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Figure 1: We introduce an algorithm to compute a small bilinear texture called texton that summarizes the frequency content of an input
texture image. Texton noise is a simple sparse convolution noise using the texton texture, producing output visually close to any input
Gaussian texture even for a very sparse Poisson point process. This results in an unprecedented evaluation speed for noise by example while
allowing for high-quality on-the-fly anisotropic filtering by simply invoking existing GPU hardware solutions for texture fetches.

Abstract
Designing realistic noise patterns from scratch is hard. To solve this problem, recent contributions have proposed involved
spectral analysis algorithms that enable procedural noise models to faithfully reproduce some class of textures. The aim of
this paper is to propose the simplest and most efficient noise model that allows for the reproduction of any Gaussian texture.
Texton noise is a simple sparse convolution noise that sums randomly scattered copies of a small bilinear texture called texton.
We introduce an automatic algorithm to compute the texton associated with an input texture image that concentrates the input
frequency content into the desired texton support. One of the main features of texton noise is that its evaluation only consists to
sum thirty texture fetches on average. Consequently texton noise generates Gaussian textures with an unprecedented evaluation
speed for noise by example. A second main feature of texton noise is that it allows for high quality on-the-fly anisotropic
filtering by simply invoking existing GPU hardware solutions for texture fetches. In addition, we demonstrate that texton noise
can be applied on any surface using parameterization-free surface noise and that it allows for noise mixing.

Categories and Subject Descriptors (according to ACM CCS): [Computer Graphics]: Image manipulation—Texturing

1. Introduction

Procedural noise is now a three-decades old technique introduced
by Perlin [Per85] and widely used today for the generation of
textures, the main focus of this paper, but also for the genera-
tion of other random contents involving spatial correlation such

as terrains, surface bumps, and so on. The classical approach for
generating a procedural texture is to combine several procedu-
ral noises with tweaked non linear functions (e.g. colormap and
coordinate perturbation of a sinewave to create marble-like tex-
tures [Per85, LLC∗10]).
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However, recent contributions addressing noise by exam-
ple [LVLD10, GLLD12, GSV∗14] demonstrated that a fair amount
of textures can be produced directly using a single procedural noise.
The main advantage of this new noise by example approach is to
propose algorithms that automatically estimate the noise parame-
ters instead of relying on creative non linear tweaks. However, to
achieve their goal, these papers use quite complex procedural noise
models with many parameters, accompanied with involved spectral
analysis for parameter setting and non trivial evaluation algorithm
involving probabilistic sampling of precomputed frequency tables.
As acknowledged in [LLC∗10], all standard procedural noise func-
tions produce approximately Gaussian outputs since they all mix
linearly independent random inputs. Hence, a natural class of tex-
tures for procedural noise is the class of Gaussian textures, which
are textures solely defined by their power spectrum (see Section 3
for a discussion on Gaussian textures).

The main motivation of this work is to propose the simplest
possible (and thus most efficient) noise model that allows for the
reproduction of any Gaussian texture. We present texton noise
which is a sparse convolution noise [Lew84] that uses a single
kernel, called texton. This means that our noise simply consists
in summing randomly positioned copies of the texton. This tex-
ton kernel determines alone the power spectrum of the noise. It
can be seen as a compact summary of the input texture, and thus
provides an “inverse texture synthesis” [WHZ∗08, SCSI08] so-
lution for Gaussian textures. To ensure a fast evaluation and a
compact representation of the noise, the texton is modeled as a
generic bilinearly-interpolated function having a small support, that
is, a small GPU texture. Our main contribution is to show that
this simple noise model is sufficient to reproduce any Gaussian
texture, with a texture analysis and a procedural evaluation that
are several orders of magnitude faster than recent competing ap-
proaches [GLLD12, GSV∗14] since they do not rely on the usual
spectral decomposition/frequency sampling approach. The main
features of texton noise are the following:

1. Arbitrary spectrum: The noise can approximate any general
spectrum and the evaluation cost does not increase with the com-
plexity of the spectrum that is summarized within the texton. It is
naturally designed for noise by example and is able to reproduce
any Gaussian texture.

2. Very fast evaluation: The cost for evaluating texton noise at a
point is the one of 30 texture fetches on average, without any
GPU evaluation of trigonometric function.

3. On-the-fly antialiasing: Texton noise allows for simple and
very efficient antialiasing filtering by simply invoking existing
GPU hardware solutions for texton texture fetches.

4. Automatic analysis: The texton computation is fully automatic
and fast.

5. Simple noise storage: Texton noise is represented by two pa-
rameters, the noise mean color and the texton stored as a GPU
texture. The noise hence have a controlled compact memory cost
(size of the texton) and does not involve any specific data struc-
ture.

In addition, texton noise generates textures directly in RGB space
without using any colorspace transformation and allows for surface
noise, that is, noise on surface without surface parameterization.
An additional contribution of the paper is to demonstrate that texton

noise allows for spatial noise mixing relying on recent contributions
in Gaussian texture mixing [XFPA14].

2. Related Work

2.1. Gaussian textures

The richness of the Gaussian texture model was demonstrated
in [vW91]. The author introduces the spot noise model that con-
sists in the addition of randomly shifted copies of a geometric ker-
nel, and demonstrates that this model can produce a large class of
microtextures by varying the kernel. The study of Gaussian tex-
tures has recently seen several developments in the field of im-
age processing. In [GGM11], the asymptotic discrete spot noise
model was clearly expressed as a stationary Gaussian random field.
The authors also proposed an automatic analysis/synthesis algo-
rithm based on the discrete Fourier transform (DFT) for the syn-
thesis by example of Gaussian texture images. Gaussian texture
images correspond to microtexture images whose perception is not
affected by random shuffling of the Fourier phase. A Gaussian
texture is thus characterized by its Fourier modulus. Desolneux
et al. [DMR12] introduced a compact representation of a Gaus-
sian texture by considering the image with same Fourier modu-
lus and zero Fourier phase, called “canonical texton”. Galerne et
al. [GLM14] showed that this compact “canonical texton” is not
suited for direct spot noise synthesis, and introduced an algorithm
for the computation of a “synthesis-oriented texton” that can be
used for low-intensity spot noise synthesis of Gaussian texture im-
ages, which is faster than Fourier simulation and allows for parallel
local evaluations. Furthermore, as demonstrated in [XFPA14], it is
possible to rigorously solve the problem of texture mixing for the
Gaussian model using optimal transport barycenters between prob-
ability distributions. We demonstrate in this paper that texton noise
also allows for noise mixing. To finish, let us also mention that
the Gaussian model is also convenient for dynamic texture model-
ing [DCWS03, XFPA14].

Except for [vW91], all these image processing papers only con-
sidered Gaussian textures on discrete pixel grid. By using a sim-
ilar probabilistic approach, we demonstrate with texton noise that
it is possible to extend the results of [GLM14] and [XFPA14] to
the continuous framework of procedural noise functions while ful-
filling specific technical requirements such as fast evaluation and
on-the-fly filtering.

