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ABSTRACT. We propose a generalization of a classical result on random Fourier series, namely the
Billard Theorem, for random Fourier series over the d-dimensional torus. We provide an investigation
of the independence with respect to a choice of a sequence of partial sums (or method of summa-
tion). We also study some probabilistic properties of the resulting sum field such as stationarity and
characteristics of the marginal distribution.

AMS 2010 Mathematics Subject Classification. Primary: 42B05, 60G60, 60G17; Secondary: 42B08, 60G50.

keywords: Billard Theorem; Random Fourier series; Multiple Fourier series; Random phase; Random fields.

1. INTRODUCTION

Random Fourier series have a long and rich history. First introduced by Paley and Zygmund in
their series of papers [17] [18] and [19] in the 1930’s, the subject has been drawing attention ever
since. The most prominent work on the matter, along with many applications to harmonic analysis,
has been synthesized by Kahane in [11] and Marcus and Pisier in [16], and many problems are still
open as of today.

The purpose of this paper is to prove the equivalence between different important properties
for multiple random Fourier series. In dimension 1, the celebrated Billard Theorem (as stated in
Kahane’s famous book [11], Theorem 3 p. 58 — the original article by Billard [3] attempts to
prove a slightly weaker result) claims a chain of equivalences between almost sure continuity, uniform
convergence, uniform boundedness, and pointwise convergence of random Fourier series. This chain
is very surprising since it connects properties that are obviously non-equivalent under general non-
probabilistic hypotheses. One interesting point of such a result is that it allows one to define 27-
periodical processes through the law of their Fourier coefficients. Moreover, continuity is proven to
hold over the pointwise limit of the series, and not over some modified processes as it is often the
case in probability theory.

Interestingly, the Billard Theorem has been partially extended in different directions. The equiv-
alence between almost sure uniform convergence and almost sure uniform boundedness for Gaussian
random Fourier series is well known (see e.g. [13] Theorem 13.4). Most notably, the same equiva-
lence for Fourier series on any compact group has been proven in [8], without assuming the Fourier
coefficients to be Gaussian. However, a proof of an extension of the whole chain of equivalences to
the case of Fourier series on the d-dimensional torus (for d > 1) was missing. This paper proposes
to extend the techniques introduced by Kahane in order to provide such a proof.

In order to state such an extension, we shall write our hypotheses in Section 2. In Section 3, we
introduce a notion of convergence for non absolutely summable sums taken over Z¢ and claim a result
of independence with respect to the variations of this notion. This independence is largely based on
the It6-Nisio Theorem [10]. In Section 4, we state and prove an extension of Billard Theorem to the
d-dimensional torus. Moreover, we discuss direct generalizations which include the Gaussian case.
In Section 5, we study the law of the resulting process under the hypothesis of uniform convergence
of the partial sums of the random Fourier series.
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2. NOTATIONS AND HYPOTHESES

2.1. Notations. Throughout the article, we consider (2, F,P) a complete probability space, and
T? := R?/277Z% the d-dimensional torus over which we consider the usual Lebesgue measure. We
are interested in real stationary centered second-order processes defined on T¢. Our purpose in this
article is to define such processes through the law of their random Fourier representation. For any
function f in L?(T%) with real or complex values, let us write the Fourier coefficients

(1) Foi=<fien>= [ f(t)e™dt
Td

where e, : t — " for all n in Z?% (a - b denotes the canonical inner product in R and < g, h > the
canonical Hermitian inner product in L?(T9)).

Let X : Q x T? — R denote a second-order process, i.e. such that X(-,¢) (often written X (¢) in
the following) is in L?(Q) for all ¢ in T¢. Moreover, X is assumed to be centered, i.e. such that
E[X(t)] = 0 for all ¢, and weakly stationary, i.e. such that Cov(X(s), X (¢)) only depends on ¢ — s.
In particular, E[X (#)?] < oo and this quantity does not depend on t. Thus, thanks to Fubini-Tonelli
Theorem, it follows that the sample paths of X belong almost surely to the space L?(T?) of square
integrable functions. Hence, for some real non-negative random variables (A,,),,cz« that are almost
surely in [2(Z9) and (®,,),,cz¢ random variables in R/27Z, one can write

@) X(w, L2 Td) ZA 1<1>n )

almost surely (recall that (ey,),,cza is a Hilbert basis of L?(T%)). In other words Xn(w) = Ap(w)ei®r ).

However, (2) does not hold a priori in the sense “almost surely for all t in T%. Thus, defining
a second-order process over T? through the law of its random Fourier coefficients is generally not
straightforward. Indeed, two second-order processes Y and Z that have the same random Fourier
representations (}Afn = Zn for all n in Z¢ almost surely) do not necessarily satisfy finite-dimensional
distribution equality (e.g., one could have Y (0) = 0 a.s. and Z(0) = 1 a.s.). Moreover, for any
set of null Lebesgue-measure N C T, there exists a function f in C°(T?) such that the Dirichlet
sums Z __N fnen diverge, as proven by Kahane and Katznelson [12]. Thus, defining a process
unambiguously only through its Fourier coefficients can turn out to be difficult.

2.2. Two Strategies to Define a Process through its Fourier Coefficients. There are several
ways to overcome these difficulties. One strategy consists in restricting our study to processes with
continuous sample paths, since continuous functions with identical Fourier coefficients (hence L?(T¢)
equivalent) are equal everywhere. Since the inclusion of CO(T¢) into L2(T?) is strict, we shall seek
conditions for a random family of Fourier coefficients to represent a continuous function almost
surely. Another advantage of this strategy is that processes with sample paths that are almost surely
in CO(’]I‘d) are Radon random variables, and thus there is equivalence between equality in law as
random variables in the Banach space C°(T?) and equality in finite-dimensional law (see Ledoux and
Talagrand [13] p. 46).

Remark 1. In the following, when considering the law of a random function that is almost surely
in CO(T?), we shall consider its finite dimensional law or the law of the entire process indifferently.

