Part 1

A strongly consistent geometrical
scheme for the Affine Scale Space
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Chapter 2

The Affine Scale Space

2.1 Image analysis and scale spaces

When devising an algorithm to analyze images, a major question must be raised : what kind
of information are we looking for, and how can we extract it from the image ? In particular, it
is clear that what we can see on an image depends on the focalization of the look we take at
it : we cannot at the same time examine small details and recognize large structures. Hence,
there is a natural scale parameter that cannot be eluded in the analysis process. This suggests
that an image should be represented in a multiscale way, the smallest details being described at
small scales and the largest ones at large scales. Such a multiscale representation of an image
is called a scale-space : to a raw image ug we associate a continuous collection of images
(u(t))s>0 that are obtained from ug by a simplification process which “eliminates” details as the
scale increases. The collection of operators (73) that define u(¢) from ug is called a multiscale

analysis of images.

From a mathematical point of view, an image shall be regarded in the following as a map

up : R* — R, the value u(z) corresponding to the grey-level! (the luminance) at point = (z,y)

2

of the plane?. Then, a scale space is represented by a map u : R? x [0, +00[— R, the third

coordinate being the scale t. A simple example of a linear scale space can be defined by the heat

equation
88—? = Au
(2.1)
u(+0) = uo(-),
where A = % + % is the two-dimensional Laplacian operator. The simplification process

induced by Equation 2.1 is an isotropic diffusion that can also be described by the convolution
of wp with a two-dimensional Gaussian kernel. Although Equation 2.1 satisfies the required

properties to define an interesting scale space, as we shall see later, it is not well adapted to

"We do not consider the case of color images.
?In practice, a grey-level image is represented by computers as a finite two-dimensional array of integer values.
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24 CHAPTER 2. THE AFFINE SCALE SPACE

image analysis due to its linear nature. The main reason is that the image formation process

results from a superimposition of objects rather than from a linear combination of them.

2.2 Definition

The affine scale space has been discovered a few years ago in its image and geometrical formu-

lation (see [4] and [68]).

2.2.1 Image formulation

Let us first express it in terms of image processing. The affine morphological scale space (shortly
written AMSS) is defined by the degenerated parabolic evolution equation

Ou
ot

ul:,0) = uo(-).

The term Du = (ug, u,) represents the spatial gradient of u, u, and u, being short notations

for the partial derivatives g—g and g—;‘. The second order operator

= |Du|curv(u)%
(2.2)

) = () (0Tt Bty 0

[Dul) ~ |Duf?
can be viewed as the curvature at point z of the level line® of u going through . In the following,

we take the convention that r? means —|r|% when r is negative. When Du = 0, curv(u) is not

defined, but

W=

|Du|curv(u)% = {(ux)zuyy — 2Up Uy Uy + (uy)zum}

is naturally equal to zero, so that Equation 2.2 remains defined. Hence, from now on we assume
that |Du|curv(u)% is defined and equal to 0 when Du = 0.
In fact, Equation 2.2 is a parabolic PDE of the kind

J

8—?: = F(D%u, Du),
where F : S(R?*) x R* — R is a continuous function, nondecreasing with respect to its first
argument (for the usual order defined on S(R?), the set of symmetric 2 x 2 real matrices). For
this kind of evolution equations, weak solutions —only continuous— have been defined, and
are called for historical reasons wviscosity solutions. We shall be more precise in Chapter 5, but
one may refer to [10] or [27] for further details. The reason why Equation 2.2 is called Affine
Morphological Scale Space comes from important properties of the associated multiscale analysis
(T%)t>0, defined by

(T uo) () = u(a,t).

2Of course, this makes sense only at points where the equation u = cte defines locally a smooth curve.
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First, the nature of Equation 2.2 concedes a semi-group structure to this family of operators,
inasmuch as
Tt-l—s = Tt o TS.

Secondly, these operators are morphological, that is, they satisfy the property

[Morphological Invariance] : For any nondecreasing (or nonincreasing) continuous function
g:R—=>R,
Yu, Vt, Ti(gou)=goTiu).

The fact that T; commutes with any contrast change g implies that it operates on the level lines
of u ; we shall give a geometric interpretation of this later. The word “affine” comes from an

interesting geometrical invariance :

[Affine invariance] : For any bijective affine map ¢,
Vi, ', Vu, Ti(uo @) =Ty(u)o ¢.

By affine map, we mean any linear operator on R%. If ¢ belongs to the special linear group —
i.e. det¢p =1 —, we have Ty(uo ¢) = T;(u) o ¢. Another relevant property of the semi-group
(T}) is the maximum principle, which gives sense to viscosity solutions for (2.2). This principle

can be expressed by
[Comparison Principle] : Yu,v, u<v = V>0, Tiu<Tiv.

A local version of this principle (called Local Comparison Principle) is also satisfied (see Chap-
ter 5). These principles are very important, and they guarantee that Equation 2.2 “simplifies”
the initial image wug as the scale t increases. They also ensure numerical stability to associated

algorithms.

We shall come back to these fundamental properties, but it is interesting to mention that
the AMSS is the only regular multiscale analysis which satisfies them. This was proved by
L.Alvarez, F.Guichard, P.-L.Lions and J.-M.Morel in [4]. As regards the linear scale space
we defined in introduction by Equation 2.1, it also satisfies the semi-group property and the
comparison principle, but it is neither affine invariant nor morphological. Figure 2.1 compares

this scale space with the AMSS for an image of a cheetah.
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Figure 2.1: Two scale spaces of a cheetah image.