2.2. Noise by example

As recalled in the introduction, procedural noise is a three-decades
old technique introduced in [Per85]. Several procedural noise func-
tions have been proposed and we refer to the survey [LLC∗10] for
a complete discussion. Let us just mention again that texton noise
is a sparse convolution noise [Lew84] which is also called spot
noise [vW91]. This paper tackles the noise by example problem,
that is, producing a noise that is visually similar to an input texture
image. This subject has seen several developments in these past five
years, and we refer to the papers [GLLD12] and [GSV∗14] for de-
scription of related works previous to 2010. The main idea of noise
by example is to find noise parameters that match the power spec-
trum of the input image. The limitations of existing methods are
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threefold: non fully automatic analysis requiring manual interven-
tion, model limitation, slow procedural evaluation.

Gilet et al. [GDS10] proposed a segmentation approach of the
power spectrum using ellipses to determine the parameters of a Ga-
bor noise model [LLDD09]. However, their method requires signif-
icant manual intervention and trial for each exemplar.

Lagae et al [LVLD10] estimated frequency bandwidth energies
to set the parameters of a wavelet noise [CD05]. Their analysis is
fully automatic but the approach is limited to isotropic textures.

With Gabor noise by example (GNBE), Galerne et al. [GLLD12]
demonstrated that any Gaussian texture could be obtained with a
Gabor noise [LLDD09] using several bandwidths. The resulting
noise is visually indistinguishable from the targeted Gaussian tex-
ture, but the proposed automatic analysis procedure takes several
minutes and the procedural evaluation is relatively slow.

Lately, Gilet et al [GSV∗14] introduced local random phase
noise (LRP noise). This new noise uses a regular spatial grid to
sum localized cosines with random or deterministic phases. The no-
table contribution of this work is to generate noise with structured
patterns by preserving some local phases of the input texture, mak-
ing it the state of the art method. However, when applied to Gaus-
sian textures, the output noise is slightly different from the targeted
Gaussian texture due to a slightly approximate spectral analysis and
the use of the principal variation color space [VSLD13] based on
color clustering.

In comparison, texton noise is theoretically guaranteed to pro-
duce Gaussian textures, the parameter setting is fast, simple and
automatic, and the evaluation speed is unprecedented for noise by
example. Texton noise allows for the faithful reproduction of any
Gaussian texture, but, similarly to GNBE [GLLD12] it is strictly
limited to Gaussian textures, and thus cannot produce more struc-
tured textures contrary to LRP noise [GSV∗14]. In short, texton
noise improves significantly the state of the art for noise by ex-
ample applied to Gaussian textures, while LRP noise remains the
unchallenged state of the art for noise by example for structured
textures.

2.3. Texture Tiling and Texture Bombing

Let us recall that many procedural methods consist in assembling
texture pieces on the synthesis domain. The chaos mosaic tech-
nique [GSX00] shuffles the blocks of the tiled input texture and
next solves efficiently the mismatched features on the block bound-
aries. Similarly, the algorithm of [CSHD03] assembles precom-
puted Wang tiles (with matching boundaries) in order to progres-
sively fill the synthesis domain. An improvement was later sug-
gested in [Wei04] allowing for hardware implementation by pack-
ing the Wang tiles in a texture map. We refer to [LKF∗08] for
further details about tiling applications in graphics. The method
of [LN03] consists in throwing predefined patterns in the cells of a
mosaic in a randomized manner. Texture bombing [Gla04] samples
textures in the dead leaves model [Mat68] which means that sev-
eral predefined patterns are thrown on the synthesis domain with
an occlusion principle. Lefebvre et al. [LHN05] proposed an opti-
mized method allowing for interactive animated texture design: the

user can drop (and edit) texture sprites (i.e. small patterns) which
can be assembled with a customized blending principle. Vanhoey
et al. [VSLD13] suggest to break the repetitions of a periodic tiling
by random replacements of well-chosen interchangeable patches.

In all these methods, each pixel or each cell is covered by one
dominant texture pattern, and thus, they are more adapted to macro-
textures. In contrast, with texton noise each point is covered by
several randomly shifted copies of the texton which are simply
summed. We will see on the results that when covering a point with
30 textons, individual textons are not distinguishable and that the
noise patterns only result from the noise spectrum. In short, the
texton is not a precomputed piece of texture but a small texture
summarizing the frequency content of a Gaussian texture.

3. Background on Gaussian Textures and Shot Noise

3.1. Gaussian Texture Synthesis

Given any image u defined on the pixel domain Ω = {0, . . . ,M−
1}×{0, . . . ,N− 1} containing |Ω| = MN pixels and having mean
color mean(u), one samples the Gaussian version of u simply by
convolving the normalized image 1√

MN
(u−mean(u)) with a stan-

dard Gaussian white noise (the pixel values are independent and
have Gaussian distribution with mean 0 and variance 1), and then
add mean(u) to each pixel [GGM11]. By definition, Gaussian tex-
tures are the texture images that are visually well-reproduced by
this simple convolution-based procedure, and they are character-
ized by their mean color and their covariance or power spectrum.
Several pairs of textures and their Gaussian counterparts are shown
in the two first rows of Figure 7 and demonstrate that the Gaussian
model is realistic for various fabrics, wood, rocks,... Still Gaussian
textures form a limited class of textures since they do not contain
sharp contours. However this limitation is counterbalanced by the
fact that their precise probabilistic definition enables to derive al-
gorithms with theoretical guarantee of success for texture synthe-
sis [GGM11] as well as for texture mixing [XFPA14]. The goal of
this paper is to achieve both these tasks with an efficient procedural
noise function. This is challenging since one cannot use grid-based
FFT convolutions in a continuous framework. This is the reason
why we now turn to approximate Gaussian simulations using high
intensity shot noise.

3.2. Discrete Shot Noise Associated with an Image

The previous section describes the Gaussian texture synthesis on
a finite pixel grid Ω while we would like to achieve Gaussian tex-
ture synthesis on the domain R2. The difference is twofold: 1) R2 is
infinite; 2) R2 is continuous. The second point deserves more atten-
tion since defining a Gaussian texture model on the infinite discrete
domain Z2 is straightforward. Given an image u ∈ RM×N as in the
previous section, one defines the normalized version of u extended
to Z2 by tu(k) = 1√

|Ω|
(u(k)−mean(u)) if k ∈Ω, and 0 otherwise,

so that the auto-correlation of u can be written

t̃u ? tu(k) =
1
|Ω| ∑

l∈Ω

(u(l)−mean(u))(u(l + k)−mean(u))

with the convention that u(l+k)−mean(u) = 0 if l+k /∈Ω, where
? denotes convolution between Z2-indexed sequences, and where
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t̃u(k) = tu(−k). Then the discrete shot noise (DSN) of intensity
λ > 0 associated with u is defined on Z2 [GLM14] by

Fu(k) = ∑
j

tu(k− k j), k ∈ Z2,

where {k j} ⊂ Z2 is a Poisson process of intensity λ over Z2. This
DSN has expectation zero and its covariance is λt̃u ? tu, and when
the Poisson intensity λ tends to +∞ the variance-normalized DSN

1√
λ

Fu tends towards a Gaussian random field over Z2 with mean 0
and covariance t̃u ? tu which is called Asymptotic DSN (ADSN).
Experiments show that if u is a Gaussian texture, then both ADSN
and DSN with high λ generate textures that are visually similar to
the Gaussian input, while defined on the infinite domain Z2. Our
goal in what follows is to propose a procedural texture model, de-
fined on the continuous domain R2, that produces the same visual
quality.