Another strategy would be to consider the pointwise convergence of partial sums and focus on
random Fourier coefficients that yield convergence everywhere almost surely. For that matter, a
sequence of partial sums or “method of summation” needs to be specified. Indeed, it can be the
case that for the same Fourier coefficients (ay),czq, a sequence of partial sums (3, c 4, an€n)ken is
convergent almost everywhere and another sequence (3, By anen)ken is divergent on a set of positive
measure. This has been pointed out by Fefferman in [7] and [6] for the case d = 2.

2.3. The Billard Theorem in Dimension 1. In this article, we focus on random Fourier coeffi-
cients that have the following properties:
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o Hi: “(An)pezd = (an)pezd is a deterministic, non-negative, even (a_,, = a, for all n in Z%)
square summable family with ag = 0.”

e Hs: “(®,),cza is a pure phase noise field, that is for all n in Z?¢, ®_, = —®,, (modulo 27)
almost surely, ®,, has uniform distribution over R/27Z and (®,,),c4 are independent for all
A C Z% such that A and —A do not intersect.”

Interestingly, under the hypotheses H; and Hs, the two strategies turn out to be equivalent, as we
shall see in the Section 4. This generalizes the Billard Theorem (see Billard [3] and Kahane [11] p.
58), obtained in the case where d = 1, stating that under hypotheses #; and Hg, the conditions

(i): w-a.s. convergence everywhere of the Dirichlet sums (Zﬁ:_k Ap(w)elmtt@n@)y,
(ii): w-a.s. uniform convergence of the Dirichlet sums
(iii): w-a.s. boundedness of the Dirichlet sums

(iv): w-a.s. existence of a continuous function X with Fourier coefficients (A, (w)e/("+®n())

are equivalent.

2.4. Discussion on the hypotheses. The evenness hypothesis in H; is equivalent to considering
only real-valued processes. As we shall see in Section 5, assuming that (A;),cz¢ are deterministic is
equivalent to considering only second-order processes with a deterministic autocorrelation function.
We shall also consider relaxations of this hypothesis in Section 3.

Furthermore, the set of hypotheses H; and Hsz can also be interpreted as an asymptotical extension
of an image processing model (d = 2) for texture synthesis. Indeed the random phase noise model
(first introduced by van Wijk [21]) has recently drawn a lot of attention, see e.g. Galerne et al. [9].
In a nutshell, this model of texture synthesis defines a random field over the discrete 2-dimensional
torus T = (Z/M1Z) x (Z/M>Z) by taking the inverse discrete Fourier transform of (a,e!®"),c7 where
the following hypotheses are satisfied:

o Hi: “(an)ner is non-negative and even (a—, = a, for all n in 7)”;

o Hi: “(Pn)ner is a finite pure phase noise field: for all n in 7', ®_,, = —®,, (modulo 27)
almost surely, ®,, has uniform distribution over R/27xZ and (®,),ec4 are independent if A
and —A do not intersect.”

This model is very well suited for modeling an important class of textures, namely micro-textures
(see Galerne [9]). Aside from generalizing to any dimension, our analysis consists in taking into
account not only band-limited signals but also signals with an arbitrary (maybe not compact) Fourier
spectrum support. This allows a much greater degree of irregularity, an important feature for some
classes of stationary signals.

3. METHODS OF SUMMATION IN Z¢%

As we shall see in the next section, one of the difficulty in extending Billard Theorem to the case
where d > 2 is that there is no straightforward equivalent of the canonical Dirichlet sums. In other
words, if d > 2, there is no increasing sequence of subsets of Z?, say (Ax)ren, such that any other
increasing sequence of subsets of Z¢, say (B )ren, is also a subsequence of (Aj)ren. This has been
a major difficulty for generalizing Carleson’s theorem in all finite dimensions, as discussed by Ash
and Welland in [1], Fefferman in [7] and [6] (see also [20]), and more broadly for the study of Fourier
series in multiple dimensions. In the following, we shall focus on increasing sequences of finite and
symmetrical subsets of Z%. This assumption combined with hypotheses 1 and Hs allows us to focus
on real functions.

Definition 1. (Ay)ren is said to be a (symmetrical) method of summation over Z2 if

(1) for each k, Ay, is a finite subset of Z% (such that —Ay = Ay );

(2) for each k, Ay, C Agy1 ;

(3) Upen Ax = Z7.
Given a Banach space B, a family (xy,),cz4 of elements in B is said to be summable according to
(Ak)ken if ZneAk Tn converges in B as k — oo.

Remark 2. A method of summation can be seen as a subsequence of an ordering sequence over Z¢.
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Let us consider (C°(T9), || - |ls) the Banach space of all continuous functions over T¢ endowed
with the uniform convergence topology.

Remark 3. Under Hypothesis Ho, for each n # 0 in Z%, t — cos(n -t + ®,) is a symmetrically
distributed random variable in C°(T%). So Hypothesis Ho implies that for any symmetrical method of
summation (Ag)ken, the incremental partial sums t — ZneAkH\Ak ane' ) gre independent and
symmetrically distributed.

The following result builds upon this remark and allows us to overcome the difficulties that arise
with sums over Z<.

Proposition 1. Let (Ay)ren be a symmetrical method of summation in Z%. Assume that, almost
surely, the sequence of functions

(3) Sap it ) ane
neAy

converges uniformly (resp. is uniformly bounded) on T¢ as k — oo and call S 4 its limit. Then, under
the hypotheses Hi and Ha, for any other method of summation (By)ken, the sequence of functions

(4) Sp, 1t Z ape it en)
neBy,

converges uniformly to S4 (resp. is uniformly bounded) on T¢ as k — oco.

