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Abstract. In this paper, we propose a method for simulating realizations of two-

dimensional anisotropic fractional Brownian �elds (AFBF) introduced by Bonami and

Estrade (2003). The method is adapted from a generic simulation method called the

turning-band method (TBM) due to Matheron (1973). The TBM reduces the problem

of simulating a �eld in two dimensions by combining independent processes simulated on

oriented bands. In the AFBF context, the simulation �elds are constructed by solving an

integral equation arising from the application of the TBM to non-stationary anisotropic

�elds. This garantees the convergence of simulations as their precision is increased. The

construction is followed by a theoretical study of the convergence rate. Another key

feature of this work is the simulation of band processes. Using self-similarity properties,

processes are simulated exactly on bands with a circulant embedding method, so that

simulation errors are exclusively due to the �eld approximation. Moreover, we design a

Dynamic Programming algorithm that selects band orientations achieving the optimal

trade-o� between computational cost and precision. Finally, we conduct a numerical

study showing that the approximation error does not signi�cantly depend on the regu-

larity of the �elds to be simulated, nor on their degree of anisotropy. Experiments also

suggest that simulations preserve �eld statistical properties.

1. Introduction

In this paper, we address the issue of simulating realizations of a generic class of Gauss-

ian �elds, known as Anisotropic Fractional Brownian Fields (AFBF) and introduced in [9].
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These �elds represent anisotropic extensions of usual fractional Brownian �elds (FBF),

which are themselves isotropic extensions in several dimensions of the famous fractional

Brownian motion (FBM) [26, 29]. Having stationary increments, they are characterized

by a variogram v (see Equation (6) later) satisfying the relation

(1) ∀ x ∈ R2, v(x) =
1

2

∫
R2

∣∣eix·ζ − 1
∣∣2 f(ζ)dζ

for a spectral density of the form

(2) ∀ ζ ∈ R2, f(ζ) = c(arg(ζ))‖ζ‖−2h(arg(ζ))−2,

where ‖ζ‖ is the Euclidean norm of ζ, arg(ζ) is the direction of ζ, and x · ζ denotes the

canonical inner product on R2. Functions c and h are two π-periodic mesurable functions,

identi�ed with functions de�ned on (−π/2, π/2], with ranges satisfying c((−π/2, π/2]) ⊂

R+ and h((−π/2, π/2]) ⊂ (0, 1). When functions c and h are both constant (c ≡ C > 0

and h ≡ H), the obtained �eld corresponds to a FBF of order H.

The simulation of AFBF is an open issue whose complexity is mainly due to both

the non-stationarity and the anisotropy of the �elds. In [41], Stein described a speci�c

method for the simulation of (isotropic) FBF. This method is based on a representation

of the FBF by a locally stationary isotropic Gaussian �eld, which is simulated using

circulant embedding matrix techniques developped in [42]. This simulation is exact and

e�cient on a regular grid. However, no locally stationary representation is available for

general anisotropic �elds so that Stein's method cannot be extended to this situation.

More generic methods based on covariance matrix factorizations [11, 12] can theoretically

be applied to the AFBF simulation issue, but their computational cost is prohibitive

and covariance functions are not known explicitely in the general case. Other methods

based on the discretization of a continous spectral representation of the �eld were used

for the simulation of FBF in [38] and AFBF in [3, 7]. However, due to truncation or

periodization of the spectral representation, the statistical properties of the simulated

�eld does not exactly match those of the theoretical �eld.
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In this paper, we focus on another generic simulation method, called the turning-band

method (TBM) [25, 32]. The TBM essentially reduces the problem of simulating a �eld

in several dimensions to the problem of simulating several processes in one dimension.

Indeed, consider the problem of generating a realization of a target �eld X on a discrete

set G of points of R2. Choose n lines (called turning bands) passing through a given

origin and denote by θi the angle indicating the direction of the ith band. The TBM is

based on a combination of n appropriate processes (Yi)1≤i≤n independently simulated on

each prede�ned band:

(3) ∀ x ∈ G, Xn(x) =
n∑
i=1

√
λi Yi(x · u(θi)),

where the λi's are positive weights and u(θ) = (cos(θ), sin(θ)) is the unit vector with

direction θ. There are two major issues raised by the TBM. The �rst one consists of

determining appropriate weights λi and band processes Yi which ensure the convergence

of the turning-band �eld Xn to the target �eld X as n tends to in�nity. The second one

concerns the simulation of the processes Yi on the non-equispaced points {x·u(θi), x ∈ G}.

The convergence issue has been extensively studied in the case when the target �eld is

stationary [10, 15, 17, 23, 24, 30, 32]. In this case, the convergence can be obtained using

stationary band processes. Let C̃θ be the covariance of a band process in the direction

θ. Take orientations (θi)1≤i≤n uniformly distributed over (−π/2, π/2), and set λi = π
n
.

Then, the covariance of Xn at point x is Cn(x) = π
n

∑n
i=1 C̃θi(x · u(θi)) and, as a Riemann

sum, it converges to T (C̃)(x) =
∫ π

2

−π
2
C̃θ(x · u(θ))dθ as n tends to in�nity. Hence, for the

turning-band �eld Xn to converge to a target �eld X of covariance CX , it su�ces that C̃

satis�es the condition T (C̃) ≡ CX . In the special case when the target �eld is isotropic,

C̃θ ≡ C̃0 does not depend on θ, and the previous condition reduces to T (C0) ≡ CX .

This integral equation was solved explicitely for many di�erent types of covariance CX

(Gaussian, Whittle-Matérn, Cauchy, etc.), making possible to apply the TBM to a wide

range of stationary isotropic �elds [10, 15, 17, 23, 24, 28]. In the anisotropic case, the
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equation was solved from spectral representations of covariances by expressing spectral

densities of processes as a function of the one of the target �eld [30].

The TBM can also be adapted to the simulation of non-stationnary �elds with sta-

tionary increments. In such a situation, the convergence of the turning-band �eld to the

target one is rather expressed in terms of variograms. It can be obtained by taking band

processes with stationary increments and variograms ṽθ (in the direction θ) which satisfy

the condition

(4) vX(x) =

∫ π
2

−π
2

ṽθ(y · u(θ))dθ,

where vX is the variogram of the target �eld (see Equation (6) later). In [45], the pre-

vious integral equation was solved in the particular case when vX is the variogram of an

(isotropic) FBF of order H. It was shown that variograms vθ do not depend on θ and

are proportional to the variogram of a one-dimensional FBM of the same order H. In

[20], this result was extended to other non-stationary isotropic Gaussian �elds with spline

generalized covariance. Similar ideas can be found in [19, 31, 34] about the simulation of

the so-called intrinsic random �elds of order k generalizing �elds with stationary incre-

ments [13, 32]. However, none of these works directly addressed the issue of simulating

non-stationary anisotropic �elds. In [39, 43], some attempts were made for the simulation

of such �elds with a TBM, but they only cover a few special cases. Let us also emphasize

that the simulated �elds are not Gaussian, so that Gaussian realizations may only be

approximated by averaging several independent realizations and applying a Central Limit

Theorem.

One of the main originalities of this paper is the construction of appropriate turning-

band �elds for the simulation of AFBF, which are themselves centered Gaussian random

�elds with stationary increments. This is done by solving Equation (4) when vX is de�ned

by Equations (1) and (2). This construction is completed by an analysis of the simulation

error from both theoretical and numerical viewpoints. This study brings new insights into
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the TBM simulation error, which had been mainly investigated in the stationary isotropic

case [14, 24, 31].

In the construction of turning-band �elds for AFBF, we show that band processes are

one dimensional FBMs with varying Hurst indices. Hence, the application of the TBM to

AFBF directly leads to the issue of simulating these processes on non-uniformly spaced

points. In the context of TBM application, Yin [45] simulated FBMs using an adaptation

of the spectral method [31, 33, 40]. Based on a discretization of the spectral density of

the process covariance, this method induces periodization e�ects and is inaccurate for

mainly two reasons: the simulated process is not Gaussian and its covariance function

only approximates the target one. In [20, 21], periodization e�ects induced by Fourier

methods was overcome using a continous spectral method. This method is fast and

can be applied with arbitrary simulation points. However, it does not produce Gaussian

realizations neither. In another context, Perrin et al. [35] developed a circulant embedding

method (see [18, 42] and Section 3.1) for the simulation of FBF. This method is fast and

exact but requires equispaced simulation points. However, as shown in this paper, the

issue of simulating FBM on band points can be reexpressed on equispaced points using

self-similarity properties of FBM, as soon as bands orientations are conveniently chosen.

