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Abstract. It was shown recently that the phase of the Fourier Trans-
form of an image could lead to interesting no-reference image quality
measures. The Global Phase Coherence, and its recent Gaussian variant
called Sharpness Index, rate the sharpness of an image in contrast not
only with blur, but also noise, ringing, etc. In this work, we introduce
a new variant of these indices, that can be computed with one Fourier
Transform only, hence four times quicker than the Sharpness Index. We
use this new index S to build an image restoration algorithm that, in
a stochastic framework, selects a radial-unimodal deconvolution kernel
for which the S-value of the restored image is optimal. Experiments are
discussed, and comparison is made with a radial oracle deconvolution
filter and the recent blind deconvolution algorithm of Levin et al.
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1 Introduction

No-reference image quality assessment consists in designing algorithms to eval-
uate the quality of an image (in particular in relation with its level of blur and
noise) without requiring either an ideal version of this image (full-reference) or
features extracted from this ideal image (reduced-reference). Finding good im-
age quality (and sharpness) metrics has several applications, like, e.g., parameter
selection, image restoration [16], benchmarking, or depth estimation [3].

A way to address the notion of image quality is to think in terms of precision
of its geometric elements (contours, alignments, etc.). Since the pioneering work
of Oppenheim and Lim [14], it is well known that the geometry of an image
is mainly encoded in the phase of its Fourier Transform. And yet, the phase
information itself is still very difficult to understand. A first definition of local
phase coherence was given in [13], [10] and used for edge detection. Later, it was
used to design a local sharpness measure in [15] and [9]. In 2008, the authors of [1]
defined a notion of Global Phase Coherence (GPC), which rates the sharpness of
an image depending on how the regularity of the image is destroyed as its phase
information is lost. Very recently in [2], a variant of GPC called Sharpness Index
(SI) was introduced. It has the advantage of being described by an explicit
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closed-form formula, without needing computationally expensive Monte-Carlo
Simulations like GPC.

In the present paper, we show that the SI metric can be further simplified
to yield a new metric S that can be computed with only one Discrete Fourier
Transform (versus four for the SI metric), while being an excellent approxima-
tion of the latter (Section 2). The behavior of this new metric is analyzed, in
particular in comparison with the Q metric proposed by Zhu and Milanfar [16]
(Section 3). Then, a blind deblurring algorithm is built in Section 4, that looks
for the linear filter that maximizes the S-value of the restored image while im-
posing the Fourier Transform of the convolution kernel to be radial, unimodal
and smooth. The results of this algorithm are discussed, and compared with the
corresponding linear oracle and with the blind deconvolution algorithm recently
proposed by Levin et al. [11].

2 Global Phase Coherence and Derived Sharpness
Metrics

Let us first introduce some useful notations. In all the following, we consider
gray-level images u : Ω → R defined on a discrete M ×N rectangular domain

Ω = Z2 ∩
([
−M

2
,
M

2

)
×
[
−N

2
,
N

2

))
.

The discrete Fourier transform (DFT) of u is the complex function û defined by

∀ξ ∈ Z2, û(ξ) =
∑
x∈Ω

u(x)e−i〈ξ,x〉 , (1)

where 〈ξ,x〉 = 2π
(
x1ξ1
M + x2ξ2

N

)
with ξ = (ξ1, ξ2) and x = (x1, x2). The function

|û| will be called the modulus of u. A phase function for u is any function
ϕ : Z2 → R such that for all ξ ∈ Z2, one has û(ξ) = |û(ξ)|eiϕ(ξ).

The Ω-periodization of u is the image u̇ : Z2 → R that extends u to Z2 by
u̇(x) = u(x′), where x′ is the unique element of Ω such that x′−x ∈MZ×NZ.
The gradient of u̇ is defined by

∀(x, y) ∈ Z2, ∇u̇(x, y) =

(
∂xu̇(x, y)
∂yu̇(x, y)

)
=

(
u̇(x+ 1, y)− u̇(x, y)
u̇(x, y + 1)− u̇(x, y)

)
, (2)

and the (periodic and anisotropic) Total Variation of u is

TV(u) = ‖∂xu̇‖1 + ‖∂yu̇‖1 =
∑
x∈Ω
|∂xu̇(x)|+ |∂yu̇(x)| . (3)

