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Abstract

The problem of computing a single super-resolved image from multiple shifted images of
the same scene has been addressed in several ways in the literature, with different levels of
assumptions on the image to reconstruct, but a frequent core step is the resolution of the linear
system derived from the image formation model. We here propose a detailed description of a
direct (non-iterative) algorithm that computes the least-squares solution of the super-resolution
problem in the general case of possibly non-integer super-resolution factors. We also provide a
detailed analysis of the reconstruction error, both in the image and Fourier domains. In order
to handle potential outliers, we build a robust (L1) variant of the algorithm, and illustrate its
efficiency on synthetic and real data. We finally show how this linear and well-controlled process
can be supplemented with a simple (still linear) spectral enhancement filter in order to better
reveal super-resolved details without creating artifacts.

Source Code

This article has been submitted for peer-review to a scientific journal with sources codes
in C language and Matlab language, including documentation, example dataset, demonstra-
tion scripts, and scripts specifically dedicated to the reproduction of most experimental results
discussed in this article. This additional content will be released soon.

Keywords: image super-resolution, aliasing, spectral unfolding, image sequence, least-
squares estimate
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1 Introduction

1.1 Resolution and Super-resolution

Among the characteristics of an imaging system (may it be a camera phone, a microscope, a telescope,
etc.), resolution is generally considered as of utmost importance, as it is intuitively related to the
fineness of details that will be perceptible in the output image. The term resolution, however, is
ambiguous, because depending on the context it can either refer to the number of pixels of the
output image (e.g., 4096×2160 for a 4K digital camera) or to the actual resolving power of the
imaging device, that is, the minimum angular distance between two points (or lines) of the scene
that can be distinguished from one another in the output image. In this paper, the term “image
resolution” will be used for this second acceptation, and we will use the term “image size” (or “image
dimensions”) to refer to the number of pixels.

In most digital cameras, the number of pixels of the image sensor is adapted to the resolution
of the optical system, so that image size and image resolution are strongly linked together. Indeed,
knowing the resolution of the optical system as determined by diffraction, one can compute from
Shannon sampling theorem a critical (that is, maximal) pixel size for the image sensor, and deduce
from the sensor area the corresponding critical (that is, minimal) image size. Replacing this ideal
sensor with another one covering the same area with more pixels would increase the image size, but
would certainly not change the image resolution.

Super-resolution, which has been an active research area in Image Processing for a long time,
is the idea of increasing the resolution of one or several images to a level that would correspond to
an optical device with a smaller critical pixel size, by means of an appropriate processing. Hence,
denoising a single image, or averaging several images of the same scene to produce a single image with
better signal-to-noise ratio, are both processes that increase the resolution, but they do not achieve
super-resolution since they do not require the use of a finer sampling grid (that is, an increase of the
image size).

Now let us distinguish two cases, depending on the number (one versus several) of low-resolution
input images used to produce the high-resolution output image.

1.2 Single Image Super-resolution

Achieving super-resolution from a single image is a very appealing idea, and it has been addressed by
the research community under various names: image zooming, image upscaling, or single image super-
resolution (SISR). One important consideration for SISR is the nature of the input image relatively to
sampling. If the available low-resolution image has been well-sampled (that is, obtained with a sensor
with pixel size below the critical size), then it can be perfectly interpolated with the cardinal sine
kernel (in practice, by using zero-padding in the frequency domain, or approximations with splines
[67]). Of course, zooming an image with such a process is hardly a super-resolution method: since
new (high-frequency) Fourier coefficients are set to zero, no real high-resolution content is created.

On the contrary, if the input low-resolution image has been undersampled relatively to its optical
content, some high-frequency components are still present in the image data, but they are mixed with
low-frequency ones (this is the so-called aliasing phenomenon). Unmixing these high-frequency and
low-frequency coefficients is an ill-posed problem, so it is generally addressed with Bayesian priors
or, equivalently, with regularization terms in variational methods. These image priors can be based
on total variation [39, 3, 40, 2], on sparsity [60], on the self-similarity principle [54] or its multiscale
variant [42], or on learning methods (either “internal”, by means of a prior on the patches of the
high-resolution image learned from the patches of the low-resolution sequence [72, 61], or “external”,
by means of a prior learned from a large database of high-resolution images [80]). External learning
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methods recently became mainstream due to the surge of convolutional neural networks, and continue
to improve the image quality of state-of-the-art SISR algorithms [18, 15, 76, 75, 77, 28, 37, 47, 48].
It is interesting to notice that these models can be used as well in the case of a well-sampled image
in order to perform spectrum extrapolation (in that case, the high-frequency components are not
assumed to be zero anymore but are considered as unknown in the model).

An interesting example is the so-called face hallucination problem, which consists in achieving
SISR from small (typically 16 × 16 pixels) face images. This problem is generally addressed with
learning methods trained on huge face databases. In favorable situations, these methods are able
to generate very realistic high-resolution face images with a magnification factor up to 8 in both
image directions, but, as often mentioned, age or gender inconsistencies are frequent: ”[...] due to
the inherently ill-posed nature of SR problem, these methods are prone to produce unfaithful results
such as face rejuvenation and gender reversal to the ground truth” [79]. Even with the introduction
of additional semantic attributes [73, 74] or image features [79] to reduce ill-posedness, the term
“hallucination” continues to make sense, as many details of the computed high-resolution images, as
plausible as they can be, remain arbitrary.

There are some domains, however, where an accurate high-resolution image can be reconstructed
from a single low-resolution image, because the possible reconstructions are intrinsically constrained.
For example, if the high-resolution image is known to be composed of a limited number of point light
sources (for example, when imaging a sample with a low-density fluorescent labeling in microscopy),
the reconstuction can be theoretically exact under appropriate hypotheses (see for instance [17] and
references therein). Another example can be found in the area of video games, where the game
engine is modified to produce a low-resolution video stream (which is much faster) and an upscaling
is applied using strong priors built from the image synthesis model (and in particular texture maps)
used in the initial high-resolution game engine [57, 19, 45].

Nevertheless, apart from these very constrained cases, the general goal of SISR methods is not
really to try and retrieve the “true” high-resolution image, but rather to build a plausible high-
resolution image compatible with the low-resolution observation. There are several situations where
this objective is satisfactory, e.g. image enhancement in photography or real-time upscaling of video
streams. However, many applications cannot settle such a “plausible reconstruction” objective, like
medicine, forensics, surveillance, research supported by image evidence, metrology, . . .

1.3 Multiple Image Super-resolution

A natural idea to avoid the ill-posedness of SISR is to acquire several low-resolution snapshots of
the same scene from slightly different locations and combine them to obtain a single high-resolution
image. This general framework is called multi-image super-resolution (MISR), and it is a very active
area of research (see, e.g., [70, 33], and the recent CVPR NTIRE [10] and PROBA-V1 challenges). If
the input images are well-sampled, their information contents are essentially equivalent (up to noise),
and the problem is similar to SISR with a better input signal-to-noise ratio, which leads us back to
the limited ambition of producing a plausible high-resolution image. If the input images are aliased,
however, high-frequency information are mixed in low-frequency components, with different weights
on each image, and it is generally possible to achieve a good unmixing of these components and thus
recover true high-resolution details of the observed scene.

Under reasonable hypotheses (in particular the absence of occlusions), the acquisition model for
MISR can be written under the general form

u0 = Au+ ε,

1https://kelvins.esa.int/proba-v-super-resolution
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where u0 is the observed low-resolution image sequence, u is the (unknown) high-resolution image
of the scene to be recovered, A is a linear operator which depends on the camera motion between
the snapshots, and ε represent the additive noise model. Hence, MISR can be naturally formulated
as an inverse problem, and many algorithms from the literature would propose variational solutions
obtained from the minimization of an energy

E(u) = ‖Au− u0‖2 + F (u), (1)

where F (u) is a regularization term which favors plausible reconstructions (see for instance [23, 22,
66, 65, 71, 40]). The minimization of E(u) is generally addressed with iterative algorithms (gradient
descent, conjugate gradient, proximal methods, . . . ) in reason of the very high-dimensional setting
(u0 and u typically contain millions of pixels).

1.4 The Least-squares Minimizer

In the case F = 0 (no regularization), the minimizer of E is simply the least-squares estimates
associated to the linear system Au = u0, which can be written

uls := argmin
u
‖Au− u0‖2. (2)

This minimizer is interesting for several reasons. Firstly, as it defines a linear operator u0 7→ uls(u0),
its behavior (and in particular its robustness to measurement errors) is easier to study and under-
stand. Secondly, in the more general case F 6= 0 (regularized estimate), the minimization of (1) can
be achieved with iterative two-steps algorithms, where the first step is a least-squares minimization
essentially equivalent to the case F = 0, while the second step is independent of A but related to the
regularization function F .

The complexity of the linear operator A depends on the nature of the relative motion between
the frames (which can range from simple translations to affine transforms or even homographic
transforms), and also on the interpolation model used to link the high-resolution image u to the
low-resolution sequence u0. In general, uls cannot be directly computed in reason of the high-
dimensionality of the matrix associated to A, and iterative algorithms (or sub-optimal estimates)
must be used.

Recent works on MISR [4, 36, 35] use least-squares minimization as a step in the whole process
and solve (2) suboptimally with a limited number of iterations of (conjugated or not) gradient
descent. In the case of Shannon interpolation, the operator T = A∗A has been shown by Gröchenig
and Strohmer [27] to have a Toeplitz-block structure in a Fourier basis, and the nonuniform FFT
algorithm [52] provides an efficient way to compute its entries with arbitrary precision. This combined
use of conjugate gradients with the Toeplitz structure of T and the nonuniform FFT is called ACT
algorithm, and was successfully applied to MISR in [21, 4]. Alternatively, one can substitute the
matrix A by an approximate matrix Ã that uses high-order splines instead of Shannon interpolation.
In that case the operator T̃ = Ã∗Ã becomes quite sparse in a suitable basis, and the least-squares
minimizer can be estimated with an iterative algorithm like the conjugate gradient or a gradient
descent. This is a popular approach for variational MISR methods in the literature [30, 40, 36], and
it was recently shown in [4] to provide results almost as precise as the ACT method, provided that
a sufficiently high-order spline is used for interpolation.

There is a special case, however, where these iterative or approximate algorithms can be avoided
and the least-squares minimizer uls can be computed exactly, as we shall see in the next section.
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1.5 Case of a Translational Motion

The MISR problem in the case of translational motion has been the topic of numerous works, see
for instance [64, 23, 22, 68, 58, 9]. This pure translation case is important by itself, since some
acquisition systems are built in a way that they can take bursts of images of the same scene, with
a purely translational motion (or almost so). Examples can be found among push-frame satellites;
for example, in the SkySat constellation from Planet [46], the translational motion model is —at
least locally— quite accurate. Another example of a translational motion-based super-resolution
camera is the jitter camera prototype described in [9]. This camera is specifically equipped with
micro-actuators allowing accurate and controlled shifts of the camera sensor. Industrial realizations
of similar ideas can be found among high-end digital cameras, in particular with the Hasselblad
H6D-400c, which includes a shifting sensor.

The reconstruction of a high-resolution image from shifted low-resolution images has been ad-
dressed in several ways in the literature. In [9], the bursts of low-resolution images are processed
with the iterated back projection algorithm of [31], a blockwise processing approach being used to
handle in-scene motions and occlusions. In [23, 22], the shifts are considered as known (e.g., result-
ing from a pre-estimation step) and the high-resolution image is obtained by solving a regularized
problem like (1), where the `2 square distance of the data-fidelity term ‖Au−u0‖2 is replaced by the
`1 distance ‖Au − u0‖1 to improve the robustness to modeling errors (including errors on the shift
parameters). Notice that the authors of [23] assume that the shift parameters are integer multiples
of the high-resolution sampling step in order to reduce the complexity of the algorithm. Other works
like [68, 58] address the problem of estimating the shift motion parameters from the stack of low-
resolution images and rely on repeated computations of the least-squares estimator uls which can be
considered as just one simple step in a more complex estimation process.

In the framework of a pure translational motion, and when Shannon (discrete cardinal sine)
interpolation is used, the matrix A∗A is block-circulant in Fourier domain, and one can compute
exactly the least-squares minimizer uls, without the need for an iterative algorithm (provided that
non-periodicity issues are handled properly). The block-circulant structure of A∗A in Fourier domain
was mentioned in [58] (and also in [9]) in the case of integer super-resolution factors, but we shall see
later that an explicit description of the blocks can be made in the more general case of non-integer
super-resolution factors.

1.6 Contributions

The aim of this paper is to provide a comprehensive study of the MISR problem in the case of
translational motion and Shannon interpolation. As mentioned earlier, in that case the least-squares
minimization problem (2) defines a linear operator u0 7→ uls(u0) which can be formulated in Fourier
domain, and computed exactly without need for an iterative algorithm. This fast algorithm can be
used as such to solve (1), or as a fast step in an iterative algorithm using a regularizer F .

The paper is organized as follows. Section 2 introduces our model for the MISR problem, based
on discrete cardinal sine Shannon interpolation, and presents practical ways to avoid periodization
artifacts inherent to this model. In Section 3, we study the block-diagonal structure of A∗A in the
Fourier basis, and show how it can be used to obtain efficient computations. In particular we prove
there are no more than four different blocks in this matrix, so that preliminary computations with
these four templates bring significant speed-up to the computation of uls. Section 4 builds upon
the previous one, and provides exact error predictions when the measurements u0 are affected by a
zero-mean Gaussian noise of known variance. We discuss how these predictions are related to the
condition number of A∗A, and show in particular that although it is often used in the literature
[7, 27, 59, 12, 66], the condition number yields a very pessimistic error bound, and much better
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estimates of the reconstruction error can be found. In Section 5, we present several experiments
on synthetic and real data, which let us assess the quality of the least-squares estimator and the
error predictions introduced in the previous section. In particular, we closely compare the Fourier
transforms of the initial and reconstructed images, which is very informative (albeit notably absent
in the literature). As a remedy to the well-known sensitivity to outliers of least-squares estimators,
in Section 6 we present a variational frame selection algorithm, implemented with the iteratively
reweighted least-squares (IRLS) algorithm. We show that it considerably increases the robustness of
the classical least-squares estimator when outliers are present. The last part, Section 7, is devoted
to the description of a post-processing step, which, staying in line with the linear pipeline, simply
consists in a one-parameter linear deconvolution filter applied to the high-resolution reconstructed
image. This post-processing filter manages to take advantage of the noise reduction effect of the
least-squares estimator and significantly increases the sharpness of the reconstructed images.

2 The Least-squares Model for Multiframe Super-resolution

In this section, we derive the equations that explicitly describe the link between the high-resolution
scene and the observed low-resolution image stack. This involves Shannon interpolation of discrete
images, and its consequences in terms of subpixellic translation and subsampling. The important
issue of implicit periodization (inherent to the discrete Fourier transform), and the apodization
process required to mitigate its effects, are also discussed.