The two images of first column are the same original image of a cheetah head. This image is
analyzed with two different scale spaces : the affine morphological scale space (row 1) and the
linear scale space (row 2). Column 2 corresponds to a medium scale of analysis and column 3 to
a larger scale. Notice how the affine morphological scale space preserves geometrical structures,
whereas the linear scale space performs mainly a global blur.

2.2.2 Geometric formulation

We now come to the geometric formulation of the affine scale space. Because of the morphological
invariance, the evolution of ug according to Equation 2.2 is formally equivalent to the evolution
of its level curves. This curve evolution was discovered by G.Sapiro and A.Tannenbaum : it
is the affine analog of the Fuclidean shortening flow studied by M.Gage and R.S.Hamilton in
[36] and M.A.Grayson in [39]. An initial curve p — Cy(p) = C(p,0) evolves according to the

equation

6;_?(% t) = v(p,t)

e

N(p.1), (2.3)

where v(p,t) and N(p,t) are respectively the curvature and the normal vector of the curve C(-,¢)
in C(p,t). Replacing p with an affine arclength parameter s satisfying the constant determinant
relation

00 ]
ds’ os2 |
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Figure 2.2: Affine Scale Space of a “hand” curve.

The scale of analysis is, from left to right, and then top to bottom : 0 (original curve), 1, 8, 200.
It is clear that the original curve (top-left) cannot be directly analyzed by a shape recognition
device due to its very noisy aspect. This is the reason why we need to simplify it in the most
natural possible way, which has been theoretically proven to be the affine scale space. To ensure
good performances of the shape recognition process, a high accuracy is needed in the computation

of the scale space, even for large scales.
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Equation 2.3 reduces to a nonlinear intrinsic heat equation

00 _oc
ot 0s?’

As for the image formulation, the collection of curves (C(-,t))s»0 is called Affine Scale Space.

We must mention the fact that the existence and uniqueness of a solution of (2.3) for an
initial non-convex curve has not been proved so far (whereas it has been proved in [36], [39] in
the Euclidean case). Hence, although the image and the geometrical formulations of the affine

scale space are formally equivalent, we shall rather use the first one to establish precise results.

Figure 2.2 shows the geometrical affine scale space of a “real-world” curve that was obtained

from the photograph of a hand.

2.2.3 Applications

By now, the main application of the affine scale space is probably shape analysis. It was used
by T.Cohignac in [26] to perform an affine invariant shape recognition algorithm for partially
occluded shapes. In this case, classical methods based on a global affine normalization cannot
be used anymore, and one needs to characterize a shape locally by affine invariant descriptors.
This was done by T.Cohignac by means of a technique which is directly related to the affine scale
space (see Figure 2.3). To perform an efficient shape recognition, an accurate implementation

of the affine scale space is required, both for small and for large scales.

ca(N)

caM)< 0
ca(N)>0

caP)=0

Figure 2.3: Characteristic area as defined by T.Cohignac.

The original curve Cy is smoothed by the affine scale space at scale t into a new curve C(t).
Then, to each point M of C(t) we associate the (algebraic) area ca(M) of the domain bounded
by Co and the tangent to C(t) in M. The characteristic points are defined on C(t) as the points
M where the characteristic area ca(M) attains an extremum. A local affine invariant shape
recognition device is obtained by identifying these characteristic points in all intrinsic affine
bases (see [26] for more details).
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The AMSS model can also be viewed, when applied at small scales, as an affine invariant
denoising process, very efficient —like the median filter— in the case of non-additive noises

(impulse noise? for example). This property is illustrated on Figure 2.4.

Figure 2.4: Denoising effects of scale spaces.

Top-Left : original Lena image,
Top-Right : Lena image corrupted with 30% impulse noise ,
Bottom-Left : Top-Right image smoothed by the linear scale space,

Bottom-Right : Top-Right image smoothed by the AMSS

Due to its morphological nature, the Affine Morphological Scale Space (AMSS) performs a much
better noise removal than any linear process, especially in the case of a non-additive noise.

*Corrupting an image with a 10% impulse noise means that random, independent and uniformly distributed
values are attributed to a uncorrelated random 10% amount of the image pixels.
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2.3 Numerical schemes for the Affine Scale Space
2.3.1 Definitions

Consider a numerical scheme for the AMSS, described by the iteration of an operator T depend-
ing on a scale step At and a space step Az. As in [40], we shall say that T" is consistent with

the AMSS if
Tu—u

At

when the steps Az and At tend to 0 in a suitable way. The scheme is convergent if the iterated

filter 7" =T oTo...T converges® towards the AMSS at scale ¢t when At and Az tend to 0 in

— |Du|curv(u)%

a suitable way, and nAt — .

2.3.2 The Osher-Sethian’s method

Since the image formulation of the affine scale space (Equation 2.2) and the geometrical formu-
lation (Equation 2.3) are equivalent, a numerical scheme for a formulation can be transposed
into a numerical scheme for the other one. S.Osher and J.A.Sethian successfully used an image
formulation to compute the affine scale space of a planar set (see [65], [71]). They also applied
to several other evolution equations the general idea of viewing a hypersurface as the level set
of a scalar function. The great advantage of this method is that the topological changes on
the evolving set (e.g. loss of connectedness) are automatically handled by the function ; this
approach permits complicated curve evolutions, but it inherits the drawbacks of the numerical
scheme used for the associated scalar function. Moreover, it is likely — though not proven by
now — that no topological change can occur in the special case of the planar afline scale space
(that is, a Jordan curve remains a Jordan curve), so that such an image formulation is not

absolutely required to compute the affine scale space of a curve.

