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Preface

The theory in these notes was taught between 2002 and 2005 at the graduate schools of
FEcole Normale Supérieure de Cachan, Ecole Polytechnique de Palaiseau, Universitat Pompeu
Fabra, Barcelona, Universitat de les Illes of Balears, Palma and University of California at Los
Angeles. It is also being taught by Andreés Almansa at the Facultad de Ingeneria, Montevideo.

This text will be of interest to several kinds of audiences. Our teaching experience proves
that specialists in image analysis and computer vision find the text easy on the computer
vision side and accessible on the mathematical level. The prerequisites are elementary calculus
and probability from the first two undergraduate years of any science course. All slightly more
advanced notions in probability (inequalities, stochastic geometry, large deviations...) will
be either proved in the text or detailed in several exercises at the end of each chapter. We
have always asked the students to do all exercises and they usually succeed no matter what
their science background is. The mathematics students don’t find the mathematics difficult
and easily learn through the text itself what is needed in vision psychology and the practice
of computer vision. The text aims at being self-contained in all three aspects: mathematics,
vision and algorithms. We shall in particular explain what a digital image is and how the
elementary structures can be computed.

We wish to emphasize why we are publishing these notes in a mathematics collection.
The main question treated in this course is the visual perception of geometric structure. We
hope this is a theme of interest for all mathematicians and all the more if visual perception
can receive —up to a certain limit we cannot yet fix— a fully mathematical treatment. In these
lectures, we rely on only four formal principles, each one taken from perception theory, but
receiving here a simple mathematical definition. These mathematically elementary principles
are the Shannon-Nyquist principle, the contrast invariance principle, the isotropy principle
and the Helmholtz principle. The first three principles are classical and easily understood.
We shall just state them along with their straightforward consequences. Thus the text is
mainly dedicated to one principle, the Helmholtz principle. Informally, it states that there is
no perception in white noise. A white noise image is an image whose samples are identically
distributed independent random variables. The view of a white sheet of paper in daylight gives
a fair idea of what white noise is. The whole work will be to draw from this impossibility
of seing something on a white sheet a series of mathematical techniques and algorithms
analyzing digital images and “seeing” the geometric structures they contain.

Most experiments are performed on digital every day photographs, as they present a
variety of geometric structures which exceeds by far any mathematical modeling and are
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therefore apt for checking any generic image analysis algorithm. A warning to mathemati-
cians: It would be fallacious to deduce from the above lines that we are proposing a definition
of geometric structure for all real functions. Such a definition would include all geometries
invented by mathematicians. Now, the mathematician’s real functions are, from the physical
or perceptual viewpoint, impossible objects with infinite resolution and which therefore have
infinite details and structures on all scales. Digital signals, or images, are surely functions,
but with the essential limitation of having a finite resolution permitting a finite sampling
(they are band-limited, by the Shannon-Nyquist principle). Thus in order to deal with digi-
tal images, a mathematician has to abandon the infinite resolution paradise and step into a
finite world where geometric structures must all the same be found and proven. They can
even be found with an almost infinite degree of certainty; how sure we are of them is precisely
what this book is about.

The authors are indebted to their collaborators for their many comments and corrections,
and more particularly to Andrés Almansa, Jérémie Jakubowicz, Gary Hewer, Carol Hewer
and Nick Chriss. Most of the algorithms used for the experiments are implemented in the
public software MegaWave. The research which led to the development of the present theory
was mainly developed at the University Paris-Dauphine (Ceremade) and at the Centre de
Mathématiques et Leurs Applications, ENS Cachan and CNRS. It was partially financed dur-
ing the past six years by the Centre National d’Etudes Spatiales, the Office of Naval Research
and NICOP under grant N00014-97-1-0839 and the Fondation les Treilles. We thank very
much Bernard Rougé, Dick Lau, Wen Masters, Reza Malek-Madani and James Greenberg
for their interest and constant support. The authors are grateful to Jean Bretagnolle, Nico-
las Vayatis, Frédéric Guichard, Isabelle Gaudron-Trouvé and Guillermo Sapiro for valuable
suggestions and comments.
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Chapter 1

Introduction

1.1 Gestalt theory and Computer Vision

Why do we interpret stimuli arriving at our retina as straight lines, squares, circles, and any
kind of other familiar shape? This question may look incongruous: what is more natural than
recognizing a “straight line” in a straight line image, a “blue cube” in a blue cube image?
When we believe we see a straight line, the actual stimulus on our retina does not have
much to do with the mathematical representation of a continuous, infinitely thin and straight
stroke. All images, as rough data, are a pointillist datum made of more or less dark or colored
dots corresponding to local retina cell stimuli. This total lack of structure is equally true for
digital images made of pizels, namely, square colored dots of a fixed size.