The autocorrelation of ∇u̇ is the function Γ : Ω → R2×2 defined by

Γ (z) =

(
Γxx(z) Γxy(z)
Γxy(z) Γyy(z)

)
=
∑
y∈Ω

(∇u̇(y)) (∇u̇(y + z))
T
. (4)
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2.1 Global Phase Coherence

As mentioned earlier, the phase of an image u encodes a great part of the geom-
etry of u: if one reproduces the famous experiment of [14] consisting in imposing
the phase of an image u to another image v, one can see on the result that several
edges from u have appeared and all the geometric content of v has disappeared.
Indeed, phase coefficients need strong alignment constraints in order to produce
sharp edges and clean flat regions in an image.

The Global Phase Coherence metric introduced in [1] quantifies how the
loss of this phase coherence affects the image regularity, measured by its Total
Variation (3). More precisely, the phase of an image u is randomized to produce
the Random Phase Noise image Uψ defined in Fourier Domain by

∀ξ ∈ Ω, Ûψ(ξ) = |û(ξ)|eiψ(ξ) , (5)

where ψ : Ω → R is a uniform random phase (the coefficients of ψ are indepen-
dent and uniformly distributed in (0, 2π), modulo the relation ψ(−ξ) = −ψ(ξ)
ensuring that Uψ is real-valued, see [8]), which leads to

Definition 1 (Blanchet, Moisan, Rougé, 2008 [1]). The Global Phase Co-
herence (GPC) of u is the number

GPC(u) = − log10 P(TV(Uψ) ≤ TV(u)) . (6)

For an image u with sharp edges and clean uniform zones, the Total Variation
is expected to be low amongst the ones of its phase randomizations. Therefore,
for such an image, the probability of the event {TV(Uψ) ≤ TV(u)} will be very
small, and the value of GPC(u) will be large. That is why this phase coher-
ence index (and the variants that follow) is expected to behave like an image
quality measure. Note that without the logarithm in (6), the values of GPC(u)
would often cause a numerical underflow (a value like, e.g., 10−1000 cannot be
represented in most computer environments).

The main issue with (6) is that no closed-form formula has been found so far
to compute GPC(u), so that a computationally expensive Monte-Carlo simula-
tion (coupled with a Gaussian approximation of the random variable TV(Uψ))
is proposed in [1], which limits the potential application of the GPC metric.

2.2 Sharpness Index

Hopefully, a closed-form variant of GPC was recently found. In [2], the periodic
convolution of u with a conveniently normalized Gaussian white noise W is
considered instead of Uψ, and the first two moments of TV(u ∗W ) are explicitly
computed in function of u. Note that u ∗W is nothing but the natural Gaussian
approximation of UΨ , and these two random images only differ by a convolution
with the texton of a white noise, which is close to a Dirac distribution [6] (in

Fourier Domain, û ∗W and ÛΨ differ by a multiplicative Rayleigh Noise). Even
if the exact law of TV(u ∗W ) seems difficult to compute, it is expected to be
approximately Gaussian, which leads to
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Definition 2 (Blanchet, Moisan, 2012 [2]). The Sharpness Index of u is

SI(u) = − log10 Φ

(
µ− TV(u)

σ

)
(7)

where Φ(t) =
1√
2π

∫ +∞

t

exp

(
−x

2

2

)
dx , µ = (αx + αy)

√
2

π

√
MN , (8)

σ2 =
2

π

∑
z∈Ω

α2
x · ω

(
Γxx(z)

α2
x

)
+ 2αxαy · ω

(
Γxy(z)

αxαy

)
+ α2

y · ω
(
Γyy(z)

α2
y

)
, (9)

αx = ‖∂xu̇‖2 =
(∑

x∈Ω |∂xu̇(x)|2
) 1

2 , αy = ‖∂yu̇‖2, Γ is the autocorrelation of
∇u̇ given in (4), and ω is the function defined by

∀t ∈ [−1, 1], ω(t) = t ·Arcsin(t) +
√

1− t2 − 1 . (10)