Hence, we can apply the circulant embedding method to obtain exact simulations of FBM

on band points but the cost of these simulations depends on band orientations, and is

higher than the one of the continuous spectral method in [20, 21]. To reduce the global

computational cost, we thus propose a Dynamic Programming [4] algorithm that selects

band orientations in an optimal way.

2. Turning-band method

2.1. Anisotropic fractional Brownian �elds. Let (Ω,A,P) be a probability space. A

2-dimensional random �eld X is a map from Ω × R2 into R such that X(·, y) := X(y)

is a real random variable on Ω for all y ∈ R2. A random �eld is Gaussian if any �nite

linear combination of its associated random variables is a Gaussian variable. A centered
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Gaussian �eld X is characterized by its covariance function: (y, z) 7→ Cov(X(y), X(z)).

A �eld X has stationary increments if the law governing the �eld X(·+ z)−X(z) is the

same as X(·)−X(0) for all z ∈ Rd.

When the �eld X is centered and with stationary increments, we have

(5) ∀y, z ∈ R2, Cov(X(y), X(z)) = vX(y) + vX(z)− vX(y − z),

where vX is the so-called variogram of X de�ned as

(6) ∀y ∈ R2, vX(y) =
1

2
E((X(y)−X(0))2).

Hence, if the �eld X is also Gaussian, its law is characterized by its variogram (6).

In this work, we deal with anisotropic fractional Brownian �elds, which are centered

Gaussian �elds with stationary increments, characterized by a variogram of the form (1)

with a spectral density de�ned as in Equation (2). When c ≡ C > 0 and h ≡ H ∈ (0, 1)

are both constant, the variogram satis�es (see Remark 1.1.13 of [27] for instance)

(7) v(x) =
1

2

∫
R2

∣∣eix·ζ − 1
∣∣2C‖ζ‖−2H−ddξ = C

π
1
2 Γ(H + 1/2)γ(H)

2Γ(H + 1)
‖x‖2H ,

where for all H ∈ (0, 1),

(8) γ(H) =
π

HΓ(2H) sin(Hπ)
.

It follows that such �elds are isotropic, which means that their law is invariant under

rotation. They are also H-self-similar. When the function c is not constant but h ≡

H remains constant, the �eld remains self-similar of order H but becomes anisotropic.

When h is also allowed to vary, the �eld is not self-similar anymore but, setting H =

essinf
θ∈Sd−1;c(θ)>0

h(θ), one can still �nd a continuous modi�cation of X with H as critical

Hölder exponent [9]. The fractal dimension of its graph is still linked with H by the

relation D = 2−H a.s. (see [44] for instance).

In general, it is di�cult to get an explicit form of the AFBF variogram similar to the

one expressed for the FBF in Equation (7). However, we have computed explicitely the

variogram of a particular class of AFBF which is slightly more general than the FBF.
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This �eld, that we call elementary �eld, is de�ned by a spectral density of the form

(2) with c = 1[α1,α2] for −π/2 ≤ α1 < α2 ≤ π/2, and h ≡ H for H ∈ (0, 1). When

α2 = −α1 = π/2, an elementary �eld corresponds to a FBF of order H. As explained in

Section 4, elementary �elds will be of particular interest for the numerical evaluation of

simulations.

Proposition 2.1. Let H ∈ (0, 1) and −π/2 ≤ α1 < α2 ≤ π/2. Let denote v
H,α1,α2

the

variogram of an AFBF with h = H and c = 1[α1,α2]. Then,

(9) ∀x ∈ R2, v
H,α1,α2

(x) = 22H−1γ(H)C
H,α1,α2

(arg(x))‖x‖2H ,

where ‖x‖ is the Euclidean norm of x and C
H,α1,α2

is a π-periodic function de�ned on

(−π/2, π/2] by

C
H,α1,α2

(θ) =


β
H

(
1−sin(α2−θ)

2

)
+ β

H

(
1−sin(α1−θ)

2

)
if α1 ≤ θ + π/2 ≤ α2

β
H

(
1+sin(α2−θ)

2

)
+ β

H

(
1+sin(α1−θ)

2

)
if α1 ≤ θ − π/2 ≤ α2∣∣∣βH (1−sin(α2−θ)

2

)
− β

H

(
1−sin(α1−θ)

2

)∣∣∣ otherwise

with β
H
the Beta incomplete function given by

∀t ∈ [0, 1], β
H

(t) =

∫ t

0

uH−1/2(1− u)H−1/2du,

and γ(H) is de�ned in Equation (8).

The proof of this proposition is given in appendix A. Now, let us consider the general

case from which the TBM will follow.

2.2. Turning-band �elds for AFBF. By a change of variables in polar coordinates,

we derive an integral expression for the variogram of an AFBF.

Proposition 2.2. Let X be a centered Gaussian �eld with stationary increments. Let us

assume that its variogram vX is of the form (1) with a spectral density de�ned by (2) with

c and h two π-periodic mesurable functions with ranges satisfying c((−π/2, π/2]) ⊂ R+
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and h((−π/2, π/2]) ⊂ (0, 1). Then, for all x ∈ R2

(10) vX(x) =
1

2

∫ π/2

−π/2
γ(h(θ))c(θ)|x · u(θ)|2h(θ)dθ,

where u(θ) = (cos(θ), sin(θ)) and γ(H) is de�ned in Equation (8).

Proof. Let x ∈ R2. Then acording to (1) and (2),

2vX(x) =

∫
R2

∣∣eix·ζ − 1
∣∣2 c(arg(ζ))|ζ|−2h(arg(ζ))−2dζ

=

∫ 2π

0

∫ +∞

0

∣∣eir(x·u(θ)) − 1
∣∣2 c(θ)r−2h(θ)−1drdθ,

by a change of variables in polar coordinates. But, for H ∈ (0, 1) and t ∈ R,∫ +∞

0

∣∣eirt − 1
∣∣2 r−2H−1dr =

1

2

∫
R

∣∣eist − 1
∣∣2 |s|−2H−1ds =

1

2
γ(H)|t|2H ,

according to (7.2.13) of [37]. Then the result follows by π-periodicity of h and c. �

The integral equation (10) is of the form (4) with ṽθ(·) = γ(h(θ))c(θ)1
2
| · |2h(θ). This

means that ṽθ is a solution of the integral equation (4) when vX is the variogram of an

AFBF. Now recall that a FBM of order H is a centered Gaussian process with stationary

increments and variogram wH(t) = 1
2
|t|2H for all t ∈ R. Hence, ignoring the factor

γ(h(θ))c(θ) depending on the orientation θ, the variogram ṽθ is equal to the one of a

FBM of order h(θ), also varying with θ.

According to previous remarks, we now specify turning-band �elds for AFBF simula-

tions. Given an ordered set Θ = (θi)1≤i≤n of band orientations −π/2 ≤ θ1 < . . . < θn ≤

π/2, and a set Λ = (λi)1≤i≤n ∈ [0,+∞)n of appropriate band weights, turning-band �elds

have the form

(11) XΘ,Λ(x) =
n∑
i=1

√
λiγ(h(θi))c(θi)Yi(x · u(θi)), ∀x ∈ R2,

where the Yi's are n independent FBM of order h(θi). In the remaining of the text,

turning-band �elds XΘ,Λ will be called the simulation �elds and processes Yi will always
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be FBF of order h(θi). We will also describe the precision of simulation �elds XΘ,Λ using

the variable

(12) εΘ = max
i=1,··· ,n+1

(θi − θi−1) , with n = |Θ|,

and θ0 ∈ [−π/2, θ1] and θn+1 ∈ [θn, π/2] are �xed directions chosen according to the

AFBF function c. Remark that a uniform choice for the orientations consists in choosing

θn = θn+1 = π/2 and θi = −π/2 + iπ/n for 0 ≤ i ≤ n. This choice leads to εΘ = π
n
while,

for general orientations, we always have εΘ ≥ θn−θ0
n
≥ θn−θ1

n
.