How groups of those pixels are built into spatially extended visual objects is, as Gaetano
Kanizsa [Kan97] called it, one of the major “enigmas of perception”. The enigma consists of
the identification performed between a certain subgroup of the perceptum (here the rough
datum on the retina) and some physical object, or even some geometric abstraction like a
straight line. Such identification must obey general laws and principles, which we shall call
principles of visual reconstruction (this term is borrowed from Gombrich [Gom71]).

There is, to the best of our knowledge, a single substantial scientific attempt to state
the laws of visual reconstruction: the Gestalt theory. The program of this school is first
given in Max Wertheimer’s 1923 founding paper [Wer23]. In the Wertheimer program there
are two kinds of organizing laws. The first kind are grouping laws which, starting from the
atomic local level recursively construct larger groups in the perceived image. Each grouping
law focuses on a single quality (color, shape, direction...). The second kind are principles
governing the collaboration and conflicts of Gestalt laws. In its 1975 last edition, the Gestalt
“Bible” Gesetze des Sehens, Wolfgang Metzger [Met75] gave a broad overview of the results
of fifty years of research. It yielded an extensive classification of grouping laws and many
insights about more general Gestalt principles governing the interaction (collaboration and
conflicts) of grouping laws. These results rely on an incredibly rich and imaginative collection
of test figures demonstrating those laws.

At about the same time Metzger’s book was published, computer vision was an emerging
new discipline at the meeting point of artificial intelligence and robotics. Although the
foundation of signal sampling theory by Claude Shannon [Sha48] was already twenty years-
old, computers were able to deal with images with some efficiency only at the beginning of
the seventies. Two things are noticeable:
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12 CHAPTER 1. INTRODUCTION

— Computer Vision did not at first use the Gestalt Theory results: David Marr’s [Mar82]
founding book involves much more neurophysiology than phenomenology. Also, its pro-
gram and the robotics program [Hor87] founded their hopes on binocular stereo vision.
This was in contradiction with the results explained at length in many of Metzger’s
chapters dedicated to Tiefensehen (depth perception). These chapters demonstrate
that binocular stereo vision is a parent pauvre in human depth perception.

— Conversely Shannon’s information theory does not seem to have influenced Gestalt
research as far as we can judge from Kanizsa’s and Metzger’s books. Gestalt theory
doesn’t take into account the finite sampled structure of digital images! The only
brilliant exception is Attneave’s attempt [Att54] to adapt sampling theory to shape
perception.

This lack of initial interaction is surprising. Both disciplines have attempted to answer
the following question: how to arrive at global percepts -be they visual objects or gestalts-
from the local, atomic information contained in an image ?

In these notes, we tentatively translate the Wertheimer program into a mathematics and
computer vision program. This translation is not straightforward, since Gestalt theory did
not address two fundamental matters: image sampling and image information measurements.
Using them, we shall be able to translate qualitative geometric phenomenological observations
into quantitative laws and eventually to numerical simulations of gestalt grouping laws.

One can distinguish at first two kinds of laws in the gestalt theory:

— practical grouping laws (like vicinity or similarity), whose aim it is to build up partial
gestalts, namely elementary perception building blocks;

— gestalt principles like masking or articulazione senza resti, whose aim it is to operate a
synthesis between the partial groups obtained by elementary grouping laws.

Not surprisingly, phenomenology-styled Gestalt principles have no direct mathematical trans-
lation. Actually several mathematical principles were probably too straightforward to be
stated by psychologists. Yet, a mathematical analysis cannot leave them in the dark. For
instance no translation invariance principle is proposed in Gestalt theory, in contrast with
signal and image analysis where it takes a central role. Gestaltists ignored the mathematical
definition of digital image and never used resolution (e.g.) as a precise concept. Most of their
grouping laws and principles, though having an obvious mathematical meaning, remained
imprecise. Several of the main issues in digital image analysis, namely the role of noise and
blur in image formation, were not quantitatively and even not qualitatively considered.