3.3. Single Kernel Shot Noise

Strictly speaking, the texton noise model is not new since it is a
sparse convolution noise with a single kernel. The novelty of our
approach consists in the computation of a specific kernel whose
corresponding noise can approximately reproduce any Gaussian
texture or any desired noise spectrum in a very efficient way.

The sparse convolution noise [Lew84,LLDD09], also called spot
noise in graphics [vW91], is what is denominated a shot noise pro-
cess in applied probability [Pap71,Ric77]. It simply consists in the
sum of several copies of a kernel h that are randomly shifted all
over the plane R2 according to a Poisson process of intensity λ > 0
denoted by Πλ. The resulting shot noise is thus the random field

fλ(x) = ∑
x j∈Πλ

h(x− x j), x ∈ R2, (1)

where the kernel h : R2→ R is such that both integrals
∫
|h(x)|dx

and
∫

h2(x)dx are finite. We will speak of single kernel shot noise
since the function h is fixed and deterministic. Let us clarify
some notation. For a function g : R2 → R, g̃ denotes the sym-
metric function g̃(y) = g(−y), ĝ denotes its Fourier transform
ĝ(ξ) =

∫
R2 h(y)e−2iπ〈ξ,y〉dy, and ∗ denotes the convolution prod-

uct between functions defined on R2.

Proposition 1 (Shot noise mean, covariance and power spec-
trum) The random field fλ defined by (1) is well-defined, station-
ary and has a finite variance. Its expectation is given by E( fλ(x)) =
λ
∫
R2 h(y)dy. Its covariance function is equal to τ 7→ λC(τ) where

C(τ) =
∫
R2 h(y+ τ)h(y)dy = h̃∗h(τ) is the autocorrelation of h, its

power spectrum is thus S(ξ) = λĈ(ξ) = λ
∣∣ĥ(ξ)∣∣2 .

Single kernel shot noise are well suited for the generation of
Gaussian textures thanks to the following Gaussian convergence
theorem (proved e.g. in [Pap71]).

Theorem 2 (Shot noise Gaussian convergence) As the Poisson
point process intensity λ tends to +∞, the normalized random field

gλ(x) =
fλ(x)−E( fλ(x))√

λ
(2)

converges in distribution towards a Gaussian random field with
mean 0 and covariance function C = h̃∗h.

This key theorem furnishes the recipe for noise by example with
a single kernel shot noise: given a Gaussian texture image u as in-
put,

1. Analysis step: Estimate the input discrete covariance Cu = t̃u ?tu
and determine a kernel h such that Cu ' h̃∗h,

2. Evaluation step: Generate the normalized shot noise gλ(x) with
a sufficiently high λ.

Shot noise evaluation cost A critical feature of a procedural noise
is the computational cost of its evaluation. Let us stress that the rel-
evant quantity regarding the shot noise evaluation cost is not the
Poisson process intensity λ but the mean number of kernels h cov-
ering a point (that is the mean number of non null terms in the
sum (1)) that we call mean number of impacts (MNI). For a kernel
with a square support S of size r× r, the MNI is λr2. On the oppo-
site, if the support of the kernel does have infinite area, the MNI is
infinite and the evaluation is not feasible.

4. Texton Noise

As said in the introduction, we model the kernel function h as a
generic bilinearly-interpolated function so that it can be stored in
GPU texture memory and evaluated using standard GPU fetch al-
gorithm. Hence,

h(y) = ∑
k∈Z2

α(k)ψ(y− k), y ∈ R2, (3)

where the interpolation coefficients α should be 0 outside a small
finite domain and ψ is the usual 2D bilinear interpolation kernel,
i.e. ψ(y1,y2) = (1−|y1|)+(1−|y2|)+ where x+ = x if x≥ 0 and 0
otherwise. Remark that α(k) = h(k) for all k ∈ Z2 but it is prefer-
able to differentiate the notation between the stored coefficients α

and the continuous function h (also, α(k) = h(k) is not valid if one
uses higher order BBB-spline interpolation, see the discussion in sup-
plementary material). From now on, the bilinearly-interpolated ker-
nel h will be called texton, the interpolation coefficients α will be
called texton interpolation coefficients, and the corresponding nor-
malized shot noise gλ defined by (2) will be called texton noise.
Remark that a texton noise is solely determined by its interpolation
coefficients α. The main problem is to determine the texton interpo-
lation coefficients α that enable to reproduce an exemplar Gaussian
texture image u ∈ RM×N .

4.1. Sampled Covariance Consistency

As said above, our goal is to define a texton noise gλ that produces
the same visual quality as the ADSN associated with the input tex-
ture image u. However, these two random objects are different in
nature since a shot noise is defined over the continuous domain R2

while an ADSN is defined over the discrete lattice Z2. The prob-
lem is to find a continuous covariance function C : R2→ R of the
form C = h̃∗h (see Proposition 1) that extends the discrete covari-
ance function Cu = t̃u ? tu : Z2→ R. This is of course an ill-posed
problem. We claim that the requirement that the procedural noise
gλ should be visually similar to the ADSN model over Z2 asso-
ciated with u translates in the following constraint: The sampling
over Z2 of gλ must have the same covariance as the ADSN as-
sociated with u. We call this condition the sampled covariance
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consistency. Note that since gλ is stationary over R2, the distribu-
tion of the sampled field (gλ(k))k∈Z2 , y ∈ R2, is the same as the
one of any discrete field (gλ(y+ k))k∈Z2 sampled on some trans-
lated grid y+Z2. The sampled covariance consistency condition
writes C(k) =Cu(k) for all k ∈ Z2, that is,

h̃∗h(k) = ∑
l∈Z2

(α̃?α)(l)(ψ̃∗ψ)(k− l) = t̃u ? tu(k), k ∈ Z2,

where, again, ∗ denotes the convolution between continuous func-
tions and ? denotes the convolution between discrete functions. Let
us denote by b : Z2 → R the sampling over Z2 of the function
ψ̃ ∗ψ = ψ ∗ψ, that is b(k) = ψ ∗ψ(k) for all k ∈ Z2. b is simply
the discrete sampling of the BBB-spline kernel of order 3: its coeffi-
cients are the one of the 3×3 matrix

( 1
6

2
3

1
6

)T ( 1
6

2
3

1
6

)
on

{−1,0,1}2 and zero outside {−1,0,1}2. Taking the Fourier trans-
form over Z2 of the above equation gives the translation of the sam-
pled covariance consistency condition in terms of power spectrum,

|α̂(ξ)|2 b̂(ξ) = |t̂u(ξ)|2 , ξ ∈ [− 1
2 ,

1
2 ]

2. (4)

Hence an ideal solution would be to find interpolation coefficients

(α(k))k∈Z2 such that |α̂(ξ)|2 =
|t̂u(ξ)|2

b̂(ξ)
. However the ideal story

stops here. Indeed, a Z2-indexed sequence has finite support if and
only if its Fourier transform is a trigonometric polynomial. Hence,
both |t̂u(ξ)|2 and b̂(ξ) are trigonometric polynomials, and unless
the input image u has been especially designed, there is no reason
for b̂(ξ) to be a divisor of |t̂u(ξ)|2. Hence, any solution (α(k))k∈Z2

to the equation |α̂(ξ)|2 = |t̂u(ξ)|
2

b̂(ξ)
, ξ ∈ [− 1

2 ,
1
2 ]

2 corresponds to a se-
quence with infinite support. This observation is rather disappoint-
ing: the ideal interpolation coefficients α for the kernel function h
would result in a noise with infinite memory footprint and infinite
evaluation cost! This leads us to turn to an approximation of the
sampled covariance consistency condition with a controlled mem-
ory budget, that is, with a prescribed support for the coefficients α.

