n) = \sin(2\pi f_1 n) + \sin(2\pi f_2 n) + \sin(2\pi f_3 n)$$

On filtre x par le filtre précédent. Soit y le signal résultant. Puis on fait une analyse spectrale numérique de y comme suit :

- 1. on prélève 20 échantillons de y;
- 2. on complète y par 236 zéros;
- 3. on calcule la transformée de Fourier discrète (TFD) par un algorithme de transformée de Fourier rapide (FFT);
- 4. on affiche le module de la TFD de y.

Le spectre d'amplitude obtenu est représenté sur la figure 4.

- Comment s'appelle l'opération 2 et à quoi sert-elle ?
- Pourquoi calculer la TFD par FFT et pas en utilisant la formule de la TFD?
- Expliquez précisément la figure obtenue.
- Combien faudrait-il prélever d'échantillons de y au minimum pour que la figure reflète réellement le signal ?

3 Formulaire

Formule de Poisson:

$$S_e(\nu) = \nu_e \sum_{k \in \mathbb{Z}} S(\nu - k\nu_e)$$

Réponse fréquentielle :

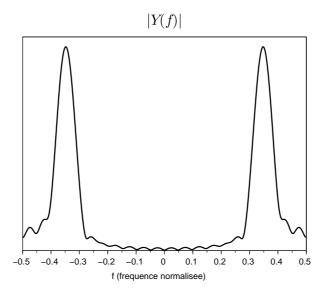


FIGURE 4 – Spectre d'amplitude obtenu pour y.

— Pour un filtre de réponse impulsionnelle h(n), réponse fréquentielle :

$$H(f) = \text{TFTD}[h(n)]$$

— Relation entrée-sortie :

$$y(n) = h(n) * x(n) \Leftrightarrow Y(f) = H(f)X(f)$$

Transformée en Z d'un signal discret x(n):

$$X(z) = \mathrm{TZ}[x(n)] = \sum_{n \in \mathbb{Z}} x(n)z^{-n}$$

Théorème du retard :

$$TZ[x(n-k)] = z^{-k}TZ[x(n)]$$

La TZ transforme le produit de convolution en produit simple :

$$\mathrm{TZ}[x(n)*y(n)] = X(z)Y(z)$$

 $\mathrm{TFTD}[x(n)] = \mathrm{TZ}[x(n)]$ calculée en $z = \mathrm{e}^{\mathrm{j} 2\pi f}$

Soit un signal discret x(n) de durée finie N:

$$x(n) = 0 \quad \forall n < 0 \text{ ou } n \ge N$$

— Transformée de Fourier à temps discret (TFTD) de x:

$$X(f) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nf}$$

— Transformée de Fourier discrète (TFD) :

$$TFD[x(n)] = X[k] = X(f = \frac{k}{N}) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi kn}{N}} \quad \forall 0 \le k \le N-1$$

TFD inverse:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}} = TFD^{-1}[X[k]] \quad \forall 0 \le n \le N-1$$

Types de fenêtres et largeur du lobe principal en fréquence normalisée :

Fenêtre	Largeur du lobe	Ecart d'amplitude
	principal	lobes principal/secondaire
	(fréq. normalisée)	(dB)
Rectangle	2/N	13
Triangle	4/N	25
Hanning	4/N	31
Hamming	4/N	41
Blackman	6/N	57