Proof. We first prove the claim for uniform convergence. Notice that each sum over a symmetrical
subset £ C Z¢ such that 0 ¢ £ satisfies

(5) Z ape it en) — Z an cos(n -t + &,)

ne&é neé

for every ¢ in T¢, thanks to #; and Hy. Moreover, thanks to Ha, t + cos(n -t 4+ ®,,) are symmetrical
random variables and thus so are t +— ) o ane™t+®n) - Hence, for each k > 2, Sa, = Sa, +

ZI;;(l) SA,i1\4, 18 a sum of independent symmetrical random variables in the Banach space CO(T?).

Proposition 1 can be deduced as from a well known consequence of the Lévy-Ito-Nisio Theorem
(see [10] or [13]) that we recall here. If (Y;)ren is a sequence of independent symmetrical random
variables in some Banach space (B, | . ||), and if Sy denotes S 5, V;, then (see e.g. [13] p. 48 and
Theorem 1 in [11] p. 13), the following conditions are equivalent:

(1) (Sk)ken converges almost surely
(ii) (Sk)ken converges in probability
(iii) there exists some subsequence (S, )pen that converges almost surely.

We apply this result to the Banach space of continuous function (C°(T%), ]| - ||oo)-

Notice that, since A, C Agq1 and Jyeny Ax = 7%, for any finite subset £ C Z¢ one has £ C A
for k large enough. Let us define a new method of summation (ABj)ren by induction. ABy =
Ao, ABy = ml,ABogBl By, ABy = ml,ABlgAz A;, and by induction ABy, = ml,Ang,lgAl A; (resp.
ABopi1 = ﬂl,AnggBl B;) for all k in N. Notice that this reasoning provides us (p)ren and (gx)ren,
two strictly increasing sequences of integers such that ABgy, = A, and ABs,y1 = Bgy,. Moreover,
(ABk)ken is clearly a symmetrical method of summation.

Since (S4p,, )ken is a subsequence of (S4, )xen, it converges almost surely in CO(T?) to S4. Hence,
thanks to the consequence of Lévy-Ito-Nisio Theorem mentioned earlier, (S4s, )ken converges also
almost surely in CO(T%) to S4 thanks to the uniqueness of limits. It follows that (S4p,,.,,)ken
converges also almost surely in CO(T¢) to S 4, as a subsequence of (S AB, )ken- Thus, since (S4g,,.,, )keN
is a subsequence of (Sp, )ken, the latter converges also almost surely to S4 in C°(T¢), thanks to the
same consequence of Lévy-It6-Nisio Theorem. Thus (5S4, )ken,(S8,)ken and (Sas, )ken converge
simultaneously to the same limit almost surely.
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The proof for boundedness uses a slightly different consequence of the Lévy-It6-Nisio Theorem.
Namely with the same hypotheses and notations, the following propositions are equivalent (see e.g.
Theorem 1 in [11] p. 13):

(vi) (Sk)ken is bounded almost surely
v) there exists some subsequence (S, )pen that is bounded almost surely.
/P

Assume that (S, )ken is almost surely bounded in C°(T?). Then, so is (Sas,, Jken as a subsequence
of (S, )ken. Hence, thanks to the consequence of Lévy-It6-Nisio mentioned earlier, (S, )ken is also
bounded in C°(T?) almost surely. Hence, (Sap,, ,)ken is also bounded in C°(T?) almost surely, as a
subsequence of (S 45, )ken. Thus, since (SAB%H)keN is a subsequence of (SB, )ken, the latter is also
bounded in C°(T¢) almost surely, thanks to the same consequence of Lévy-Ito6-Nisio Theorem. O

An important consequence of Proposition 1 is that the choice of a method of summation does not
matter for the uniform convergence or for the uniform boundedness. As long as uniform convergence
(resp. uniform boundedness) happens almost surely for some method of convergence, it also happens
almost surely for any other method of convergence and the limit is the same.

4. BILLARD’S THEOREM IN ARBITRARY FINITE DIMENSION

We can now turn to an extension of Billard’s theorem to the case where d > 2 (recall that the
sequence (S 4, )ken has been defined by equation (3)).

Theorem 1. Under the hypotheses H1 and Ha, the following conditions are equivalent:
(i) almost surely, there exists a continuous function X, such that (a,e'®)
coefficients of X ;

(ii) there exists a method of summation (Ag)ren such that, almost surely, (Sa,)ren converges
uniformly;

(iii) for all methods of summation (Aj)ken, almost surely, (Sa,)ken converges uniformly;

(iv) there exists a method of summation (Ag)ken such that, almost surely, (Sa, )ken is bounded;

(v) for all methods of summation (Ay)ken, almost surely, (Sa,)ken i bounded;

(vi) for all methods of summation (Ay)ren, almost surely, for all t in T¢, (S4, (t))ken converges.

nezd are the Fourier

The fact that (i1) < (iii) (resp. (iv) < (v)) follows from Proposition 1. Moreover, (iii) implies
clearly all the other statements.

Remark 4. A somewhat weaker equivalence between boundedness and continuity, which depends on
a method of summation, was proven with much more generality for any compact group instead of T¢
by Figa-Talamanca in [8].

Definition 2. Under any of the equivalent conditions of Theorem 1, the limit X in C°(T?) is called
a random phase noise (RPN) process.

The remaining of this section is dedicated to the proof of Theorem 1.
4.1. Proof of (v) = (iii).
Proposition 2. Let (Y3)ren be a sequence of independent random variables with value in CO(T?).
Assume that
(1) for each k € N, Yy, is symmetrically distributed i.e. —Y} and Yy have the same law ;

(2) for each k € N, Yy, is stationary i.e. Yi(- —7) and Yy have the same law for any T in T%;
(3) the sequence (3 y<; Yk)ien is almost surely bounded in CO(T?), according to the || - ||oo noOTm.

Then, almost surely, (3_;.<; Yi)ien converges in CO(T?).