2.1 Shannon Interpolation of Discrete Images

Let M and N denote two positive integers and let u : Ω → R denote a discrete image with size
M ×N and discrete domain Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}. We call Shannon interpolate of
u the continuous image U : R2 → R defined by

∀(x, y) ∈ R2 U (x, y) =
∑

(k,`)∈Ω

u(k, `) sincdM(x− k) sincdN(y − `) , (3)

where sincdK denotes the discrete cardinal sine function with order K defined by

∀t ∈ R \KZ , sincdK(t) =


sin (πt)

K sin
(
πt
K

) if K is odd,

sin (πt)

K sin
(
πt
K

) · cos
(
πt
K

)
if K is even,

(4)

using the continuity-preserving convention sincdK(t) = 1 for all t ∈ KZ (note that sincdK is simply

the K-periodization of the classical cardinal sine function sinc : t 7→ sin(πt)
πt

). Interpolation formula (3)
can be directly derived from Shannon sampling theorem under the assumption that the discrete
image u corresponds to the sampling of a periodic continuous image [2, 34]. However, the practical
computation of (3) as a direct convolution between the image samples and the 2D-separable product
of discrete cardinal sine functions is barely used since an equivalent (but numerically more efficient)
computation of (3) is possible in the Fourier domain. In the following, we denote by û : Z2 → C the
discrete Fourier transform (DFT) of u, defined by

∀(α, β) ∈ Z2 , û(α, β) =
∑

(k,`)∈Ω

u(k, `) e−2iπ(αkM +β`
N ) . (5)
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The DFT of u is a (M,N)-periodic two-dimensional discrete complex-valued image. Besides, since
u is real-valued, û exhibits Hermitian symmetry, that is, û(−α,−β) = û(α, β)∗ for any (α, β) ∈ Z2,
where z∗ denotes the complex conjugate of z. Therefore, it is quite natural and convenient to consider
the period of û centered on zero2,

Ω̂ =

[
−M

2
,
M

2

)
×
[
−N

2
,
N

2

)
∩ Z2 , (6)

which is also called the canonical discrete frequency domain associated to Ω. Notice that Ω̂ is
symmetrical if and only if both M and N are odd. When M is even for instance, the frequency
(−M/2, β) (with −N

2
≤ β < N

2
) belongs to Ω̂ but its opposite (M/2,−β) does not. In the following,

we denote by Ω̂s the symmetrized canonical frequency domain defined by

Ω̂s =

[
−M

2
,
M

2

]
×
[
−N

2
,
N

2

]
∩ Z2 . (7)

It is shown in [2, Proposition 5] (see also [11]) that the discrete Shannon interpolate of u can be
rewritten as the trigonometrical polynomial

∀(x, y) ∈ R2 , U (x, y) =
1

MN

∑
(α,β)∈Ω̂s

ε
( α
M

)
ε

(
β

N

)
û(α, β) e2iπ(αxM +βy

N ) , (8)

where the frequency weighting function ε is defined by

∀ξ ∈ R , ε(ξ) =

{
1/2 if |ξ| = 1/2
1 otherwise.

(9)

In some situations, it may be more convenient to consider the complex interpolate Uc defined by

∀(x, y) ∈ R2 , Uc(x, y) :=
1

MN

∑
(α,β)∈Ω̂

û(α, β) e2iπ(αxM +βy
N ) . (10)

When both M and N are odd, one has Uc = U (thus, Uc is real-valued in this case), while without
assumption on M and N one can always write

Re(Uc(x, y)) =
1

MN

∑
(α,β)∈Ω̂s

ε′
(
α

M
,
β

N

)
û(α, β) e2iπ(αxM +βy

N ) ,

where

ε′(ξ1, ξ2) =


1/2 if (ξ1, ξ2) = ±(1/2, 1/2)
0 if (ξ1, ξ2) = ±(1/2,−1/2)
1 otherwise.

Thus, Re(Uc) = U as soon as either M or N is odd. When both M and N are even, U is to be
preferred to Re(Uc) because it is separable and commutes with 90o rotations and horizontal/vertical
axis mirroring, which is not the case for Re(Uc). However, the difference is negligible for most images,
since

U (x, y)− Re(Uc(x, y)) =
1

MN
û(M/2, N/2) sin(πx) sin(πy) ,

2the choice of closing the intervals on their left-hand sides is an arbitrary convention, somehow compliant with that
used in the famous GNU FFTW library [24]
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and the high-frequency Fourier coefficient û(M/2, N/2) is expected to be very small compared to
most other coefficients of û for natural images. A more thorough discussion on this subject can be
found in [2] and [11].

In the present case of multiframe super-resolution using the least-squares estimator, we shall use
the complex interpolation formula Uc (and take the real part at the end of the process) for several
reasons. First, it simplifies the study, by avoiding a particular handling of the frequencies located on
the border of the frequency domain. More importantly, it will allow us to design a fast estimator,
which could not be similarly obtained with U . Note that in practice, the slight approximation
introduced by Uc (compared to the canonical choice U ) produces visually unnoticeable differences on
the result images.

Another approximation, which will be discussed in Section 2.3, is required in reason of the (unre-
alistic) periodicity assumption made in Equation (3). For image transforms or image reconstruction
purposes, the periodic plus smooth decomposition [43] can be efficiently used, but in the case of
multiframe super-resolution, the use of a windowing function yields a greater inter-frame coherence.

2.2 Modeling Translational Motion and Subsampling

Let u : Ω→ R denote the (unobserved) high-resolution image with size M ×N . Instead of observing

u, we assume that we observe a stack containing L low-resolution images u0 = (u
(1)
0 , . . . , u

(L)
0 ) with

discrete domain ω = {0, . . . ,m− 1} × {0, . . . , n− 1}, each of them corresponding to the resampling
of u over a translated and subsampled grid. More precisely, we assume that

∀j ∈ {1, . . . , L} , ∀(k, `) ∈ ω , u
(j)
0 (k, `) = Aju (k, `) := Uc(zx (k + δ(j)

x ), zy (`+ δ(j)
y )) , (11)

where zx = M/m and zy = N/n (with m ≤M , n ≤ N) are the horizontal and vertical zoom factors,

and (δ
(j)
x , δ

(j)
y ) ∈ R2 denotes the translation vector associated to the j-th low-resolution image u

(j)
0 . In

the limit case zx = zy = 1, we can see from (11) that each image u
(j)
0 corresponds to the resampling of

u over the shifted grid (δ
(j)
x , δ

(j)
y ) + Ω. In the case zx > 1 or zy > 1, the translation is combined with

a subsampling with factor zx in the horizontal direction and factor zy in the vertical direction. By

linearity of u 7→ Uc, the low-resolution image u
(j)
0 linearly depends on u through the linear operator

Aj : CΩ → Cω defined in (11). Consequently, the input stack u0 also linearly depends on u through
the linear operator A : CΩ → (Cω)L defined by

∀u ∈ CΩ , Au = (A1u, . . . , ALu) , (12)

and (11) can be reformulated as the linear equation u0 = Au.

2.3 Dealing with Periodization Artifacts

2.3.1 Need for Apodization

Due to the periodicity of the Shannon interpolate U (and its variant Uc), the translations involved
in Equation (11) lead to unrealistic values as soon as Uc is evaluated outside the domain [0,M −1]×
[0, N − 1]. Indeed, for a potential high-resolution image u ∈ RΩ, the corresponding low-resolution

images u
(j)
0 = Aju (1 ≤ j ≤ L) are obtained with a periodicity assumption on u, so that they differ

from what we could expect to be the sampling of a real-life high-resolution scene over the shifted
and subsampled low-resolution grids

{zx
(
k + δ(j)

x

)
, k = 0, . . . ,m− 1} × {zy

(
`+ δ(j)

y

)
, ` = 0, . . . , n− 1}
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(see Figure 1 (a)). This means that, in practice, the operator A defined in (11) does not faithfully
describe (through the relation Au = u0) the relation between the observed data u0 and the latent high-
resolution image u. Even if the differences are concentrated along the border of the image domain,
solving the inverse problem Au = u0 will unfortunately propagate and amplify these modeling errors
in general, as illustrated in Figure 1 (c). In order to overcome this issue, we propose to compute from
u0 an apodized sequence of low-resolution images ũ0 that is expected to accurately correspond to the
application of the operator A to an image ũ, an apodized version of the latent high-resolution image.
The role of this apodization is to strongly reduce the impact of the unrealistic periodicity assumption
by attenuating the values of the low-resolution images near the border of the image domain, while
preserving other values as much as possible. An example of such an apodized sequence is displayed
in Figure 1 (b).

2.3.2 Detail of the Apodization Process

We here describe a way to build the apodized low-resolution stack ũ0 from u0 and the sequence of
displacement vectors. For that purpose, let us consider a slightly modified Tukey apodization profile
Tr,d : [0, 1]→ [0, 1] defined by

∀s ∈ [0, 1] , Tr,d(s) =



0 if s ∈ [0, d)
1
2
− 1

2
· cos

(
2π
r

(s− d)
)

if s ∈
[
d, d+ r

2

)
1 if s ∈

[
d+ r

2
, 1− d− r

2

)
1
2
− 1

2
· cos

(
2π
r

(1− d− s)
)

if s ∈
[
1− d− r

2
, 1− d

)
0 if s ∈ [1− d, 1] ,

(13)

where r and d are two parameters in (0, 1). As illustrated in Figure 2, the parameter r can be viewed
as a smoothness parameter that controls how fast the profile increases from zero to one or decreases
from one to zero, and the parameter d controls the length of the intervals where Tr,d vanishes (the
standard Tukey apodization profile corresponds to the setting d = 0).

Let us now consider the separable apodization function γr : [0,M − 1]× [0, N − 1] → R defined
by

∀(k, `) ∈ [0,M − 1]× [0, N − 1] , γr(k, `) = Tr,Dx
(

k

M − 1

)
· Tr,Dy

(
`

N − 1

)
, (14)

where

Dx = max
1≤j≤L

∣∣∣∣∣ zxδ(j)
x

M − 1

∣∣∣∣∣ and Dy = max
1≤j≤L

∣∣∣∣∣ zyδ(j)
y

N − 1

∣∣∣∣∣
correspond to the horizontal and vertical fractions of the image domain that should undergo apodiza-
tion since they may be affected by the implicit periodization. In all the following, we will assume
that Dx < 1 and Dy < 1, which amounts to say that the maximum translation is less than the image
size along both dimensions. Let ũ0 be the apodized low-resolution stack defined by

∀j ∈ {1, . . . , L} , ∀(k, `) ∈ ω , ũ
(j)
0 (k, `) = u

(j)
0 (k, `) · γr

(
zx(k + δ(j)

x ), zy(`+ δ(j)
y )
)
. (15)

Also, given any potential high-resolution image u, we shall consider the apodized high-resolution
image ũ defined by

∀(k, `) ∈ Ω , ũ(k, `) = u(k, `) · γr (k, `) . (16)

By construction, γr (k, `) vanishes at locations (k, `) ∈ Ω that can fall outside from the continuous
high-resolution domain [0,M −1]× [0, N −1] when a high-resolution image u is shifted using the dis-

placement vectors (zxδ
(j)
x , zyδ

(j)
y ) involved in (11). Consequently, the apodized high-resolution image

9



(a) ur
0: realistic low-resolution sequence

(b) ũ0: apodized sequence computed from ur
0 using (15)

(c) least-squares reconstruction from ur
0 (d) least-squares reconstruction from ũ0

Figure 1: Avoiding boundary artifacts when processing realistic sequences. We display in (a)
three images taken from a realistic low-resolution sequence ur

0 obtained by shifting and sub-sampling the
underlying high-resolution image u (not represented here). Since the realistic shifting is not periodic (what
goes out of the image from one side does not re-enter from the other side), this sequence does not exactly
match the model ur

0 = Au, which leads to undesired artifacts when the high-resolution image u is estimated
from the realistic sequence ur

0. We can observe in (c) that these artifacts are not strictly limited to the image
borders, but propagate inside the image domain, so they cannot be discarded by a simple post-processing
like cropping. We display in (b) the apodized sequence ũ0 computed from ur

0 using (15). The corresponding
least-squares estimate, displayed in (d), does not suffer from the artifacts of (c) and provides an accurate
estimate of ũ, the apodized reference image defined in (16).

ũ and the apodized low-resolution sequence ũ0 also vanish at locations impacted by the unrealistic
periodization effects. Finally, the apodization process leaves us with an inverse problem Aũ = ũ0

that is much more realistic than the original model Au = u0, since the apodization filter strongly
reduces the undesired effects of the periodicity of Uc. Within this framework, the calculation of u
from u0 is abandoned in favor of computing ũ from ũ0. We illustrate the benefit of this approach
in Figure 1, where we can see that the least-squares estimation of u obtained from a realistic low-
resolution stack u0 suffers from strong artifacts, while the same process applied to the sequence ũ0

10



Figure 2: Graph of the one-dimensional apodization profile Tr,d, here represented for r = 5% and
d = 2%. This function smoothly increases from 0 to 1 over the set [d, d + r

2 ], and symmetrically, decreases
from 1 to 0 over the set [1− d− r

2 , 1− d].

yields a satisfactory estimation of the apodized high-resolution image ũ. In the following, we shall
give up the .̃.. notation and consider that u0 and u denote the apodized stack of low-resolution images
and the associated reconstruction respectively.

2.4 Least-squares Estimator

The least-squares estimator associated to the linear equation Au = u0 is defined as the unique image
uls ∈ argminu∈CΩ ‖Au− u0‖2

2 that has minimal norm ‖uls‖. It is given by

uls = (A∗A)†A∗u0 , (17)

where A∗ : (Cω)L → CΩ is the adjoint of the operator A, and (A∗A)† the Moore-Penrose pseudo-
inverse of (A∗A) [44, 50]. When A is injective, A∗A is invertible and we have (A∗A)† = (A∗A)−1,
so that uls = (A∗A)−1A∗u0 which is, in that case, the unique minimizer of ‖Au − u0‖2

2. As we
discussed in Section 2.1, the image uls defined in (17) can take complex (non real) values, in reason
of the use of Uc instead of U in the definition of A. Thus, we will be in practice more interested in
the use of Re(uls) as the final estimator.

3 Efficient Implementations in the Fourier Domain

The computation of uls = (A∗A)†A∗u0 is not as straightforward as one could hope, because the
matrix A∗A and its pseudo-inverse are too big to be stored in standard matrix form in a computer
program. For such a high-dimensional problem, the least-squares estimator uls = (A∗A)†A∗u0 is
usually computed using standard optimization algorithms, such as gradient descent, conjugate gra-
dient, proximal algorithms, etc. All these algorithms rely on iterative schemes and uls is eventually
obtained when the convergence of the scheme is achieved. However, in the case of the operator A
defined in (12), we will show that the computation of uls can be realized explicitly, because the
dependency between the Fourier transforms of A∗u0 and uls is block-diagonal as in [9, 58, 65].

In this section, we first rewrite the link between the high-resolution scene and the low-resolution
image stack in the Fourier domain, which leads us to an explicit block-diagonal formulation of the
linear operator A∗A in the Fourier domain. We finally show that the solution uls (in the least-
squares sense) of the high-dimensional system Au = u0 can be directly obtained by solving many

11



independent low-dimensional linear systems in the Fourier domain, and we provide the associated
explicit equations.