In practice, the numerical computation of SI(u) requires the computation of
TV (u), αx and αy (linear time), plus the three different components of Γ that
can be computed with four Fast Fourier Transforms (a direct FFT of u, and
3 inverse FFTs for the cross correlations of ∂xu̇ and ∂yu̇). The overall cost is
hence dominated by these four M × N FFT computations, which represents a
complexity of O(MN log(MN)) for well-suited image dimensions. Note that the
function Φ is available in most mathematical libraries through the complemen-
tary error function (often written erfc), but when t is greater than say, 20, the
following (almost exact) approximation is systematically used to avoid numerical
underflow:

− log10 Φ(t) ' t2 + log(2πt2)

2 log(10)
. (11)

2.3 A Simplified Version of SI

We now introduce a new index S which is analytically close to SI and faster to
compute. For that, let us observe that ω(t) is equivalent to t2/2 when t → 0.
Therefore, this approximation can be used to replace σ2 = Var(TV(u ∗W )) by

σ2
a =

1

π

∑
z∈Ω

α2
x ·
(
Γxx(z)

α2
x

)2

+ 2αxαy ·
(
Γxy(z)

αxαy

)2

+ α2
y ·
(
Γyy(z)

α2
y

)2

,

which after simplification yields the following

Definition 3. The S-metric of an image u is

S(u) = − log10 Φ

(
µ− TV(u)

σa

)
, (12)

where σ2
a =

1

π

(
‖Γxx‖22
α2
x

+ 2 · ‖Γxy‖
2
2

αxαy
+
‖Γyy‖22
α2
y

)
, (13)

and αx, αy, µ, and Γ are as in Definition 2.
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Whereas SI needed all the coefficients of the gradient auto-correlation matrix,
the S metric only depends on the overall energy of the three components Γxx,
Γxy and Γyy. Thanks to Parseval’s formula, they can be computed in Fourier
domain, recalling that

Γ̂xx(ξ) = |∂̂xu̇(ξ)|2 = 2 sin2

(
πξ1
M

)
|û(ξ)|2 , Γ̂yy(ξ) = 2 sin2

(
πξ2
N

)
|û(ξ)|2 ,

and |Γ̂xy(ξ)| = |∂̂xu̇(ξ)||∂̂yu̇(ξ)| = 2

∣∣∣∣sin(πξ1M
)

sin

(
πξ2
N

)∣∣∣∣ |û(ξ)|2 .

The computation of S only involves the l1 and l2 norms of the gradient, and the
FFT of u. Thus, the overall dominant cost is only one FFT (compared to 4 for
SI), while the approximation of SI by S is very good as stated by

Proposition 1. We have 0 ≤ σ2 − σ2
a

σ2
a

≤ π − 3 ≈ 0.142.

Proof. With the expressions of σ2 and σ2
a, one can write

σ2 − σ2
a =

2

π

∑
x∈Ω

α2
x

[
ω

(
Γxx(x)

α2
x

)
− 1

2

(
Γxx(x)

α2
x

)2
]

+2αxαy

[
ω

(
Γxy(x)

αxαy

)
− 1

2

(
Γxy(x)

αxαy

)2
]

+ α2
y

[
ω

(
Γyy(x)

α2
y

)
− 1

2

(
Γyy(x)

α2
y

)2
]
.

Besides, Taylor Formula applied to ω yields

∀t ∈ [−1, 1], 0 ≤ ω(t)− 1

2
t2 ≤ ct4 ≤ ct2 , (14)

with c = ω(1)− 1 = π−3
2 , and thus

0 ≤ σ2−σ2
a ≤

2c

π

∑
x∈Ω

α2
x

(
Γxx(x)

α2
x

)2

+2αxαy

(
Γxy(x)

αxαy

)2

+α2
y

(
Γyy(x)

α2
y

)2

= 2cσ2
a .

3 Validation of S as a Quality Measure

As in [1], we shall systematically apply two simple image transforms to an image
u before computing S(u) with (12), in order to avoid periodization and quan-
tization biases. First, as the S metric is defined (like GPC and SI) through a
periodic setting, the periodic component of u (see [12]) is first extracted to avoid
discontinuities across the image frame border. Then, a simple dequantization
procedure (a (1/2, 1/2) sub-pixel translation with Fourier interpolation, see [5])
is applied to ensure that the quantization of the original image (generally with
256 gray levels) does not artificially decreases its Total Variation.