2.3.3 State of the art

The Bence-Merriman-Osher Algorithm for Mean Curvature Motion

In [12], J.Bence, B.Merriman and S.Osher proposed a very simple algorithm for computing the

mean curvature flow. The mean curvature scale space is defined by

du
ot

ul:,0) = uo(-).

It is quite similar to the AMSS, except that it is not affine invariant. The Bence-Merriman-

= |Dulcurv(u)
(2.4)

Osher scheme seems difficult to extend to the affine case, but we would still like to mention it.

The idea is to compute the evolution of a set by applying the heat equation to its characteristic

5We shall be more precise later about the kind of convergence we mean (simple, uniform, ...).
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function, the result being thresholded after each iteration. In other words, the evolution of a set

So is obtained by iterating the kernel
%(t) = QOGL‘OX7

where
lifxze S,
0 otherwise,

Qu)={zc R", u(a,t) >

N | —

b x(9)(@) :{

and G is the Gaussian convolution kernel solving the heat equation

du

— = Au.

ot
As n — oo, H(t/m)™ S, tends towards the mean curvature flow of Sy at scale ¢, at least in the
viscosity sense for the associated characteristic function. This convergence property has been
proved by G.Barles and C.Georgelin in [9], and by L.C.Evans in [30]. H.Ishii also proposed
a generalization in [45]. However, such a scheme does not remain consistent in its discrete

implementation, as F.Guichard remarked in [40].

A quasilinear scheme

An efficient quasilinear finite difference scheme was proposed in 1993 by L.Alvarez and F.Guichard

(see [40] for example). The idea is to iterate the discrete evolution
1 (2) = 0 (2) + At A(un) (2,

where A(u)(z) is a discrete approximation at point z of |Du|curv(u)% using the 9 values of u on
a 3x3 neighborhood of z. They proved that one can choose A(u) in order that the approximation
Au) ~ |Du|curv(u)% is exact for any polynomial u of degree 3. The resulting scheme is neither
morphological nor monotone, but is experimentally stable. Of course, such a local scheme cannot

be really affine invariant, because the neighborhood size is fixed in advance.

Inf-Sup operators

In [41], F.Guichard and J.-M.Morel showed that appropriate iterated inf-sup operators converge
towards the affine morphological scale space. We shall describe these operators more precisely
in Chapter 5. The Euclidean case had been treated before by F. Catté and F. Dibos in [22].
However, because of the spatial quantization and the morphological invariance (no new grey-
level is created on the image), the discrete alternate iterated inf-sup operator gets “stuck” after
several iterations (that is, no evolution occurs any longer). Indeed, on a spatial grid, a level
curve is constrained to move at entire speeds : at each step, either it does not move, or it jumps

over one pixel at least (see [26]).
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A multiscale spline representation

In [17], G.Sapiro, A.Cohen and A.M.Bruckstein described a multiscale representation of planar
shapes using B-splines. This representation is affine invariant, but it cannot be described by an
evolution equation, and in particular it does not satisfy the inclusion principle (analog for sets

to the comparison principle for images) :
ACB = Vt>0, Ty(A) CTyB). (2.5)

For that reason, it is not well adapted to image analysis and has little to do with the affine

morphological scale space.

The Osher-Sethian algorithm

As we described in Introduction, one can apply a numerical scheme for the AMSS to a set S
by considering its signed distance image u(z) = e(z)dist(z,5), where e(z) = -1 if 2 € 9, 1
otherwise. With this method, S.Osher and J.A.Sethian transposed the difficult problem of a
geometric curve evolution into the implementation of the AMSS. However, the major drawback
is that the full affine invariance is impossible to obtain with such a method, since no image
representation can be affine invariant. In addition, the large image size required to achieve a

reasonable precision in the curve evolution makes the process rather slow.

2.3.4 Point evolution schemes

For the affine scale space of curves, all geometrical schemes that have been proposed so far suffer
from the space quantization of the curves (see [40]), which prevents the inclusion principle (2.5)
from being satisfied. The main difficulty comes from the fact that there is no a priori relation
between the number of vertices of a polygon and the number of the vertices needed to represent
its affine shortening® (this number increases drastically for a triangle, but decreases as much
for a very irregular curve). Thus, any algorithm based on a point-by-point evolution cannot

implement the affine scale space successfully.

However, it is likely that the most accurate implementation of the Affine Scale Space is a
curve evolution one, because it seems impossible to achieve precise evolutions and to guarantee

a full affine invariance in any image evolution algorithm.

2.4 A fully consistent scheme

How can we implement the affine scale space with a geometrical algorithm 7 Since no point

evolution scheme can be efficient, we have to consider the problem globally, that is, to find an

6. . .
i.e. its affine scale space at a given scale.
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operator T acting on curves and consistent with the affine scale space : this way, we can hope to
build a numerical scheme for the affine scale space by iterating T'. Moreover, we would like this
operator to be affine invariant, monotone (i.e. preserving global inclusion), and easy to compute

on a general kind of discrete curves (on polygons for example).

We shall propose such an operator and call it affine erosion. It is more or less a continuous
generalization of a discrete operator briefly described in [40]. It is also somewhat related to the
notion of characteristic area introduced by T.Cohignac (see [26]) : indeed, the following study
proves that as the scale ¢t tends towards 0, the characteristic area of all non-inflexion points
of the curve is equivalent to +c.t*, ¢ and « being universal constants. This can suggest our

definition of the affine erosion.