3.1 Subpixellic Translation Operator and its Adjoint

Let us first describe the effect of the subpixellic translation operator (and its adjoint) in the Fourier
domain. For any δ = (δx, δy) ∈ R2 and any image u ∈ CΩ, let Tδu denote the discrete image obtained
after applying to u (through the interpolate Uc) a translation with vector δ. We have

∀(k, `) ∈ Ω , Tδu(k, `) = Uc(k − δx, `− δy) . (18)

Using the explicit form of Uc with respect to û given in (10), we obtain

∀(k, `) ∈ Ω , Tδu(k, `) =
1

MN

∑
(α,β)∈Ω̂

û(α, β)ϕδ(α, β) e2iπ(αkM +β`
N ) , (19)

where ϕδ(α, β) = exp

(
−2iπ

(
αδx
M

+
βδy
N

))
(20)

is the so-called ramp-phase function. We can see in (19) that Tδu is the inverse discrete Fourier
transform (IDFT) of the image û · ϕδ, hence we have

∀(α, β) ∈ Ω̂ , T̂δu(α, β) = û(α, β) · ϕδ(α, β) . (21)

This means that the operator Tδ is diagonal in the Fourier basis, so its adjoint in this basis can be
obtained by taking the complex conjugate of the diagonal elements, that is,

T̂ ∗δ v(α, β) = v̂(α, β) · ϕ∗δ(α, β) = v̂(α, β) · ϕ−δ(α, β).

In other terms, we simply have T ∗δ = T−δ.

3.2 Subsampling Operator with Rational Factors and its Adjoint

Now let us describe the effect of the subsampling operator and its adjoint (in the case of rational
subsampling factors) in the Fourier domain. Let z = (zx, zy) =

(
M
m
, N
n

)
∈ Q2 and let Szu denote the

discrete image obtained after applying to u (through the interpolate Uc) a subsampling with step
(zx, zy). We have

∀(k, `) ∈ ω , Szu(k, `) = Uc(zx k, zy `) . (22)

We first compute the effect of the Sz operator in the Fourier domain. As it is well known in the Signal
Processing literature, sampling a continuous signal is equivalent to periodizing its Fourier Transform
(this summation of aliases is responsible for the so-called aliasing phenomenon). This remains true
when subsampling the Shannon interpolate of a discrete signal, provided that summation domains
are restricted appropriately. As we did for Ω and Ω̂, let us define ω̂, the canonical discrete frequency
domain associated to ω, by

ω̂ =
[
−m

2
,
m

2

)
×
[
−n

2
,
n

2

)
∩ Z2 . (23)

Thanks to (22), and since M = zxm and N = zyn, for all (k, `) ∈ ω, we have

Szu(k, `) =

1

MN

∑
(α,β)∈Ω̂

û(α, β) e
2iπ
(
αzxk
M

+
βzy`

N

)
=

1

mn

∑
(a,b)∈ω̂

 1

zxzy

∑
(p,q)∈Z2

(a+pm,b+qn)∈Ω̂

û(a+ pm, b+ qn)

 e2iπ(akm + b`
n ) ,
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which we can equate term by term to the IDFT of Ŝzu at position (k, `), yielding

∀(a, b) ∈ ω̂ , Ŝzu(a, b) =
1

zxzy

∑
(p,q)∈Z2

(a+pm,b+qn)∈Ω̂

û(a+ pm, b+ qn) . (24)

The relation (24) means that for each frequency position (a, b) ∈ ω̂, the DFT coefficient Ŝzu(a, b)
is, up to the normalization factor zxzy, the sum of all coefficients of û whose position differs from
(a, b) by a multiple (along each coordinate) of the sampling frequency. Hence, this sum is made of all
coefficients of the form û(a+ pm, b+ qn) (for relevant values of (p, q) ∈ Z2), including the coefficient
û(a, b) itself. Inversely, each coefficient û(α, β) of the DFT of the high-resolution image contributes

to a single coefficient Ŝzu(a, b), and we write (a, b) = πω̂(α, β) the recipient of this contribution (that
is, the alias of (α, β) in ω̂), as stated in Proposition 1 below. The projection operator πω̂ (called alias
function in the following) is illustrated in Figure 3.

Figure 3: Frequency aliasing with fractional aliasing factors. We here illustrate on a very small
image (M × N = 10 × 7) the effect of subsampling in the Fourier domain. Left: the large black rectangle
(M ×N) delineates Ω̂, the Fourier domain of a high-resolution image, uHR, while the small (m×n = 4× 3)
red rectangle delineates ω̂, the Fourier domain of the low-resolution image uLR = SzuHR (here we have
z = (zx, zy) = (10

4 ,
7
3)). Blue points represents all frequencies of the high-resolution image that πω̂ maps

onto the low-frequency (a, b) = (1,−1). In other terms, the effect of subsampling a high-resolution image
uHR into a low-resolution image uLR would result, in the Fourier domain, in

ûLR(1,−1) = 1
zxzy

(ûHR(−3,−1) + ûHR(1,−1) + ûHR(−3, 2) + ûHR(1, 2)) .

Right: same figure, with green triangles for frequencies mapped by πω̂ onto (a, b) = (−1, 0). We can see on
this example that when the zoom factors zx, zy are not integer, the number of high-resolution frequencies
that are aliased onto a given frequency (a, b) depends on (a, b) (here, 4 for (a, b) = (1,−1), and 9 for
(a, b) = (−1, 0)). This number, which is denoted by Za,b later in this article, is constant equal to zx ·zy when
zx and zy are integers, and can take at most four different values in the general case (see Proposition 5).

Proposition 1 (and definition of πω̂). For any high-resolution frequency (α, β) ∈ Ω̂, there exists
a unique low-resolution frequency (a, b) ∈ ω̂ such that (α, β) = (a+ pm, b+ qn) for some (p, q) ∈ Z2.
It is called the alias of (α, β) in ω̂, and we note (a, b) = πω̂(α, β).

Proof. Since I = Z∩ [−m
2
, m

2
) is made of m contiguous integers, the set {α− pm, p ∈ Z} ∩ I is made

of a unique integer (written a), and p = α−a
m
∈ Z. We conclude with a similar reasoning applied to

(β, n) instead of (α,m).
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Remark 1. Writing r = xmod q the remainder r ∈ {0, 1, . . . , q − 1} in the Euclidean division of
x ∈ Z by q ∈ N∗, we have the closed-form πω̂(α, β) = (a, b), with

a =

{
(αmodm) if (αmodm) < m/2
(αmodm)−m otherwise

and b =

{
(βmodn) if (βmodn) < n/2
(βmodn)− n otherwise.

Remark 2. With the alias function πω̂, Equation (24) can be rewritten as

∀(a, b) ∈ ω̂ , Ŝzu(a, b) =
1

zxzy

∑
(α,β)∈Ω̂

πω̂(α,β)=(a,b)

û(α, β) . (25)

As we shall see now, the alias function πω̂ plays a central role in the formulation of S∗z , the adjoint
of the Sz operator.

Proposition 2. The adjoint of the subsampling operator Sz : CΩ → Cω is the operator S∗z : Cω → CΩ

that satisfies

∀v ∈ Cω , ∀(α, β) ∈ Ω̂ , Ŝ∗zv(α, β) = v̂(πω̂(α, β)) .

Proof. Let us write 〈a, b〉Cd =
∑d

i=1 aib
∗
i the canonical Hermitian inner product in Cd. For any

(u, v) ∈ CΩ × Cω we have, by Parseval’s identity,

〈Szu, v〉Cω =
1

mn
〈 Ŝzu, v̂ 〉Cω̂ =

1

mn

∑
(a,b)∈ω̂

Ŝzu(a, b) v̂(a, b)∗ .

Thanks to (25), we get

〈Szu, v〉Cω =
1

mn

∑
(a,b)∈ω̂

1

zxzy

∑
(α,β)∈Ω̂

πω̂(α,β)=(a,b)

û(α, β) v̂(a, b)∗ =
1

MN

∑
(α,β)∈Ω̂

û(α, β) v̂(πω̂(α, β))∗

=
1

MN
〈û, v̂ ◦ πω̂〉CΩ̂ ,

but since 〈Szu, v〉Cω = 〈u, S∗zv〉CΩ = 1
MN
〈û, Ŝ∗zv〉CΩ̂ (again, thanks to Parseval’s identity), we get by

identification Ŝ∗zv = v̂ ◦ πω̂ as announced.

3.3 Least-squares Operator

Using the results obtained in the two previous sections, we will now derive explicit formulations, in
the Fourier domain, of A, A∗, A∗A and finally (A∗A)†A∗, the least-squares operator we are interested

in. By definition of A in (12), one can easily check that, for any u0 = (u
(1)
0 , . . . , u

(L)
0 ) ∈ (Cω)L and

for any u ∈ CΩ, we have

A∗u0 =
L∑
j=1

A∗ju
(j)
0 and A∗Au =

L∑
j=1

A∗jAju . (26)

In the following, we shall denote zδ(j) = (zxδ
(j)
x , zyδ

(j)
y ) the j-th high-resolution translation, and adopt

the following abbreviated notations,

Tj := T−zδ(j) and ϕj := ϕ−zδ(j) ,
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and similarly

T ∗j := T ∗−zδ(j) = Tzδ(j) and ϕ∗j := ϕ∗−zδ(j) = ϕzδ(j) .

Since each linear operator Aj defined in (11) satisfies Aj = Sz ◦ Tj, for any u ∈ CΩ, by combining
the Fourier formulation (21) of the translation operator Tj with the Fourier formulation (25) of the
subsampling operator Sz we obtain

∀(a, b) ∈ ω̂ , Âju(a, b) =
1

zxzy

∑
(α,β)∈π−1

ω̂
(a,b)

ϕj(α, β) · û(α, β) . (27)

As for the adjoint of Aj, we have A∗j = T ∗j ◦ S∗z , hence from Proposition 2 we get that

∀v ∈ Cω , ∀(α, β) ∈ Ω̂ , Â∗jv(α, β) = ϕ∗j(α, β) · v̂(πω̂(α, β)) . (28)

Then, for any w ∈ CΩ, by combining (27) and (28), we obtain

∀(α, β) ∈ Ω̂ , Â∗jAjw(α, β) =
∑

(α′,β′)∈π−1
ω̂

(πω̂(α,β))

ϕ∗j(α, β)ϕj(α
′, β′)

zxzy
· ŵ(α′, β′) , (29)

and finally, by summing over j,

∀(α, β) ∈ Ω̂ , Â∗Aw(α, β) =
∑

(α′,β′)∈π−1
ω̂

(πω̂(α,β))

( L∑
j=1

ϕ∗j(α, β)ϕj(α
′, β′)

zxzy

)
· ŵ(α′, β′) . (30)

We can see that there is a natural way to group these equations, by considering together all high-
resolution frequencies (α, β) that are aliased to the same low-resolution frequency πω̂(α, β), and hence
induce the same set of summation indexes π−1

ω̂ (πω̂(α, β)) in (30). To simplify, let us consider, for any
(a, b) ∈ ω̂,

π−1
ω̂ (a, b) =

{(
αa,b` , βa,b`

)}
1≤`≤Za,b

, (31)

a lexicographic indexing of the set π−1
ω̂ (a, b), where Za,b = |π−1

ω̂ (a, b)|. We shall see later that Za,b,
the number of high-resolution frequencies that are aliased to the low-resolution frequency (a, b), can
only take at most four different values (depending on a and b), and is constant equal to zx · zy if zx
and zy are integers. We now have the following

Proposition 3. Let w ∈ CΩ, then v = (A∗A)w can be computed in the Fourier domain using the
matrix equations

∀(a, b) ∈ ω̂ ,


...

v̂

(
αa,bk , βa,bk

)
...


1≤k≤Za,b

= M(a, b)


...

ŵ

(
αa,b` , βa,b`

)
...


1≤`≤Za,b

, (32)

where M(a, b) is the Za,b × Za,b matrix defined by

Mk,`(a, b) =
L∑
j=1

1

zxzy
exp

(
2iπ(αa,b` − α

a,b
k )δ

(j)
x

m

)
exp

(
2iπ(βa,b` − β

a,b
k )δ

(j)
y

n

)
. (33)
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Proof. Thanks to Equation (30), we have, for all (a, b) ∈ ω̂,

∀k ∈ {1, 2, . . . , Za,b}, v̂

(
αa,bk , βa,bk

)
=

Za,b∑
`=1

( L∑
j=1

ϕ∗j(α
a,b
k , βa,bk )ϕj(α

a,b
` , βa,b` )

zxzy

)
· ŵ(αa,b` , βa,b` ) ,

which can be rewritten as (32) provided that

Mk,`(a, b) =
1

zxzy

L∑
j=1

ϕ∗j(α
a,b
k , βa,bk )ϕj(α

a,b
` , βa,b` ) .

Replacing ϕj = ϕ−zδ(j) and ϕ∗j = ϕzδ(j) using (20) in this formula, then using M = zxm and N = zyn,
we obtain Equation (33) as expected.

Let us comment the result of Proposition 3. Indeed, it is of major importance in the present
paper, since it basically shows that the original high-dimensional linear system (A∗A)w = v (with
v = A∗u0) can be rewritten as a collection of independent low-dimensional linear systems (32) in the
Fourier domain. This completely changes the perspective, as we replace the original system (with
typically 104 to 105 unknowns) with small linear systems with typically 4 to 20 unknowns (the value
of Za,b, which is roughly zx · zy). Solving the original linear system would require a costly iterative
algorithm, but solving each small linear system can be done quickly and exactly using standard
matrix inversion. Moreover, as we shall see later in Proposition 5, these small linear systems are
built with the same matrices (more precisely, there can be at most 4 different matrices), so the
inversion cost is negligible.

Remark 3. We can rewrite Equation (33) as M(a, b) =
∑L

j=1Mj(a, b), where

Mj(a, b) =

(
exp

(
2iπ(−α

a,b
k δ

(j)
x

m
− βa,bk δ

(j)
y

n
)
))T

1≤k≤Za,b

(
exp

(
2iπ(

αa,b` δ
(j)
x

m
+
βa,b` δ

(j)
y

n
)
))

1≤`≤Za,b

is a Za,b×Za,b matrix with rank one. Therefore, the matrix M(a, b) cannot be invertible if L < Za,b,
and may be invertible if L ≥ Za,b. When all matrices M(a, b) involved in the systems (32) are
invertible, we can invert them to recover ŵ from v̂, and thus recover w = (A∗A)−1v from v. In
particular, for v = A∗u0, we obtain w = (A∗A)−1A∗u0 = uls. More generally, the invertibility

of M(a, b) strongly depends on the set of displacement vectors {(δ(j)
x , δ

(j)
y )}1≤j≤L involved in the

definition of A. However, the important issue is not the invertibility ofM(a, b) per se (when L ≥ Za,b,
it is very likely that M(a, b) is invertible, and if not we can replace (A∗A)−1 by (A∗A)† anyway), but
the stability of the reconstruction operator u0 7→ (A∗A)†A∗u0 with respect to noise. This question is
partially addressed in [65, 66] and will be more thoroughly discussed in sections 4 and 5.3.

Proposition 4. Let v ∈ CΩ, then w = (A∗A)†v can be computed in the Fourier domain using

∀(a, b) ∈ ω̂ ,


...

ŵ

(
αa,b` , βa,b`

)
...


1≤`≤Za,b

= M(a, b)†


...

v̂

(
αa,bk , βa,bk

)
...


1≤k≤Za,b

, (34)

where M(a, b)† is the pseudo-inverse of M(a, b). In particular, when choosing v = A∗u0, we obtain
w = (A∗A)†A∗u0 = uls.