1.2 Basic principles of Computer Vision

A principle is merely a statement of an impossibility (A. Koyré). A few principles lead to
quantitative laws in mechanics; their role has to be the same in computer vision. Of course,
all computer vision algorithms deriving from principles should be free of parameters left to the
user. This requirement may look straightforward but is not acknowledged in the Computer
Vision literature. Leaving parameters to the user’s choice means that something escaped
from the modeling, in general a hidden principle.
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As we mentioned above, the main body of these lectures is dedicated to the thorough
study of the consequences of Helmholtz’s principle, which, as far as we know, receives its first
mathematical systematic study here. The other three basic and well known principles are
the Shannon sampling principle, defining digital images and fixing a bound to the amount of
information contained in them, the Wertheimer contrast invariance principle, which forbids
taking literally the actual values of grey levels, and the isotropy principle, which requires
image analysis to be invariant with respect to translations and rotations.

In physics, principles can lead to quantitative laws and very exact predictions based
on formal or numerical calculations. In Computer Vision, our aim is to predict all basic
perceptions associated with a digital image. These predictions must be based on parameter-
free algorithms, that is, algorithms which can be run on any digital image without human
intervention.

We start with an analysis of the three basic principles and explain why they yield image
processing algorithms.

Principle 1 (Shannon-Nyquist, definition of signals and images) Any image or signal, in-
cluding noisy signals, is a band-limited function sampled on a bounded, periodic grid.

This principle says first that we cannot hope for an infinite resolution or an infinite
amount of information in a digital image. This makes a big difference between 1-D and 2-D
general functions on one side, and signals or images on the other. We may well think of an
image as mirroring physical bodies, or geometric figures, with infinite resolution. Now, what
we observe and register is a finite and blurry information about these objects. Stating an
impossibility, the Shannon-Nyquist principle also opens the way to a definition of an image
as a finite grid with samples, usually called pizels (picture elements).

The Shannon-Nyquist principle is valid in both human perception and computer vision.
Retina images, and actually all biological eyes from the fly up, are sampled in about the same
way as a digital image. Now, the other statement in Shannon-Nyquist principle, namely the
band-limitedness, allows a unique reconstruction of a continuous image from its samples. If
that principle is not respected, the interpolated image is not invariant with respect to the
sampling grid and aliasing artifacts appear, as pointed out in Figure 1.2.

Algorithm 1 Let u(z,y) be a real function on the plane and  its Fourier transform. If
Support(i) C [—m,7]?, then u can be reconstructed from the samples u(m,n) by

w(z,y) = Z w(m, ) sin (m(z —m)) sin (7(y — n))

(mmez? m(x —m) w(y —n)
In practice, only a finite number of samples u(m,n) can be observed. Thus by the above
formula digital images turn out to be trigonometric polynomials.

Since it must be sampled, every image has a critical resolution: twice the distance between
two pixels. This mesh will be used thoroughly in these notes. Consequently, there is a
universal image format, namely a (usually square or rectangular) grid of “pixels”. Since the
grey level at each point is also quantized and bounded, all images have a finite maximum
amount of information, namely the number of points in the sampling grid (the so-called pixels
= picture elements) multiplied by roughly 8 bits/pixel (grey level) or 24 bits in case of color
images. In other terms, the grey level and each color is encoded by an integer ranging from
0 to 255.
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Figure 1.1: On the left, a well sampled image according to the Shannon-Nyquist principle.
The relations between sample distances and the Fourier spectrum content of the image are
in conformity with Principle 1 and Algorithm 1. If these conditions are not respected, the
image may undergo severe distortions, as shown on the right.

Principle 2 (Wertheimer’s contrast invariance principle) Image interpretation does not de-
pend upon actual values of the grey levels, but only on their relative values.

Again, this principle states an impossibility, namely the impossibility of taking digital
images as reliable physical measurements of the illumination and reflectance materials of
the photographed objects. On the positive side, it tells us where to look to get reliable
information. We can rely on information which only depends on the order of grey levels, that
is to say, contrast invariant information.