In Chapter 3, we define precisely the affine erosion for a certain kind of curves and sets. We
investigate some properties of this operator, and point out an important characterization for
convex curves. We also prove that the number of inflexion points (in a generalized sense) cannot
increase when this operator is applied to a non-convex curve. Last, we establish the geometrical

consistency of the afline erosion with respect to the geometrical affine scale space.

In Chapter 4, we compare the Affine Scale Space and the affine erosion on a few examples,
namely conics. We compute explicitly the action of these operators, and show that the affine
erosion remains a good approximation of the affine scale space not only for small scales. This
suggests that the affine erosion can be iterated using rather large scale steps to approximate the

affine scale space efficiently.

We extend the affine erosion to grey-level images in Chapter 5, by applying the geometrical
affine erosion to the level sets of an image. The resulting operator is fully consistent, inasmuch as
it satisfies the most important properties of the affine scale space (the affine and morphological
invariances and the comparison principle), except —naturally— the semi-group property (this is
why we need to iterate the affine erosion). We also make a comparison with the inf-sup operators
studied in [41], and in particular we prove that for C! curves, a classical affine invariant inf-
sup operator acts exactly like the affine erosion for small scales. Then, we establish precise
consistency and convergence properties for the alternated iterated scheme associated with the

affine erosion. We link these results with Matheron’s Theorem and techniques used in [41].

Chapter 6 is devoted to the numerical scheme. We prove that the affine erosion of a polygon
is made of the concatenation of hyperbola pieces and segments. We present an algorithm to
compute exactly the affine erosion of a polygon, and show that the resulting curve can be
quantized in an affine invariant way. We compare the space and scale discretizations, and show
that our algorithm has little to do with classical finite element methods. Then we present an
approximate algorithm, which is very close to the first one, much faster, and which also gives

accurate results.
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Last, we present in Chapter 7 several experiments. Affline erosions and scale spaces are
computed for simple polygons and more complicated curves, including “real-world” curves given

by level curves of digitized photographs.

We conclude in Chapter 8 on the possible application of such a global technique to other

evolution equations, and we indicate further axes of development.



Chapter 3

Affine erosion of curves and sets

3.1 Preliminaries

In order to define what we shall call the affine erosion of a curve or a set, we first need to make
clear what kind of curves and sets we are going to consider, since it is impossible to dissociate
the relation between a set and its boundary in the definition. We first restrain our study to sets
whose boundaries can be described by piecewise convex curves, for which the definition and the
basic properties of the affine erosion are natural. In a further chapter, we shall extend the affine

erosion to any set of the plane and to grey-level images.

Let us begin with some notations and definitions. We write dist(A, B) for the Euclidean
distance between two points A and B of the plane, AB for the vector B — A, |AB| = dist(4, B)
for the Euclidean norm of AB and [AB] (resp. JABJ) for the closed (resp. open) segment with
endpoints A and B. The determinant of two vectors v; and vy will be noted [vy, v2], and if they

are both nonzero we note Z(vy, v;) € St = R/%Z the angle from vy to wvs.

When s and ¢ belong to the circle S, [s,¢] means the class of the interval [s','] where s
and t’ are real number such that s’ = s and ¢/ = ¢ modulo 27 and s’ <t < s’ +27. As well, the
inequality a1 < ag < ... < @, on S! means that we can find some real numbers a}, a), ...a’, equal

to a1, ag, ...a, modulo 27 such that a] < df, < ... <al, < a}+ 27 (which makes sense for n > 3).

We choose to call a simple curve any subset of R? homeomorphic to the circle S (closed
curve) or R (non closed curve). We shall often refer to a simple curve using the notation
C'(I), which means implicitly that C' : [ — C([) is a parameterization of the curve ; unless
additional specification is given, we shall suppose in general that I = R or I = S!. Among
all possible parameterizations of a curve, two classes can be distinguished according to the set
{C([s,t]); s,t € I}. Choosing a class of parameterization defines an orientation of the curve. As
usual, a curve C is of class C'! if it admits a parameterization C': I — C of class C'! such that
C' never vanishes (such a parameterization is called regular). A curve is of class C™ (n > 1) if

it admits a regular parameterization of class C™.

35
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We define a semi-closed curve as an oriented simple curve C such that R? — C has exactly
two connected components, called the inside part and the outside part of C according to the
orientation of C (with the classical convention that the inside part of C, noted Z(C), is “on the
left” when one runs positively on C). A semi-closed curve can also be viewed as a simple oriented
closed curve defined on the Alexandroff compactification of the plane R? U {oo} ; in particular,

a closed curve is semi-closed.

Let C'(I) be a simple curve. Then, (s,t) € I? is a chord of C if and only if the piece of
curve ('(]s, t]) and the open segment |C'(s)C'(¢)[ are disjoint or equal. The connected closed set
enclosed by C'(]s,t[) and the chord segment |C'(s)C(¢)[ is a chord set of C', written Cy; (see
Figure 3.1). If area (C4) = o, then (s,t) is called a o-chord and C; a o-chord set of C'.

C(t)

C(s)

_

Figure 3.1: A chord set of a simple curve.
Notice that the chord segment [C'(s)C'(t)] can intersect C \ C'([s,1]).