Proposition 2 is a straightforward extension of Proposition 13 p. 55 in [11] and the proof is post-
poned in Appendix. We can now prove that (v) implies (%ii). Assume (v), and recall that under Hy-
pothesis Hz, Remark 3 ensures that the incremental partial sums Y := ¢+ " Ap1\ A apei(mtt®n)
satisfy the three hypotheses of Proposition 2. Thus, for any symmetrical method of summation
(Ap)ken, (Sa,)ken converges almost surely in C%(T¢) and (iii) holds.
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The end of this section is largely built upon ideas found in Kahane [11] pp. 48 and 59-60. However,
we found the details of our proof to be significantly different from the case d = 1, so we provide them
in the core of the text.

4.2. Proof of (vi) = (iv). To prove that (vi) implies (iv) we need to prove more intermediate

results. The first one deals with trigonometric polynomials. For a trigonometric polynomial P
defined on T¢ by

(6) P(t) =" bpe™

where b, # 0 is in C for each n in the finite set £ C Z?, we define the max-degree of P as
d(P) :=
(7) (P) := max|ne

where ||s := max; |z;| denotes the max norm for z in R%. In the following we denote By, (t,7) =
{s € T |t — s|oo < 7} the projection onto T¢ of the R? open ball of radius r and center ¢ with respect
to | - |oo onto T<.

Proposition 3. Let & be a finite subset of Z¢ and P(t) =, ¢ bpe?t90) be a complex trigonomet-
ric polynomial defined on T%. Assume that there exists ¢ > 1 in N and | in Z% such that € C |+ qZ%,
so t — |P(t)] s 277T—pem'odic in every direction. Assume moreover that the mazx-degree of P is less
than K where K > JL.

Then for every radius € > 27 /q, and center t in T, there exists t' in By (t,e) such that

(8) Boo(t',€') C Boo(t, )
with &' > (2K)™! and
(9) [P(s)| = 1/2 ]| P o

for all s in Boo(t',€").

The proof is postponed in Appendix. We now state a result of symmetrization, useful for the
remainder of the proof of Theorem 1.

Lemma 1. Let (an),ezd and (®p),czd satisfy to Hypotheses Hi and Ha. Let (Ag)ren be any method
of summation and B be a subset of Z¢. Assume that there exists a random variable T such that with
non-zero probability (resp. almost surely) the complex-valued sequence

(10) Z anei(n-T+(I>n)

neALNB kEN

diverges. Then there exists B* a symmetrical subset of Z¢ such that with non-zero probability (resp.
almost surely) the real-valued sequence

(11) Z anei(n~T"r¢’n)

neANB* keN

diverges.

We can now prove the implication (vi) = (iv). Let us assume that (vi) holds and that (iv) does
not, and let us aim at a contradiction. Let (Ag)ren be any method of summation. The sequence of
partial sums (S, )ken is not almost surely bounded in C°(T?). Hence, the event

(12) E = {w € Q; (S, (w))ren is bounded in C°(T%)}

has probability less than 1. For each k, define the o-algebra Fj, generated by {e/®»},,c A, and notice
that Fr, C Fry1. The event E belongs to the asymptotic o-algebra of (Fy)ken, since E is independent
of any finite subset of the random variables (¢!®"), ;4. Thanks to the independence hypothesis in
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H2, the zero-one law applies and P(E) = 0, which in turns implies that, almost surely, (S, )ken is
unbounded in C%(T%).

Symmetrization. In order to obtain a contradiction, we shall construct B a (non-random) subset of
7%, a method of summation (Ay)ren and a random variable 7' such that, with non-zero probability,

(13) the sequence Z ap ! THen) does not converge as k — oc.

neBNAg kEN

Thanks to Lemma 1, there shall exist B* a (non-random) symmetrical subset of Z¢ such that, with
non-zero probability,

(14) the sequence Z ap e (VT H+®n) does not converge as k — oo.
neB*NAL keN
Let us consider the random Fourier coefficients (£,a,e®"),,cz4 where &, = 1 whenever n € B* and
ey, = —1 otherwise. Thanks to Ha, this family has the same law as (a,e'®"), czq. Hence,
(15) Sa, it Z ap ettt ®en)
neAyg

has the same law in the Banach space C°(T%) as
(16) S:Ak A Z Enane it en)
neAg

and since (54, )ken is assumed to converge everywhere almost surely, (S’ )Jken shall also converge
everywhere almost surely. Hence, the sum

(17) Sap+ S it>2 Y ape’mtten)
neB*NA

shall in turn converge everywhere almost surely. This is contradictory with (14).

Construction. Let us now build such a set B and a method of summation (Ag)gen. Let Ap = {n €
7% |n|so < k}. Let us define the events

(18) EY ={we € sup | S4,(w,-) [loo> 2}
VS

for each k in N and notice that E,il) C E,(izl

in CO(T9), P(E,gl)) — 1 as k — oo, so there is an integer ki such that the probability of the event
E,S) is larger than 1/2. Furthermore, whenever w belongs to E,(CP, thanks to Proposition 3 (with
g=1, K =k and ¢ > 7 s0 B (t,¢) = T?), there exists a random ball U (w) = B (T1(w), €1) with
radius 1 = (2k;)~! such that

(19) sup [S4, (0, )] > 1
J<k1

for each k. Since almost surely, (S4, )ken is unbounded

for all t in Boo (T (w),e1). For w e Q\ E,(;) we set Uy (w) = T¢. Finally, we define By = Ay, .
Define q; = [27/e1] = [4mk;]. Let us consider the partition of Z%\ Ay, into ¢f subsets

(20) Cri=(+qZh)\ Ay,

for each I in {n € N% |n|s < q¢1}. For k > ki, there are (2¢; + 1)¢ random sequences of functions
(SU") e defined by

(21) S = 3 apett)
nGAkﬂCLZ
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for each [ in {n € N%; |n|s < ¢1} and they satisfy

1
(22) > s = Sa\Ag, = SAp — SAy,

le{neN%;|n|c<q1}

for k > k1. Since (S4,\p,)ken is almost surely unbounded in C%(T9), so must be at least one of the

sequences (S,E,l’l)) keN- Thus for at least one of these sequences, say (S,il’ll)) kEN,

(23) P((S,il’ll))keN is unbounded) > 0.