The error of simulating X by XΘ,Λ may be expressed, at point x ∈ R2, as the Kol-

mogorov distance between the random variables XΘ,Λ(x) and X(x), that is,

(13) dKol(XΘ,Λ(x), X(x)) = sup
t∈R
|P(XΘ,Λ(x) ≤ t)− P(X(x) ≤ t)| .

When this distance tends to 0, it implies that the random variable XΘ,Λ(x) tends to X(x)

in distribution. As stated next, due to our Gaussian framework, this distance can be

further bounded by a distance between variograms of simulation and target �elds at x.

Theorem 2.3. Let XΘ,Λ be a simulation �eld de�ned as in Equation (11). Then, XΘ,Λ

is a centered Gaussian random �eld on R2 with stationary increments and variogram

(14) vΘ,Λ(x) :=
n∑
i=1

λiγ(h(θi))c(θi)wh(θi)(x · u(θi)).

Moreover, XΘ,Λ(0) = X(0) = 0 a.s. and, for all x 6= 0,

(15) dKol(XΘ,Λ(x), X(x)) ≤ 2
|vX(x)− vΘ,Λ(x)|

vX(x)
.

Choosing (Θn,Λn)n in such a way that vΘn,Λn(x) −→
n→+∞

vX(x) for all x ∈ R2,

(XΘn,Λn(x))x∈R2

fdd−→
n→+∞

(X(x))x∈R2 ,

where
fdd−→ stands for convergence of �nite dimensional distributions.

Proof. Let us write Xθi(x) := Yi(x ·u(θi)), for x ∈ R2, with Yi a FBM of order h(θi). First,

remark that Xθi(0) = Yi(0) = 0 a.s. Moreover, since Yi is a centered Gaussian random
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process it is clear that Xθi is a centered Gaussian random �eld on R2. Finally, since Yi

has stationary increments, for any x0 ∈ R2, writing t0,i = x0 · u(θi) ∈ R,

{Xθi(x+ x0)−Xθi(x0);x ∈ R2} = {Yi(x · u(θi) + t0,i)− Yi(t0,i);x ∈ R2}

fdd
= {Yi(x · u(θi))− Yi(0);x ∈ R2},

= {Xθi(x)−Xθi(0);x ∈ R2}.

It follows that XΘ,Λ is a centered Gaussian random �eld on R2 with stationary increments

as a sum of independent centered Gaussian random �elds on R2 with stationary increments

�elds. Since XΘ,Λ(0) = 0 a.s.,

vXΘ,Λ
(x) =

1

2
E
(
XΘ,Λ(x)2

)
=

1

2
Var(XΘ,Λ(x)), since XΘ,Λ is centered,

=
1

2

n∑
i=1

λiγ(h(θi))c(θi)Var(Yi(x · u(θi))), by independence,

=
1

2

n∑
i=1

λiγ(h(θi))c(θi)|x · u(θi)|2h(θi) = vΘ,Λ(x).

Let N ∼ N (0, 1), then for x 6= 0,

dKol(XΘ,Λ(x), X(x)) = dKol(
√
vΘ,Λ(x)N,

√
vX(x)N).

Then (15) follows from the fact that dKol(σ
′N, σN) ≤ 2 |σ−σ

′|
σ

, already remarked in [6].

Actually, there is nothing to prove when |σ−σ
′|

σ
> 1

2
. Otherwise we use the fact that for

σ > 1 and z > 0 one has P(z < N ≤ σz) ≤ (σ − 1)ze−z
2/2 ≤ σ2 − 1.

Now, let assume that (Θn,Λn) is such that vΘn,Λn(x) −→
n→+∞

vX(x) for all x ∈ R2. By

stationarity of the increments, for all n ≥ 1, for all x, y ∈ R2,

Cov(XΘn,Λn(x), XΘn,Λn(y)) = vΘn,Λn(x) + vΘn,Λn(y)− vΘn,Λn(x− y),

and similarly for Cov(X(x), X(y)) and vX . It follows that Cov(XΘn,Λn(x), XΘn,Λn(y))

tends to Cov(X(x), X(y)) for all x, y ∈ R2. Using a Cramér-Wold device, this implies that

the �eld (XΘn,Λn(x))x∈R2 converges to (X(x))x∈R2 , for �nite dimensional distributions. �
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Let us quote that, since vΘ,Λ appears as a numerical approximation of the integral giving

vX , one can choose (Θn,Λn)n in such a way that vΘn,Λn(x) tends to v(x) for x ∈ R2. This

implies that dKol(XΘn,Λn(x), X(x))→ 0 so that XΘn,Λn(x) tends to X(x) in distribution.

Note that conversely, since XΘn,Λn(x) and X(x) are centered Gaussian variables, vΘn,Λn(x)

tends to v(x) as soon as XΘn,Λn(x) tends to X(x) in distribution. The next section is

devoted to the rate of convergence.

2.3. Approximation error. We can choose Θ,Λ such that the following uniform bounds

hold for approximation of elementary �elds.

Proposition 2.4. Let c and h be two π-periodic mesurable functions de�ned on (−π/2, π/2]

by h = H for some H ∈ (0, 1) and c = 1[α1,α2] for −π/2 ≤ α1 < α2 ≤ π/2. Let

Θ = (θi)1≤i≤n with α1 ≤ θ1 < . . . < θn ≤ α2 and θ0 = α1, θn+1 = α2. Choose Λ as

(16) λ1 = θ2 − θ0 and λi = θi+1 − θi for 2 ≤ i ≤ n.

Then, one can �nd a positive constant C > 0, independent of Θ,Λ, such that for all

x ∈ Rd,

(17) dKol(XΘ,Λ(x), X
H,α1,α2

(x)) ≤ Cε
min(2H,1)
Θ ,

where the precision parameter εΘ is de�ned in Equation (12).

Moreover, when choosing

(18)

λ1 = (θ1−θ0)+
θ2 − θ1

2
, λn = (θn+1−θn)+

θn − θn−1

2
and λi =

θi+1 − θi−1

2
for 2 ≤ i ≤ n−1,

one can �nd a positive constant C > 0, independent of Θ,Λ, such that for all x ∈ Rd,

(19) dKol(XΘ,Λ(x), X
H,α1,α2

(x)) ≤ C


(
ε3

Θδ
−2+min(2H,1)
Θ + ε

1+min(2H,1)
Θ

)
if H 6= 1/2,(

ε3
Θδ
−1
Θ | log(δΘ)|+ ε2

Θ

)
if H = 1/2

with δΘ = min
1≤i≤n−1

(θi+1 − θi).
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The proof of Proposition 2.4 is postponed to Appendix B. In [22], the authors also

propose a TBM to synthesize isotropic FBF (case α1 = −π/2 and α2 = π/2) in general

dimension d ≥ 2. However, the processes simulated on the bands are not Gaussian so

that the Kolmogorov distance between the simulated random variable and X
H,−π/2,π/2(x)

is bounded by the Berry Esseen bound given by n−1/2, with n the number of bands,

(see Equation (27) in [22]). Moreover, in their case this distance also depends on the

point x ∈ R2. Let us compare with our results. Note that when orientations are chosen

uniformly one has εΘ = δΘ = α2−α1

n
so that, choosing a rectangular rule, we obtain in

(17) a bound given by n−min(2H,1), while for a trapezoidal rule, we obtain in (19) a bound

given by n−1−min(2H,1) when H 6= 1/2 and n−2 log(n) when H = 1/2. Moreover let us

emphasize that our bounds do not depend on x ∈ R2. This could be generalized to other

self-similar AFBF (h ≡ H) under regularity assumptions on c. In the general case, our

bounds depend on x through the term 1/vX(x). However, we obtain uniform bounds

for the di�erence |vX(x) − vΘ,Λ(x)| when x is in a compact set, as stated in the next

proposition.