Following this idea, if C(]a,b[) is a semi-closed curve ({a,b} C R), we say that (s,b) is an
infinite o-chord of C'if there exists a half line D with start-point C'(s) such that C'(]s,b))ND =
() and the chord set C;; enclosed by D and C'(]s, b[) is of finite area 0. The case of the infinite
chord (a, s) is symmetric. Last, (a,b) is an infinite o-chord of C' if there exists a line D such
that C'(Ja, b[) N D = () and the chord set C ; enclosed by D and C/(]s, b[) is of finite area o. For
example, if we consider the curve C'(R) defined by C'(z) = (2,e™*") in an orthonormal basis
of the plane, then the line {y = 0} is an infinite chord segment associated to the y/7-chord set
C_ o 400 (from now on, we assume that a “chord segment” can be finite or infinite, i.e. either a

true segment, a half line, or a line).

If C is oriented and area (Cs;) # 0, the orientation induced by C' on the boundary of Cj;
tells whether (s,¢) is a positive or a negative chord. We take the convention that a 0-chord set
is both positive and negative. The collection of all positive (resp. negative) o-chord sets of C'
will be written KX (C) (resp. K;(C)). Since the previous definition of a chord set does not
depend on the parameterization of the curve, it makes sense to write K} (C) (resp. K (C)) for

the collection of all positive (resp. negative) o-chord sets of an oriented curve C.

Now we give a definition of convex curves which makes also sense in the case of non semi-

closed curves.
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Definition 1 An oriented simple curve C'(I) is
e locally convex in C(s) if for ¢ > 0 small enough,
[C'(s = 2)C(s), C(s)C(s+ )] > 0.
e locally concave in C(s) if for ¢ > 0 small enough,
[C(s — £)C(5), C(5)C s+ 2)] < 0.
e convezx (resp. concave) if it is locally convex (resp. concave) everywhere.

A (non oriented) simple curve is convez if it is convex for a certain orientation.

We may use the term “strictly convex” (resp. strictly concave) for an oriented curve which
is convex and nowhere locally concave (resp. concave and nowhere locally convex). In other
words, a curve is strictly convex if it is convex and does not contain any segment of nonzero

length.

For a convex curve, it is not true in general that any chord set is convex (see Figure 3.2).
However, if the curve is convex and semi-closed, then its inside part is convex and any couple
(s,t) € I? (with s < tif T C R) defines a convex chord set. Conversely, any convex subset of

the plane is the inside part of a semi-closed convex curve.

C(s)
Cst

C(t)

Figure 3.2: A non convex chord-set of a convex curve.

We recall that if C is a convex curve, one can find a regular parameterization C' admitting
everywhere a non-vanishing left and right derivative C’ and C”_ (which can differ at most on a
countable number of points). Given a point A of an oriented convex curve C, we note T (resp.
T) the unitary left-tangent (resp. right-tangent) of C in A. Thus, if C = C(I) and A = C(s),
we have C*, (s) = |C (s)| T and C”_(s) = |C”(s)| T.

Definition 2 A piecewise convexr curve is a simple curve C(I) for which there exists a finite

subdivision (s1, g, ...5,) of I such that each sub-curve C(]s;, s;y1[) is convez.

In general, we shall suppose that the subdivision (s;) is optimal, i.e. that n is minimal.
However, even with this constraint the decomposition is not necessarily unique (consider the case

of a polygonal curve for example). We shall see later that there exists a canonical decomposition.
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Definition 3 An open subset S of the plane R* is a C-set if
(i) it has a finite number of connected components

(ii) the boundary of any connected component is a finite disjoint union of semi-closed piecewise

CONVEX CUrves.

These oriented curves enclosing the connected components of S are called the components of

as.

Remark : One should be careful not to mix up the connected components of a C-set S with
the components of d5. In particular, the components of 3.5 are not necessarily digjoint : if S is
the inside of a “8”, the boundary of S is connected but has two components. On Figure 3.3 for

example, the initial C-set S has 3 connected components and 35 has 4 components.

The previous definition of a C-set is a compromise between regularity (the boundary of a
C-set admits a tangent almost everywhere) and generality (any finite union of convex sets is a

C-set, as well as the inside part of any polygon).
Definition 4 A C-set is simple if its boundary has only one component.

A simple C-set S shall often be written Z(C), which means that C is a semi-closed piecewise

convex curve whose inside part is S. Notice that a C-set S can always be written
S=1] (Si\UTm) ,
4 J

where the S; and T;; are finite collections of simple C-sets and the symbols U and A mean

respectively a disjoint union of sets and the topological closure of a set A.

3.2 Affine erosion of sets

In this section, we define the affine erosion of a C-set, and we establish some basic properties of

this operator.

3.2.1 Definition

Definition 5 The o-affine erosion of a C-set S is the set of the points of S which cannot be

enclosed in any positive chord set with area less than o of a component of 05.

E,(S)=5 \ UJ K.
o' <o

K € K} (95)
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Here, IC;',(@S) means all the o’-chord sets of all components of 85. Figure 3.3 represents an
intricate C-set and its affine erosion (only the oriented boundaries of the sets have been drawn

for a better understanding).

Figure 3.3: Affine erosion of an intricate C-set

3.2.2 Example

Before we go further, let us compute explicitly the affine erosion of a “corner”. This computation
has strong consequences on the numerical scheme we present later. Other exact computations

can be found in the next chapter.

Proposition 1 The o-affine erosion of the “corner”
W={0+zvi+yvy >0,y >0}

is the inside (convex) part of a hyperbola, given in the affine basis (O, vy, vy) by the equation

g

.y > , >0,y>0. (3.1)

2 [’l)l7 1)2]

In what follows, o will be called the apparent area of the hyperbola defined by Fquation 3.1.