Proof. The proof is given in Appendix A.
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3.4 Implementation of the Least-squares Estimator

Let us finally describe how we can efficiently implement the computation of uls = (A∗A)†A∗u0.
Thanks to Proposition 4, we can obtain the DFT of the desired image uls by computing, for each
(a, b) ∈ ω̂, the matrix M(a, b), its pseudo-inverse M(a, b)† and the matrix-vector product involved
in the right-hand side of (34). This way we obtain ŵ(α, β) = ûls(α, β) for all (α, β) ∈ π−1

ω̂ (a, b), but
in order to obtain all coefficients ŵ(α, β) we need to repeat this pseudo-inverse computation for each
(a, b) ∈ ω̂. In practice, the number of such pseudo-inverse computations can be greatly reduced: we
shall see in this section that with an appropriate indexing of the set π−1

ω̂ (a, b) (see earlier remark
after Equation (31)), the number of distinct matricesM(a, b) for (a, b) ∈ ω̂ drops to 4 in the general
case of rational zoom factors, and to only one in the particular case of integer zoom factors.

Let us first examine more closely the structure of the sets π−1
ω̂ (a, b). In all the following, btc and

dte respectively denote the lower integer part and the upper integer part of a real number t.

Lemma 1. For all (a, b) ∈ ω̂, we have

π−1
ω̂ (a, b) =

(
a+mP (a)

)
×
(
b+ nQ(b)

)
, (35)

where
P (a) =

[
pmin(a), pmax(a)

]
∩ Z , Q(b) =

[
qmin(b), qmax(b)

]
∩ Z , (36)

and

pmin(a) =

⌈
−M

2m
− a

m

⌉
, pmax(a) =

⌈
M

2m
− a

m

⌉
− 1 ,

qmin(b) =

⌈
−N

2n
− b

n

⌉
, qmax(b) =

⌈
N

2n
− b

n

⌉
− 1 .

(37)

Proof. The proof is given in Appendix B.

Thanks to Lemma 1, we can now explicitly define the lexicographic ordering of the sets π−1
ω̂ (a, b)

mentioned in Equation (31).

Definition 1. For all (a, b) ∈ ω̂, the lexicographic indexing of the set π−1
ω̂ (a, b) is defined by

π−1
ω̂ (a, b) =

{
(αa,b` , βa,b` )

}
1≤`≤Za,b

with αa,b` = a+ p`m, βa,b` = b+ q`n,

and p` = pmin(a) +

⌊
`− 1

|Q(b)|

⌋
, q` = qmin(b) +

(
(`− 1) mod |Q(b)|

)
.

(38)

Lemma 2. The matrix M(a, b) only depends on |P (a)| and |Q(b)|.

Proof. Combining (33) with (38), we obtain, for all (k, `) ∈ {1, 2, . . . , Za,b}2,

Mk,`(a, b) =
1

zxzy

L∑
j=1

e
2iπ(b `−1

|Q(b)|c−b k−1
|Q(b)|c)δ(j)

x +2iπ

((
(`−1) mod |Q(b)|

)
−
(

(k−1) mod |Q(b)|
))

δ
(j)
y

. (39)

Hence, the coefficients of the matrixM(a, b) only depend on |Q(b)| and |P (a)|, and so does its order
Za,b = |P (a)| · |Q(b)| (that is, M(a, b) is a square matrix with size Za,b × Za,b).

Proposition 5. The order Za,b of the square matrix M(a, b) is, depending on (a, b) ∈ ω̂, one of
the four values bzxc · bzyc, bzxc · dzye, dzxe · bzyc, and dzxe · dzye. Moreover, the number of distinct
matrices M(a, b) is
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� 1 if both zoom factors zx and zy are integers;

� 2 if one of the zoom factors zx and zy is an integer and the other is not;

� 4 if none of the zoom factors zx and zy is an integer.

Proof. The set P (a) is the intersection of the one-dimensional lattice a+mZ (with step m) and the
set of M consecutive integers [−M

2
, M

2
)∩Z. According to the value of a, this intersection will contain

bM
m
c or dM

m
e elements, that is, bzxc or dzxe since zx = M

m
. Likewise, the possibilities for |Q(b)| are

bzyc and dzye. The order ofM(a, b) being Za,b = |P (a)| · |Q(b)|, we hence obtain at most 4 different
orders. Lastly, since all the sets π−1

ω̂ (a, b) are indexed in lexicographic order, we know from Lemma
2 that each matrix M(a, b) only depends on |P (a)| and |Q(b)|, which proves the second part of the
proposition.

A toy example is illustrated in Figure 3 where (m,n) = (4, 3) and (M,N) = (10, 7). In that case,
we have zx = 10

4
= 2.5, zy = 7

3
' 2.33, so we will obtain 4 different matricesM(a, b): one with order

4, two with order 6, and one with order 9.
We can consider another example where (m,n) = (3, 3) and (M,N) = (8, 9). In that case we

have zx = 8
3
' 2.667 and zy = 9

3
= 3, so we will obtain 2 different matrices M(a, b): one with order

9, and one with order 6.

We end this section with the explicit description of two algorithms: Algorithm 1, which simply
computes the block matrixM(a, b), and Algorithm 2, which computes the super-resolved image uls

from a sequence of low-resolution images.

Algorithm 1: Computation of a block matrix (routine blockmatrix)

Input: a sequence of displacements δ =
(
(δ

(j)
x , δ

(j)
y )
)

1≤j≤L, a normalization coefficient γ and

two integers size p and size q.

Output: a square complex matrix M with size Z × Z, denoting Z = size p · size q.

Initialization: set all entries of M to 0.

foreach (j, k, `) ∈ {1, . . . , L} × {1, . . . , Z} × {1, . . . , Z} do

µx ←− b(`− 1)/size qc − b(k − 1)/size qc
µy ←− ((`− 1) mod size q)− ((k − 1) mod size q)

Mk,` ←−Mk,` + γ · exp
(

2iπ
(
µx δ

(j)
x + µy δ

(j)
y

))
return M
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Algorithm 2: Efficient implementation of the least-squares estimator

Input: the stack u0 = (u
(1)
0 , . . . , u

(L)
0 ) ∈ (Rω)L of L low-resolution images with size m× n,

the sequence of displacements δ = ((δ
(j)
x , δ

(j)
y ))1≤j≤L and two integers M and N defining the

super-resolution factors zx = M/m and zy = N/n.

Output: the real part of the image uls = (A∗A)†A∗u0 ∈ CΩ defined in (17).

Core of the module:

compute v̂ = Â∗u0 using (26) and (28)
compute M1 = blockmatrix(δ, 1/(zxzy), bzxc, bzyc) using Algorithm 1
compute M2 = blockmatrix(δ, 1/(zxzy), dzxe, bzyc) using Algorithm 1
compute M3 = blockmatrix(δ, 1/(zxzy), bzxc, dzye) using Algorithm 1
compute M4 = blockmatrix(δ, 1/(zxzy), dzxe, dzye) using Algorithm 1

compute the pseudo-inverses matrices M†
1, M†

2, M†
3 and M†

4

foreach (a, b) ∈ ω̂ do

i←−


1 if |P (a)| = bzxcand |Q(b)| = bzyc
2 if |P (a)| = dzxeand |Q(b)| = bzyc
3 if |P (a)| = bzxcand |Q(b)| = dzye
4 if |P (a)| = dzxeand |Q(b)| = dzye

compute the values of ûls at frequency locations {(αa,b` , βa,b` )}1≤`≤Za,b (given by (38))
using 

...

ûls(α
a,b
` , βa,b` )
...


1≤`≤Za,b

=M†
i


...

v̂(αa,bk , βa,bk )
...


1≤k≤Za,b

.

return the real part of IDFT(ûls)

Remark that when zx is integer, we haveM1 =M2 andM3 =M4. Likewise, when zy is integer, we haveM1 =M3

and M2 = M4. Finally, when zx and zy are both integers, we have M1 = M2 = M3 = M4 which simplifies the
algorithm.
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4 Prediction of the Reconstruction Quality

A benefit of the least-squares approach we proposed is that we are able to predict the quality of the
reconstruction through the analysis of the reconstruction error. In this section, we provide several
estimates and discuss their usefulness.

4.1 Variance Maps in the Fourier or Image Domain

Proposition 6. Assume that the observed sequence u0 is corrupted with a white Gaussian noise
with variance σ2, that is, u0 is a realization of the random image sequence U0 = u0 + σε where
ε = (ε(1), . . . , ε(L)) ∈ (Rω)L is an image sequence made of i.i.d. N (0, 1) random variables. Then, the
reconstruction uls = (A∗A)†A∗u0 is a realization of the random image

Uls = uls + σε′,

where uls = (A∗A)†A∗u0 is the reconstruction that would be obtained without noise and ε′ is a
Gaussian noise with zero mean which satisfies

∀(α, β) ∈ Ω̂ ,

√
E|ε̂′(α, β)|2

MN
= A(α, β), (40)

where for all (a, b) ∈ ω̂ and 1 ≤ ` ≤ Za,b,

A(αa,b` , βa,b` ) :=

√√√√ 1

zxzy

L∑
j=1

|c(j)
` (a, b)|2 (41)

and c
(j)
` (a, b) =

Za,b∑
k=1

[
M(a, b)†

]
`,k

exp

(
−2iπ

(αa,bk δ
(j)
x

m
+
βa,bk δ

(j)
y

n

))
. (42)

Proof. By linearity, we have

Uls = (A∗A)†A∗U0 = (A∗A)†A∗(u0 + σε) = uls + σε′,

so the reconstruction error ε′ = (A∗A)†A∗ε is a Gaussian vector with zero mean. From Equation (28)
we have

∀j ∈ {1, . . . , L}, ∀(α, β) ∈ Ω̂ , Â∗jε
(j)(α, β) = ϕ∗j(α, β) · ε̂(j)(πω̂(α, β))

with, according to Equation (20) and the relation (M,N) = (zxm, zyn),

ϕ∗j(α, β) = ϕzδ(j)(α, β) = exp

(
−2iπ

(
αδ

(j)
x

m
+
βδ

(j)
y

n

))
.

Hence, for all (a, b) ∈ ω̂ and 1 ≤ k ≤ Za,b,

Â∗ε(αa,bk , βa,bk ) =
L∑
j=1

Â∗jε
(j)(αa,bk , βa,bk ) =

L∑
j=1

ϕ∗j(α
a,b
k , βa,bk ) · ε̂(j)(a, b).
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Furthermore, since ε′ = (A∗A)†A∗ε, we obtain from Proposition 4

∀` ∈ {1, 2, . . . , Za,b}, ε̂′(αa,b` , βa,b` ) =
Za,b∑
k=1

[
M(a, b)†

]
`,k
Â∗ε(αa,bk , βa,bk )

=
Za,b∑
k=1

[
M(a, b)†

]
`,k

L∑
j=1

ϕ∗j(α
a,b
k , βa,bk ) · ε̂(j)(a, b)

=
L∑
j=1

Za,b∑
k=1

[
M(a, b)†

]
`,k
ϕ∗j(α

a,b
k , βa,bk )

 · ε̂(j)(a, b)

=
L∑
j=1

c
(j)
` (a, b) · ε̂(j)(a, b) (43)

where c
(j)
` (a, b) is defined in Equation (42). Now let us write, for a, b and j fixed, X = Re(ε̂(j)(a, b))

and Y = Im(ε̂(j)(a, b)). Since ε(j) is a m × n Gaussian white noise image (with variance 1), the
random variables X and Y are independent, Gaussian-distributed with zero mean and satisfy

EX2 + EY 2 = mn

(the repartition is EX2 = EY 2 = mn
2

for most coefficients, but EX2 = mn and EY 2 = 0 for some of
them, in the case a = b = 0 for example). Consequently, for any (α, β) ∈ R2, we have

E|(α + iβ)(X + iY )|2 = E(αX − βY )2 + E(αY + βX)2 = (α2 + β2)(EX2 + EY 2) = mn|α + iβ|2.

Applying this to the previous computation, we obtain, thanks to the independence of the random
variables ε̂(j)(a, b) for 1 ≤ j ≤ L,

1

MN
E
∣∣∣ε̂′(αa,b` , βa,b` )

∣∣∣2 =
mn

MN

L∑
j=1

|c(j)
` (a, b)|2 =

1

zxzy

L∑
j=1

|c(j)
` (a, b)|2, (44)

which corresponds to the square of A(αa,b` , βa,b` ) according to the definition given in (41). Therefore,
taking the square root of (44) for all (a, b) ∈ ω̂ and all ` ∈ {1, 2, . . . , Za,b} yields (40) as announced.

Proposition 6 allows us to compute the expected level of noise in the reconstructed image uls,
through the Fourier amplification map A, which only depends on the translations and the chosen
zoom factors zx and zy. The normalization used in Equation (40) ensures that if A = 1 everywhere,
then the noise variance in uls and in u0 are the same.

Remark 4. By introducing an appropriate complex factor with modulus 1 in Equation (42), one

can prove3 that |c(j)
` (a, b)| = |c(j)

` (a′, b′)| as soon as M(a, b) = M(a′, b′). A consequence is that the
Fourier amplification map A is piecewise constant (see first row of Figure 4). In the case of integer

zoom factors zx, zy, all M(a, b) matrices are identical so |c(j)
` (a, b)| is independent of a and b and the

amplification map A takes at most Za,b = zxzy different values (the number of values of the ` index
in Equation (41)). In the more general case of non-integer zoom factors, the number of values is not
greater than

(bzxc+ dzxe) · (bzyc+ dzye) .
3More precisely, Equation (38) and Equation (42) imply that when |P (a)| = |P (a′)| and |Q(b)| = |Q(b′)|, we have

cj`(a
′, b′) = cj`(a, b) · e−2iπζ with ζ = δ

(j)
x

(
a′−a
m + pmin(a′)− pmin(a)

)
+ δ

(j)
y

(
b′−b
n + qmin(b′)− qmin(b)

)
.
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As shown by Proposition 6, the reconstruction error is not a white noise but a non-stationary
Gaussian random field. It can be observed with two maps:

� the (non-constant) variance map in the Fourier domain, (α, β) 7→ E|ε̂′(α, β)|2, which is directly
related to the amplification map A (see Figure 4) and is responsible for correlations between
the random variables ε′(k, `);

� the (non-constant) variance map in the image domain, (k, `) 7→ E
(
ε′(k, `)2

)
(see last row of

Figure 5), which is responsible for correlations between the random variables ε̂′(α, β).

The fluctuations of the variance map in the Fourier domain give the image ε′ the aspect of a texture.
This texture is Gaussian, but contrary to most classical Gaussian models of textures, it is not
stationary. Indeed, we can see from Equation (43) that the coefficients ε̂′(α, β) are correlated, which
implies that the variance map (k, `) 7→ E

(
ε′(k, `)2

)
is not constant in general (see Figure 5).

The textured aspect of the reconstruction error can be considered as a reconstruction artifact,
since it may lead to the appearance of small spurious oscillating patterns in the reconstructed image.
This phenomenon mainly occurs when L is close to zxzy; as we can see in Figure 4 and 5, the
fluctuations of both variance maps quickly vanish as L increases. In most practical cases, one has
L� zxzy and the reconstruction error ε′ is visually similar to a Gaussian white noise.