Thanks to the zero-one law, (S,(Cl’ll))keN must be unbounded with probability 1. For each k > k1,
define the event

(24) B = {weq| sup || S8 (w,) o> 2}
k1<j<k

and notice that E,(f) C E,(i)l for all £ > k; in N. Since IP’(E,(f)) — 1 as k — oo, there exists an integer

k2 (non-random) such that ]P’(E,g)) > 1/2. Thus, whenever w belongs to Eg), thanks to Proposition
3 (invoked with ¢ = ¢q1, K = ky and € = £1) we know that U (w) = B (T1(w), 1) contains a random
ball Us(w) = Boo(T2(w), e2) with radius e3 = (2k2)~! such that

(25) sup Z ane! el 5
k1<j<ko nECLllﬁAj

for each ¢t in B(Ts(w),e2). For w in 2\ E,(;), we choose Us(w) = Uj(w). Finally, we choose By :=
Cl,l1 N .AkQ.

Induction. By induction, using the same arguments (Proposition 3 invoked with ¢ = ¢,, K = kp41
and € = ¢,), we construct

e two increasing sequences (kp)pen and (gp)pen with values in N and a real sequence (gp)pen
such that

(26) Vp, gp = [27/ep| = [4mky]

e a sequence (Ip)pen with values in Z? and a sequence (B,),>1 of finite subsets of Z¢ such that
(27) Byi1 © (p+42%) 1 (Ag, | Ay,)
e a sequence of events (E,gi ))pGN with probability at least 1/2 such that

(28) Yw € E,gz), sup  sup | Z an e Pn)| > 9
kpgjgkp+1 tETd nEBpﬂAj

a sequence (T},)pen of random variables with values in T¢
a sequence of decreasing random open balls (U, )pen defined by either Up(w) = Boo (T (w), €p)

ifwe E,i’;), or Up(w) = Up—1(w) otherwise. such that

(29) Yw € E]gp)7 Vit € Up(w), sup | Z anei(n-t+¢n)| S 1.
! kySi<koe pepA,
Let us denote U*(w) = ﬂp Up(w). Since the sets (Bp)pen are disjoint, and thanks to Ha, the

events (E;(Ci))peN are independent. Moreover since IP’(E,?;)) >1/2, %, IP(E]S};)) = oo and thanks to

the Borel-Cantelli Lemma, almost surely, P(liminf, E,g’; ) ) = 1. Hence, w-almost surely, there is one
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and only one (random) point 7*(w) in U*(w). Define B = (J, By. By construction, almost surely,
the complex sequence

neBNAg keN

is not Cauchy since T™(w) belongs to each Up(w) and (29) holds for all p in N.
We conclude the proof of the implication (vi) = (iv) by noticing that the method of summation
(Ar)ken, the random variable T* and the subset B C Z% satisfy the condition (13).

4.3. Proof of (i) = (ii). Define |z|; = Z?Zl |z;| (z in R?) and let us choose Dy, := {n € Z%; |n|; <
k} (k in N) as a method of summation. We consider the (2d — 1)-Cesaro means of the sequence of
functions (SDk)kGN

K
1 k—Il+2d—2
D — i
(31) Clad-1) = (FPE ) > ( k1 )SDZ
k) i=o

for k in N as introduced in [2]. One easily checks that the sums Sp, , |\p, are symmetrically distributed
and independent. Moreover, notice that the sums C@ d—1,) CAN be rewritten as

k—1
(32) C(Ddel,k) = Z b’f,lSDzH\Dl
=0
(kfl+2d71)
for each k, with by = ﬁ for I < k (and by := 0 otherwise). The coeflicients (by )i ien

k
satisfy the properties of a matrix of summation, namely that by; — 0 as [ — oo and by; — 1 as
k — oo (see Kahane [11] p. 12). Since (i) implies that C(D2 d—1,pconverges uniformly as proven by
Berens and Xu in [2]), Theorem 1 p. 13 in [11] yields that (Sp, )ken converges uniformly almost

surely, and thus (4) holds.
This concludes the proof of Theorem 1.

4.4. Discussion and Extension. Our extension of the Billard Theorem can be generalized to
weaker hypotheses. For instance, consider the Hypothesis

Hi*: “(Ap)peza is such that (A,)neca are independent whenever A and —A do not intersect ;
(Ap)neza is independent of @ ; E[>",4 A2] < 0o ; Ap = 0 almost surely”.
Write

(33) Sap(w,t) =Y Ap(w)el@n)tni)

neAyg
for all w in  and ¢ in T¢. The following result can be easily deduced from Theorem 1.

Corollary 1. Under the hypotheses Hi* and Ha, the the chain of equivalence of Theorem 1 holds
with A, instead of an, and Sa, defined by (33).

Proof. To prove that, notice that E[> ;4 A2] < oo implies that (A,),cze is almost surely square
summable, and thus almost surely, Theorem 1 can be applied conditionally on F(A,,n € Zd), the
o-algebra generated by (Ay,),cz4, since ® is independent of F(A,,n € Z%). O

Remark 5. This is of particular interest since Gaussian processes satisfy Hi* and Ho.

Notice however that Hypothesis Hy cannot be much relaxed. As argued by Cohen and Cuny in
[5], the symmetry assumption on A,e!®" for each n cannot be replaced by E[A,¢/®"] = 0 for each n.
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5. PROPERTIES OF RANDOM PHASE NOISE PROCESSES

Throughout this section, we assume both hypotheses H; and Hs to hold. Moreover, we assume
the equivalent hypotheses in Theorem 1 to hold, and thus the sample paths of the random phase
noise field X are almost surely continuous. Explicit conditions (e.g. on the coefficients (ay),cz4)
have been thoroughly studied in the case d = 1, e.g. in Kahane [11], Chapter 7.