Proof :

First, we notice that only the positive chord sets with area ¢ are significant to define the
affine erosion of W because W is convex (a positive chord set with area less than o can always

be enclosed in a positive o-chord set).

Now, any positive o-chord segment of W is supported by a line with equation z/a+4y/b =1

(see Figure 3.4) submitted to the area constraint 2¢ = ab[vy, v3]. Consequently, the boundary
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of F,(W) is obtained by the envelope of these lines, given by the system

{_I_a[vhvz]y

D, : =1
a 20
D2t [or, ]y _
“7 a? 20 '
Then, eliminating a yields
o
Ty = ——.
Y 2 [’l)l7 1)2]

Figure 3.4: Affine erosion of a “corner”

3.2.3 Topological structure

We now establish a useful property of the affine erosion : if S is a C-set, each point of the

boundary of E,(5) lies on a chord segment of S.

Definition 6 Let S be a C-set and C'(I) a component of 95, then a o'-chord (s,t) of C is
o-limit chord if o’ < o and C has no chord (s',t') of area lower than o including strictly (s,t)

(i.e. such that ' <s<t <t ors' <s<t<t inl).

Lemma 1 For any C-set S, the boundary of F,(S) is included in the union of the positive

o-limit chord segments of S.

Proof :

1. First, we prove that any M € 9F,(S) belongs to a positive o’-chord segment of a

component of 95, where ¢/ < 0.

M € 0FE,(S) means that we can find a sequence (4,,, B,,) of finite and positive chords with
area less than ¢ and such that dist(M,[A,B,]) — 0 as n — oco. Since S has a finite number of
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components, necessarily one component C of 9 contains a infinite number of chords (A4,,, B,,).
Thus, we can extract from the sequence (A, By) a subsequence (A, By(y)) of oy, chords of

C, and we can suppose that o, — ¢’ < o either (up to another subsequence extraction).

La. If (Ay,) and (By(,)) are bounded, we can extract from (A, By(n)) @ convergent
subsequence in C2. The limit (A, B) satisfies d(M,[AB]) = 0, which means that M € [AB], and
a part of [AB] — or [AB] itself — defines a ¢’-chord segment of S containing M (with o’ < o).

Lb. If (Ay(n)) is bounded and (B,,) is not, we can extract from (A,(,)) a subsequence
that converges towards A € C. If A = M, then M belongs to the chord [A, A] of C and we
have finished. If A # M, then a part of the half line [AM) defines a positive chord segment
of C (finite or infinite) containing M. The case (B(,)) bounded and (A,(,)) not bounded is

symmetric.

Le. If both (A,(,)) and (Bg(,)) are not bounded, then up to a subsequence extraction we
can find a nonzero vector v such that Z(v, Aw(n)Bw(n)) is defined and converges towards zero.
Then, the line (M, v) defines a o’-chord segment of S (finite or infinite) containing A (with

o' < o).

2. Last, we note that only the o-limits chord sets are significant to define F,(9), because if
a chord (A4, B) is not o-limit we can find a o-limit chord set which contains strictly the chord

set associated to (A, B). O

Corollary 1 The affine erosion of a C-set is an open subset of the plane.

Proof :

From Lemma 1 we know that if S is a C-set, the boundary of F,(S) is part of

A= UJ K.

o' <o

K € K1(09)

Therefore, °1,(S) = AUSS is closed (because it contains its boundary) and FE,(S) is open (S
denotes the complementary set of S, i.e. °S = R?*\ S). O

Remark : Lemma 1 highlights the necessity of considering infinite chords for non-bounded
curves. Look at the previous example of the C-set S defined in an orthonormal basis of the
1,2

: if we had not allowed infinite chords in the affine erosion of

S, then the o-affine erosion of S would have been the closed half plane {y < 0} for any ¢ > /7

plane by the equation y < e~

(instead of the open half plane {y < 0}), and Corollary 1 would not have been satisfied any

more.

However, infinite chord are rather rare, because :
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e a bounded C-set has no infinite chord,

e if a non-bounded C-set .S admits an infinite chord, then it contains a half line which is an

asymptote to a component of 5.

We could have restrained our definition of the affine erosion to less general sets (to bounded
sets, for example) in order to avoid the case of infinite chords ; however, in the next chapter we
shall be interested in non-bounded conics like hyperbolae and parabolae. Moreover, it is more

satisfactory to define the affine erosion of any convex set (bounded or not).

3.2.4 Affine dilation

We can define in two equivalent ways the dual operator to affine erosion, that we shall call affine
dilation. The first one is to reverse the orientation of the curves, the second one is to consider

the open complementary of each set (for which the orientation of the boundary is reversed).

Definition 7 The o-affine dilation of a C-set S is defined by
D, (S) = E,(°S).

Proposition 2 The closure of the o-affine dilation of a C-set S is the union of S and all

negative chord-sets with area less than o of the components of 35.

D,(S)=95 U UJ K.
o' <o

K eK_,(05)

Proof :
This is a simple consequence of the identity K (S) = KX (¢S5).

3.2.5 Basic properties of the affine erosion

Lemma 2 F,(S) is nonincreasing with respect to o, i.e.

o1 <02 = Eg2(S) CEgl(S)-

Proof :
We just need to notice that if oy < o9 then

U K C UJ K,

o' <oy o' < og

K € K},(9S) K € K} (95)

and consequently F,,(S) C E,,(95). O
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Definition 8 We call extinction scale of a C-set S and we note o.(S) the lower bound of the

scales o for which E,(S) = 0.