L = 9 L = 14 L = 20

0.5

1

2

3

4

5
6
7

amplification map A

normalized reconstruction error (α, β) 7→ |ε̂′(α, β)|/
√
MN

Figure 4: Amplification map and reconstruction error in the Fourier domain. First row: the
amplification map A defined in Proposition 6, for different values of L, σ = 1, random translations
uniformly and independently distributed over [−5, 5]2, and super-resolution factors equal to zx =
M/m = 129/56 ≈ 2.3 and zy = N/n = 73/33 ≈ 2.2 respectively. Second row: the corresponding

normalized reconstruction error |ε̂′|/
√
MN in the Fourier domain (for one realization of ε). We

can see that the amplification map gives a good prediction of the fluctuations of |ε̂′|, and that the
amplitude of these fluctuations quickly decreases when L increases. When L is close to zxzy (left
column), the amplification map may present strong variations from one region to another, which
leads to the appearance of some textured error patterns in the reconstructed image (see Figure 5).
In most practical cases however, one has L� zxzy and the amplification map A is almost constant
(and takes small values).
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Realizations of Re(ε′)
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L = 9 L = 14 L = 20

Figure 5: Reconstruction error in the spatial domain. The conditions are the same as in Figure 4,
but we now examine the effect of noise in the spatial domain through the error image ε′. First and second
row: error images Re(ε′) obtained for two different realizations of ε. Third row: standard deviation of
Re(ε′), estimated from 103 realizations of ε. The most visible patterns in the error images are not localized
but correspond to a texture behavior (the two realizations show that the patterns do not occur at specific
locations, and are barely related to the variations of the standard deviation displayed in the third row).
Hence, the visual structure of the reconstruction error is mostly due to the variations of the amplification
map displayed in Figure 4, whereas the spatial inhomogeneity shown in the third row plays a minor role.
We can also notice that the amplitude and the amount of structure in the error images quickly decreases as
L grows, which confirms the observation made in Figure 4 for the Fourier domain.

4.2 Predicted Error

Proposition 6 is very interesting in terms of prediction, because the computation of the amplification
map A only requires the knowledge of the translations (δ(j))1≤j≤L, and is independent of the data
coming from the low-resolution image sequence. From the number of images (L), the translations
(δ(j))1≤j≤L, the dimension of the low-resolution images (m,n), and the chosen super-resolution factors
(zx, zy), we can compute the amplification map A and predict, for a given level of noise (σ) in the
input sequence, the reconstruction error due to the presence of noise. In the following we keep the
notations of Proposition 6.

It is a well-known fact in the image processing community that the norm of a white noise image
(say, with 0 mean and unit variance) is almost independent of the realization of the noise. This
can be proven in several ways, either by computing the exact law (in the case of a Gaussian noise
for example), or by invoking asymptotically the strong law of large numbers or the Central Limit
Theorem (which also provides an estimate of the norm variance). Numerically, we observed that this
stability was also satisfied by the norm of the reconstruction error image Uls − uls, but since this
random image is neither white nor homoscedatic (in other terms, pixels are not independent and all
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pixels do not follow the same law), we first provide a theoretical justification with

Lemma 3. If zx, zy, L and δ = ((δ
(j)
x , δ

(j)
y ))1≤j≤L are fixed, then one has, almost surely as mn→ +∞,

‖Uls − uls‖2
2 ∼ E‖Uls − uls‖2

2.

Proof. The proof is done in Appendix C.

Corollary 1. Given a noisy input image sequence u0 (a realization of U0), the reconstruction mean
square error (MSE) and the associated peak signal-to-noise ratio (PSNR) defined by

MSE =
1

MN
‖uls − uls‖2

2 and PSNR = 10 log10

(
d2

MSE

)
(45)

(denoting d the peak value of the reconstructed image uls = (A∗A)†A∗u0, e.g. d = 255 for images
with 8-bit dynamic) can be accurately predicted (independently from the input sequence u0) from the
amplification map A by

MSE ≈ σ2‖A‖2
2

MN
and PSNR ≈ 10 log10

(
d2MN

σ2‖A‖2
2

)
. (46)

Proof. Due to the high dimension of RΩ, with very good accuracy and high confidence level we have,
thanks to Lemma 3,

‖uls − uls‖2
2 ≈ E‖Uls − uls‖2

2,

so that MSE =
1

MN
‖uls − uls‖2

2 ≈
1

MN
E‖Uls − uls‖2

2 =
1

(MN)2
E‖Ûls − ûls‖2

2 =
σ2‖A‖2

2

MN
. The

formula for the PSNR directly follows.

The prediction given by Equation (46) is actually very accurate, as we can check in Figure 6. If the
acquisition setup leads to an invertible matrix A (which holds for almost all translations sequences
as soon as L ≥ dzxe · dzye), then the reconstruction uls is theoretically exact, and Equation (45)
exactly measures the reconstruction error. In practice, however, there are other sources of error (in
particular, the translations (δ(j))1≤j≤L are not perfectly known), so that Equation (46) is a prediction
of the part of the reconstruction error caused by the noise in the input image sequence.

Beyond the overall prediction of the reconstruction quality given by the PSNR, the amplification
map A defined in Proposition 6 could be used to take into account more precisely the nature of
the reconstruction noise in post-processing algorithms. Such information is often used in image
processing to build restoration filters, in particular Wiener filters. Note that his would be useful only
when L ' zxzy, since the variations of the amplification map become negligible when L� zxzy. For
that reason, we shall not use the information provided by the amplification map A later in Section 7,
when we shall describe a simple post-processing filter to improve the contrast of the reconstructed
high-resolution image.

4.3 Worst-case Scenario with Respect to Noise

We can observe that the MSE estimate given in Equation (46) is simply the expected MSE, and
it is very different from the MSE upper bound that would be obtained from the condition number
κ(A) = ‖A‖2‖A−1‖2 using the inequality

‖uls − uls‖2

‖uls‖2

≤ κ(A)
‖u0 − u0‖2

‖u0‖2

. (47)
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Figure 6: Prediction of the reconstruction PSNR. We here illustrate the effectiveness of the error
prediction allowed by Corollary 1. For 7 values of L, we simulate several low-resolution sequences (100 per
value of L, with random i.i.d. translations uniformly sampled over [−5, 5]2, and noise standard deviation
σ = 2) and for each of them we compute the associated super-resolution image with super-resolution factors
equal to zx = M/m = 450/225 = 2, zy = N/n = 324/162 = 2 (case a, left column) or zx = M/m =
450/214 ≈ 2.1, zy = N/n = 324/141 ≈ 2.3 (case b, right column). Then we plot, in each case, a point with
x coordinate equal to the PSNR predicted by Equation (46) from the amplification map A and y coordinate
equal to the PSNR measured by comparing the reconstruction uls to the ideal (apodized) high-resolution
image uls. We can observe the high accuracy of the prediction, as all these points are almost perfectly located
on the line y = x. Note that the observed PSNR was calculated after removing the small apodization regions
on the border of the image domain (otherwise, the apodization would artificially increase the PSNR).

Indeed, assuming that 1
MN
‖uls‖2

2 ≈ 1
mnL
‖u0‖2

2 (which means that u0
2 and uls

2 have similar spatial
averages), Equation (47) yields

‖uls − uls‖2
2

MN
. κ(A)2‖u0 − u0‖2

2

mnL
≈ κ(A)2σ2,

so that
MN

‖uls − uls‖2
2

&
1

κ(A)2σ2
,

and using (45) we end up with the lower bound

PSNR & 10 log10

(
d2

κ(A)2σ2

)
. (48)

Note that this (approximate) lower bound, which roughly corresponds to worst-case realizations of
the noise, is very pessimistic (as we shall see later in Table 1). The reason is that Inequality (47)
is determined by the worst case, but does not account for average situations that are encountered
in practice. Nonetheless, this kind of lower bound was successfully used in [66] and [65, chapter 5]
to locally estimate the ill-posedness of the super-resolution problem, and to adjust the amount of
regularization accordingly.

4.4 Expected Error for Optimal Translations

Aside from the pessimistic bound (48) we just discussed, we can obtain an optimistic bound on the
expected MSE, which corresponds to the minimal expected error we can achieve with respect to the
sequence of translations (δ(j))1≤j≤L. In the following, we shall assume that the operator A has full
rank. This is not a limitation in practice, for several reasons:

� if A has not full rank, the reconstruction uls is still defined (thanks to the use of the Moore-
Penrose pseudo-inverse A† = (A∗A)†A∗), but the lack of information will cause artifacts in
general. The full-rank property is hence highly desirable;
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� if L ≥ dzxe · dzye and the translations (δ(j))1≤j≤L follow a random distribution having a density
with respect to Lebesgue’s measure, then A has full rank almost surely.

Proposition 7. If A has full rank, then the expected value of the reconstruction MSE satisfies

E(MSE) ≥ zxzy
L

σ2. (49)

Proof. 1) Let us first notice that if X = (Xi)1≤i≤d is a vector of i.i.d. N (0, 1) random variables and
B a complex d× d matrix, one has

E‖BX‖2
2 = E

(
XTB∗BX

)
= E

(
trace

(
XTB∗BX

))
= E

(
trace

(
BXXTB∗

))
= trace

(
BE(XXT )B∗

)
= trace(BB∗) = ‖B‖2

F ,

where ‖B‖F :=
√

trace(B∗B) =
√

trace(BB∗) is the Frobenius norm of B.
2) We can use this result to compute the Frobenius norm of the matrix associated to A in the

canonical basis (in this proof, we shall use the same notation A for the operator and its associated
matrix). Indeed, if U is a M ×N image made of i.i.d. N (0, 1) random variables, then each random
value (AU)(j)(k, `) has zero mean and satisfies

Var

(
Re
(
(AU)(j)(k, `)

))
+ Var

(
Im
(
(AU)(j)(k, `)

))
= 1,

so that E‖AU‖2
2 =

∑
j,k,` 1 = mnL. From 1), we deduce that ‖A‖F =

√
mnL.

3) Let us now estimate the Frobenius norm of A†. Since A has full rank, it admits MN positive
singular values σ1, σ2, . . . , σMN , and we have

‖A‖F =

√√√√MN∑
i=1

σ2
i .

Now, the singular values of A† are σ−1
1 , σ−1

2 , . . . , σ−1
MN , so that

‖A†‖F =

√√√√MN∑
i=1

σ−2
i ,

and by Cauchy-Schwarz Inequality we obtain

‖A‖F‖A†‖F =

√√√√MN∑
i=1

σ2
i

√√√√MN∑
i=1

σ−2
i ≥

MN∑
i=1

σi · σ−1
i = MN.

Since we know from 2) that ‖A‖F =
√
mnL, we deduce that

‖A†‖F ≥
MN√
mnL

.
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4) Denoting by ε = (ε(1), . . . , ε(L)) ∈ (Rω)L an image sequence made of i.i.d. N (0, 1) random
variables (as in Proposition 6), we get

E(MSE) =
1

MN
E‖Uls − uls‖2

2

=
1

MN
E‖A†(σε)‖2

2

=
σ2

MN
‖A†‖2

F

≥ σ2

MN

(MN)2

mnL

≥ σ2zxzy
L

.

Notice that the right-hand term of Equation (49) can be interpreted with a very simple reasoning.
We estimate the MN intensity values of the high-resolution image from the mnL intensity measure-
ments coming from the LR sequence, so we have a ratio of λ = mnL

MN
= L

zxzy
observed values for each

reconstructed value. Hence, we can at best expect to reduce the initial variance σ2 by this ratio
λ and obtain a reconstruction MSE equal to σ2

λ
= zxzy

L
σ2. Note that this lower bound is actually

attained for perfectly distributed translations, that is, when zx and zy are integers, L is a multiple
of zxzy, and the translations δ(j) are uniformly distributed on the grid{

0,
1

zx
,

2

zx
, . . . ,

zx − 1

zx

}
×
{

0,
1

zy
,

2

zy
, . . . ,

zy − 1
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}
.

From (49), we cannot directly derive an inequality for the expected PSNR (because the ex-
pectation operator does not commute with the logarithm), but we still can infer the approximate
inequality

PSNR . 10 log10

(
d2L

zxzyσ2

)
, (50)

where the right-hand term is an optimistic PSNR bound.

4.5 Usage of Error Predictions and Bounds

In the previous section, we derived the bounds

10 log10

(
d2

κ(A)2σ2

)
. PSNR . 10 log10

(
d2L

zxzyσ2

)
, (51)

in Equation (48) and (50), as well as the estimate

PSNR ≈ 10 log10

(
d2MN

σ2‖A‖2
2

)
. (52)

in Equation (46). The left-hand term of (51) is a very pessimistic lower bound; it is never really
attained in practice because it corresponds to extremely rare events. On the contrary, it is possible to
obtain PSNR values quite close to the right-hand term of (51) by choosing appropriate translations.
Once the translations have been chosen (or measured), the estimate (52) gives a pretty accurate
estimate of the actual PSNR. Note that this actual PSNR depends on the noise level σ but is almost

27



independent of the noise realization in reason of the high-dimensionality of the problem. These
remarks will be illustrated in Table 1 of Section 5.

Being able to predict the reconstruction PSNR from the displacements with Equation (52) opens
the way to several applications. It can be used to choose between different reconstruction strategies
(for instance to decide whether regularization should be used or not), or to optimize the choice of δ
when the sequence of displacements can be controlled during the acquisition, as it is the case for the
so-called jitter camera [8, 9].

5 Least-squares Reconstruction Experiments over Synthetic

and Real Data

In sections 5.1–5.4, we evaluate the ability of the least-squares model to reconstruct an accurate
high-resolution image uls from a sequence of low-resolution images u0 and the associated sequence
of displacements δ. Using synthetic experiments, we study the influence of several important pa-
rameters, such as the number L of images in u0, the level of noise corrupting the sequence u0, the
configuration of the displacements δ, and the accuracy of the estimation of these displacements. To
simplify the study, we focus on the case of a 2 × 2 super-resolution factor (zx = zy = 2). Then, we
consider in Section 5.5 two real sequences: one issued by a 2-photon microscope, and the other by
a thermal infrared camera. We completely process these sequences (including the estimation of the
unknown displacements), and analyze the obtained super-resolved images.

5.1 Design of the Synthetic Experiments

To build a synthetic low-resolution image sequence such as the one displayed in Figure 1 (a), we
draw random displacements and apply the associated operator A to a high resolution reference
image. Since the translations are implemented in A in a periodic setting, the low-resolution image
sequence exhibits unnatural behavior (for example, details lost on the left side re-enter the image on
the right side), so we have to remove several lines and columns of each image to obtain a realistic
image sequence (otherwise, we would be in the situation of an “inverse crime” evaluation [29]).

Let us recall that in the super-resolution algorithm we propose, we systematically pre-process the
input image sequence with the apodization procedure described in Section 2.3. The consequence is
that the high-resolution image we aim to reconstruct is not exactly the reference image used to build
the synthetic image, but an apodized version of it, as displayed in Figure 1 (d).

To be able to assess the average performance of the algorithm, we introduce some randomness in
the generation of the sequences of interest. Thus, to build a sequence u0 containing L low-resolution
images {u(j)

0 }1≤j≤L, we use the following procedure:

(i) each low-resolution image u
(j)
0 is corrupted by an additive Gaussian noise with zero-mean and

standard deviation σ = 2 (the reference image u having a 8-bits dynamic, the peak signal-to-
noise ratio (PSNR) of a low-resolution image is roughly equal to 42 dB);

(ii) all vectors of the displacement sequence δ =
(
δ

(j)
x , δ

(j)
y )
)

1≤j≤L are drawn uniformly and inde-

pendently in [−5, 5]× [−5, 5];

(iii) when computing uls, instead of the exact displacement sequence δ used to generate the input
sequence u0, we may consider a perturbed displacement sequence

δ′ =
(
(δ(j)
x + n(j)

x , δ(j)
y + n(j)

y )
)

1≤j≤L, (53)
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where the perturbations (n
(j)
x , n

(j)
y )1≤j≤L are independently drawn from a Gaussian random

variable with zero mean and standard deviation σδ.