On Fig. 1, we give a first empirical evidence that S behaves as an image qual-
ity measure. Indeed, this blur-noise diagram shows that the value of S decreases
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Fig. 1. Some level lines of the function (r, β) 7→ S(gr ∗ u + βW ) where gr is the 2-D
Gaussian convolution kernel with standard deviation r, and W is a white noise image
with unit variance in each pixel. The absolute values of S and the exact shape of
the level lines depend on the image considered (here, Barbara), but the overall shape
remains similar.

as the the level of blur or noise increases, with a correspondence between noise
and blur which is similar to GPC and SI (see [1, 2]).

The S metric not only decreases with respect to blur and noise, but unlike the
Q metric of Zhu and Milanfar [16], it also decreases when ringing artifacts (that
may result from excessive deblurring) appear, as shown on Fig. 2. This suggests
that S could be used in a parametric or even non-parametric blind deblurring
algorithm, as will be done in Section 4. Note however, that the Q metric performs
slightly better than S for parameter selection in the SKR denoising method
presented in [16]. In fact, the reason is logical considering the origin of S: the
noise left by SKR in uniform zones is structured and the coherence of its phase
makes S prefer less denoised images than Q.

4 Application to Blind Deblurring

Removing blur from a single image is a difficult task. If the blur is linear and
spatially uniform, it can be modeled as a convolution. Several algorithms (see,
e.g., the recent efficient scheme for TV − L2 deblurring proposed in [4]), have
been proposed to invert the effect of this convolution when the blur kernel is
known. Addressing the problem of blind deconvolution, i.e. when the kernel is
not known, is even more difficult, and several solutions have been proposed in the
last decades. In the present paper, we shall consider in particular (for comparison
purposes) the very recent work of Levin et al. [11].

Here, rather than trying to reverse the effect of a convolution, we shall try
to improve the image directly by convolving the blurry image u with a unit-
mass (that is, average-preserving) filter k that maximizes Fu(k) = S(k ∗ u).
Indeed, Fig. 2 shows that, in a parametric Wiener deconvolution, the S metric is
able to select the blur parameter. In [3], Calderero and Moreno made a similar
observation for the SI metric in a context of reverse diffusion. In this section, we
will show that S can be used for non-parametric blind deblurring.
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Fig. 2. These diagrams plot the proposed metric S (left) and the metric Q (right) of
Zhu and Milanfar [16] obtained when applying (in Fourier domain) a H1-regularized
deconvolution filter to a natural image (Yale). The abscissa (ρ) corresponds to the
standard deviation of the supposedly Gaussian convolution kernel. Over the results
obtained for the whole range of ρ, one can see that contrary to Q, S attains a maximum
for ρ = 0.55, which roughly corresponds to the value beyond which ringing artifacts
begin to appear. This suggests that S is able to discriminate ringing, whereras Q does
not.

4.1 Kernels with Compact Support

Algorithm 1 below can be used to optimize Fu on particular sets of kernels k, as
soon as the number of coefficients that define k remains small enough. For exam-
ple, one can optimize Fu on the set of symmetric 5× 5 kernels (12 coefficients),
or on the set of separable symmetric 21× 21 kernels (20 coefficients, or 10 if the
same one-dimensional kernel is used for each coordinate). In general, the results
obtained with Algorithm 1 are good, but some images lead to interesting failure
cases, in particular when regions with highly structured textures or dominant
orientations are present (see Fig. 3). Since the functional Fu is not concave, it
does not necessarily have a unique local maximum, and a reason could be that
Algorithm 1 does not manage to converge to the actual global maximum of the
objective function Fu. However, experiments suggests that the failure is more
likely to be due to an inadequate set of kernels (in particular the set of separable
kernels). To avoid such degenerated cases, and get rid of the small-kernel-support
constraint, we consider in Section 4.2 other sets of kernels for which constraints
are considered in Fourier domain.