Proposition 3 If S is a simple bounded C-set, then o.(5) < 5 area(S).

1
2

Proof :

Let us prove that for any simple bounded C-set S of area 20, F,(S) = (). Consider M a
point of S : there exist two points A and B lying on 95 such that the open segment JAB]J is
included in S and contains M. This segment defines two positive chord-sets of S of area o1 and
oq such that oy + o3 = area (S5). Necessarily, o1 < 0 or 02 < 0, which means that M belongs to

a positive chord set of area not larger than o, i.e. M ¢ E,(S5). O

One could think that the extinction scale of a simple bounded C-set is exactly half of its
area. Although this is true for convex C-sets symmetric with respect to a point, this result
is generally false for other simple C-sets, even convex. In the next chapter, we show that the

extinction area of a triangle is % of its area.

Figure 3.5: A C-set with small area and large extinction area

Proposition 3 is not true for a non simple bounded C-set. In fact, it is possible to build
a C-set of area as small as we want comparatively to its extinction area. The shaded part of
Figure 3.5 defines a C-set of area less than 2¢(7m + 1), whereas its extinction scale is exactly 7/2,
i.e. half of the area of the enclosing disk. Indeed, we can deduce from Proposition 3 that the
extinction area of any bounded C-set is less than half the external area of its largest connected
component (the external area of a connected C-set is the area enclosed by its external boundary,

i.e. including the area of its “holes”).

Proposition 4 F,(S) is nondecreasing with respect to S, i.e.

S CSy = Eg(Sl) C EU(SQ).
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Proof :
Let S and S5 be two C-sets such that S; C 59, and consider M a point of Sy. If M does not

belong to £, (S2), there exists a positive o’-chord segment D (finite or infinite) of a component

of 855 such that ¢’ < o and M belongs to the associated chord set.
1. If M ¢ Sy, then E,(S1) C Sy yields M ¢ F,(51).

2. If M € Sy, consider the connected component A of S; containing M.

2.a. If AN D = 0, then the external boundary of A encloses a subset of area less than o’, so

that from Proposition 3 we get M ¢ I, (51).

2.b. If AND # 0, then AN D is a disjoint union of chord segments of Sy (finite or infinite),
and one of these chord segments defines a o”-chord set of Sy containing M (see Figure 3.6). But

since S; C Sy, we have ¢” < o/, so that M ¢ F;(S1).

Thus, M ¢ E,(S2) = M ¢ E,(S1), which means that E,(S1) C E,(52). O

X

° S
Figure 3.6: F, is monotone

Proposition 5 The affine erosion is covariant with respect to the affine transformations of the

plane, i.e for any affine map ¢,

¢ (Es(5)) = Esjaerq| (9(5))

det ¢ being the determinant of the linear part of ¢, i.e. det ¢ = det A where ¢(M) = AM + B
and (A, B) € L(R?) x R

Proof :

This elementary result simply arises from the fact that for a C-set .5, we have

6 [KF(0S)] = (6(K); K € KF(0S)} = K7, gu0y (90(S)).
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3.3 Affine erosion of convex curves

Let us first consider two particular kinds of convex C-sets : half planes, and strips (i.e. sets
enclosed by two parallel straight lines). These C-sets (to which we shall refer as trivial C-sets)
are invariant under affine erosion, because they only have 0-chord sets. One easily checks that
they are the only simple C-sets which satisfy this property. So, since they would not satisfy
most of the statements which follow, we shall exclude them most of the time. Another reason

is that any nontrivial convex C-set is simple.

3.3.1 DBasic statements

Proposition 6 The affine erosion of a conver C-set is a convexr C-set.

Proof :

If S is a convex C-set, then S — K is also convex for any positive o-chord set K of 05. It
follows that
E,(S) = ﬂ (S - K)
o' <o
K e K} (9)
is convex as an intersection of convex sets. O

A consequence of this proposition is that we can define the affine erosion for convex curves.
According to the previous remark, we call trivial any convex semi-closed curve made of a straight
line. From now on, we also suppose that a convex semi-closed curve is naturally oriented in such
a way that its inside is convex. Hence, nontrivial convex semi-closed curves and nontrivial convex
C-sets are equivalent since the map C — Z(C) establishes a bijective correspondence between

them. Notice incidentally that any chord set of a convex set is positive and finite (i.e. bounded).

Definition 9 The o-affine erosion of a convex semi-closed curve C is the convexr semi-closed

curve

E,(C) = 0E,(I(C)).

Of course, the notation E,(C) is abusive, but more simple. We shall always avoid any
possibility of confusion between the affine erosion of a set and the affine erosion of a curve

anyway.

Proposition 7 If S is a non-trivial convex C-set, then for any o < 0.(S), only the o-chord sets

matter in the definition of the o-affine erosion of S, i.e.