4.2. Texton Computation Algorithm

Since there is no exact solution of the spectral equation (4) that has
a finite support, we turn to an approximate solution for this equa-
tion that has a user-defined support. The smaller the support, the
compacter the noise, although too small support would generally
impact the noise visual quality (see discussion in Section 9). Given
a small square domain S ⊂ Z2, we search for the best texton inter-
polation coefficients (α(k))k∈Z2 such that

1. α has support in S: for all k /∈ S, α(k) = 0.
2. |α̂(ξ)|2 b̂(ξ)≈ |t̂u(ξ)|2 for all ξ ∈ [− 1

2 ,
1
2 ]

2.

The second point leaves room for interpretation. Since both
|α̂(ξ)|2 b̂(ξ) and |t̂u(ξ)|2 are trigonometric polynomials, and thus
smooth functions, it is arguably enough to enforce that all their val-
ues on a regular grid are close. This leads to a practical numerical
solution, since |t̂u(ξ)|2 is easily evaluated on a regular grid by Fast
Fourier Transform (FFT). We propose the alternating projection al-
gorithm described in Algorithm 1 to compute the texton interpola-
tion coefficients α.

Within this algorithm, all images have the same size as the input
u defined on the domain Ω and the hat symbol ·̂ refers to the
DFT on Ω (which is computed by FFT).

• Input: Image u defined on Ω, coefficients support S⊂Ω

• Compute spectral constraint:

• Compute tu = 1√
|Ω|

(u−mean(u)) and its DFT t̂u

• Compute the sampling of the BBB-spline of order 3 b in Ω

(with the DFT periodicity convention) and its DFT b̂

• Random initialization: Initialize α∈RΩ as a standard white
Gaussian noise image

• Iterative constraint projection: Do n = 50 times

1. Impose power spectrum of
t̂u√

b̂
:

a. Compute the DFT α̂

b. Set α̂← |t̂u|√
b̂

α̂

|α̂|

c. Compute α by backward DFT

2. Impose support S: Set α← 1S ·α

• Output: Return α

Algorithm 1: Computation of the texton interpolation coeffi-
cients

The main motivation of this procedure (which is strongly in-
spired by the computation of the discrete synthesis-oriented tex-
ton [GLM14]) is to define coefficients α that have the targeted spec-

trum
t̂u√

b̂
, with support S and with a DFT phase as random as pos-

sible (obtained with the Gaussian white noise initialization). As a
preprocess for Algorithm 1, if the input image u is not strictly pe-
riodic it is replaced by its periodic component [Moi11] as in previ-
ous work on Gaussian texture synthesis. Figure 2 displays a texton
along with texton noise simulation with varying MNI. As can be
observed from this figure, texton noise is visually close to the tar-
geted Gaussian texture for a MNI of 30, which enables for a very
fast noise evaluation (see Section 9 for performance discussion). By
construction texton noise is a sum of bilinearly-interpolated textons
that are translated by the continuous vectors x j of (1). However
texton noise does not suffer from the usual bilinear interpolation
“blocky” artefacts since these translation vectors live in the contin-
uous domain R2 (see discussion and illustration in the supplemen-
tary material).

4.3. Color Texton Noise

Texton noise is naturally defined for Gaussian color textures simply
by allowing the kernel h of (1) to be a bilinear RGB texture image
hhh with coefficients ααα = (αR,αG,αB)

T . Hence color texton noise is
generated directly in RGB space with a single Poisson point pro-
cess, the computation cost of color texton noise is thus the same
as the one of its gray-level counterpart. In addition, since we gen-
erate directly the texture in RGB space without using non-linear
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Input texture

Texton

MNI = 3 MNI = 10 MNI = 30 MNI = 100 MNI = 1000

Figure 2: Left column: Input texture and texton of size 128×128. Subsequent columns: Texton noises with various MNI with corresponding
Poisson processes. Remark that the texton noise textures are visually close to the Gaussian limit as soon as MNI equals 30.

colormaps, our anisotropic filtering procedure (see Section 5) ap-
plies directly to color texton noise.

Computation of Color Texton Interpolation Coefficients Re-
lying on previous work on RGB Gaussian textures, we can
adapt the computation of the texton interpolation coefficients
ααα = (αR,αG,αB)

T to take into account the color channel correla-
tions of the RGB input uuu. For that, one simply replaces the spectral

projection of step 1.b of Algorithm 1 by α̂αα← 1√
b̂

t̂tt∗uuuα̂αα∣∣t̂tt∗uuuα̂αα
∣∣ t̂ttuuu, where ∗

denotes the conjugate transpose of a complex vector and the Fourier
transform of an RGB image is obtained by applying the Fourier
transform to each color channel (Please refer to supplementary ma-
terial for a rigorous justification).

Color Correlation Correction Due to the support projection (step
2. of Algorithm 1) that puts some coefficients to zero, the variance
of each color channel is always smaller than the one of the orig-
inal image. This loss of variance translates visually into textures
with less contrast and is not desirable. We thus perform the sim-
ple linear color correction proposed in [GLM14,DMR15] once the
coefficients are computed (Please refer to the supplementary mate-
rial for technical details and illustrations). This ensures that the co-
variance of the color texton noise is equal to the cross-correlation
of the input texture. Note that this color correction is done at the
analysis step, and once the corrected coefficients are computed
there is no need to store the cross-correlation matrices. Contrary
to previous work relying on adapted color spaces such as PCA-
like color space [LVLD10, GLLD12] or principal variation color
space [GSV∗14], the generation of texton noise is done directly in
the standard RGB space and thus gains in both speed and simplic-
ity.

5. Filtering Texton Noise

Filtering noise according to the viewing condition is crucial to limit
aliasing. The main issue is to avoid a costly hypersampling proce-
dure. State of the art noises allow for either isotropic [CD05] or
anisotropic [GZD08, LLDD09] filtering by frequency attenuation
or clamping adapted to the distance to camera. Besides, for color

noise these linear filtering techniques are possible only when using
a linear color space (e.g. RGB or PCA-like). Using any non-linear
colormap to obtain a color noise requires to use more involved (and
more costly) filtering procedures [LLC∗10, GSV∗14].