Algorithm 1

– Begin with k = δ0 (discrete Dirac kernel)
– Repeat n times

B Define k′ from a random perturbation of k
B If S(k′ ∗ u) > S(k ∗ u) then k ← k′

– Renormalize k to a unit-mass kernel
– Return k and k ∗ u
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original symmetric symmetric separable radial unimodal

Fig. 3. Blind deblurring of the original Room image (left). Algorithm 1 is applied for
two different sets of kernels: 5 × 5 symmetric kernels (second column) and 21 × 21
symmetric separable kernels (third column). The right image is the result obtained
with the method proposed in Section 4.2 (Algorithm 2, µ = 0). We observe that
Algorithm 1 fails in both cases (probably in reason of the large striped texture), while
the radial-unimodal constraint imposed in Algorithm 2 yields a nice-looking result.

4.2 Optimization of a Radial-Unimodal Kernel

Instead of imposing that the convolution kernel has a fixed compact support,
we here consider the set of kernels that are radial in Fourier domain, with a
unimodal profile, which is a plausible assumption for a deconvolution kernel.
More precisely, we assume that the DFT of the restoration kernel kr is given by

∀ξ ∈ Ω, k̂r(ξ1, ξ2) = Lr

(√
2(d− 1)

(( ξ1
M

)2
+
( ξ2
N

)2) )
, (15)

where Lr : [0, d − 1] → R is the piecewise affine interpolate on [0, d − 1] of the
finite sequence r(0) = 1, r(1), r(2), . . . , r(d − 2), r(d − 1) = 0. This sequence is
supposed to be unimodal, which means that there exists a value im (mode index)
that satisfies

∀i < im, r(i+ 1) ≥ r(i) , and ∀i ≥ im, r(i+ 1) ≤ r(i) .

One possible perturbation strategy for this set of kernels consists in the addition
of a uniform random value to a randomly chosen coefficient of r, followed by
a projection on the set U of unimodal sequences (this projection can be com-
puted in O(n2) operations with the Pool Adjacent Violators algorithm [7]). We
observed that with this strategy, moving the mode position was difficult, so we
relaxed the unimodality constraint and incorporated in the objective function
the l2-distance d(r, U) between r and the set U of unimodal sequences. We also
found useful to add the possibility to increase the regularity of the radial profile
r by incorporating a term depending on

‖r‖2H1 =

d−2∑
i=0

(r(i+ 1)− r(i))2 . (16)

Finally, the objective function (to be maximized) is

Fu(r) = S(kr ∗ u)− λ d(r, U)− µ ‖r‖H1 , (17)
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where λ and µ are weighting parameters.
In order to maximize Fu, we used Algorithm 2 below. We observed that n =

10000 was sufficient to ensure convergence on r (the relative changes after 10000
iterations were less than 10−3); moreover, we checked that several realizations of
this stochastic technique led to the same local maximum. The other parameters
were set to d = 20, initial im = 5, a = 0.1, λ = 10000, and µ varying from 0
to 100. Let us comment the choice of im. As soon as several local maxima are
present, the result of an optimization technique may depend on the initialization,
and the natural solution would be to apply the algorithm for all possible values
of the initial mode index. But in a wide majority of cases, we observed that
the result of this algorithm was not depending on this initial value. In a few
cases, two different local maxima could be found, but the higher value of the
objective function Fu was always obtained for im ∈ [d/4, 3d/4]. This is why it
seems empirically sufficient to run the algorithm only once with the initial value
of im in that range.

Algorithm 2

– Initialize r with the piecewise-linear profile such that r(0) = 1, r(im) = 2,
and r(d− 1) = 0.

– Repeat n times
B Pick a random index i ∈ [1, d− 2]
B Draw a random value ε ∈ [−a/2, a/2] with uniform distribution
B Set r′ ← r, then r′(i)← r(i) + ε
B If Fu(r′) > Fu(r) then r ← r′

– Return r, kr and kr ∗ u

4.3 Results

We first used Algorithm 2 with µ = 0 on Room image, and checked that the
failure of Algorithm 1 was avoided (Fig. 3, right).

Then, to produce the results shown in Fig. 4, we took two classical images
(Capitol and Parrots) and corrupted them with a Gaussian blur kernel (width
1 pixel) and an additive white Gaussian noise (variance 1). We then applied
several deblurring algorithms (detailed below) and evaluated their performances
by computing their respective PSNR values with respect to the original clean
image. Notice, however, that for blind deblurring tasks the PSNR value is not
very reliable (in particular because even the original clean image is necessarily,
in some sense, blurry and noisy), and visual inspection is often preferable to
compare the algorithms.