The Wertheimer principle was applied in Computer Vision by Matheron and Serra [Ser82]
who noticed that upper or lower level sets and the level lines of an image contain the shape
information, independently from contrast information. Also, because of the same principle,
we shall only retain the gradient orientation and not the modulus of gradient as relevant
information in images. For Matheron and Serra, the building blocks for image analysis are
given, for example, by the upper level sets. As usual with a good principle, one gets a
good simple algorithm. Wertheimer’s principle yields the basic algorithm of mathematical
morphology : it parses an image into a set of sets, the upper level sets. These sets can be
used for many tasks including shape analysis.

Algorithm 2 Let u(z,y) be a grey level image. The upper level sets of u are defined by

xa(w) = {(z,y), ulz,y) > A}

The set of all level sets {xx, N € R} is contrast invariant and u can be reconstructed from
its level sets by

u(z,y) =sup{A, (z,y) € xa(uw)}.
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Figure 1.2: Contrast invariant features deriving from Wertheimer’s principle: on the right,
some image level lines, or isophotes, corresponding to the grey level A = 128. According to
Wertheimer’s principle, the level lines contain the whole shape information.

A still better representation is obtained by encoding an image as the set of its level lines,
the level lines being defined as the boundaries of level sets. The interpolated digital image
being smooth by Shannon-Nyquist principle, the level lines are Jordan curves for almost every
level (see Figure 1.2).

Principle 3 (Helmholtz principle, first stated by D. Lowe [Low85]). Gestalts are sets of
points whose (geometric reqular) spatial arrangement could not occur in noise.

This statement is a bit vague. It is the aim of the present notes to formalize it. As we shall
prove in detail with geometric probability arguments, this principle yields algorithms for all
grouping laws and therefore permits us to compute what we shall call “partial gestalts”. A
weaker form of this principle can be stated as “there is no perceptual structure in white
noise”.

In other terms, every structure which shows too much geometric regularity to be found
by chance in noise calls attention and becomes a perception. The Helmholtz principle is at
work in Dostoievsky’s The Player, where specific sequences of black or red are noticed by
the players as exceptional, or meaningful, at roulette: if a sequence of 20 consecutive ”red”
occurs, this is considered noticeable. Yet, all other possible red and black sequences of the
same length have the same probability. Most of them occur without raising interest: only
those corresponding to a “grouping law”, here the color constancy, impress the observer. We
shall analyze with much detail this example and other ones in Chapter 3. The detection of
alignments in a digital image is very close to the Dostoievsky example.

An alignment in a digital image is defined as a large enough set of sample points on a
line segment at which the image gradient is orthogonal enough to the segment to make this
coincidence unlikely in o white noise image.

The algorithm to follow is, as we shall prove, a direct consequence of the three basic
principles, namely the Shannon-Nyquist interpolation and sampling principle, Wertheimer’s
contrast invariance principle and the Helmholtz grouping principle. It summarizes the theory
we shall develop in Chapters 5 and 6.
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Algorithm 3 computing alignments

— Let Ng be the number of segments joining pixels of the image.

Let 0 < p <1 be an angular precision (arbitrary).
— Let S be a segment with length | and with k sample points aligned at precision p.

— Then the number of false alarms of this event in a noise Shannon image of the same
size 1S

NFA(l, k,p) = Ns Zl: <l.>pj(1 —p)'.
=k

— An alignment is meaningful if NFA(l, k,p) < 1.

We shall apply exactly the same principles to derive a definition of “perceptual bound-
aries” and a parameterless algorithm computing them in a digital image. The next informal
definition will be made rigorous in Chapter 9.

A perceptual boundary is defined as a level line whose points have a "large enough” gra-
dient, so that no such line is likely to occur in a white noise with the same overall contrast.

The figure 1.3 shows meaningful alignments and meaningful boundaries detected accord-
ing to the preceding definitions. The notion of “maximal meaningfulness” will be developed
in Chapter 6.

Figure 1.3: Left: original aerial view (source: INRIA), middle: maximal meaningful align-
ments, right: maximal meaningful boundaries. All boundaries and alignments are obtained
by a parameterless method.

In addition to the Helmholtz principle, the above mentioned figure and all experiments
in the book will extensively use the exclusion principle, presented in chapter 6. Roughly
speaking, this principle forbids a visual object to belong to two different groups which have
been built by the same grouping law. This implies, for example, that two different alignments,
or boundaries, cannot overlap. Here is our plan.

— Chapter 1 is the present short introduction.