According to the survey [LLC∗10], a major drawback of proce-
dural noises is that classical filtering techniques for GPU textures
such as MIP-mapping are not available. One important feature of
texton noise is that it can be filtered using these standard tech-
niques. Indeed, as can be seen from (1), texton noise is simply a
sum of randomly scattered copies of the texton h. Hence, by linear-
ity of the convolution, locally filtering texton noise can be achieved
by locally filtering the texton h. Since the texton is a bilinear texture
stored in classical texture memory, we can apply standard MIP-
mapping lookup and anisotropic filtering to it when fetching the
texture values. This results in a high-quality anisotropic filtering of
our noise for only a slight additional computation cost since these
filtering implementations are highly optimized in GPU. Regarding
implementation, our anisotropic filtering strategy comes for free
since it only involves a few OpenGL code lines when declaring the
texton texture properties (generating MIP-map levels and enabling
anisotropic filtering) with zero modification of the fragment shader
dedicated to texton noise evaluation (note however that one could
use any filtering method for bilinear textures instead of the stan-
dard implementation). Figure 3 illustrate that our proposed on-the-
fly filtering is visually close to an ideal hypersampled noise. Fig-
ure 1 and the video in the supplementary material also illustrate the
aliasing correction. We observed experimentally that the speed per-
formance of the anisotropic filtering depends on the viewing con-
ditions, from being as fast as unfiltered texton noise to being twice
slower, while the hypersampling scheme presented in Figure 3 is
400 times slower than unfiltered texton noise. Hence, texton noise
allows for high-quality on-the-fly anisotropic filtering with limited
additional computational cost.

6. Surface Noise

Quoting the survey [LLC∗10], there are three different ways to
obtain noise on surfaces: 1) mapping a 2D noise onto the sur-
face using a planar parameterization, which is straightforward but
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Ideal hypersampled noise Filtered texton noise Unfiltered texton noise

Figure 3: Anisotropic filtering: Left: Ideal image obtained by hypersampling with a factor 400 (each pixel is the average of 20× 20
evaluations), Middle: Texton noise filtered on-the-fly by using MIP-mapping and anisotropic filtering of the texton, Right: Unfiltered texton
noise (each pixel is a single evaluation). The middle row displays close-up views delimited by the squares where the three left (resp. right)
images correspond to the three top (resp. bottom) inner frames. Observe that the proposed on-the-fly filtering technique gives results which
are visually very close to the ideal hypersampled noise.

has limitations (e.g. compute the parameterization, deal with dis-
tortion), 2) define a noise directly on the surface using surface
noise [LLDD09], 3) sampling a solid noise. Solutions 1) and 2)
are competitive while solution 3) is complementary to the first two
solutions. Indeed, some textures such as paint correspond to 2D
textures applied on surfaces while other textures such as wood or
stone correspond to 3D solid textures. In what follows we discuss
the adaptation of surface noise for texton noise. Note that there is
theoretically no obstacle to adapt texton noise to solid noise by
example. Since the generation of such 3D texture examples from
2D images is challenging in itself, we left solid texton noise as a
promising future work.

Surface noise, as defined by [LLDD09] and originally developed
by [Cha07], is an elegant construction that enables to apply a 2D
sparse convolution noise of the form

fλ(x) = ∑
xi∈Π2

λ

h(x− xi),

with Π
2
λ

a 2D Poisson point process and h : R2→ Rd , d = 1 or 3,
a (possibly varying) kernel with small support, to a 3D surface S
provided the surface curvature variation scale is larger than the ker-
nel support. To do so, one supposes that at each point y ∈ S of the
surface a local orthonormal basis (uy

1,u
y
2,u

y
3) is known where the

third basis vector uy
3 is the normal to S at point y∈ S. Additionally,

the map y 7→ (uy
1,u

y
2,u

y
3) must vary continuously if the surface is

continuous (As continuous as possible since e.g. there is no contin-
uous direction field on a sphere...). The main advantage of surface
noise is that it does not require surface parameterization and does
not involve any topological assumption on the surface S. Suppose
that the support of h is the square [− r

2 ,
r
2 ]

2. Then, the surface noise

value f s
λ
(y) at point y is obtained by projecting into the tangent

plane of S at point y all the points of a 3D Poisson point process
Π

3
λ

that are at distance less than r
2 and attaching to the projected

point a kernel h with orientation (uy
1,u

y
2). This leads to the equation

f s
λ(y) = ∑

xi∈Π3
λ

(1− 2
r |〈y− xi,u

y
3〉|)

+h((〈y− xi,u
y
1〉,〈y− xi,u

y
2〉))

where the brackets 〈·, ·〉 stand for the dot product in R3. The aim
of the weight (1− 2

r |〈y− xi,u
y
3〉|)

+ is to favor the points that are
closer to the tangent plane and that are more likely to be active for
points close to y.

For texton noise synthesis, it is crucial to be able to normalize
surface noise. Our main contribution regarding surface noise is to
provide the following general formulae (the proof is given in Sec-
tion A in appendix).

Proposition 3 (Surface noise mean and variance) With the above
notation,

E( f s
λ(y)) = λ

r
2

∫
R2

h(z)dz, Var( f s
λ(y)) = λ

r
3

∫
R2

h2(z)dz,

and if h has support [− r
2 ,

r
2 ]

2, the MNI, i.e. the mean number of
non zero terms in the sum defining f s

λ
(y), is λr3.

The practical consequence of the above formulae are as follows.
Since the surface noise must have the same variance than the usual
normalized 2D noise gλ (2), that is,

∫
R2 h2(z)dz, the properly nor-

malized surface noise is

gs
λ(y) =

f s
λ
(y)−λ

r
2

∫
R2

h(z)dz√
λ

r
3

=

f s
λ
(y)−λ

r
2 ∑

k∈S
α(k)√

λ
r
3

.
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Figure 4: Surface noise: Two examples of surface noise with tex-
ton noise and the original texture image. Surface noise permits to
apply a noise texture on a surface without texture coordinates. This
is of special interest for surfaces acquired by 3D scanner which
are hard to parameterize due to irregularities (outlier, holes,. . . )
like the example on the right (mesh obtained from a fraction of the
Tanagra point set of [DAL∗11]).

Let us observe that due to the weight varying with the distance to
the tangent plane, one needs to use a larger MNI to get a texton
noise visually close to the theoretical Gaussian texture. Figure 4 il-
lustrates surface noise for texton noise where we used a MNI of 60.

7. Noise Mixing

In this section, we show that texton noise can be used to obtain syn-
thetic textures that progressively mix two texture samples uuu and vvv.
Spatially varying synthesis is an issue of interest for procedural
noise [LLD11] but has never been achieved in the context of noise
by example where noise spectra are more complex.

Following [XFPA14], two exemplars can be mixed by relying
on barycenters of Gaussian texture models for the optimal trans-
port distance. More precisely, for a mixing parameter ρ ∈ [0,1],
the barycenter of the ADSN models associated with the kernels
tttuuu = 1√

|Ω|
(uuu−mean(uuu)) and tttvvv = 1√

|Ω|
(vvv−mean(vvv)) is the ADSN

model associated with the kernel τττρ defined by

τττρ = (1−ρ)τττ0 +ρτττ1 with τ̂ττ0 =
t̂tt∗uuu t̂ttvvv
|t̂tt∗uuu t̂ttvvv|

t̂ttuuu , τττ1 = tttvvv.