Proposition 2.5. Let assume that h and c are piecewise C1 on (−π/2, π/2]. Let Θ =

(θi)1≤i≤n with −π/2 ≤ θ1 < . . . < θn ≤ π/2 containing the singular points of h and

c and θ0 = −π/2, θn+1 = π/2. Let T be a compact set of Rd. Then, one can �nd

Λ = (λi)1≤i≤n ∈ [0,+∞)n and a positive constant CT > 0, independent of Θ,Λ, such that

for all x ∈ T ,

(20) |vX(x)− vΘ,Λ(x)| ≤ CT ε
min(2H,1)
Θ ,

where H = min
θ∈[−π/2,π/2]

h(θ) > 0 and εΘ is de�ned in Equation (12). If moreover, h and

c are piecewise C2 on (−π/2, π/2], one can �nd Λ = (λi)1≤i≤n ∈ [0,+∞)n and a positive

constant CT > 0, independent of Θ,Λ, such that for all x ∈ T ,

(21) |vX(x)− vΘ,Λ(x)| ≤ CT


(
ε3

Θδ
−2+min(2H,1)
Θ + ε

1+min(2H,1)
Θ

)
if H 6= 1/2,(

ε3
Θδ
−1
Θ | log(δΘ)|+ ε2

Θ

)
if H = 1/2
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with δΘ = min
1≤i≤n−1

(θi+1 − θi).

The proof of Proposition 2.5 is postponed to Appendix B. A bound for the Kolmogorov

distance is then obtained using the fact that dKol(XΘ,Λ(x), X(x)) ≤ 2
|vX(x)−vΘ,Λ(x)|

vX(x)
. Then

we may choose an increasing sequence of (Θn)n and choose (Λn)n as given in Proposition

2.5. Therefore, if εΘn → 0, the sequence of random �elds (XΘn,Λn(x))x∈R2 converges to

(X(x))x∈R2 , for �nite dimensional distributions in view of Theorem 2.3. The next section

is devoted to the simulation of the band processes.

3. Fast and exact simulation on bands

3.1. Simulation of 1D fractional Brownian motions. Several methods for the syn-

thesis of 1D fractional Brownian motions have been proposed in the literature. Most of

them are approximate procedures. However, considering equispaced points on the band

one can get exact simulations using the circulant embedding method [18]. Let us brie�y

recall this procedure. Let H ∈ (0, 1) and BH a fractional Brownian motion. We consider

ZH = (BH(t+ 1)−BH(t))t∈R, the fractional Gaussian noise that is a stationary process

with covariance function given by

Cov(ZH(t), ZH(s)) = rH(|t− s|) with rH(t) =
1

2
(|t+ 1|2H − 2|t|2H + |t− 1|2H).

Let l ≥ 1, then the vector (ZH(0), . . . , ZH(l − 1)) is a centered Gaussian vector of size l

with Toeplitz covariance matrix RH(l) = (rH(|i− j|))0≤i,j≤l−1. One can embed RH(l) in

a circulant matrix of size 2l given by SH(l) = circ(sH(l)) with sH(l) = (rH(0), . . . rH(l −

1) rH(l − 2), . . . rH(1)). The main interesting property of circulant matrices is that they

are diagonalized in the discrete Fourier basis, with their eigenvalues given by the Discrete

Fourier Transform of their �rst row. In particular one has

SH(l) =
1

2l
F ∗2ldiag(F2lsH(l))F2l, where F2l = (e

iπjk
l )0≤i,j≤2l−1.
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The main results of [35] is that for all H ∈ (0, 1) and l ≥ 1, F2lsH(l) always has positive

entries, so that SH(l) is a covariance matrix. Moreover, if ε
(1)
2l and ε

(2)
2l are indepen-

dent vectors of law N (0, I2p) the vectors Z(1) = 1√
2l
<
(
F ∗2ldiag(F2lsH(l))1/2(ε

(1)
2l + iε

(1)
2l

)
and Z(2) = 1√

2l
=
(
F ∗2ldiag(F2lsH(l))1/2(ε

(1)
2l + iε

(2)
2l

)
are independent with common law

N (0, SH(l)). In particular, one has (ZH(0), . . . , ZH(l − 1))
d
= (Z

(i)
0 , . . . , Z

(i)
l−1) for i = 1, 2

and using stationarity of the increments of BH and the fact that BH(0) = 0 a.s., one has,

for all m ≤ l,

(BH(k))−m≤k≤l−m =

( ∑
j<k+m

ZH(j)−
∑
j<m

ZH(j)

)
−m≤k≤l−m

,

with the convention that
∑

j<0 = 0. Let us emphasize that this procedure is very fast

since, choosing l as a power of 2, the cost is reduced to O(l log(l)) using the Fast Fourier

Transform algorithm.

3.2. Choice of bands. We consider the exact simulation of XΘ,Λ on the discrete grid

r−1Z2 ∩ [0, 1]2 for some r ≥ 1. Then for any i with 1 ≤ i ≤ n we have to simulate on each

band of direction u(θi)

{
Yi(x · u(θi));x ∈ r−1Z2 ∩ [0, 1]2

}
=

{
Yi

(
k1

r
cos(θi) +

k2

r
sin(θi)

)
; 0 ≤ k1, k2 ≤ r

}
.

Note that when θi = π/2 we can simply use the fact that
{
Yi
(
k2

r

)
; 0 ≤ k2 ≤ r

} d
=

r−h(θi) {Yi (k2) ; 0 ≤ k2 ≤ r}, by self-similarity. When cos(θi) 6= 0 we may choose θi such

that tan θi = pi
qi
, with pi ∈ Z and qi ∈ N and use that fact that{

Yi

(
k1

r
cos(θi) +

k2

r
sin(θi)

)
; 0 ≤ k1, k2 ≤ r

}

d
=

(
cos(θi)

rqi

)h(θi)

{Yi (k1qi + k2pi) ; 0 ≤ k1, k2 ≤ r} .

Thus, the band with direction u(θi) involves the simulation of a 1D fractionnal Brownian

motion on a discrete interval of length r(|pi|+ qi). The computational cost of this simula-

tion is O(C(|pi|+ qi)), where O(C(l)) is the computational cost of the Fourier Transform
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used in the procedure described in Section 3.1 to simulate a 1D fractional Brownian mo-

tion on the discrete interval {0, . . . , rl}. If the Fast Fourier Transform with powers of

two is used, then one has C(l) = 2dlog2(rl)edlog2(rl)e, where dxe denotes the upper inte-

ger part of x. Finally, the overall simulation process has to �nd a trade-o� between the

computational cost

C(Θ) =
∑
i

C(|pi|+ qi)

and the precision of the simulation, which is controlled by E(Θ) = ε
min(2H,1)
Θ . The optimal

choice of Θ is discussed in the following section.

3.3. Band selection by Dynamic Programming. As we just saw in the previous

section, we need to restrain our choice of band orientations to angles θ that correspond

to vectors (q, p) with integer coordinates, that is, such that tan θ = p
q
. Moreover, in order

to control the total computational cost, we would like to favor small factors (small values

of |p| + q) while controlling the repartition of bands in order to keep εΘ small. A simple

(but non-optimal) solution to select the set of angles Θ = (θi)i consists in using a uniform

discretization θ̃i = α1 + i
n
(α2 − α1), then choosing for each i a rational approximation

pi
qi

of tan θ̃i (this can be done very e�ciently using the appropriate convergent of the

continued fraction associated to tan θ̃i). However, as we shall see now, one can �nd a

simple algorithm, based on Dynamic Programming [4], that is able to select a set of

angles Θ that minimizes the computational cost C(Θ) under the error control constraint

εΘ ≤ ε. In practice, we restrain our choice to angles that can be written under the form

θ = ∠(q, p), where (p, q) belongs to

VN = {(p, q); −N ≤ p ≤ N, 1 ≤ q ≤ N, gcd(p, q) = 1, α1 < ∠(q, p) < α2}

and ∠(q, p) is the measure in [−π
2
, π

2
] of the angle of the vector (q, p), obtained by

∠(q, p) = arctan p
q
. The integer N should be chosen large enough to ensure that the

optimal solution only involves vectors from VN . It seems that choosing N = 1 +
⌈

1
tan ε

⌉
(so that ∠(N, 1) < ε) is enough, though we do not have a proof of this (even if this were
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not true, the algorithm we present here would yield slightly sub-optimal sets of bands,

with little practical consequences).