— Chapter 2 is dedicated to a critical description of Gestalt grouping laws and Gestalt
principles.
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— Chapter 3 states and formalizes the Helmholtz principle by discussing several examples,
including the recognition of simple shapes, Dostoievsky’s roulette and alignments in a
image made of dots.

— Chapter 4 gives estimates of the central function in the whole book, the so-called
“number of false alarms” (NFA) which in most cases can be computed as a tail of a
binomial law.

— Chapter 5 defines “meaningful alignments” in a digital image and their number of false
alarms as a function of three (observed) parameters, namely precision, length of the
alignment, number of aligned points. This is somehow the central chapter, as all other
detections can be viewed as variants of the alignment detection.

— Chapter 6 is an introduction to the exclusion principle, followed by a definition of
“maximal meaningful” gestalts. In continuation, it is proven that maximal meaningful
alignments do not overlap and therefore obey the exclusion principle.

— Chapter 7 treats the most basic grouping task: how to group objects which turn out
to have one quality in common, be it color, orientation, size, etc. Again, “meaningful
groups” are defined and it is again proved that maximal meaningful groups do not
overlap.

— Chapter 8 treats the detection of one of the relevant geometric structures in painting,
also essential in photogrammetry: the vanishing points. They are defined as points at
which exceptionally many alignments meet. This is a “second order” gestalt.

— Chapter 9 extends the theory to one of the most controversial detection problems in
image analysis, the so-called segmentation, or edge detection theory. All state of the
art methods depend upon several user’s parameters (usually two or more). A tentative
definition of meaningful contours by Helmholtz principle eliminates all the parameters.

— Chapter 10 compares the new theory with the state of art theories, in particular with
the “active contours” or “snakes” theory. A very direct link of “meaningful boundaries”
to “snakes” is established.

— Chapter 11 proposes a theory to compute, by the Helmholtz principle, clusters in an
image made of dots. This is the classical vicinity gestalt: objects are grouped just
because they are closer to each other than to any other object.

— Chapter 12 addresses a key problem of photogrammetry, the binocular stereo vision.
Digital binocular vision is based on the detection of special points like corners in both
images. These points are grouped by pairs by computer vision algorithms. If the groups
are right, the pairs of points define an epipolar geometry permitting to build a line to
line mapping from one image onto the other one. The main problem turns out to be
in practice the large number of wrong pairs. Using the Helmholtz principle permits us
to detect the right and more precise pairs of points and therefore to reconstruct the
epipolar geometry of the pair of images.

— Chapter 13 describes two simple psychophysical experiments to check whether the per-
ception thresholds match the ones predicted by the Helmholtz principle. One of the
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experiments deals with the detection of squares in a noisy environment and the other
one with alignment detection.

— Chapter 14 presents a synopsis of results with a table of formulae for all gestalts. It also
discusses some experiments showing how gestalt detectors could “collaborate”. This
chapter ends with a list of unsolved questions and puzzling experiments showing the
limits in the application of the found principles. In particular, the notion of “conflict”
between gestalts, raised by gestaltists, has no satisfactory formal answer so far.



Chapter 2

Gestalt theory

In this chapter, we start in Section 2.2 with an account of Gestalt theory, centered on the
initial 1923 Wertheimer program. In Section 2.3 the focus is on the problems raised by the
synthesis of groups obtained by partial grouping laws. Following Kanizsa, we shall address
the conflicts between these laws and the masking phenomenon. In Section 2.4 several quan-
titative aspects implicit in Kanizsa’s definition of masking are pointed out. It is shown that
one particular kind of masking, Kanizsa’s masking by texture, may lead to a computational
procedure.

2.1 Before gestaltism: optic-geometric illusions

Naturally enough the study of vision started with a careful examination by physicists and
biologists of the eye, thought of as an optical apparatus. Two of the most complete theories
come from Helmholtz [vH99] and Hering [Her20]. This analysis naturally led to checking how
reliably visual percepts related to the physical objects. This led to the discovery of several
now-famous aberrations. We shall not explain them all, but just those which are closer
to our subject, namely the geometric aberrations, usually called optic-geometric illusions.
They consist of figures with simple geometric arrangements, which turn out to have strong
perceptive distortions. The Hering illusion (Figure 2.1) is built on a number of converging
straight lines, together with two parallel lines symmetric with respect to the convergence
point. Those parallel straight lines look curved to all observers in frontal view. Although
some perspective explanation (and many others) have be attempted for this illusion, it must
be said that it has remained a mystery.