5.1. Stationarity.

Proposition 4. A random phase noise (RPN) process X is a centered second-order process, with
covariance

(34) cx(t) = Cov(X(t + s) Z a; cos(n - t)

for all s and t in T? (weak stationarity). Moreover, X is strongly stationary in the sense that

(X(1))sera and (X (t + 7))eqa have the same law for any T in T

Finally, the autocorrelation of X defined as
1

(35) Rx(t) = @)

/ X)X (t+7)dt, T € TY,
Td

is deterministic and a.s. equal to cx.

Proof. For each t in T?, X(t) is the almost sure limit of a centered martingale (X (t))ren (Xx(t) =
D oneA, ane™ T ®n for any method of summation (Ag)ken), that is bounded by 3, .54 a2 in the space
L?(f2), so it is a centered random variable in L?(€2). It follows that

(36) E[X(s)X(t)] = E[X(s)X(t)] = lim E[Xj(s) =) ale™t = 3" a2 cos(n- (s — 1))

k——+o0
nezd nezZd

holds thanks to Hj. R
Recall that the Fourier coefficients of ¢ — X (t — 1) are (em'T)?n)neZd. By the definition of X,, and

Ha, (e TX. n)nezd and (X, Jneze have the same finite dimensional law. Thus, X and X (- — 7) have

the same finite dimensional law and the same law thanks to the almost sure continuity (Remark 1).
Finally, thanks to Parseval identity,

1 1
37 — X()X(t dt = —— X(t)X(t
(37) (27r)d/w ()X (t+7) @) o ()X (t+7)d Za cos(n - 7)
neza
holds for all 7 a.s., so we can conclude that Rx = cx a.s. O

Hence, a single sample path contains enough information to fully determine the covariance and
the law of the entire process, which can have various applications. For instance, one only needs one
sample path to get as many independent sample paths with the same law. Interestingly, a second-
order process that has a deterministic autocorrelation also has deterministic Fourier modulus.

Proposition 5. Let Y : Q x T? = R a centered process with sample paths almost surely in CO(T).
Assume that there exists a (deterministic) continuous even function p : T¢ — R satisfying

(38) Ry =p

almost everywhere, almost surely. Then, there exists a unique sequence or non-negative real numbers
(an)peza and a random phase field ® such that

(39) Y(w,t) = Z ap et On (@)
nezd

holds in L*(T%) almost surely.



THE BILLARD THEOREM FOR MULTIPLE RANDOM FOURIER SERIES 11

Proof. Almost surely, we can write
2md .
(40) Viw) "L 3 Ap(w)eitn@e,
nezd

for some random variables (Ay,),cz¢ and (®y,), ez, with A, chosen non-negative for all n. Thanks
to Parseval identity, we can rewrite

(41) Ry(u)(r) = (271T)d [ Y@.Ywt )= 3 Auw)e
nezd

and

(42) o) = 3 et

for some non-negative Fourier coefficients (by,),,cz¢ thanks to Herglotz Theorem. Take a,, = v/b, for
each n, and conclude thanks to the uniqueness of Fourier coefficients. ]

Remark 6. The result also holds under the assumption that the sample paths are almost surely in
L2(T%).

5.2. Marginal laws. The law of the marginal, say X(0) = > 74 a,cos(®,), has already been
studied by Blevins in [4] for series with a finite number of terms. We complete this study to fit our
more general case of an infinite series that converges in L?(£2). Let us recall that in 1 we assume that
ap = 0. Then, one can compute the normalized kurtosis. Indeed, E[| X (0)[*] = Y, .54 a? according to
Proposition 4 and thus E[| X (0)[*]? = (3,74 a2)?. Moreover recall that for ® uniformly distributed
in R/27Z, Elcos?(®)] = % and E[cos*(®)] = %, and thus for A C Z¢ such that AN —A = @ and
AU—A =Z%\ {0} (so X(0) =2",,c 4 ancos(®,))) and

E[\X;O)\‘l] = Z atB[cos(®,)Y] + 3 Z a?a? E[cos(®;)?|Elcos(®,, )?]

neA (I,m)eA2l#£m
3 3 3 3
(9 Syasd oy ge-iyar-iya
neA (I,m)eA2,l#£m neA neA

so the kurtosis 2 of X (0) is given by

4 4
(44) 52_w:3_§ ZneAan _3_3 Znezdan

- E[x (o) 2(Xneaan)® (Xneza a3)?

which proves that X (0) is not Gaussian.

<3,

Remark 7. Actually X(0) is not infinitely-divisible, and thus not Gaussian. Indeed, thanks to the
independence hypothesis on ® in Ho, one easily checks that the characteristic function of X (0) is the
(maybe infinite) product

(45) E[e“XO] = T] E[e ¢ o)) = TT Jo(2an€)
ncA ncA

with Jy the Bessel function of the first kind, which admit zeroes on the real line. Hence, the character-
istic function of X (0) cannot be the characteristic function of an infinitely divisible random variable
(see Theorem 5.3. p.108 of [15]).

Proposition 6. X (0) is sub-Gaussian. More precisely, for all A in R,

(46) E[?XO)] < N Enezi on,
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Proof. First, notice that a centered random variable Y bounded by one is sub-Gaussian. Indeed, let
A € R, then eV < cosh(\) + Y sinh()\) since |Y| < 1 and 2 + e is convex. Then, using the fact
that Y is centered we get E (e™") < cosh()) < eN/2. Now let (®p)peze be a a pure phase noise field.
For a finite sum Xj(0) = >2), <) @n cos(®y), thanks to the independence hypothesis for a subset

A C Z% such that AN —A =@ and AU-A=Z%\ {0}

(47) E[GAXk(O)] _ H E[EAQQ" cos(@n)] < H e()\Qan)2/2 _ eAZZ\nlooSk a2
neA,|n|eo<k neA,|n|eo<k
holds for all A € R, since (cos(®;,)),,c 4 are independent centered random variables bounded by one.
For a general sum X (0) = Y 74 a, cos(®y,) where (an),cz4 is a square summable family, let A be
any real number and notice that E[e?*(0)] < e Dinloo<k 9 < A Tnezd 90 Moreover X(0) — X(0)

almost surely, thus e*¥*(0) — ¢AX(0) almost surely and we can apply Fatou’s lemma and conclude
that (46) holds. O

Proposition 7. Assume that (ay),cza is a family satisfying Hi and Ha, such that
(1) there exists n1, ng, ng in Z¢ with an, anyan, # 0 ;
(2) {nl,ng,ng} N {—nl, —nNg, —713} = J.
Then X (0) admits a density function that is uniformly continuous and bounded over R.