Once the kernel τττρ is computed, one can derive the corresponding
texton interpolation coefficients αααρ with Algorithm 1. Let us re-
mark that using the same white noise initialization in Algorithm 1
allows to compare the different textons associated with the interpo-
lated models. Our main contribution in noise mixing is to show that
these interpolated models can be embedded in shot noise synthe-
sis with spatially varying textons. For that, we consider a partition
D1, . . . ,DR of the synthesis domain corresponding to R different
kernel functions hhh1, . . . ,hhhR. In order to deal with kernels having

non-zero sum, for each point x j of the Poisson point process we in-
troduce a random weight ε j with uniform distribution on {−1,1}.
Since we can use either hhh or −hhh in the shot noise without affect-
ing the limiting covariance, introducing these random weights is an
easy way to force a null expectation in the output random field with-
out changing the texture model. Given the marked Poisson point
process Π

M
λ

of intensity λ

2 on R2×{−1,1}, we define the mixed
shot noise

fff λ(x) = ∑
(x j ,ε j)∈ΠM

λ

∑
16r6R

ε jhhhr(x− x j)1x j∈Dr ,

where 1x j∈Dr = 1 if x j ∈ Dr and 0 otherwise. This non-stationary

shot noise has null expectation, and one can show that gggλ =
fff

λ√
λ

converges to a Gaussian random field [Pap71]. Therefore, one can
obtain a progressive mixing of uuu and vvv by dividing the synthesis do-
main into R vertical strips (Dr)16r6R corresponding to the textons
(hhhr)16r6R associated with (τττ r−1

R−1
)16r6R. The noise mixing is then

obtained by sampling fff
λ√
λ

and adding a linear interpolation of the
mean values of uuu and vvv.

Such results of noise mixing are shown in Figure 5 with R = 21
kernel functions. One can see that this method gives a convincing
progressive mixing of the textures uuu and vvv and still keeps all the
benefits of the texton noise simulation. In the case where uuu and vvv
belong to the same texture subclass (like the wood textures of the
first example), the intermediate texture pieces are likely to appear
plausible samples of this texture subclass. Notice that, even if the
texton choices are discretized in space, there is no undesirable dis-
continuity in the output texture because the kernel functions are
locally blended. This mixing experiment takes profit of the spot
noise flexibility and illustrates the interesting possibilities offered
by local variations of the kernel functions.

8. Procedural Evaluation

Since texton noise is a sparse convolution noise with a single ker-
nel having a finite support [− r

2 ,
r
2 ]

2, evaluating the noise at a point
x ∈ R2 simply requires to simulate the Poisson point process on
the domain x+[− r

2 ,
r
2 ]

2. To do so, we simply use a standard grid-
based approach [Wor96, LLDD09]. Let us recall that it consists in
partitioning R2 into grid cells of the form Ck = ak+[0,a)2, k ∈ Z2,
define a pseudo-random number generator PRNGk for each cell Ck
by using a seed depending on the coordinate of k, and simulate
the Poisson process within Ck using PRNGk. Then, to evaluate the
noise at x one simulates on-the-fly the Poisson process on the cells
that intersects x + [− r

2 ,
r
2 ]

2. The cell size a is generally taken to
be equal to r [LLDD09, LLC∗10]. Since x+ [− r

2 ,
r
2 ]

2 always in-
tersects 4 grid cells of size r, this results in evaluating in average
4λr2 = 4MNI points while only MNI points actually contribute to
x in average. Using cells smaller than r limits the number of unused
points but also increases the number of Poisson variate simulations
for the number of points within a cell. A cell size a = 0.6r was
found to be a good compromise for our implementation. This ac-
celeration is also valid for the 3D Poisson point process used for
surface noise.

We experimented correlation issues with the linear congruential
generator used in [GLLD12]. Following [Ree13], we used Xorshift
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Figure 5: Noise mixing: We show three examples of progressive texture mixing obtained by spot noise synthesis with varying textons. The
different textons are obtained as optimal transport barycenters between Gaussian texture models. For each example, in the first row, we show
five textons (with respective mixing parameter ρ = 0, 0.25, 0.5, 0.75, 1) among the 21 involved in the synthesis result shown in the second
row. Notice that the texture variation appears continuous even if the texton choices are discretized.

RNGs [Mar03] and processed the grid seed with a hash function.
For the Poisson variate generation, since we only use high inten-
sity Poisson processes, we used the same Gaussian approximation
as [GLLD12].

9. Results

Implementation and reproducibility We provide as supplemen-
tary material: 1) Matlab source codes for texton computation (see
Algorithm 1); 2) an OpenGL implementation for texton noise eval-
uation (for which we used parts of the implementation of [LD11]);
3) all the input textures and texton files used to produce the figures.

Mean number of impacts Except for Figure 2, all the results are
obtained with a MNI of 30 for 2D texton noise and a MNI of 60 for
surface noise.

Texton support Figure 6 illustrates the influence of the texton sup-
port size regarding texton noise quality and spectral approximation.
The quality of the noise always increases with the size of the texton,
but for some textures the quality improvement is negligible once the
texton is large enough. Hence the support of the texton can be seen

as a trade-off between texture detail and memory storage, but for
some textures with simple small patterns, increasing the texton size
does not improve the noise visual quality (see e.g. the first column
of Figure 7). Let us stress that the support size does not influence
the performance of the texton noise evaluation (30 texture fetches
by evaluation points on average) as discussed below.

Synthesis results Figure 7 shows that any input Gaussian tex-
ture can be visually reproduced with a texton noise (see also Fig-
ures 1, and 4). We compare texton noise with Gabor noise by ex-
ample [GLLD12] and Local Random Phase noise [GSV∗14] in the
supplementary material. This comparison shows that texton noise
allows to synthesize Gaussian textures in the most precise and ef-
ficient way, while only LRP allows to synthesize more structured
textures. Let us recall that texton noise is by construction limited
to Gaussian textures (e.g. see the loss of details in the last exam-
ple of Figure 7). Although let us add that texton noise outputs do
not contain any repetition contrary to most tiling procedures (see
the supplementary material for a comparison with the patch-based
image quilting algorithm [EF01]).
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Input Texture Texton noise
r = 16 r = 32 r = 64 r = 128 r = 256

Figure 6: Influence of the texton support: The support of the texton is a trade-off between texture detail and memory storage. Left column:
Original image (512×512) and its power spectrum. Subsequent columns: Texton with support r× r, corresponding texton noise, estimated
power spectrum obtained by averaging 10 independent texton noise realizations. Remark that the power spectrum is closer and closer to the
original one as the support size increases.
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Figure 7: Synthesis results: Texton noise enables to reproduce any Gaussian texture. First row: Input texture (with size); Second row:
Gaussian version of the texture (see Section 3.1); Third row: Computed texton (with size); Fourth row: Texton noise.
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Output size Texton 64×64 Texton 256×256
1024×1024 204 fps / 4.9 ms 189 fps / 5.3 ms

HD (1920×1080) 102 fps / 9.8 ms 98 fps / 10.1 ms
4K (3840×2160) 27 fps / 36.9 ms 26 fps / 38.9 ms

Table 1: Performance of 2D texton noise evaluation (fps stands for
frame per second and ms for millisecond).