First, we used Algorithm 2 with µ = 0 and µ = 10. We observed that the
results were stable, and that the restoration resulted in a significant sharpness
increase. However, for µ = 0 some low-frequency noise is still visible on uniform
zones. Increasing the value of µ to µ = 10 reduces the residual noise (because
it reduces the amplitude of Lr, that is, the amplification of noisy Fourier coeffi-
cients), but also attenuate some details in textured zones.
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We then compared these results with the state-of-the-art blind deconvolution
algorithm of Levin et al. [11]. One can see in Fig. 4 that Algorithm 2 is more
precise on the fine details of the image, but it also keeps much more noise than
this method. In fact, the result of [11] is really “clean” and has a small Total
Variation, which explains incidentally why its S value is significantly larger com-
pared to Algorithm 2. Notice also that the method [11] is more general, and has
been shown to perform particularly well in the case of a motion blur, while the
radial constraint of Algorithm 2 cannot handle such motion blurs.

Another interesting experiment consists in computing the optimal kernel ko
that maximizes the expected distance between the reconstructed image and the
clean image u0, knowing the parameters (kernel κ and noise level β) of the
degradation process (this is an oracle since neither these parameters nor the
clean image are supposed to be known). One has

ko = Arg min
k

E‖u0 − k ∗ (κ ∗ u0 + βW )‖2 (18)

and if all kernels k were considered, the solution would be given by

∀ξ ∈ Ω, k̂o(ξ) =
κ̂(ξ) |û0(ξ)|2

|κ̂(ξ)|2|û0(ξ)|2 + σ2MN
. (19)

Now, since we only consider kernels whose DFT is built from a radial profile
(linearly interpolated on d points), one can show that the optimal radial profile
is the minimum of a quadratic function and thus can be obtained by solving
a small linear system. In Fig. 5 we can see that the profile of the oracle radial
kernel is unimodal, with a mode at a position which is close to the one estimated
by Algorithm 2. The restored images obtained with this oracle filter are also
displayed in Fig. 4: they are a little more precise on the details, but present a
significant amount of structured noise; indeed, such a noise is not very costly for
a l2 risk function. This is somehow reassuring: this shows that the structured
noise also appearing with Algorithm 2 (in particular with µ = 0) is truly a limit
of techniques based on linear filtering.

5 Conclusion

We introduced a new variant of the GPC and SI image quality metrics, that can
be computed four times faster than SI. This new index S provides a sharpness
measure that can be used in a stochastic optimization framework to achieve blind
deblurring through linear convolution with a radial unimodal kernel. Though suf-
fering from the limits of linear filtering, the obtained results are convincing, and
visually similar to the best possible ones (oracle) obtained by such an approach.
The extension to motion blur kernels could be an interesting generalization, as
well as the use of more sophisticated (non-linear) restoration techniques to make
the best usage of the selection performances of the S metric.

Acknowledgments. This work has been supported by the French National
Research Agency under grant ANR-09-BLAN-0029-01.
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Original Blurred and noisy input Levin et al.
S = 359 PSNR = 25.2, S = 79 PSNR = 24.2, S = 218

Oracle output Deblurred (µ = 0) Deblurred (µ = 10)
PSNR = 31.0, S = 144 PSNR = 28.8, S = 185 PSNR = 27.7, S = 160

Original Blurred and noisy input Levin et al.
S = 727 PSNR = 30.5, S = 140 PSNR = 32.7, S = 591

Oracle output Deblurred (µ = 0) Deblurred (µ = 10)
PSNR = 36.0, S = 370 PSNR = 24.8, S = 440 PSNR = 34.2, S = 394

Fig. 4. Blind deblurring of a degraded version of Capitol and Parrots images (Gaussian
blur of width 1 pixel plus Gaussian noise with variance 1). We present in each case
the original image, the blurred and noisy input, the result of Levin et al. algorithm
[11], the oracle output (best possible result obtained by a radial unimodal convolution
filter) and the results of Algorithm 2 with µ = 0 and µ = 10. The PSNR values are
computed in each case with respect to the original image.
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Fig. 5. Different radial profiles (oracle, and Algorithm 2 with µ = 0 and µ = 10)
obtained on images Capitol (left) and Parrots (right).
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