The proof is postponed to Appendix. Interestingly, in the cases where only one or two coefficients
are non-zero, the resulting Random Phase Noise process has an unbounded density function.
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6. APPENDIX: PROOFS

6.1. Proof of Proposition 2. Proposition 2 is based on Proposition 13 pp. 55-56 in [11], we provide
a proof for the sake of completeness. Let us first show a lemma, itself based on Proposition 12 p. 55
in Kahane [11].

Lemma 2. Let (uy)ren be a sequence in CO(T9) with real or complex values, such that

(48) limsup || ug ||loo> 0.
k

Let (U},)ren be a sequence of independent random variables uniformly distributed on T¢. Then, almost
surely, there exists T (random) in T? such that

(49) lim sup |ug (T — ¥g)| > 0.
k

Proof. Since limsupy, || ux |[o> 0 by assumption, there exists both some 7 > 0 and a subsequence
(kp)pen such that

(50) | uk, [loo>n

for all p. Thanks to continuity, ug,(t) > 7 for ¢ in an open ball By (t,,€p). Thus, |ug, (t — ¥, )| > n
holds for ¢ in a random open ball Uy, := B (T}, €p) whose center is a random variable T}, := t,, + U,
that is equidistributed on T¢. Moreover (T},)pen is i.i.d. since (Ug)gen is assumed to be 4.i.d.

Now, let us show that limsup, U, is almost surely non-empty (it can be shown that it is actually
almost surely dense). Let ¢ be any point in T<¢, ¢ > 0 be a positive number and denote U := By, (t,e).
For each p, P(U, N U # @) > P(T, € U) = vol(U)/(27)¢ since T, is equidistributed on T¢. Thus
>, P(UpNU # @) = oo, and since the events {w|U,(w) NU # @} are independent, it follows thanks
to Borel-Cantelli Lemma that almost surely U, NU # @ happens for infinitely many p. Thus, almost
surely, limsup, U, # @.

Let us pick some random 7' in limsup, U, and notice that limsup,, |ug, (T — ¥g,)| > 1 almost
surely since 1" belongs to infinitely many U,. This concludes the proof. g
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Let us now prove Proposition 2.

First, let us recall that since for all k& the random variable Y}, (in C°(T%)) is assumed to be symmetric
(by 1.), It6-Nisio Theorem applies. Hence, the series >, Yj converges almost surely in C°(T?) if and
only if any subsequence converges in C°(T¢) in probability.

Let us assume that the conclusion does not hold. Then, there must exist some n > 0 and two
sequences of integers (kp)pen and (k;,)pen such that k, < k;, < k11 for each p and

Ept1

(51) PlI Y Yille>n] >n
ke=kp+1

for all p.
Let (€, Pq/) denote the probability space Q x Qg with P = Pg ® Py, where Qg is a probability
space in which there is a sequence (¥,,),en of i.i.d. random variables equidistributed on T<. Let us

write Z, = ]Z‘:klp 41 Y for all p, and let us consider the series of functions ) Z,(-) and } Z,(- — ¥p)

as random series (in the probability space Q') of elements in C°(T?). Since the Y; (k in N) are
independent and symmetrical (by 1.), so are the Z, (p in N). Since for all k, Y}, and its translates
have the same law (by 2.), Z, and Z,(- — ¥,) have the same law for each p. Moreover, since the
sequence (Y _,«; Yi)ien is almost surely bounded in C°(T?) (by 3.), the series of functions > pZp is
also almost surely bounded.

Moreover (Z,)pen is a sequence of independent variables and Pqo(|| Zp ||o> 1) > n for each p,
and thus 3 Po(|| Zp [[oo> 1) = co. Hence Borel-Cantelli lemma applies and, almost surely (in ),
limsup,, || Zp [loo> 1. As a consequence, almost surely (in '), limsup,, || Z, [|oc> 1. Lemma 2 yields
that almost surely in €, limsup, | Z,(T — ¥})| > 0 for some (random) 7" in T

Let us introduce another probability space Q" = Q' x Q. (Por = Pq @ Py ® P.) and a Rademacher
sequence (gp)ken. We now consider the random series of functions >, Z,(t—Vp) and ), €, 7, (t—¥))
on the space Q”. Since the random functions Z, are symmetric, the partial sums have the same law
in Q”. Moreover, since limsup,, |Z,(T — ¥,)| > 0 almost surely (in Q"),

(52) Z | Zp(T — \ij)|2 =00
p=1

holds almost surely (in ©”). Thus the sequence (33 €,Z,(t — ¥,))nen is almost surely (in Q") not
bounded for some (random) 7', thanks to a classic consequence of Paley-Zygmund inequalities (see
[11] Theorem 1 p. 54).

To conclude, recall that (Zé\;l Zp)Nen is assumed to be almost surely bounded in C%(T?) (in the
probability space £ and thus also in ©”). Finally, notice that Z, and £,Z,(- — ¥,) have the same law
in " and thus (g Z;];V:1 Zp(-—¥p)) Nen must also be almost surely bounded, which is a contradiction.

6.2. Proof of Proposition 3. The proof is a generalization to d > 2 of Kahane’s [11] Proposition
5 p. 49. We begin with a lemma that gives a Bernstein’s inequality for a multivariate trigonometric
polynomial. In the following result, || - || denotes the norm on linear forms induced by |.|oc the
maximum norm over R? and VP(t) denotes the gradient of the trigonometric polynomial P at
point .