The use of a perturbed sequence δ′ instead of the actual sequence δ for the reconstruction is justified
by the fact that, in practice, the displacements cannot be measured with an infinite accuracy, and
the parameter σδ is precisely a way to account for this limited accuracy. As we will see in Section 5.4,
even small inaccuracies in the displacements can cause important artifacts in the reconstruction.

5.2 A Synthetic Example of Super-resolution Reconstruction

As a first synthetic experiment, we applied the super-resolution Algorithm 2 with factor 2 × 2
to a synthetic sequence u0 containing L = 20 low-resolution images, with no perturbation of the
displacements (σδ = 0). The result is displayed in Figure 7, and compared to the ground truth
(apodized reference image) both in the image and in the Fourier domains. The reconstruction
quality is very good, as the reconstructed image is almost identical to the reference.

The fact that we can almost perfectly recover the super-resolved image with factor 2× 2 from a
low-resolution sequence u0 containing L = 20 images (and with no perturbation of the displacements)
is due to the highly favorable ratio L

zxzy
= 5, which is significantly larger than 1. Not only this high

ratio improves the “optimistic” expected PSNR of the reconstruction (see Equation (50)), but as we
shall see now it also decreases a lot the probability of observing bad displacement configurations.

5.3 Influence of the Displacement Configuration over the Quality of the
Reconstruction

A legitimate question about the reconstruction example displayed in Figure 7 is: “How representative
of the possible behavior of the reconstruction algorithm is this particular example?”. As mentioned
in Section 4.5, the variations of the reconstruction due to the noise on the low-resolution sequence
are quite small, because the high-dimensionality prevents large deviations to appear with significant
probability. However, the variations due to the displacement sequence δ (which is also randomly
chosen), can be very large, especially when the “redundancy ratio” L

dzxe·dzye is close to 1. We now

analyze this phenomenon more precisely.
In Figure 8, we study the relation between the number L of images and the distribution of the

predicted PSNR with respect to the displacements. We observe two effects, both in favor of using a
number L of images significantly greater than 4 (more generally, greater than dzxe · dzye):

1. as L grows, the average predicted PSNR increases;

2. as L grows, the fluctuations of the predicted PSNR decrease.

In other terms, increasing L improves the average reconstruction quality, and, more importantly,
decreases the chance of encountering an “unlucky” configuration of displacements yielding a poor
quality reconstructed image.

This phenomenon is illustrated in Figure 9. We observe that for a 2× 2 super-resolution factor,
using L = 4 or L = 5 images is rather unwise, since for at least 10% of the possible displacement
sets, notable artifacts appear in the reconstructed image. With L = 10 images, this phenomenon is
much less frequent and most reconstructions look the same. We can now answer the question that
motivated this section: the example displayed in Figure 7 (L = 20) is highly representative of the
reconstruction that would be achieved on any such random data.
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six frames (over 20 frames) of the input noisy low-resolution sequence u0

size = 225 x 162 size = 450 x 324 size = 450 x 324

(a) first frame of u0 (b) least-squares reconstruction uls (c) apodized reference image

size = 58 x 42 size = 116 x 84 size = 116 x 84

details of (a) details of (b) details of (c)

size = 225 x 162 size = 450 x 324

    low-resolution frequency domain

size = 450 x 324

    low-resolution frequency domain

spectrum of (a) spectrum of (b) spectrum of (c)

Figure 7: Super-resolution with factor 2× 2 using Algorithm 2. In the first row, we display six
frames of an apodized synthetic sequence u0 containing L = 20 noisy low-resolution images. The first frame
of u0 is also displayed in (a). We display in (b) the high-resolution image uls computed using Algorithm 2,
which can be compared to the apodized high-resolution reference image displayed in (c). In the third row,
we display some close-up views of the images (a), (b) and (c), and in the last row, we display their Fourier
spectra in logarithmic scale (with high values in dark). The low-resolution image (a) is badly sampled, as
attested by the aliasing artifacts appearing in its spectrum (yellow arrows). Comparing (b) and (c), both
in the image and the frequency domain, we can see that Algorithm 2 succeeds in reconstructing the high-
resolution details of the reference image. Indeed, uls is very close to the apodized reference image (c), with
a relative PSNR equal to 49.0 dB. This experiment illustrates the ability of the least-squares reconstruction
model to efficiently recover the high-resolution image from u0 when L is significantly higher than the targeted
total super-resolution factor (here, 4 = 2× 2), and in the (idealized) case of perfectly known displacements
(σδ = 0).
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Figure 8: Variability of the reconstruction quality with respect to the number L of low-
resolution images. We compute the PSNR of the super-resolved image uls obtained from a sequence
u0 of L synthetic low-resolution images (corrupted by an additive Gaussian noise with standard deviation
σ = 2 and generated using random displacements δ). For each value of L, we perform 105 simulations
and display, as a function of L, the first centile, the first decile, the median, the last decile and the last
centile of the computed PSNR values. As the system is (almost surely) overdetermined when L > 4 (that
is, the operator A has full rank), we know from Proposition 7 that we can expect to reduce the level of
noise up to a factor λL =

√
L/(zxzy) =

√
L/4, leading to an upper bound for the expected PSNR of

10 · log10

(
2552/(σ/λL)2

)
, which is represented by the dotted curve (optimistic bound). This PSNR im-

provement is confirmed by the experiment, especially for large values of L, and it shows the ability of the
least-squares to provide a substantial denoising in overdetermined situations.

31



example of reconstructions using low-resolution stacks containing L = 4 images

(a) PSNR = 15.39 dB (first decile) (b) PSNR = 31.31 dB (median) (c) PSNR = 39.06 dB (last decile)

example of reconstructions using low-resolution stacks containing L = 5 images

(d) PSNR = 29.58 dB (first decile) (e) PSNR = 37.59 dB (median) (f) PSNR = 41.25 dB (last decile)

example of reconstructions using low-resolution stacks containing L = 10 images

(g) PSNR = 42.55 dB (first decile) (h) PSNR = 44.61 dB (median) (i) PSNR = 45.43 dB (last decile)

Figure 9: Prediction of the reconstruction quality and influence of L. In this experiment, we display
some close-up views of super-resolved images reconstructed from low-resolution sequences containing L = 4
images (first row), L = 5 images (second row) or L = 10 images (last row). For each value of L, we repeated
103 simulations (with additive Gaussian noise and random displacements) and systematically computed the
predicted PSNR according to Equation (46); on the corresponding row, we display the images corresponding
to the first decile, the median, and the last decile of the predicted PSNR. We can see that when L is close
to the targeted super-resolution factor zx · zy, bad configurations of displacements often arise, leading to a
poor PSNR value and noticeable artifacts, such as those observed in (a) and (d). When L increases, the
average value of the PSNR increases and its spread decreases (as shown in Figure 8), thus the reconstruction
quality is improved and more stable (last row).
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In Table 1, we can check the very little influence of the image noise on the reconstruction (small
values of σpsnr in column 2), as announced earlier. On the contrary, we can see that the PSNR highly
depends on the configuration of the displacements, especially when L is small.

Displacement sequence
PSNR (dB)

average ±σpsnr pessimistic predicted optimistic

L = 4, same as Figure 9 (a) 15.44± 0.03 5.324 15.39 42.11
L = 4, same as Figure 9 (b) 31.31± 0.03 22.38 31.31 42.11
L = 4, same as Figure 9 (c) 39.06± 0.02 32.84 39.06 42.11

L = 5, same as Figure 9 (d) 29.60± 0.03 19.82 29.58 43.08
L = 5, same as Figure 9 (e) 37.60± 0.02 29.66 37.59 43.08
L = 5, same as Figure 9 (f) 41.23± 0.02 34.69 41.25 43.08

L = 10, same as Figure 9 (g) 42.53± 0.03 31.95 42.55 46.09
L = 10, same as Figure 9 (h) 44.56± 0.02 35.10 44.60 46.09
L = 10, same as Figure 9 (i) 45.40± 0.02 37.56 45.43 46.09

Table 1: Accuracy of the PSNR prediction. For each displacement sequence considered in Figure 9
(a)-(i), we reconstructed high-resolution images for 103 simulated low-resolution sequences corrupted with
different noise realizations. We display in the second column the average values of the PSNR, as well as the
empirical standard deviation of those PSNR values (σpsnr). We also display on the three last columns the
values of the three PSNR estimates computed in Section 4 (and summarized in Section 4.5) : the (pessimistic)
PSNR lower bound (48), the PSNR prediction (46), and the (optimistic) PSNR upper bound (50). We can
see that the PSNR prediction is always very close to the actual PSNR achieved in all our simulations.
The PSNR lower bound, based on the condition number of the operator A, is indeed very pessimistic
(with roughly 7 to 10 dB difference with the actual PSNR values), while the PSNR upper bound, which
corresponds to ideal translations, becomes more achievable when the redundancy factor L/(zxzy) grows.

5.4 Least-squares Reconstruction Using Erroneous Displacements

In real-life applications, we cannot hope to measure the displacements with infinite accuracy. In the
present section, we study the influence of the estimation error on the quality of the reconstruction.
We can first distinguish between two different situations:

(i) the displacements are measured independently of the low-resolution sequence u0, using a dedi-
cated system (see for instance [41, 53, 55, 62, 63]);

(ii) the displacements are measured from the low-resolution sequence u0 (or said differently, we are
only given u0 and we need to estimate δ before computing uls).

In the case (i), the estimation of the displacements can be very accurate, provided that the quality
of the dedicated system (which may include a specific sensor) is high enough. In the case (ii), the
accuracy is inherently limited by the spatial aliasing of the low-resolution sequence u0. Indeed, most
registration algorithms rely on interpolation models, which are much less accurate on aliased images.
Several works, such as [32, 58, 68, 69], focus on the problem of motion estimation from aliased images,
but this problem is quite difficult and, up to our knowledge and simulations in realistic situations, the
typical accuracy of such techniques ranges from an average error of σδ ≈ 0.05 in favorable situations
to σδ ≥ 0.2 in more difficult cases. This is not to mention computational difficulties that can make
the estimation of the displacement intractable in practical situations [58, 68].
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We believe that, more than the super-resolution reconstruction model itself (here, the least-
squares), the accurate estimation of the displacements is the most crucial and challenging part of
the super-resolution procedure as a whole. In Figure 10, we can observe that the least-squares
model provides a very efficient reconstruction when the displacements are perturbed by a Gaussian
noise with standard deviation of σδ ≤ 0.01, but some artifacts occur when σδ ≥ 0.05, and those
artifacts become rather important when σδ ≥ 0.2. Thus, achieving a very accurate estimation of
the displacements should be a major concern of any system aiming at a high quality super-resolved
reconstruction. Designing algorithms to refine the estimation of the displacements while computing
the super-resolved image would be interesting, but this would deserve a dedicated study that is
beyond the scope of the present paper.

Note incidentally that no matter how much we improve the average quality of the displacement
estimation (in both situations (i) and (ii) discussed above), in practice we can reasonably expect to
observe outliers, that is, low-resolution images associated with a significantly poor estimation of the
displacement which will negatively impact the reconstruction. We will address that particular issue
in Section 6, where we propose a lucky-imaging strategy that attempts to improve the reconstruction
quality by removing from the low-resolution sequence u0 the images that are not compliant with
the generative model (images associated with a poor estimation of the displacement, images under-
going a more complicated deformation than the assumed translational motion, images undergoing
illumination changes, etc).

5.5 Reconstruction Examples over Real Data

In Figure 11 and 12, we provide examples of super-resolution reconstructions obtained from two
different real data sequences. The first sequence (Figure 11) was acquired using a 2-photons micro-
scope, and the second (Figure 12) using a thermal infrared camera. Both sequences exhibit a good
SNR, but are genuinely aliased.

In the case of the 2-photon sequence, the pixels of each image are obtained with a scanning
system, and a compromise has to be found in the scanning process between a coarse scan grid (which
allows for high image acquisition rates, but produces aliased images) and a fine scan grid (which
limits or even prevents aliasing, but cannot capture high-speed phenomena). In the sequence we
consider in Figure 11, the scan step could not be set below the Nyquist rate considering the observed
cell movements, thus all images are aliased.

As concerns thermal infrared cameras, there also is a compromise to be found between the number
of pixels (high-resolution sensors are very expensive) and the aperture of the camera (a large aperture
collects more light, but requires smaller pixels to avoid aliasing). Thus, thermal infrared cameras
often deliver aliased images, and as such are good providers of low-resolution data for super-resolution
algorithms.

In both cases, we thus are in a situation where super-resolution is highly desirable not only to
remove unwanted aliasing artifacts, but also to improve the true resolution of the observed scene.
For each sequence, we first estimated the displacements using the registration algorithm of Keren et
al. [32], which relies on a Gaussian pyramid-based multi-scale registration procedure. This algorithm
was retained for its accuracy, speed and simplicity. An implementation, provided by the authors
of [69], is available at https://github.com/edwardtoday/PolyU_MScST/tree/master/COMP5422/

Lab/superresolution_v_2.0. We then applied Algorithm 2, and compared the obtained super-
resolution image with the pixelwise average (or median) of the registered low-resolution sequence
(the so-called shift-and-add or shift-and-median method [5, 14, 13]). As we can see in Figure 11
and 12, not only the SNR is improved by the frame fusion process (which is also the case for shift-
and-add), but the resolution is clearly increased.
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(a) σδ = 0.01 (PSNR=48.1 dB) (b) σδ = 0.05 (PSNR=44.5 dB) (c) σδ = 0.1 (PSNR=40.0 dB) (d) σδ = 0.2 (PSNR=34.1 dB)

details of (a) details of (b) details of (c) details of (d)

Shannon zooming of (a) Shannon zooming of (b) Shannon zooming of (c) Shannon zooming of (d)

spectrum of (a) spectrum of (b) spectrum of (c) spectrum of (d)

Figure 10: Least-squares reconstruction using erroneous displacements. For each value
of σδ considered in this figure, we simulated 103 synthetic low-resolution sequences in the following
way. Each sequence u0 contains L = 20 low-resolution images (corrupted by an additive Gaussian
noise with standard deviation σ = 2) and was generated using a random displacement sequence δ
(drawn with independent and uniform samples in [−5, 5] × [−5, 5]). For each simulated sequence,
we computed the least-squares reconstruction uls obtained from u0 and a perturbed displacement
sequence δ′ = (δ(j) + (n