Now assume that the set VN has been sorted into a sequence (pk, qk)1≤k≤n such that

the associated angular sequence θk = ∠(qk, pk) is increasing. Writing ek = C(r(|pk|+ qk))

the elementary cost associated to a band with orientation θk, we can rewrite the total

computational cost of a set of angles Θ = (θik)1≤k≤s as

C(Θ) =
s∑

k=1

eik .

We add the convention that θn+1 = α2 and θ0 = α1 (with the associated elementary cost

e0 = 0). Now, for 0 ≤ i ≤ n+ 1, let us call ci the minimal cost that can be realized with a

sequence i1 = i, i2, . . . is = n+ 1 for some integer s. Then, c0 is the optimal cost we look

for, and for all 0 ≤ i ≤ n we have

(22) ci = ei + min
j; j>i, θj≤θi+ε

cj.

This induction formula (called Bellman Equation in the framework of Dynamic Program-

ming) permits us to compute the optimal costs cn, cn−1, . . . c0 recursively (the initialization

being made with cn+1 = 0). Moreover, each time the minimum in (22) is computed, we

consider one optimal index

ki ∈ arg min
j; j>i, θj≤θi+ε

cj,

then an optimal sequence i1, i2, . . . is can be computed by tracking back indexes that

achieve the optimal cost c0. This sequence is given by

i1 = k0, i2 = ki1 , . . . is = kis−1 ,

where the value of s is obtained using the fact that is+1 = n + 1. In the end, the

desired sequence of integer vectors is simply (p̄k, q̄k)1≤k≤s, where (p̄k, q̄k) = (pik , qik) for all

1 ≤ k ≤ s. The whole procedure we just described is given in pseudo-code in Algorithm 1

of Appendix C.
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Figure 1. Comparison of an approximate uniform sampling of turning

bands and their selection by dynamic programming.

4. Numerical Study

This section is devoted to the numerical evaluation of anisotropic fractional Brownian

�eld (AFBF) simulations obtained by turning bands.

Let us recall some notations. The �eld X is the theoretical �eld to be simulated

(AFBF). Its variogram vX is of the form (1) with a spectral density de�ned by (2). The

�eld XΘ,Λ is the turning-band simulation �eld de�ned by Equation (11) for some sets Θ

and Λ giving band orientations and weights, respectively. The variogram vΘ,Λ of XΘ,Λ is

de�ned by Equation (14).

In all experiments, the set Θ of band orientations was computed automatically using

the Dynamic Programming algorithm described in Section C with a constraint on �eld

precision. The precision parameter εΘ associated to the set Θ is de�ned as in Equation

(12). Weights λi of Λ are de�ned to full�l the condition (16) of Proposition 2.4.
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Figure 2. Realizations on [0, 1]2 of elementary �elds obtained for di�erent

values of H and α using the TBM with 5900 bands.

4.1. The use of elementary �elds. Our evaluation was focused on elementary �elds

whose spectral density is given by Equation (2) taking h ≡ H for some H ∈ (0, 1) and

c = 1[−α,α] for some 0 < α ≤ π/2.

Elementary �elds are speci�ed by only two parameters, H and α, which can be inter-

preted as regularity and anisotropy parameters, respectively. The Hölder regularity of

these �elds being equal to H (see [9] for instance), it increases as H tends to 1. When

α = π/2, elementary �elds correspond to usual isotropic fractional Brownian �elds of

Hurst index H. When 0 < α < π/2, these �elds are no longer isotropic. In this case,

they are some kind of fractional Brownian �elds whose non-null frequency components

are restricted between frequency directions −α and α. As α decreases to 0, non-null �eld

frequency components become more and more focused around the horizontal direction.
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On Figure 2, some elementary �eld realizations are shown for illustrating both the e�ect of

increasingH on the �eld regularity and the e�ect of decreasing α on its anisotropy. For the

evaluation, we considered elementary �elds of varying degrees of regularity and anisotropy,

taking all parameter pairs (H,α) for H in {0.2, 0.5, 0.8} and α in {π/6, π/3, π/2}.

Let us further mention that variograms of elementary �elds can be computed using the

closed form given in Equation (9). As it will appear next, this is of particular interest

for the computation of evaluation criteria. On Figure 3, some of these variograms are

presented for di�erent degrees of regularity and anisotropy.
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Figure 3. Variograms on [0, 1]2 of elementary �elds for di�erent values of

H and α.

Finally, let us notice that any anisotropic fractional Brownian �eld whose spectral

density is de�ned with piecewise constant functions h and c can be decomposed as a
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sum of independent elementary �elds. Hence, although achieved on elementary �elds, our

evaluation accounts for more general anisotropic fractional Brownian �elds.

4.2. Approximation error. As mentionned in Section 2.3, simulation errors result from

the distance separating simulation and theoretical �elds. This distance can be de�ned as

the Kolmogorov distance between distributions of theoretical and simulation �elds at

each position x. As stated in Theorem 2.3 (Equation (15)), the Kolmogorov distance

is further bounded by dΘ,Λ(x) =
|vX(x)−vΘ,Λ(x)|

vX(x)
, which is proportional to the error made

when approximating the variogram of X by the one of XΘ,Λ. Moreover, when X is an

elementary �eld, it is possible to compute the bound dΘ,Λ(x) using closed forms of vΘ,Λ(x)

and vX(x) given by Equations (14) and (9), respectively. Hence, using elementary �elds,

we could numerically evaluate a simulation error by averaging values of dΘ,Λ(x) over points

x of a uniform subgrid of [0, 1]2 :

(23) dΘ,Λ =

p∑
k,l=1

dΘ,Λ

(
k

p
,
l

p

)
=

p∑
k,l=1

|vX(k
p
, l
p
)− vΘ,Λ(k

p
, l
p
)|

vX(k
p
, l
p
)

, with p = 64.

As this is evidenced by Equation (17) of Proposition 2.4, the measured error dΘ,Λ depends

on the precision parameter εΘ of the simulation �eld. Figure 4 illustrates the e�ect

of increasing εΘ (i.e reducing the simulation precision) on simulations of a fractional

Brownian �eld of Hurst index H = 0.2. When the precision becomes too low (εΘ ≥ 0.25),

�eld realizations have some stripes in di�erent directions, and simulation �eld variograms

present some singularities on lines radiating from the origin. This well-known e�ect,

often called artifact banding in the literature [24, 31, 21, 20], is due to the fact that the

contribution of a band process Yi to the sum de�ning the simulation �eld (see Equation

(11)) is null for points on the line orthogonal to the band direction θi and passing through

origin.

On Figure 5, we plotted values of error bounds dΘ,Λ obtained for di�erent elementary

�elds as a function of the precision parameter εΘ. Whatever the �eld parameters, error

bounds varied almost linearly with respect to εΘ. They did not seem to depend on

the regularity parameter H. However, they were slightly dependent on the anisotropy
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Figure 4. E�ect of reducing the �eld precision on simulations of a frac-

tional Brownian �eld of Hurst index H = 0.2. On the �rst row, realizations

of simulation �eldsXΘ,Λ of decreasing precision and, on the second row, cor-

responding variograms: (1) εΘ = 0.04 (n = 103), (2) εΘ = 0.077 (n = 51),

(3) εΘ = 0.25 (n = 15) and (4) εΘ = 0.464 (n = 7).

parameter α, especially at low precision (εΘ > 0.03). Error bounds of all �elds fell below

1% when εΘ < 0.02, such a precision being reached with around 150 simulation bands.

4.3. Estimation error. We also conducted numerical experiments to evaluate errors

which arise when estimating �eld features (e.g. parameters, variograms) from �eld simu-

lations.

Applying the TBM (with 1321 bands on a 64 × 64 grid of [0, 1]2), we simulated 2000

independent realizations {y(k), k = 1, · · · , 2000} of a given elementary �eldX of variogram

vX . Given k ∈ {1, · · · , 2000}, we then computed the empirical variogram v(K)(x) at

position x using the K �rst samples:

v(K)(x) =
1

2K

K∑
k=1

(y(k)(x))2.
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Figure 5. Variations of the error bound dΘ,Λ relative to the precision pa-

rameter εΘ for elementary �elds with di�erent values of H and α: (1)

H = 0.2, (2) H = 0.5, (3) H = 0.8.