Lemma 3. Let K be some positive integer and P a trigonometric polynomial on T with mazx-degree
less than K defined by P(t) =32, <k et en) for all t in T, Then

(53) sup [[VP()|| < K || P [l -
teTd

Proof. Let us denote (6x)1<k<q the canonical basis of R?. Let us introduce for t € T?, 1 < k < d, the
real trigonometric polynomial Qy(r) = P(t 4 rf). According to Bernstein’s inequality one has

[Qhlle < max |- ]| Qx|
oo =
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which involves that
oP ,
()| =1Q%(0)| < K[| P| o,
Oty

and proves (53). O

For completeness, let us mention the following variant of Lemma 3 suggested by a reviewer. It establishes
a similar result for the £ norm of VP when the usual (not maz) degree of P is used (that is, |n|; when
P(t) =3, ane™").

Let K be some positive integer and P a trigonometric polynomial on T® with degree less than K, defined by
P(t)=> 1<k bpeltton) for all t in T¢. Then

(54) [IVP(O)]le2 < K || P [|oc -
Proof: Let w = (e1,...,eq) € {—1,1}%, then for fized t,
Qu(r) =Pt +rw)

is a trigonometric poynomial of degree less than K in one variable (precisely because |n|; < K for n in the
spectrum of P), with sup-norm dominated by that of P. The usual Bernstein inequaliy in one variable then

gives
d
oP
QL) =D erm (| <K | Pllx -
P Oty
Squaring and taking the average over all choices of signs € (using Rademacher variables if one wishes), we
obtain the desired inequality (54). O

We now turn to the proof of Proposition 3. Let ¢ > 27/q and t € T?. The function s — |P(s)| is
27 /g-periodic on each component. Indeed, write £ = {l + qj}jeer (£ C 7%) and notice that

(55) |P(s)| = Z bl+qjei((l+qj)'s+¢n) — i) Z bl+qjei(qj~s+¢n) _ Z bl+qj€i(qj~s+¢n)
je&’ jee&’ jee&’

for each s in T¢. Let ¢’ in T? be such that |P| achieves its global maximum || P ||o at point ' that
may be assumed to be in By (t,¢/2), thanks to the 27 /g-periodicity of s — |P(s)|. For all s in T¢,

(56) |P(s) = P(t')| = P(t') = P(s) =|| P [l —=P(s) < sup || V-P(u) || [t —s| S K[| Plloo [t' — 5|

thanks to Lemma 3, and thus

(57) P(s) 2| P lloo /2
for all s in Boo (t',1/(2K)) = Bo(t',€’). Since K > 5L, € satisfies
(58) g <m/qg<¢e/2

and thus s — | P(s)| achieves its global maximum || P ||, on a point ¢’ such that B (t',&") C Boo(t, €).

6.3. Proof of Lemma 4. Define B, = BN (N x Z41) and B_ = BN (—N x Z4~1). Notice that,
with non-zero probability, at least one of the sequences among (ZneB+m A an e’ T+en)), o and

(Xnes_na, ane'™ )

equal to By or equal to —(B-), such that, with non-zero probability, the sequence (Zj)ren defined
by
(59) 7y = Z ap e T+®n)

neANB’
diverges. Define Xy := Re(Zy) = >_,c 4, npr @n cos(nT+®y) and Yy, := Im(Zy) = >_,,c 4,5 @n Sin(n-
T + ®,,) for all k. With non-zero probability (Xi)ren or (Yi)ren diverges. Let us define the events

wen diverges. Thus, we can define B, a deterministic subset of Z¢ either

(60) E3 = {w]| the sequence (X)ken diverges}
and

(61) ESn .= (| the sequence (Yj)pen diverges}.
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The event
(62) Eqv == B3 UESh

v
happens with non-zero probability.

Since (q’n)neNfol* and (®, + §),enxzd-1 have the same law (direct consequence of Hs), the
events ESY and EST have the same probability. Thus, the probability of the event E3% is non-zero.
We conclude by defining B* = B’ U (—B') and noticing that >, 4 ~p+ ancos(n - T + @) = 2X, for
each k.

6.4. Proof of Proposition 7. Since the law Px ) of the limit X (0) does not depend on a method

of summation (Proposition 1), let us pick one ordering in N x Z3~1 (ng)ren, and rewrite by := ay,
for each k£ € N. For simplicity, let us assume that by # 0 for each k. We may write

3 400
X(0) = Z by, cos(®y,,) + Z by cos(Pp, ) =Y + Z.
k=1 k=4

By independence one has Py ) = Py * Pz. Since the convolution of a probability measure with
an absolutely continuous measure with uniformly continuous bounded density remains an absolutely

continuous measure with uniformly continuous bounded density, it is sufficient to prove that ¥ =
3

Z by, cos(®y, ) admits a uniformly continuous bounded density.

k=1

Let us recall that the density function of bcos(®), where @ is a uniform random variable over R/277Z
1,1 1

and b a non-zero real number, is t — —f(-), with f(¢{) = 1,_; ;)——. Moreover, one easil
bf(b) f(@) ) y

checks that f is in LP(R) for every p in [1,2) and hence so is the density function of the random
variable bcos(®). Let f1 (resp. fo, f3) denote the density function of by cos(®,,,) (resp. b cos(Py,),
b3 cos(P,,)) such that the density of YV is given by f1 * f2 * f3. Recall that Young’s inequalities (see
e.g. [14] p. 99) state that if p, g, r are in [1, 00], such that
(63) Lol !

p q r
and if f € LP(R) and g € LY(R) one has f* g € L"(R) with || fxg [l-<|| f |||l g |l- It follows that
the convolution f; * fo belongs to LP(R) for all p in [1,00), since f; and fp are in LP(R) for every
pin [1,2). In particular it belongs to L3(R). Moreover, f3 belongs to L*?(R) and since 3 and 3/2

are conjugate exponents (1/3+2/3 = 1), (f1 * f2) * f3 is uniformly continuous and bounded (see e.g.
[14] p. 70).
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