Performance One important feature of texton noise is that its eval-
uation speed does not depend on the texture spectrum complex-
ity contrary to existing noise by example approaches [GLLD12,
GSV∗14]. We reproduce in Table 1 the performance of 2D texton
noise evaluation run on a Quadro K5000 (1536 Cuda cores). These
figures show that texton noise allows for real time evaluation of
a full HD screen. These performances are two orders of magni-
tude faster than Gabor noise by example [GLLD12] and one order
of magnitude faster than LRP noise [GSV∗14] (these two refer-
ences reported performance for small 128×128 images; extrapola-
tion and weighting with the CUDA cores number of used graphics
cards gives the following order of magnitude for 1024×1024 im-
ages: 2 fps for Gabor noise by example and 20 fps for LRP noise).
One can also observe that the texton size influences only slightly
the evaluation (texture fetches are presumably slower).

Regarding texton computation, our Matlab implementation of
Algorithm 1 runs in 0.5 sec. for an RGB 128× 128 image and
in about 5 sec. for a 768× 512 image. In comparison, the Gabor
noise by example parameter computation takes about 2 min. for a
128× 128 image. Performance for parameter computation of LRP
noise has not been reported.

10. Conclusion

This paper introduced a new noise model that allows for the repro-
duction of any Gaussian texture image. Since the texton summa-
rizes the whole content of an image (or a prescribed power spec-
trum), texton noise produces visually good results with only 30 tex-
ture fetches per fragment in average. This makes texton noise the
most efficient technique for noise by example, with a gain of one or
two orders of magnitude in comparison with existing algorithms. In
addition, texton noise is easily filtered on-the-fly by simply filtering
the texton texture with standard MIP-mapping and anisotropic fil-
tering while existing algorithms use involved frequency attenuation
procedures with non-negligible additional cost. We also demon-
strated that texton noise allows for noise mixing, which can po-
tentially be of interest for texture artists.

We see two promising future work directions regarding texton
noise. The first is to expand texton noise to 3D solid noise as well
as dynamic textures. The second more challenging direction is to
tackle the main limitation of texton noise (that is, being limited to
Gaussian textures) by proposing new similar models that enable to
generate more structured textures as done by local random phase
noise [GSV∗14].

References
[CD05] COOK R. L., DEROSE T.: Wavelet noise. In SIGGRAPH ’05

(New York, NY, USA, 2005), ACM, pp. 803–811. doi:10.1145/

1186822.1073264. 3, 6

[Cha07] CHAINAIS P.: Infinitely divisible cascades to model the statistics
of natural images. IEEE Trans. Pattern Anal. Mach. Intell. 29, 12 (2007),
2105–2119. doi:10.1109/TPAMI.2007.1113. 7

[CSHD03] COHEN M., SHADE J., HILLER S., DEUSSEN O.: Wang
Tiles for image and texture generation. In SIGGRAPH ’03 (New
York, NY, USA, 2003), SIGGRAPH ’03, ACM, pp. 287–294.
URL: http://doi.acm.org/10.1145/1201775.882265,
doi:10.1145/1201775.882265. 3

[DAL∗11] DIGNE J., AUDFRAY N., LARTIGUE C., MEHDI-SOUZANI
C., MOREL J.-M.: Farman institute 3d point sets - high precision 3d
data sets. Image Processing On Line 1 (2011). doi:10.5201/ipol.
2011.dalmm_ps. 8

[DCWS03] DORETTO G., CHIUSO A., WU Y., SOATTO S.: Dynamic
textures. International Journal of Computer Vision 51, 2 (2003), 91–109.
doi:10.1023/A:1021669406132. 2

[DMR12] DESOLNEUX A., MOISAN L., RONSIN S.: A compact repre-
sentation of random phase and Gaussian textures. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (2012), pp. 1381–1384. 2

[DMR15] DESOLNEUX A., MOISAN L., RONSIN S.: A texton for ran-
dom phase and Gaussian textures. 2015. 6

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for texture syn-
thesis and transfer. In SIGGRAPH ’01 (New York, NY, USA, 2001),
ACM, pp. 341–346. doi:10.1145/383259.383296. 9

[GDS10] GILET G., DISCHLER J.-M., SOLER L.: Procedural descrip-
tions of anisotropic noisy textures by example. In Eurographics (Short)
(2010). 3

[GGM11] GALERNE B., GOUSSEAU Y., MOREL J.-M.: Random phase
textures: Theory and synthesis. IEEE Trans. Image Process. 20, 1 (2011),
257 – 267. doi:10.1109/TIP.2010.2052822. 2, 3

[Gla04] GLANVILLE R.: Texture bombing. In GPU Gems, Fernando R.,
(Ed.). Addison-Wesley, 2004, pp. 323–338. 3

[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.:
Gabor noise by example. ACM Trans. Graph. 31, 4 (jul 2012), 73:1–
73:9. doi:10.1145/2185520.2185569. 2, 3, 6, 8, 9, 11

[GLM14] GALERNE B., LECLAIRE A., MOISAN L.: A texton for fast
and flexible Gaussian texture synthesis. In Proceedings of the 22nd Euro-
pean Signal Processing Conference (EUSIPCO) (2014), pp. 1686–1690.
2, 4, 5, 6

[GSV∗14] GILET G., SAUVAGE B., VANHOEY K., DISCHLER J.-M.,
GHAZANFARPOUR D.: Local random-phase noise for procedural tex-
turing. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH ASIA
2014) 33, 6 (nov 2014), 195:1–195:11. doi:10.1145/2661229.
2661249. 2, 3, 6, 9, 11

[GSX00] GUO B., SHUM H., XU Y.: Chaos mosaic: Fast and memory
efficient texture synthesis. Microsoft research paper MSR-TR-2000-32
(2000). 3

[GZD08] GOLDBERG A., ZWICKER M., DURAND F.: Anisotropic
noise. In SIGGRAPH ’08 (New York, NY, USA, 2008), ACM, pp. 1–
8. doi:10.1145/1399504.1360653. 6

[Kin93] KINGMAN J. F. C.: Poisson Processes. Oxford Studies in Prob-
ability. Oxford University Press, 1993. 12

[LD11] LAGAE A., DRETTAKIS G.: Filtering solid Gabor noise. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011) 30,
4 (July 2011), 51:1–51:6. doi:10.1145/1964921.1964946. 9

[Lew84] LEWIS J.-P.: Texture synthesis for digital painting. In SIG-
GRAPH ’84 (New York, NY, USA, 1984), ACM, pp. 245–252. doi:
10.1145/800031.808605. 2, 4

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Texture sprites: Tex-
ture elements splatted on surfaces. In Proceedings of the 2005 sympo-
sium on Interactive 3D graphics and games (2005), ACM, pp. 163–170.
doi:10.1145/1053427.1053454. 3

submitted to COMPUTER GRAPHICS Forum (3/2016).