Finally, we computed an estimation error d(K)(x) = |vX(x)−v(K)|
vX(x)

at point x, and its average

over points x of the grid

(24) d(K) =

p∑
k,l=1

d(K)

(
k

p
,
l

p

)
=

p∑
k,l=1

|vX(k
p
, l
p
)− v(K)(k

p
, l
p
)|

vX(k
p
, l
p
)

, with p = 64.

On Figure 6, some empirical variograms v(K) estimated from simulations of a fractional

Brownian �eld of Hurst index H = 0.2 are compared to the theoretical variogram vX of

X. This illustrates both the convergence of empirical variograms to the theoretical one

as K tends to +∞, and estimation errors due to the lack of samples.

On Figure 7, we plotted the estimation error d(K) as a function of the sample number

K for di�erent elementary �elds. For a same value of the regularity parameter H, the

convergence of the error to zero is about the same for all values of the anisotropy parameter

α. However, the convergence gets slower and slower as H increases. In all cases, around

1000 samples are required for the error to get below 5%.

Besides, we built a statistical test to check the adequacy of simulations to the model.

For any position x, let Y (1)(x), · · · , Y (K)(x) be independent and identically distributed
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Figure 6. E�ect of increasing the number of samples on simulations of a

fractional Brownian �eld of Hurst index H = 0.2 (simulations were done

with 1321 bands on a 64 × 64 grid of [0, 1]2): Empirical variograms v(K)
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theoretical variogram.
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Figure 7. Variations of the estimation error relative to the number K of

samples for elementary �elds with di�erent values of H and α: (1) H = 0.2,

(2) H = 0.5, (3) H = 0.8.

random variables, and Hx
0 be the hypothesis that their distribution is the same as the one

of X(x), i.e. a centered gaussian distribution with variance 2vX(x). For testing Hx
0 , we

de�ne the rejection interval {D(K)(x) > c}, where the statistic D(K)(x) = |V (K)(x)−vX(x)|
vX(x)

with V (K)(x) = 1
2K

∑K
k=1(Y (k)(x))2. Under assumptionHx

0 , K
V (K)(x)
vX(x)

has a χ2 distribution
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of degree K. Hence, under Hx
0 , the probability of the rejection interval can be computed,

and the rejection bound c can be set according to a level of test. Given a realization

d(k)(x) of D(K)(x), it also possible to evaluate the p-value p(K)(x) of the test (i.e the

minimal risk of rejecting Hx
0) as

p(K)(x) = 1− P (Z(K) < K(d(k)(x) + 1)) + P (Z(K) < K(−d(k)(x) + 1)),

where Z(K) is a χ2
K random variable.

To evaluate the simulation-to-model adequacy, we computed for di�erent K the average

p(K) of p-values p(K)(x) at positions x of the 64 × 64 grid of [0, 1]2. On Figure 8, the

mean p-values are plotted as a function of the sample number K. Whatever the value of

parameters H and α, mean p-values are all above 0.3, indicating that hypotheses Hx
0 of

adequacy are not rejected at low risks. Besides, the mean p-values seems to reach an upper

bound which is below 1 (around 0.5). This is probably due to both the approximation

error and estimator inacurracy.
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Figure 8. Mean p-values p(K) of adequacy tests relative to the number

K of samples for elementary �elds with di�erent values of H and α: (1)

H = 0.2, (2) H = 0.5, (3) H = 0.8.
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5. Discussion

We have constructed turning-band �elds suited to the simulation of AFBF. This con-

struction is based on the resolution of an integral equation speci�c to the non-stationary

anisotropic context of AFBF. This ensures the convergence of simulation �elds to target

�elds as the precision increases. Moreover, the band processes involved in the de�nition

of simulation �elds are simulated exactly using a circulant embedding method. Hence,

errors produced by the simulation method are exclusively due to the approximation of the

target �eld by the simulation �eld. This approximation error was evaluated theoretically

and numerically. From a numerical point of view, we observed that it does not depend

signi�cantly on the regularity of target �elds, nor on their degree of anisotropy. Experi-

ments have also suggested that simulations preserve the statistical properties of the target

�eld. Besides, we obtained good simulation results with few bands (around 150) at a low

computational cost.

The evaluation was achieved on some elementary �elds. However, simulation possibili-

ties o�ered by the TBM go far beyond those �elds, as there is a large choice of parameter

de�nitions and tunings. Using the TBM, it chie�y becomes possible to visualize truthfully

realizations of di�erent anisotropic �eld models studied in the literature [9, 6, 16, 36]. In

the generic model de�ned by Equation (2), we recall that the �eld anisotropy is intro-

duced through two direction-dependent and π-periodic functions: the Hurst index function

h and the topothesy function c. So as to illustrate the e�ect of varying these parameter

functions, we considered three functions of increasing regularity:

• a discontinuous function g1: for µ1, µ2 ∈ (0, 1), g1(ω) = µ1 if ω ∈ (−π
4
, π

4
) and

g1(ω) = µ2 if ω ∈ (−π, π)\(−π
4
, π

4
),

• a continuous but not di�erentiable function g2: for µ1, µ2 ∈ (0, 1), g2(0) = µ1,

g2(−π/2) = g(π/2) = µ2, and g2 is piecewise linear on (−π/2, 0) and (0, π/2).

• an in�nitely di�erentiable function g3: g3(ω) = µ1r(ω) +µ2(1− r(ω)) with r(ω) =

(1 + sin(2ω + π/2))/2 for ω ∈ [0, π/2], and g3(ω) = g3(−ω) for ω ∈ [−π/2, 0].
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Fixing the topothesy function to a constant (c ≡ 1), we �rst simulated �eld realizations

with Hurst index functions h = gi for i = 1, 2, 3 and di�erent pairs of parameter values

(µ1, µ2); results are shown on Figure 9. In these realizations, the degree of anisotropy can

be measured as the di�erence µ2 − µ1 between maximal and minimal Hurst indices. It

is the same for realizations of the �rst and second columns (µ2 − µ1 = 0.3), and higher

for those of the third column (µ2 − µ1 = 0.5). Moreover, the Hölder regularity of those

realizations is equal to µ1. It is the same for realizations of the �rst and third columns

(µ = 0.2) and higher for those of the second column (µ = 0.5). Comparing realizations

on a same row, we clearly see the e�ect of anisotropy and regularity variations on �eld

textures: as the �eld regularity decreases, the texture gets rougher, and, as the �eld

anisotropy increases, texture patterns get more obviously oriented. Besides, comparing

realizations on a same column, we can observe texture di�erences induced by changing the

regularity of the Hurst index function h in the model. In particular, realizations obtained

with a discontinous function h (on the �rst row) have some linear patterns which are not

present on those obtained with a more regular function h (on the second and third rows).

Fixing the Hurst index function to a constant (h ≡ 0.5), we also simulated �eld realiza-

tions with topothesy functions c = gi for i = 1, 2, 3 and di�erent pairs of parameter values

(µ1, µ2); results are shown on Figure 10. In these realizations, the degree of anisotropy

can be de�ned as the di�erence µ2 − µ1 between maximal and minimal topothesy values.

From a column to the next one, it is increased, while the �eld regularity remains the

same for all realizations (H = 0.2). As it can be observed by comparing realizations on

a same row, variations of the anisotropy degree cannot be visually detected on textures.

However, comparing realizations on a same column, we can notice that the regularity of

the topothesy function has an e�ect on the �eld texture. As previously, some line patterns

are present on textures when the topothesy function is discontinous.