The same happens with the Sander and the Miiller-Lyer illusions, which may also obey
some perspective interpretation. In the Sander illusion, one can see an isosceles triangle
a,b,c (Figure 2.2-(b)) inscribed in a parallelogram (Figure 2.2-(a)). In (a) the segment [a, b]
is perceived as smaller than the segment [b,c|. Let us attempt a perspective explanation.
When we see (a), we actually automatically interpret the parallelogram as a rectangle in
slanted view. In this interpretation, the physical length ab should indeed be shorter than bc
(Figure 2.2-c).

A hypothetical compensation mechanism, activated by a perspective interpretation, might
explain the Miiller-Lyer illusion as well (Figure 2.3). Here, the segments [a,b] and [c, d] have
the same length but [a, b] looks shorter than [c,d]. In the perspective interpretation of these
figures (where the trapezes are in fact rectangles in perspective), [a,b] would be closer to
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Figure 2.1: Hering Illusion: the straight lines a and b look curved in the neighborhood of a
vanishing point.
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Figure 2.2: Sander Illusion: in (a) the segment [a,b] looks smaller than the segment [b, c].
Now, the isosceles triangle a, b, ¢ is the same in (a) and (b). A perspective interpretation of
(a) like the one suggested in (c), where the parallelogram is thought of as a rectangle, might
give some hint.

(@) (b)

Figure 2.3: Miiller-Lyer Illusion: the segment [a, b] looks smaller than [c, d].
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the observer than [c,d] and this might entail a difference in our appreciation of their size as
actual physical objects.

As the Hering illusion, the Zoellner illusion (Figure 2.4) has parallel lines, but this time
they sometimes look converging and sometimes diverging. Clearly our global interpretation of
their direction is influenced by the small and slanted straight segments crossing them. In all
these cases, one can imagine such explanations, or quite different ones based on the cortical
architecture. No final explanation seems for the time being account for all objections.

%%

1

Figure 2.4: Zoellner Illusion: the diagonals inside the square are parallel but seem to alter-
nately converge or diverge.

2.2 Grouping laws and gestalt principles

Gestalt theory does not continue on the same line. Instead of wondering about such or such
distortion, gestaltists more radically believe that any percept is a visual illusion no matter
whether it is in good agreement or not with the physical objects. The question is not why we
sometimes see a distorted line when it is straight; the question is why we do see a line at all.
This perceived line is the result of a construction process whose laws it is the aim of Gestalt
theory to establish.

2.2.1 Gestalt basic grouping principles

Gestalt theory starts with the assumption of active grouping laws in visual perception [Kan97,
Wer23]. These groups are identifiable with subsets of the retina. We shall talk in the following
of points or groups of points which we identify with spatial parts of the planar rough percept.
In image analysis we shall identify them as well with the points of the digital image. Whenever
points (or previously formed groups) have one or several characteristics in common, they get
grouped and form a new larger visual object, a gestalt. The list of elementary grouping
laws given by Gaetano Kanizsa in Grammatica del Vedere page 45 and following [Kan97] is
vicinanza, somiglianza, continuita di direzione, completamento amodale, chiusura, larghezza
constante, tendenza alla convessita, simmetria, movimento solidale, esperienza passata, that
is: vicinity, similarity, continuity of direction, amodal completion, closure, constant width,
tendency to convexity, symmetry, common motion, past experience. This list is actually very
close to the list of grouping laws considered in the founding paper by Wertheimer [Wer23].
These laws are supposed to be at work for every new percept. The amodal completion, one of
the main subjects of Kanizsa’s books, is, from the geometric viewpoint, a variant of the good
continuation law. (The good continuation law has been extensively addressed in Computer
Vision, first by Montanari in [Mon71], latex by Sha’Ashua and Ullman in [SU88] and more
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recently by Guy and Medioni in [GM96]. An example of computer vision paper implementing
“good continuation”, understood as being a “constant curvature”, is the paper by Wuescher
and Boyer [WB91]).

The color constancy law states that connected regions where luminance (or color) does
not vary strongly are unified (seen as a whole, with no inside parts). For example, Figure 2.5
is seen as a single dark spot.