http://dx.doi.org/10.1145/1186822.1073264
http://dx.doi.org/10.1145/1186822.1073264
http://dx.doi.org/10.1109/TPAMI.2007.1113
http://doi.acm.org/10.1145/1201775.882265
http://dx.doi.org/10.1145/1201775.882265
http://dx.doi.org/10.5201/ipol.2011.dalmm_ps
http://dx.doi.org/10.5201/ipol.2011.dalmm_ps
http://dx.doi.org/10.1023/A:1021669406132
http://dx.doi.org/10.1145/383259.383296
http://dx.doi.org/10.1109/TIP.2010.2052822
http://dx.doi.org/10.1145/2185520.2185569
http://dx.doi.org/10.1145/2661229.2661249
http://dx.doi.org/10.1145/2661229.2661249
http://dx.doi.org/10.1145/1399504.1360653
http://dx.doi.org/10.1145/1964921.1964946
http://dx.doi.org/10.1145/800031.808605
http://dx.doi.org/10.1145/800031.808605
http://dx.doi.org/10.1145/1053427.1053454


12 B. Galerne, A. Leclaire & L. Moisan / Texton Noise

[LKF∗08] LAGAE A., KAPLAN C., FU C., OSTROMOUKHOV V.,
DEUSSEN O.: Tile-based methods for interactive applications. In
ACM SIGGRAPH 2008 classes (2008), ACM, p. 93. URL: http:
//dl.acm.org/citation.cfm?id=1401254. 3

[LLC∗10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T., DRET-
TAKIS G., EBERT D., LEWIS J., PERLIN K., ZWICKER M.: A survey
of procedural noise functions. Computer Graphics Forum 29, 8 (De-
cember 2010), 2579–2600. doi:10.1111/j.1467-8659.2010.
01827.x. 1, 2, 6, 8

[LLD11] LAGAE A., LEFEBVRE S., DUTRÉ P.: Improving Gabor
Noise. IEEE Transactions on Visualization and Computer Graphics 17,
8 (2011), 1096–1107. URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5620898. 8

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRÉ P.: Pro-
cedural noise using sparse Gabor convolution. SIGGRAPH ’09 28, 3
(August 2009). doi:10.1145/1576246.1531360. 3, 4, 6, 7, 8

[LN03] LEFEBVRE S., NEYRET F.: Pattern Based Procedural Tex-
tures. In Proceedings of the 2003 Symposium on Interactive 3D Graph-
ics (2003), I3D ’03, ACM, pp. 203–212. doi:10.1145/641480.
641518. 3

[LVLD10] LAGAE A., VANGORP P., LENAERTS T., DUTRÉ P.: Proce-
dural isotropic stochastic textures by example. Computers & Graphics
(Special issue on Procedural Methods in Computer Graphics) (2010).
doi:10.1016/j.cag.2010.05.004. 2, 3, 6

[Mar03] MARSAGLIA G.: Xorshift rngs. Journal of Statistical Soft-
ware 08, i14 (2003). URL: http://EconPapers.repec.org/
RePEc:jss:jstsof:08:i14. 9

[Mat68] MATHERON G.: Modèle séquentiel de partition aléatoire. Tech.
rep., CMM, 1968. 3

[Moi11] MOISAN L.: Periodic plus smooth image decomposi-
tion. J. Math. Imag. Vis. 39 (2011), 161–179. doi:10.1007/
s10851-010-0227-1. 5

[Pap71] PAPOULIS A.: High density shot noise and Gaussianity. J. Appl.
Probab. 8, 1 (1971), 118–127. URL: http://www.jstor.org/
stable/3211842. 4, 8

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH ’85
(New York, NY, USA, 1985), ACM, pp. 287–296. doi:10.1145/
280811.280986. 1, 2

[Ree13] REED N.: Quick and easy GPU random numbers in D3D11.
Blogpost, http://www.reedbeta.com/blog/2013/01/12/
quick-and-easy-gpu-random-numbers-in-d3d11/, Jan.
2013. 8

[Ric77] RICE J.: On generalized shot noise. Adv. Appl. Probab. 9 (1977),
553–565. URL: http://www.jstor.org/stable/1426114. 4

[SCSI08] SIMAKOV D., CASPI Y., SHECHTMAN E., IRANI M.: Sum-
marizing visual data using bidirectional similarity. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2008),
IEEE, pp. 1–8. URL: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=4587842. 2

[VSLD13] VANHOEY K., SAUVAGE B., LARUE F., DISCHLER J.-M.:
On-the-fly multi-scale infinite texturing from example. ACM Trans.
Graph. (Proc. of ACM SIGGRAPH Asia 2013) 32, 6 (nov 2013), 208:1–
208:10. doi:10.1145/2508363.2508383. 3

[vW91] VAN WIJK J. J.: Spot noise texture synthesis for data visualiza-
tion. In SIGGRAPH ’91 (New York, NY, USA, 1991), ACM, pp. 309–
318. doi:10.1145/122718.122751. 2, 4

[Wei04] WEI L.: Tile-based texture mapping on graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (2004), ACM, pp. 55–63. URL: http://dl.
acm.org/citation.cfm?id=1058138. 3

[WHZ∗08] WEI L.-Y., HAN J., ZHOU K., BAO H., GUO B., SHUM
H.-Y.: Inverse texture synthesis. In ACM Transactions on Graph-
ics (2008), vol. 27. URL: http://dl.acm.org/citation.cfm?
id=1360651. 2

[Wor96] WORLEY S.: A cellular texture basis function. In SIGGRAPH
’96 (1996), ACM, pp. 291–294. doi:10.1145/237170.237267.
8

[XFPA14] XIA G.-S., FERRADANS S., PEYRÉ G., AUJOL J.-F.: Syn-
thesizing and mixing stationary Gaussian texture models. SIAM J. on
Imaging Science 8, 1 (2014), 476–508. 2, 3, 8

Appendix A: Proof of Proposition 3

As one can see from its expression (6), f s
λ
(y) is a sum of the

values of a function over a 3D Poisson point process. Thus
its mean and variance are easily computed thanks to Campbell
theorem [Kin93]. Using the (orthonormal) change of variable
(t,z1,z2) = (〈y− x,uy

3〉,〈y− x,uy
1〉,〈y− x,uy

2〉),

E( f s
λ(y)) = λ

∫
R3
(1− 2

r |〈y− xi,u
y
3〉|)

+h((〈y− x,uy
1〉,〈y− x,uy

2〉))dx

= λ

∫
R
(1− 2

r |t|)
+dt

∫
R2

h(z)dz = λ
r
2

∫
R2

h(z)dz,

and similarly,

Var( f s
λ(y))

= λ

∫
R3

(
(1− 2

r |〈y− xi,u
y
3〉|)

+h((〈y− x,uy
1〉,〈y− x,uy

2〉))
)2

dx

= λ

∫
R

(
(1− 2

r |t|)
+
)2

dt
∫
R2

h2(z)dz = λ
r
3

∫
R2

h2(z)dz.

Finally, a point xi corresponds to a non-zero term
(1− 2

r |〈y− xi,u
y
3〉|)

+h((〈y− xi,u
y
1〉,〈y− xi,u

y
2〉)) if it belongs to

the cube of side length r, center y and axis (uy
1,u

y
2,u

y
3). This set has

volume r3 and thus the MNI is λr3.
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