(j)
x , n

(j)
y ))1≤j≤L with i.i.d. N (0, σ2

δ ) perturbations (n
(j)
x , n

(j)
y ) (1 ≤ j ≤ L). In

the first row, we display, for several values of σδ, the reconstruction uls achieving the median PSNR
with respect to the reference high-resolution image. A close-up is displayed in the second and third
rows (with Shannon interpolation on the third row). The last row represents the spectra (in log
scale) of the high-resolution images (a)-(d). Looking closely at the images at the pixel scale (second
row), we can observe some spurious structures in the reconstruction (c) and (d). Looking at the
sub-pixel scale (third row), artifacts are clearly visible in (c) and (d), and slightly visible in (b). On
the spectra of the reconstructed images (last row), artifacts are clearly visible in (b), (c), (d), but
barely in (a). This experiment shows that, for a 2 × 2 super-resolution factor and a sequence of
L = 20 low-resolution images, artifacts are barely noticeable in the image domain when σδ ≤ 0.05,
but σδ ≤ 0.01 is required to draw the same conclusion in the Fourier domain.
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size = 45 x 75

data credit: J. Ramirez

size = 45 x 75 size = 90 x 150

(a) first image of the apodized (b) shift-and-add: mean of the (c) least-squares reconstruction
low-resolution sequence u0 registered low-resolution sequence

size = 190 x 170 size = 190 x 170 size = 380 x 340

bicubic zooming of (a) bicubic zooming of (b) bicubic zooming of (c)

Figure 11: Super-resolution from a sequence of 2-photons microscopic images. In this
experiment, we used an in-vivo recording of Purkinje cells of a living rat, which was acquired with a
2-photons microscope. This sequence was kindly provided to us by J. Ramirez, author of [56], who
performed this challenging video acquisition in order to study the temporal spiking activity of in-vivo
brain cells. Achieving a satisfactory temporal sampling (FPS) rate for this sequence constrained the
spatial sampling rate to be set large, leading to strongly aliased images. The sequence of interest
u0 contains L = 2886 images with size 45× 65 (acquired at 4µm/pixel). We display in (a) the first
image of u0, and in (b) an enhanced low-resolution image corresponding to the pixelwise averaging
of the registered sequence (following the so-called shift-and-add methodology [5, 14]). In (c), we
can see the high-resolution image uls computed from u0. In the second row, we display magnified
versions (with a bicubic zoom of factor 5) of the central part (yellow frame) of the upper images.
Looking at the images at the pixel scale (first row), we can clearly see in (c) the shape of several
cell nuclei, which were not visible in (a) and (b). At the sub-pixel scale (second row), we can see
that, due to aliasing, the zoom of image (a) yields very distorted cell shapes. Those distortions are
significantly reduced in (b) thanks to the shift-and-add procedure. However, this procedure is not
able to restore the high-frequency information, contrary to the super-resolution algorithm used in (c).
This is particularly visible on the thin structure (an axone) indicated by the yellow arrow, which is
nicely reconstructed in (c).
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size = 200 x 200 size = 200 x 200 size = 360 x 360

(a) first image of the apodized (b) median of the registered
(c) least-squares reconstruction ulslow-resolution sequence u0 low-resolution stack

size = 240 x 195 size = 240 x 195 size = 432 x 351

bicubic zooming of (a) bicubic zooming of (b) bicubic zooming of (c)

size = 200 x 200 size = 200 x 200

low-resolution frequency domain

size = 360 x 360

spectrum of (a) spectrum of (b) spectrum of (c)

Figure 12: Super-resolution from a sequence of thermal infrared images. We acquired a
sequence u0 containing L = 600 images with a thermal infrared FLIR® T640 camera. We display
in (a) the first image of u0, in (b) the enhanced low-resolution image obtained by computing the
median of the registered sequence, and in (c) the high-resolution image uls computed from u0 (with
super-resolution factors zx = zy = 1.8). Close-ups of these images (obtained with a bicubic zoom of
factor 3) are displayed in the second row, and their spectra (in log scale) in the third row. Aliasing
artifacts of u0 are clearly visible on the spectrum of (a) (see the yellow arrows), but strongly reduced
in (b) thanks to the multiframe filtering. However, looking at (b) in the image domain (second
row), we can see that it suffers from oscillatory artifacts (yellow arrows), which is a characteristic of
interpolated aliased images. The super-resolved image (c) is not only much satisfactory in terms of
artifacts, but also exhibits high-frequency details (see blue arrows) that are not present in images (a)
and (b).
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5.6 Complexity and Execution Times

Since Algorithm 2 is very simple, its complexity analysis is equally straightforward. The algorithm
primarily involves four dominant operations:

(i) the computation of the û0
(j) (for 1 ≤ j ≤ L), which is typically performed using the FFT

algorithm in practice, resulting in a complexity of O(Lmn log (mn));

(ii) the computation of Â∗u0 from the sequence (û0
(j))j and using (28), leading to a complexity of

O(LMN) = O(Lmnzxzy);

(iii) the computation of the high-resolution DFT coefficients ûls(α
a,b
` , βa,b` ) (for 1 ≤ ` ≤ Za,b

and (a, b) ∈ ω̂) by means of matrix-vector products, leading to a complexity of roughly
O(mn(zxzy)

2);

(iv) the final computation of uls = IDFT(ûls), which is also handled using the FFT algorithm,
resulting in a complexity of O(MN log(MN)) = O(mnzxzy log(mnzxzy)).

Moreover, since we are considering the case where zxzy < L, we have mn (zxzy)
2 < Lmnzxzy, so

the contribution of (iii) to the overall complexity is dominated by that induced by (ii). Similarly, we
have

mnzxzy log(mnzxzy) < Lmn (log (mn) + zxzy)

so the contribution of (iv) to the whole complexity is dominated by that induced by (i) and (ii).
Finally, the complexity of Algorithm 2 with respect to L, m, n, zx and zy is of

O(Lmn · λ(m,n, zx, zy)) where λ(m,n, zx, zy) = max (log (mn), zxzy) .

The factor Lmn involved above corresponds to the number of low-resolution pixels contained in the
sequence u0. It thus represents the number of input data, and its presence in the overall complexity
is expected.

Remark 5. In realistic scenarios–typically involving real-world data–the targeted super-resolution
factors are modest (on the order of 2), often leading to zxzy < log (mn), and thus, to λ(m,n, zx, zy) =
log (mn). In this case, the complexity of Algorithm 2 is driven by (i), i.e., by the computation of the
DFT of the low-resolution images.

We end up this section by reporting in Table 2 the typical execution times required to reconstruct
high-resolution images from the various sequences previously considered, as well as their ratios with
the reference complexity.

Type Setting (L, m, n, zx, zy) CPU time (s) CPU Time (s)
Lmn·λ(m,n,zx,zy)

Synthetic (bridge) L = 20, m = 180, n = 128, zx = zy = 4 0.15 20 · 10−9

Synthetic (bridge) L = 20, m = 360, n = 256, zx = zy = 2 0.15 7.1 · 10−9

Thermal infrared L = 600, m = 200, n = 200, zx = zy = 1.8 1.21 4.8 · 10−9

2-photons L = 3186, m = 45, n = 75, zx = zy = 2 0.90 10 · 10−9

Table 2: Execution times. For several low-resolution sequences considered in the above experiments,
we display in the third column the average CPU time (computed over 100 runs) required to reconstruct the
high-resolution image using our C implementation of Algorithm 2. The ratios between the average CPU
times and the reference complexity Lmn · λ(m,n, zx, zy) are displayed in the last column and provide an
indication about the range of the multiplicative constant hidden in the overall complexity.
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6 A Lucky-imaging Strategy Based on Iteratively Reweighted

Least-squares

We illustrated in Figure 9 that, assuming a perfect knowledge of the displacements and as long as the
sequence u0 contains enough low-resolution images, the reconstruction of the high-resolution image
can be efficiently realized using the least-squares model. However, we saw in Figure 10 that even
small errors in the estimation of displacements lead to inaccurate reconstructions. In this section, we
propose a lucky-imaging strategy, which selects a subset of low-resolution images from the stack u0,
leading to a better high-resolution reconstruction than that obtained from the whole stack u0. Said
differently, we would like to discard outliers, that is, low-resolution images that are in contradiction
with the generative model and produce artifacts in the final reconstruction. The proposed strategy
is based on the identification of the outliers in u0 by means of a robust `1 minimization,

u`1`2 = argmin
u:Ω→R

‖Au− u0‖1,2 , with ‖Au− u0‖1,2 =
L∑
j=1

‖Aju− u(j)
0 ‖2 . (54)

The use of the ‖ ·‖1,2 norm of the residual Au−u0 is motivated by the desire to reject some images of
the stack u0, which will be considered (as a whole) as outliers, while the more classical choice of the

standard `1 norm of the residual, that is, ‖Au− u0‖1 :=
∑L

j=1

∑
(x,y)∈ω |Aju(x, y)− u(j)

0 (x, y)|, would
be more appropriate to reject some pixel values in u0. Besides, another important reason for the use
of the ‖ · ‖1,2 norm is that u`1`2 can be efficiently computed using iteratively reweighted least-squares
(IRLS) algorithms (see [16] and references therein). As explained in [38] (see also [1] and references
therein), the idea behind reweighted algorithms is that, for any r ∈ R, we have |r| = infη>0

r2

2η
+ η

2
,

and thus, the `1 norm can be rewritten as an infimum over a family of quadratic functions (see [25]
for a more general formulation and [26, 49] for interesting variants). Using this identity for each

rj = ‖Aju− u(j)
0 ‖2, we can rewrite (54) as

u`1`2 = argmin
u:Ω→R

inf
η=(η1,...,ηL)∈(R∗+)L

H(u, η) :=
L∑
j=1

‖Aju− u(j)
0 ‖2

2

2ηj
+
ηj
2
, (55)

where the function H is biconvex (that is, convex with respect to u and convex with respect to η).
The minimization can be addressed using the following alternating scheme:

uk+1 = argmin
u:Ω→R

H(u, ηk) ,

ηk+1
j = max

(
ε, ‖Ajuk+1 − u(j)

0 ‖2

)
for j ∈ {1, . . . , L}.

(56a)

(56b)

Step (56a) yields a least-squares problem similar to (17), provided that we replace Aj and u
(j)
0 by

Aj/
√
ηj and u

(j)
0 /
√
ηj respectively. With these modifications of the operator A, Proposition 3 and

Proposition 4 remain valid if we replaceM(a, b) =
∑L

j=1Mj(a, b) byMη(a, b) :=
∑L

j=1Mj(a, b)/ηj,

so that the computation of uk+1 can be handled with Algorithm 2.
Step (56b) should be the minimization of H(uk+1, η) with respect to η, which would then write

ηk+1
j = ‖Ajuk+1−u(j)

0 ‖2. We here introduce a threshold parameter ε (a small positive number) in the

computation of ηk+1
j , in order to prevent some coefficients ηj to vanish, because in that case H(u, η)

would not be defined anymore. This issue is common in typical compressed sensing applications,
where IRLS schemes are used with undetermined linear systems, which can lead to zero residuals.
Several other solutions exist to handle that issue (see [38, 6, 51] for example), but in the case we
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Figure 13: Weights of the IRLS procedure. We synthesized a sequence u0 containing L = 20
low-resolution images using a sequence of displacements δ. Then, we computed a perturbed sequence
of displacements δ′ using two levels of perturbations: 70% of the displacements were perturbed using
a Gaussian noise with a small standard deviation σ1 = 0.01 while 30% of them were perturbed using
a Gaussian noise with a large standard deviation σ2 = 0.3. We display using blue-marks the weights
wj = 1/ηj (1 ≤ j ≤ L) obtained using the IRLS procedure (56) over the sequences u0 and δ′. We
indicate using red-dashed lines the indexes of the outliers in u0, that is, the indexes j of the elements
of δ′ undergoing a large perturbation. As we can see, those outliers are associated to significantly
low values of wj compared to the others.

consider here, the situation is much simpler: the linear system Au = u0 is overdetermined, so it is
extremely unlikely to observe a zero residual ‖Aju − u(j)

0 ‖2. In all the experiments we conducted,
we used the parameter setting ε = 0 in (56) and never encountered any numerical issue, so this
discussion is mostly rhetorical.

As illustrated in Figure 13, although the scheme (56) successfully performs the minimization (54)
after a surprisingly low number of iterations (typically ten in the setting of Figure 13) and although
the weights wj = 1/ηj associated to outliers in u0 are significantly lower than the others, they do not
vanish. Therefore, those outliers are still responsible for artifacts in the image u`1`2 , as illustrated
in the second row of Figure 14. To further improve the quality of the reconstruction, we propose to
remove from the original sequence u0 a certain number of images corresponding to the highest values
of η, and to compute a new super-resolved image from this “outlier-free” sequence. In the end, the
full lucky-imaging strategy we here propose can be summarized in three steps:

1. Compute the residuals ηj by iterating (56) until convergence;

2. Select from u0 the N images (for some value of N ≤ L discussed later) associated to the N
highest values of ηj;

3. Process these N images with the least-squares model (17) using Algorithm 2, to obtain the
output high-resolution image.

In a fully automatic super-resolution system, it would be interesting to have a specific algorithm that
could find the “optimal” value of N . In most super-resolution situations, however, image quality is
the primary concern, and manual selection is not a problem, considering the time already spent for
setup and data acquisition. In the code associated to this paper, an option proposes to compute the
images u

(N )
lucky for all possible values of N , so that the manual selection of the optimal value of N can

be realized very quickly by a simple visual inspection of the whole image sequence (u
(N )
lucky)N . The

benefit of this lucky-imaging procedure is illustrated on a synthetic experiment in Figure 14, and
also on real data in Figure 15.

40



Notice that the idea of using the IRLS algorithm to perform robust super-resolution was already
proposed in [65], but using the `1-norm instead of ‖ · ‖1,2 in (54), and without the re-estimation
procedure (steps 2 and 3) described above. In such situation, η has as many entries as the stack u0

(that is, η = (η1, . . . , ηL) and ηj : ω → R∗+) instead of lying in (R∗+)L and the update of u cannot be
efficiently computed using Algorithm 2, essentially because Proposition 3 and Proposition 4 do not
hold anymore when changing Aju into the pointwise division between Aju and

√
ηj.