Figure 2.5: With the color constancy law we see here a single dark spot rather than a number
of dark dots.

The vicinity law applies when distance between objects is small enough with respect to
the rest (Figure 2.6).
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Figure 2.6: The vicinity law entails the grouping of the dark ellipses into two different objects.

The similarity law leads us to group similar objects into higher scale objects. See Fig-
ures 2.7 and 2.8.

Figure 2.7: The similarity law leads us to interpret this image as composed of two homoge-
neous regions, one in the center made of circles and a peripheral one built of rectangles.

The amodal completion law applies when a curve stops on another curve, thus creating a
“T-junction”. In such a case our perception tends to interpret the interrupted curve as the
boundary of some object undergoing occlusion. The leg of the T is then extrapolated and
connected to another leg in front whenever possible. This fact is illustrated in Figure 2.10
and is called “amodal completion”. The connection of two T-legs in front obeys the “good
continuation” law. This means that the recreated amodal curve is as similar as possible as
the pieces of curve it interpolated (same direction, curvature, etc.).

In Figure 2.10 we see first four black butterfly-like shapes. By superposing on them four
rectangles, thanks to the amodal completion law, the butterflies are perceptually completed
into disks. By adding instead a central white cross to the butterflies, the butterflies con-
tribute to the perception of an amodal black rectangle. In all cases the reconstructed amodal
boundaries obey the good continuation law, namely they are as homogeneous as possible to
the visible parts (circles in one case, straight segments in the other).
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Figure 2.8: The similarity law separates this image into two regions with different “textures”.
Contrarily to what happens in Figure 2.7, the shape of the group elements (squares) is not
immediately apparent because of a masking effect (see next section).

"

Figure 2.9: Because of Rubin’s closure law, the interior of the black curve is seen as an object

and its exterior as the background.

T-junctions
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Figure 2.10: T-junctions entail an amodal completion and a completely different image in-
terpretation.
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“X-junctions” may also occur and play a role as a gestalt reconstruction tool. When two
regular curves cross in an image, the good continuation law leads us to see two overlapping
boundaries and a transparency phenomenon occurs (Figure 2.11). Each boundary may be
seen as the boundary of a transparent object across which the boundary of the other one still
is visible. Thus, instead of dividing the image into four regions, our perception only divides
it into two overlapping regions bounded by both curves of the “X”.

Figure 2.11: The transparency phenomenon in presence of an “X”-junction: we rather see
two overlapping regions and two boundaries than four: region (a) is united to (d) and region

(c) to (b).

The constant width law applies to group the two parallel curves, perceived as the bound-
aries of a constant width object (Figure 2.12). This law is constantly in action since it is
involved in the perception of writing and drawing.

Figure 2.12: Two parallel curves: the width constancy law applies.

The symmetry law applies to group any set of objects which is symmetric with respect to
some straight line (Figure 2.13).

Figure 2.13: Perceptive grouping by symmetry.

The convezity law, as the closure law, intervenes in our decision on the figure-background
dilemma. Any convex curve (even if not closed) suggests itself as the boundary of a convex
body. Figure 2.14 strikingly evidences the strength of this law and leads us to see illusory
convex contours on a black background.
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Figure 2.14: White ovals on black background or black triangles on white background? The
convexity law favors the first interpretation.

The perspective law has several forms. The simplest one was formalized by the Renaissance
architect Brunelleschi. Whenever several concurring lines appear in an image, the meeting
point is perceived as a vanishing point (point at infinity) in a 3D scene. The concurring lines
are then perceived as parallel lines in space (Figure 2.15).

Figure 2.15: The Y-junctions and the vanishing point d yield a 3D-interpretation of this
figure.

There is no more striking proof of the strength of gestalt laws than the invention of
“impossible objects”. In such images, gestalt laws lead to an interpretation incompatible
with physical common sense. Such is the effect of T-junctions in the famous “impossible”
Penrose triangle and fork (Figures 2.16 and 2.17).

<

Figure 2.16: The Penrose “impossible” triangle. Notice the T-and Y-junctions near the
corners j, k, [.



26 CHAPTER 2. GESTALT THEORY

[

/l [0)]

Figure 2.17: The impossible Penrose fork. Hiding the left-hand part or the right-hand part
of it leads to different perspective interpretations.