In the simulations we presented, �eld realizations were generated on a regular subgrid of

[0, 1]2. Using our TBM approach, it is however possible to simulate �elds on other sets of

non-uniformly spaced positions. To do so, the only condition is that position coordinates
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Figure 9. Field realizations obtained with di�erent Hurst index functions

h. For all realizations, the topothesy function c ≡ 1. On the �rst, second

and third rows, Hurst index functions are h = g1 (discontinuous), h = g2

(continuous but not di�erentiable), and h = g3 (in�nitely di�erentiable), re-

spectively. On the �rst, second and third columns, Hurst index functions are

speci�ed by parameter pair values (µ1, µ2) = (0.2, 0.5), (µ1, µ2) = (0.5, 0.8),

and (µ1, µ2) = (0.2, 0.8), respectively.

are all rational; this is required for the exact simulation of fractional Brownian motions

on turning bands (refer to Section 3.1). The pseudo-polar grid is an example of a set

of points satisfying this simulation condition [1]. Such a grid is of particular interest for

computing discrete Radon transforms [2], as its points are uniformly spread on di�erent

lines radiating from the origin. But Radon transforms are one of the key features for the

construction of parameter estimators for AFBF [7, 36]. Hence, those estimators could be

better discretized and evaluated using simulations on a pseudo-polar grid.
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Figure 10. Field realizations obtained with di�erent topothesy functions.

For all realizations, the Hurst index function h ≡ 0.2. On the �rst, second

and third rows, topothesy functions are c = g1 (discontinuous), c = g2

(continuous but not di�erentiable), and c = g3 (in�nitely di�erentiable),

respectively. On the �rst, second and third columns, topothesy functions

are speci�ed by parameter pair values (µ1, µ2) = (1, 5), (µ1, µ2) = (1, 100),

and (µ1, µ2) = (1, 1000), respectively.

Due to the ability of the TBM to simulate �elds on quasi-arbitrary points, it also

becomes possible to simulate �eld deformations. For instance, let A be the 2× 2-matrix

of an a�ne transform (with rational components) and X̃ = X ◦A the deformation of the

random �eld X by the a�ne transform A. Realization of X̃ on a uniform grid G of [0, 1]2

can be obtained by applying the TBM to the simulation of X on {Ax, x ∈ G}. Figure 11

presents an illustration corresponding to the deformation of a fractional Brownian �eld of
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Hurst index H = 0.5 by a shear in the horizontal direction, that is, A =

 1 2

0 1

. This

example also shows that deformating isotropic �elds is a means to construct anisotropic

�elds.

Figure 11. Shear of a fractional Brownian �eld of Hurst index 0.5.

Simulation is a central issue concerning the investigation of anisotropic �elds. As shown

previously, a simulation technique such as the TBM can serve as a tool for visualizing

mathematical properties of anisotropic models under study. From an application view-

point, it can also help assessing the similarity between model realizations and real-world

images. Besides, having reliable simulations is critical for the evaluation of model parame-

ter estimators. In future works, we plan to use TBM simulations of AFBF to evaluate the

estimators we constructed using quadratic variations [7, 36]. We also intend to use those

simulations to re�ne the adequacy between models and radiographic images we analyze

for the characterization of osteoporosis and breast cancer [5, 8, 36].
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Appendix A. Proof of Proposition 2.1

Proof. According to Proposition 2.2, for all x ∈ R2,

v
H,α1,α2

(x) =
1

2

∫ π/2

−π/2
γ(h(θ))c(θ)|x · u(θ)|2h(θ)dθ

=
1

2
γ(H)‖x‖2H

∫ α2

α1

| cos(θ − arg(x))|2Hdθ.

We will use the following lemma.

Lemma A.1. Let a, b ∈ R with −π/2 ≤ a < b ≤ π/2, then∫ b

a

| cos(θ)|2Hdθ = 22H

(
β
H

(
1 + sin(b)

2

)
− β

H

(
1 + sin(a)

2

))
.

Proof. Since we assume that −π/2 ≤ a < b ≤ π/2,∫ b

a

| cos(θ)|2Hdθ =

∫ b

a

(
1− sin(θ)2

)H−1/2
cos(θ)dθ

=

∫ sin(b)

sin(a)

(1− u2)H−1/2du,

by the change of variables u = sin(θ). Then, by the change of variables v = 1+u
2
, we

obtain ∫ b

a

| cos(θ)|2Hdθ = 22H

∫ 1+sin(b)
2

1+sin(a)
2

(1− v)H−1/2vH−1/2dv,

which gives the result. �

This allows us to get the next result, which concludes the proof.

Corollary A.2. Let a, b ∈ R with 0 ≤ b− a ≤ π, then

∫ b

a

| cos(θ)|2Hdθ = 22H



∣∣∣βH (1+sin(b)
2

)
− β

H

(
1+sin(a)

2

)∣∣∣ if (a, b) ∩ π
2

+ Zπ = ∅

β
H

(
1+sin(b)

2

)
+ β

H

(
1+sin(a)

2

)
if (a, b) ∩ −π

2
+ 2Zπ 6= ∅

β
H

(
1−sin(b)

2

)
+ β

H

(
1−sin(a)

2

)
if (a, b) ∩ π

2
+ 2Zπ 6= ∅
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Proof. We �rst assume that (a, b) ∩ π
2

+ Zπ = ∅. Since 0 ≤ b− a ≤ π, one can �nd k ∈ Z

such that −π/2 ≤ a+ kπ < b+ kπ ≤ π/2. The result follows from Lemma A.1 when k is

even. When k is odd,∫ b

a

| cos(θ)|2Hdθ =

∫ b+kπ

a+kπ

| cos(θ)|2Hdθ = 22H

(
β
H

(
1− sin(b)

2

)
− β

H

(
1− sin(a)

2

))
,

according to Lemma A.1. Note that by a change of variables, for all θ ∈ R

(25) β
H

(
1− sin(θ)

2

)
= β

H
(1)− β

H

(
1 + sin(θ)

2

)
and the result follows.

Let assume that −π
2

+ 2Zπ 6= ∅. Then, one can �nd k ∈ Z such that a + 2kπ < −π/2 <

b+ 2kπ, and according to Lemma A.1,∫ b

a

| cos(θ)|2Hdθ =

∫ b+2kπ

a+2kπ

| cos(θ)|2Hdθ

=

∫ −π/2
a+2kπ

| cos(θ)|2Hdθ +

∫ b+2kπ

π/2

| cos(θ)|2Hdθ

=

∫ π/2

a+π+2kπ

| cos(θ)|2Hdθ + 22Hβ
H

(
1 + sin(b)

2

)
= 22H

(
β
H

(1)− β
H

(
1 + sin(a+ π)

2

)
+ β

H

(
1 + sin(b)

2

))
,

which concludes this case using (25). The last case is similar. �

�

Appendix B. Proofs of section 2.3

Proof of Proposition 2.4. Note thatXΘ,Λ(0) = X
H,α1,α2

(0) = 0 a.s. so that dKol(XΘ,Λ(0), X
H,α1,α2

(0)) =

0. Let x ∈ R2 with x 6= 0. Then, the error of approximation is bounded by

v
H,α1,α2

(x)− vΘ,Λ(x)

v
H,α1,α2

(x)
,

with v
H,α1,α2

(x) = 1
2
γ(H)‖x‖2H

∫ α2

α1
| cos(θ − arg(x))|2Hdθ and

vΘ,Λ(x) =
1

2
γ(H)‖x‖2H

n∑
i=1

λi| cos(θi − arg(x))|2H .
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First let us remark that since θ′ 7→ | cos(θ−θ′)|2H is continuous, non negative and non iden-

tically equal to 0 one can �nd c1 > 0 such that for all x ∈ R2,
∫ α2

α1
| cos(θ−arg(x))|2Hdθ ≥

c1. It follows that

dKol(XΘ,Λ(x), X
H,α1,α2

(x)) ≤ c−1
1

(∫ α2

α1

| cos(θ − arg(x))|2Hdθ −
n∑
i=1

λi| cos(θi − arg(x))|2H
)
.

Now, let us write

(26) gx(θ) = | cos(θ − arg(x))|2H ,

and remark that

(27) |gx(θ)− gx(θ′)| ≤ 2|θ − θ′|min(2H,1) for all θ, θ′ ∈ R,

using the fact that ||t|2H − |t′|2H | ≤ 2|t − t′|min(2H,1) for all t, t′ ∈ [−1, 1]. It follows that

there exists c2 > 0 such that for 0 ≤ i ≤ n,

(28)

∣∣∣∣∫ θi+1

θi

(gx(θ)− gx(θi)) dθ
∣∣∣∣ ≤ c2(θi+1 − θi)1+min(1,2H).