(a) details of uls (b) Shannon zooming of uls (c) spectrum of uls

(d) details of u`1`2 (e) Shannon zooming of u`1`2 (f) spectrum of u`1`2

(g) details of u
(14)
lucky (h) Shannon zooming of u

(14)
lucky (i) spectrum of u

(14)
lucky

Figure 14: Super-resolution in presence of outliers. We processed the sequence u0 using
the perturbed displacements δ′ described in Figure 13. Due to the presence of strongly inaccurate
displacements in δ′, the least-squares reconstruction uls obtained from u0 and δ′ exhibits severe
artifacts at the pixel scale (a), at the sub-pixel scale (b) and in the frequency domain (c). As we
can see on the second row, those artifacts are attenuated in the image u`1`2 obtained with the IRLS
scheme (56). Unfortunately they remain slightly visible at the pixel scale (d), and significantly visible
at the sub-pixel scale (e) and in the frequency domain (f). When removing 6 well-chosen images
from the low-resolution sequence u0 with the proposed lucky-imaging procedure, we obtain the image
u

(14)
lucky (third row), which is free of artifacts (g)-(i). This experiment illustrates that, although the

minimization (54) is more robust than the least-squares minimization (17), it does not completely
get rid of the artifacts caused by the presence of outliers in u0. Fortunately, the IRLS procedure
provides, through the weights that characterize outlier images, a very efficient way to avoid these
artifacts with the proposed lucky-imaging procedure.
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(a) least-squares over the (b) u
(2886)
lucky : least-squares after bicubic zoomings of (a) bicubic zoomings of (b)

whole sequence u0 discarding 300 images from u0

Figure 15: Lucky-imaging over the 2-photons microscopic sequence. The original sequence
contains L = 3186 low-resolution images, and the lucky-imaging super-resolution result (b) (also

displayed in Figure 11) actually corresponds to the image u
(2886)
lucky obtained after removing 300 images

from the original sequence. We can notice the quality improvement brought by the lucky-imaging pro-
cedure, by comparing (b) to the image (a) obtained with the whole original sequence. In particular,
looking at the close-ups on the two rightmost columns, we can observe (first row) the disappearance
of some spurious patterns (which were probably due to the incorrect registration of several images
of u0), and (second row) that the shapes of the cells in (b) are more regular than in (a). These
improvements, though not as spectacular as those observed on the synthetic experiment presented
in Figure 14, remain valuable, especially considering the simplicity and low computational cost of
the proposed method, and the complexity of changes in the original sequence (illumination changes,
non-rigid deformations, irregular sampling due to line scanning, . . . )

7 Super-resolution and Deconvolution

Super-resolution aims at recovering the high-frequency content of the scene uhr from a low-resolution
sequence u0 ≈ Auhr. The inversion of A corresponds to a de-aliasing operation that unfolds from
u0 the high resolution coefficients ûhr(Ω̂ \ ω̂) and put them back to their original positions in the

high-resolution domain Ω̂. However, in practice, the high-frequency content of the image uhr is not
only aliased in u0 but also attenuated because of the filtering operated by the imaging system. The
physical sources of this filtering are manifold: beyond expected contributions like optical diffraction
and sensor integration, more complicated distortions may also be involved, such as motion blur,
defocus, atmospheric turbulences, or optical aberrations for example. Denoting by B : RΩ → RΩ

the associated filtering operator, we can write u0 ≈ ABuhr, and the least-squares inversion of A
applied to u0 yields an estimate of the filtered image ufiltered

hr := Buhr. If we assume that the operator
B is linear and shift-invariant, then B corresponds to a convolution operator and its inversion can
be addressed using standard deconvolution models. If B is unknown, or partially known, blind
deconvolution methods can be used.

When the ratio L
dzxe.dzye is significantly greater than 1, this deconvolution is even more relevant,

because the signal-to-noise ratio is increased between u0 and uls. Note that we know from Section 4
that in this case the variance of the reconstruction error in the Fourier domain is essentially constant
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(see Figure 4 and discussion in the end of Section 4.2), so we here choose not to use the information
provided by the amplification map A in the deconvolution process.

There are plenty of blind deconvolution algorithms in the literature, and some of them specifically
studied in the context of super-resolution (e.g. [4, 20]), but the aim of this section is not to obtain
the best enhanced super-resolution image but rather to try and assess as objectively as possible the
quality of the high-frequency content reconstructed by the algorithm we proposed. Hence, instead
of using a sophisticated algorithm (which could legitimately claim some credit for the quality of
the deconvolved image), we shall use the simplest possible deconvolution method, that is, a direct
frequency-wise amplification of the Fourier transform of the image.

In the following, we demonstrate the usefulness of such a simple linear enhancement filter, as it
significantly improves the sharpness of the reconstructed high-resolution image uls. Since the map
u0 7→ uls is itself linear, it makes sense to keep using a linear (and translation-invariant) operator to
enhance uls, in particular because we know precisely the reconstruction artifacts that are expected
on uls (trough the analysis of the expected error in the Fourier domain, see Section 4). Using a
non-linear enhancement operator could lead to a better enhancement of uls but would break the
linearity of the whole reconstruction chain and would certainly limit our ability to understand and
control artifacts.

The enhancement filter we propose consists in the convolution of uls with the kernel ψλ : Ω→ R,
defined in the Fourier domain by

∀(α, β) ∈ Ω̂ , ψ̂λ(α, β) = 1 + λ(1− e−ρ(α,β)) , denoting ρ(α, β) =
√

(2α/M)2 + (2β/N)2 , (57)

where λ > 0 is an amplification parameter. In other terms, the enhanced super-resolved image uλ is
obtained by

∀(α, β) ∈ Ω̂ , ûλ(α, β) = ψ̂λ(α, β) · ûls(α, β) . (58)

The radial profile of ψ̂ is displayed in Figure 16. Note that ρ(α, β) takes values in [0, 1] along each
frequency axis, and attain its maximum value

√
2 at the corners of the frequency domain. In the

experiment below, we took λ = 5 but this value (which corresponds to the slope of the amplification
profile at ρ = 0) may be adapted in practice to the value of L

dzxe.dzye to avoid an excessive amplification

of the reconstruction error.

Figure 16: Radial profile (in the Fourier domain) of the enhancement filter ψ̂5

Note that (58) corresponds in spatial domain to a periodic (or circular) convolution, which could
in general produce unwanted ringing artifacts near the image boundaries. Here, these artifacts are
avoided because uls vanishes near the boundaries of Ω thanks to the apodization procedure applied
to u0 (see Section 2.3).
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In Figure 17, we illustrate on real (thermal infrared) data how the enhancement filter ψ5 improves
the sharpness of the super-resolved image uls, without producing noticeable artifacts.

In this section, for simplicity, we performed super-resolution and deconvolution (or, more exactly,
image enhancement) as two separate operations. Another possibility would be to perform both
operations jointly in a single step. Zhao et al [78] showed how to obtain a fast closed form solution
for this joint deconvolution-super-resolution problem in the single-image case, but the idea could
possibly be generalized to the multi-image case.

8 Conclusion and Perspectives

In this paper we described and analyzed the direct least-squares estimator for the MISR problem
in the case of translational motion and Shannon interpolation. The solution is computed in linear
time with respect to the size of the input image sequence, using Fourier transforms and inversion of
at most four low-dimensional matrices. The spectral unfolding realized by the algorithm is directly
observed with Fourier transform images, on both synthetic and real data, which permits to better
distinguish between true super-resolved details and interpolated features.

A quantitative analysis of the reconstruction error was provided, both in space and Fourier
domains, and it appeared to be much more accurate than those based on the condition number
criterion classically used in the literature. We guess that such a precise control of the accuracy of
the result could be particularly useful for metrology applications.

All implementation details were given, in particular the important issue raised by the implicit
periodicity of the discrete Fourier transform, which may cause severe propagating artifacts at the
image boundaries. The case of non-integer zoom factors was also fully detailed, which is an important
feature because optimal trade-offs between resolution and noise are rarely attained for integer values.

Keeping a linear processing pipeline not only yields a direct algorithm (without need for GPU
acceleration, or ”regularization by early stopping” as mentioned in [4]), but also guarantees a perfect
control of the image sampling. A consequence is that the reconstructed image can be reinterpolated
or spectrally enhanced without producing artifacts, which is an important feature for industrial
applications.

The proposed algorithm was validated on synthetic data, and then tested on two real image
sequences (processed directly, without any simulation). On these real data, apart from the spectral
enhancement post-processing, we found that the `1,2 variant of the proposed method (which, as we
showed, can be efficiently implemented with an IRLS algorithm) brings a very useful feature in its
ability to remove outliers, which may significantly increase the quality of the reconstructed image.

Throughout this study we assumed that the motion was estimated beforehand (and used the
efficient algorithm of [32] to process real data), but it would certainly be beneficial to integrate this
estimation step into a more elaborated model. Indeed, since the estimation of the super-resolution
image uls is very fast, it could be an internal step in an iterative scheme that would jointly estimate
the motion and the super-resolved image by progressively refining the motion estimation so as to
improve the reconstruction quality. More generally, since estimating the proximal operator associated
to a `2 data fidelity term in the MISR problem is exactly equivalent (up to a tiny modification) to
the estimation of uls, the algorithm we provided could be easily used as a basic component in more
sophisticated systems, allowing for example joint super-resolution and deblurring, or super-resolution
regularized with advanced image priors like neural networks.
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size = 90 x 80 size = 162 x 144

(a) median of the registered (b) bicubic zooming of (a)
low-resolution sequence and enhancement

size = 162 x 144 size = 162 x 144

(c) uls: least-squares (d) enhancement of (c)
super-resolution

Figure 17: Effect of the enhancement filter ψ5 on the super-resolved image. We consider
again the thermal infrared sequence u0 of L = 500 low-resolution images with size 200 × 200 (see
Section 5.5 and Figure 12). We display in (a) a 90×80 close-up of the shift-and-median reconstruction
(that is, the pointwise median of the registered sequence of low-resolution images). By magnifying
this reconstruction with a factor 1.8 in both directions (bicubic zooming) we get an image with size
360×360 on which we apply the enhancement filter defined by ψ5, leading to the close-up image (b).
We can see that the enhancement yields an image with better contrast and a better level of details,
but at the same time, amplified artifacts. We display in (c) and (d) equivalent close-ups for the least-
squares super-resolution image uls obtained from u0 (zoom factors: zx = zy = 1.8). It is interesting
to see that the enhancement of uls, in addition to its ability to better reveal super-resolution details,
does not produce any noticeable artifact.
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A Proof of Proposition 4

Since πω̂ : Ω̂ → ω̂ is onto, the sets π−1
ω̂ (a, b) form, for (a, b) ∈ Ω̂, a partition of Ω̂, and the linear

relations (32) form, up to a proper ordering of the canonical basis of Ω̂, a block-diagonal linear
operator relating v̂ to ŵ. Thus, the relation v = (A∗A)w can be written, in matrix form,

Rv̂ = DRŵ, (59)

where R is a permutation matrix (corresponding to the reordering of the canonical basis of Ω̂) and
D is a block-diagonal matrix formed by the M(a, b) matrices. Writing F the matrix of the Fourier

Transform from Ω to Ω̂, we obtain RFv = DRFw, so that A∗A = F ∗R−1DRF . Now, recall that if X
is a unitary n×n matrix (that is, satisfying X∗X = I) and Y any n×n matrix, then (XY )† = Y †X−1

and (Y X)† = X−1Y †. Since F ∗, R−1, R and F are unitary, we obtain

(A∗A)† = (F ∗R−1DRF )† = F ∗R−1D†RF. (60)

Consequently, if two images v and w satisfy w = (A∗A)†v, then

Rŵ = D†Rv̂, (61)

which is exactly (34) since the pseudo-inverse D† of the block-diagonal matrix D is simply obtained
by taking the pseudo-inverse of each block M(a, b).

B Proof of Lemma 1

Proof. Let (a, b) ∈ ω̂. Thanks to Proposition 1, we have

π−1
ω̂ (a, b) =

(
(a+mZ)× (b+ nZ)

)
∩ Ω̂ ,

which can be rewritten

π−1
ω̂ (a, b) =

(
a+mP (a)

)
×
(
b+ nQ(b)

)
,

with

P (a) =

{
p ∈ Z , − M

2
≤ a+ pm <

M

2

}
and Q(b) =

{
q ∈ Z , − N

2
≤ b+ qn <

N

2

}
.
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Since

P (a) =

{
p ∈ Z , − M

2m
− a

m
≤ p <

M

2m
− a

m

}
,

we get

P (a) =
[
pmin(a), pmax(a)

]
∩ Z with pmin(a) =

⌈
−M

2m
− a

m

⌉
and pmax(a) =

⌈
M

2m
− a

m

⌉
− 1 ,

and symmetrically

Q(b) =
[
qmin(b), qmax(b)

]
∩ Z with qmin(b) =

⌈
−N

2n
− b

n

⌉
and qmax(b) =

⌈
N

2n
− b

n

⌉
− 1

as announced in Lemma 1.

C Proof of Lemma 3

Assume that m and n are odd, and that zx and zy are integers. We consider the partition of ω̂ given
by

ω̂ = D1 ∪D2 ∪ {(0, 0)} with D1 = {(a, b) ∈ ω̂, a > 0 or (a = 0 and b > 0)},

and prove using Equation (43) that for fixed `, the random variables
(
ε̂′(αa,b` , βa,b` )

)
(a,b)∈D1

are i.i.d.

Indeed, as the Fourier coefficients of a Gaussian white noise, the random variables(
ε̂(j)(a, b)

)
(a,b)∈D1,1≤j≤L

are i.i.d. Moreover, from Remark 4 we know that |c(j)
` (a, b)| does not depend on (a, b) (there is only

one matrix M(a, b)), so we can write this number d
(j)
` . Consequently, since the random variables

ε̂(j)(a, b) follow a phase-invariant distribution, the law of

ε̂′(αa,b` , βa,b` ) =
L∑
j=1

c
(j)
` (a, b) · ε̂(j)(a, b)

and the law of
L∑
j=1

d
(j)
` · ε̂

(j)(a, b)

are identical, which means that for ` fixed, all random variables

(∣∣∣ε̂′(αa,b` , βa,b` )
∣∣∣2)

(a,b)∈D1

are i.i.d.

Consequently, if we set

S1(`) :=
1

m2n2

∑
(a,b)∈D1

∣∣∣ε̂′(αa,b` , βa,b` )
∣∣∣2 ,

we have that

Var(S1(`)) =
1

m4n4

∑
(a,b)∈D1

Var

(∣∣∣ε̂′(αa,b` , βa,b` )
∣∣∣2) ,

47



with Var

(∣∣∣ε̂′(αa,b` , βa,b` )
∣∣∣2) = Var

∣∣∣∣∣
L∑
j=1

d
(j)
` · ε̂

(j)(a, b)

∣∣∣∣∣
2


=
L∑
j=1

(d
(j)
` )4 Var

(∣∣ε̂(j)(a, b)
∣∣2)

= 4m2n2

L∑
j=1

(d
(j)
` )4,

so that Var(S1(`)) =
2(mn− 1)

m2n2

L∑
j=1

(d
(j)
` )4.

Since each coefficient d
(j)
` can be bounded independently of m and n, and L is fixed, we obtain that

Var(S1(`))→ 0 as mn→ +∞. If we set

S2(`) :=
1

m2n2

∑
(a,b)∈D2

∣∣∣ε̂′(αa,b` , βa,b` )
∣∣∣2 ,

we can prove similarly that Var(S2(`)) → 0 as mn → +∞. Note that D1 and D2 must be handled
separately because the Hermitian symmetry (entailed by the fact that ε is a real-valued image) prevent
the variables ε̂(j)(a, b) and ε̂(j)(−a,−b) from being independent. We now examine the variance of

E =
1

mn
‖Uls − uls‖2

2

=
1

mn

σ2

MN

∑
(α,β)∈Ω̂

∣∣∣ε̂′(α, β)
∣∣∣2

=
σ2

zxzy

zxzy∑
`=1

1

m2n2

∑
(a,b)∈ω̂

∣∣∣ε̂′(αa,b` , βa,b` )
∣∣∣2

=
σ2

zxzy

zxzy∑
`=1

(S1(`) + S2(`) + S3(`)) , with S3(`) =
1

m2n2

∣∣∣ε̂′(α0,0
` , β0,0

` )
∣∣∣2 .

Since we also have

Var(S3(`)) =
2mn

m4n4
−→

mn→+∞
0,

we obtain that Var(E)→ 0 as mn→ +∞. Considering the fact that E(E) stay bounded away from
0 as mn→ +∞, this proves that, almost surely,

‖Uls − uls‖2
2 ∼

mn→+∞
E‖Uls − uls‖2

2.

The cases when m and/or n is even can be handled similarly by considering separately, like (0, 0)
in the case above, the frequency coefficients that are constrained to be real-valued.

When zx and zy are not necessarily integers, the reasoning is the same as the one above, but in
that case the partition of ω̂ is more complex because there can be up to 4 different matricesM(a, b),

which implies that for each ` and each j there can be up to 4 different values for |c(j)
` (a, b)|.
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