2.2.2 Collaboration of grouping laws

Figure 2.18 illustrates many of the grouping laws stated above. Most people would describe
such a figure as “three letters X” built in different ways.

Figure 2.18: Building up a gestalt: X-shapes. Each one is built up with branches which are
themselves groups of similar objects; the objects, rectangles or circles are complex gestalts,
since they combine color constancy, constant width, convexity, parallelism, past experience,
etc.

Most grouping laws stated above work from local to global. They are of mathematical
nature, but must actually be split into more specific grouping laws to receive a mathematical
and computational treatment:

— Vicinity for instance can mean: connectedness (i.e. spots glued together) or clusters
(spots or objects which are close enough to each other and apart enough from the rest
to build a group). This vicinity gestalt is at work in all sub-figures of Figure 2.19.

— Similarity can mean: similarity of color, shape, texture, orientation... Each one of these
gestalt laws is very important by itself (see again Figure 2.19).

— Continuity of direction can be applied to an array of objects (Figure 2.19 again). Let
us add to it alignments as a grouping law by itself (constancy of direction instead of
continuity of direction).

— Constant width is also illustrated in the same figure 2.19 and is very relevant for drawings
and all kinds of natural and artificial forms.

— Notice in the same spirit that convezity, also illustrated, is a particularization of both
closure and good continuation laws.
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— Past experience: In the list of partial gestalts which are looked for in any image, we can
have generic shapes such as circles, ellipses, rectangles, and also silhouettes of familiar
objects such as faces, cats, chairs, etc.
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Figure 2.19: Illustration of gestalt laws. From left to right and top to bottom: color constancy
+ proximity; similarity of shape and similarity of texture; good continuation; closure (of a
curve); convexity; parallelism; amodal completion (a disk seen behind the square); color
constancy; good continuation again (dots building a curve); closure (of a curve made of
dots); modal completion: we tend to see a square in the last figure and its sides are seen
in a modal way (subjective contour). Notice also the texture similarity of the first and last
figures. Most of the figures involve constant width. In this complex figure, the sub-figures
are identified by their alignment in two rows and their size similarity.

All of the above listed grouping laws belong, according to Kanizsa, to the so called processo
primario (primary process), opposed to a more cognitive secondary process. Also, it may of
course be asked why and how this list of geometric qualities has emerged in the course of
biological evolution. Brunswick and Kamiya [BK53] were among the first to suggest that
the gestalt grouping laws were directly related to the geometric statistics of the natural
world. Since then several works have addressed from different viewpoints these statistics and
the building elements which should be conceptually considered in perception theory, and/or
numerically used in Computer Vision [BS96], [OF96], [GPSGO1].

The grouping laws usually collaborate to the building up of larger and larger objects. A
simple object such as a square whose boundary has been drawn in black with a pencil on a
white sheet will be perceived by connectedness (the boundary is a black line), by constant
width (of the stroke), convexity and closure (of the black pencil stroke), parallelism (between
opposite sides), orthogonality (between adjacent sides), and by again constant width (of both
pairs of opposite sides).

We must therefore distinguish between global gestalt and partial gestalt. A square alone
is a global gestalt, but it is the synthesis of a long list of concurring local groupings, leading
to parts of the square endowed with some gestalt quality. Such parts we shall call partial
gestalts. The sides and corners of the square are therefore partial gestalts.

Notice also that all grouping gestalt laws are recursive: they can be applied first to atomic
inputs and then in the same way to partial gestalts already constituted. Let us illustrate this
by an example. In Figure 2.20 the same partial gestalt laws namely alignment, parallelism,
constant width and proximity, are recursively applied not less than six times: the single
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elongated dots first aligned in rows, these rows in groups of two parallel rows, these groups
again in groups of five parallel horizontal bars, these groups again in groups of six parallel
vertical bars. The final groups appear to be again made of two macroscopic horizontal bars.
The whole organization of such figures is seeable at once.

Figure 2.20: Recursivity of gestalt laws: here, constant width and parallelism are applied at
different levels in the building up of the final group not less than six times, from the smallest
bricks which are actually complex gestalts, being roughly rectangles, up to the final rectangle.
Many objects can present deeper and more complex constructions.

2.2.3 Global Gestalt principles

While the partial, recursive, grouping gestalt laws do not bring so much doubt about their
def