Then, choosing λ1 = θ2 − θ0 and λi = θi+1 − θi for 2 ≤ i ≤ n, one has∣∣∣∣∣
∫ α2

α1

gx(θ)−
n∑
i=1

λigx(θi)

∣∣∣∣∣ ≤ c2(α2 − α1) max
0≤i≤n

(θi+1 − θi)min(1,2H).

Moreover gx is of class C2 on R r {arg(x)− π/2 + πZ} with

(29) |gx
′′
(θ)| ≤ c3| cos(θ − arg(x))|2H−2, for all θ /∈ arg(x)− π/2 + πZ,

for some c3 > 0 (non depending on x). According to the trapezoidal rule, when [θi, θi+1]∩

{arg(x)− π/2 + πZ} = ∅,

(30)

∣∣∣∣∫ θi+1

θi

(
gx(θ)−

gx(θi) + gx(θi+1)

2

)
dθ

∣∣∣∣ ≤ sup
θ∈[θi,θi+1]

|gx′′(θ)|
(θi+1 − θi)3

12
.

Note also that using (27) one always has

(31)

∣∣∣∣∫ θi+1

θi

(
gx(θ)−

gx(θi) + gx(θi+1)

2

)
dθ

∣∣∣∣ ≤ c2(θi+1 − θi)1+min(1,2H).
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For sake of simplicity let us consider the case where arg(x) = π/2 such that −π/2 ≤ α1 ≤

θ − arg(x) + π/2 ≤ α2 ≤ π/2 and

| cos(θ − arg(x))| ≥ 2

π
|θ − arg(x) + π/2| = 2

π
|θ|.

If θn+1 ≤ 0 we set m = n + 1, if θ0 > 0 we set m = 0 and otherwise we choose m ∈

{0, . . . , n} such that θm ≤ 0 < θm+1. Then, according to (29), since 2H − 2 < 0, for

i > m+ 2,

sup
θ∈[θi,θi+1]

|gx′′(θ)| ≤ c3

(
2

π

)2H−2

θ2H−2
i ≤ c3

(
2

π

)2H−2
1

θi−1 − θi

∫ θi

θi−1

θ2H−2dθ,

with, when m < n− 3,

(32)
n−1∑

i=m+3

∫ θi

θi−1

θ2H−2dθ =

∫ θn

θm+2

θ2H−2dθ ≤ c4

 (θm+2 − θm+1)−1+min(2H,1) if H 6= 1/2

| log(θm+2 − θm+1)| if H = 1/2
,

for some constants c3, c4 > 0. While for i < m− 1 one has

sup
θ∈[θi,θi+1]

|gx′′(θ)| ≤ c3

(
2

π

)2H−2
1

θi+2 − θi+1

∫ θi+2

θi+1

|θ|2H−2dθ,

with, when m > 3,

(33)
m−2∑
i=1

∫ θi

θi−1

θ2H−2dθ =

∫ θm−2

θ0

θ2H−2dθ ≤ c5

 (θm−1 − θm−2)−1+min(2H,1) if H 6= 1/2

| log((θm−1 − θm−2))| if H = 1/2
,

for some constant c5 > 0. Let us choose λ1 = (θ1− θ0) + θ2−θ1
2

, λn = (θn+1− θn) + θn−θn−1

2

and λi = θi+1−θi−1

2
for 2 ≤ i ≤ n− 1. Then, let us remark that for 2 ≤ i ≤ n− 1 one has

λi = θi+1−θi
2

+ θi−θi−1

2
. Therefore

n−1∑
i=2

λigx(θi) =
n−1∑
i=2

θi+1 − θi
2

gx(θi) +
n−2∑
i=1

θi+1 − θi
2

gx(θi+1)

=
n−2∑
i=2

(θi+1 − θi)
gx(θi) + gx(θi+1)

2
+
θn − θn−1

2
gx(θn−1) +

θ2 − θ1

2
gx(θ2).
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It follows that

n∑
i=1

λigx(θi) =
n−1∑
i=1

(θi+1 − θi)
gx(θi) + gx(θi+1)

2
+ (θ1 − θ0)gx(θ1) + (θn+1 − θn)gx(θn)

=
n−1∑
i=1

∫ θi+1

θi

gx(θi) + gx(θi+1)

2
dθ +

∫ θ1

θ0

gx(θ1)dθ +

∫ θn+1

θn

gx(θn)dθ.

Then,∣∣∣∣∣
∫ α2

α1

gx(θ)−
n∑
i=1

λigx(θi)

∣∣∣∣∣
≤

n−1∑
i=1

∣∣∣∣∫ θi+1

θi

gx(θ)−
gx(θi) + gx(θi+1)

2
dθ

∣∣∣∣+

∣∣∣∣∫ θ1

θ0

gx(θ)− gx(θ1)dθ

∣∣∣∣+

∣∣∣∣∫ θn+1

θn

gx(θ)− gx(θn)dθ

∣∣∣∣
≤

m−2∑
i=1

+
n−1∑

i=m+3

+
m+2∑
i=m−1

+

∣∣∣∣∫ θ1

θ0

gx(θ)− gx(θ1)dθ

∣∣∣∣+

∣∣∣∣∫ θn+1

θn

gx(θ)− gx(θn)dθ

∣∣∣∣ ,
which gives the result using (30) with (32) and (33) for the two �rst sums and using (28)

and (31) for the other terms. The general case where arg(x) 6= π/2 can be computed

similarly. �

Proof of Proposition 2.5. The proof is similar to the proof of Proposition 2.4, considering

g̃x(θ) = γ(h(θ))c(θ)|x · u(θ))|2h(θ) = γ(h(θ))c(θ)‖x‖2h(θ)| cos(θ − arg(x))|2h(θ).

instead of gx(θ) given by (26). Note that when h and c are assumed of class Cl (l = 1 or

2) on [α1, α2] ⊂ [−π/2, π/2], one can �nd C > 0 such that for all x ∈ T ,

|g̃x(θ)− g̃x(θ′)| ≤ C|θ − θ′|min(2H(α1,α2),1), for all θ, θ′ ∈ [α1, α2],

and when l = 2,

|g̃x
′′
(θ)| ≤ C| cos(θ − arg(x))|2H(α1,α2)−2, for all θ ∈ [α1, α2] with θ /∈ arg(x)− π/2 + πZ,

where H(α1, α2) = min
θ∈[α1,α2]

h(θ). These estimates allow to proceed as in the proof of

Proposition 2.4. The result follows by summing the integrals over which the functions h

and c are regular using the fact that H ≤ H(α1, α2) for all α1, α2. �
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Appendix C. Optimal band selection
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input : α1, α2, de�ning the considered angular interval

ε: the maximum angular distance between two adjacent bands

r: resolution parameter (the sampling step is 1/r)

output: a �nite sequence of integer vectors (p̄k, q̄k)1≤k≤s

N ← 1 + d 1
tan εe1

Build the set V of all integer vectors (q, p) ∈ {1, . . . , N} × {−N, . . . , N} such2

that gcd(p, q) = 1 and α1 < ∠(q, p) < α2

Sort V into a sequence (pk, qk)1≤k≤n with k 7→ θk := ∠(qk, kk) increasing3

Compute the angle θk := ∠(qk, pk) and the cost ek associated to each (qk, pk)4

Add extremal angles: θ0 ← α1 (e0 ← 0) and θn+1 ← α25

cn+1 ← 06

for i = n, n− 1, . . . 0 do7

cmin←∞8

j ← i+ 19

while j ≤ n+ 1 and θj ≤ θi + ε do10

if cj ≤ cmin then11

cmin← cj12

ki ← j13

end14

j ← j + 115

end16

ci ← ei + cmin17

end18

i← 019

s← 120

while i ≤ n do21

i← ki22

(p̄s, q̄s)← (pi, qi)23

s← s+ 124

end25

return (p̄k, q̄k)1≤k≤s26

Algorithm 1: Optimal band selection using Dynamic Programming.
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