E,(S)=5- |J K.
KeKt(85)
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Proof :
Let C'(I) be the boundary of S : since S is convex, any couple (s,t) € I? is a chord of C,

and the map ¢t — area (C,;) is continuous and increasing from 0 towards area (S) (which may
be infinite) unless S is trivial, which is not the case here. Consequently, if (s,t) is a o’-chord of
S with ¢’ < ¢ < 0.(5) < area(S), then (s,t 4 <) is a o-chord of S for a judicious choice of ¢,
and Cs; C Cs 4., which means that (s, ¢) is not a o-limit chord of C'. In other words, all o-limit

chords of S are o-chords of S and Lemma 1 achieves the proof. O

3.3.2 The middle point property

We now establish an interesting property of convex semi-closed curves : their o-affine erosion is
always included in the set of the middle points of their o-chord segments, and the equality holds
beyond a limit scale of erosion (which is nonzero for most of the curves). The reason is roughly
explained on Figure 3.7 : given a curve C = C([) and o-chord segment [C'(s)C ()], another
o-chord segment of C intersects [C'(s)C'(¢)] in I(6), and as § — 0, the area equality forces

1 1
57‘%(9) 0= 57‘%(9) -8+ o(0),

so that r;(#) — re(8) — 0 and I(#) converges towards the middle of [C'(s)C'(¢)]. This means

that the envelope of the o-chord segments of C is made of the middle points of these segments.

Under additional conditions, we shall prove that this envelope is exactly the o-affine erosion of

C.

C

C(s

Figure 3.7: The middle point property

We begin with a useful geometric lemma.

Lemma 3 Consider A,B,A’,B’ four distinct points of the plane such that
[AB] A [A'B'] = {M)

and

area (M AA") = area (M BB').
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Then,

dist(A,B) [AA", BB']

dist(A, M) [AB,BB']’

A
AY
M
B
B

Figure 3.8: 4 points Lemma

Proof :

Let us first define A with AM = AAB, which implies M B = (1 — A\)AB. Since the area of
the triangles M AA’ and M BB’ are equal, we have

[AA", AM| = [BB', BM] ,
which gives
AN[AA',AB] = (1- X)) [AB,BB]. (3.2)
Moreover, as M also lies on the segment [A’B’], we can write
[MA', MB|=0=[MA+ AA" MB + BB'] = [-AAB+ AA’,(1- \)AB+ BB'],
so that
—A[AB,BB'| + (1 — ) [AA", AB] + [AA’, BB'] = 0. (3.3)
Now, multiplying Equation 3.3 by A and replacing the second term from Equation 3.2, we obtain
~A[AB,BB'] + (1 - \)?[AB,BB'] + A [AA", BB'] = 0,
and the terms in A? cancel so that
)\ (2[AB,BB'] — [AA', BB']) = [AB, BB'] .
Finally, we obtain as announced

1 dist(A, B) [AA", BB']

i S’ N R
X dist(A, M) [AB, BB']
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A C

Figure 3.9: The middle point property (1)

Proposition 8 [f C is a non-trivial convexr semi-closed curve, then for any scale o, E,(C) is

included in the set of the middle points of the o-chord segments of C.

Proof :

First recall that since C is convex, we can choose a regular parameterization C' of C (i.e. such
that its left and right derivative C” and C” never vanish). Let I be a point of I, (C). Lemma
1 states that we can find a o-chord (s,t) of C' such that [AB] = [C'(s)C(t)] contains /. Defining
A by I =(1—-X)A+ AB, we shall prove that both A < % and A > %, or, in other words, that I
is the middle of [AB].

1. First consider £ > 0 such that s ¢ < ¢. Since the map z +— area (C(s+¢e,t 4+ z)) is
increasing, there exists a unique €', depending on s,t and &, such that (s+<,¢ + ¢’) is another
o-chord of C'. Necessarily, [AB] and [A:.B.] = [C'(s+ £)C(t + £’)] have a common point I, and
the areas of the curved triangles I, AA. and I. BB, are equal.

2. It is clear that there exists a unique real k(¢) such that A, B, A. and B° = B+k(e)C’ (¢)
are four points satisfying the hypotheses of Lemma 3. Moreover, the convexity of C forces the
related intersection point M. = [AB] N [A.B¢] to belong to the segment [BI.] (cf. Figure 3.9).

Since every point of [BI.] belongs to the chord set Cyy. ¢4./, necessarily I ¢ [BM.], which means
that A < A: where A, is defined by I. = (1 — A.)A + A.B.

3. From Lemma 3, we know that

1 [AA., BB] [AA., C (1)]

A7 [AB,BB] T [AB,CL(D)]
and since AA;, — 0 as ¢ — 0, we get
1

— =2 — 0
X as ¢ ,
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which proves that A < % according to Step 2.

4. A symmetrical reasoning proves that A > 5 as well, and consequently A = %, i.e. I is the

middle of the segment associated to the o-chord (s,?). O

From this result, it is natural to wonder whether there is an exact correspondence between
the o-affine erosion of a non-trivial convex semi-closed curve and the set of the middle points
of its o-chord segments. We are going to prove that the answer is positive for a large class
of curves, including C' curves and many polygons, provided that ¢ is small enough. For that

purpose, we introduce the following definitions of regular chord and regular scale.

Definition 10 Let C be a convexr semi-closed curve, then a chord (A, B) of C is regular if
(T, T) € [0,7[.

Definition 11 Let C be a non-trivial convex semi-closed curve. A real o > 0 is a regular scale

for Cif any o-chord of C is reqular. We note o,(C) the upper bound of the reqular scales of C.

Theorem 1 (middle point property) Let C be a non-trivial convex semi-closed curve, and
o a reqular scale of C. Then E,(C) is exactly the set of the middle points of the o-chord segments

of C, and there is a natural homeomorphism between C and E,(C).

Proof :

According to Proposition 8, we only have to prove that the middle point of any o-chord
belongs to E,(C). Consider C' a regular parameterization of C, let (s,¢) be a o-chord of C,
and define « the smallest positive number & such that (s — z,s) is a o-chord of C. Finally, let
DT =] — @, 0] and D~ =]0,¢ — s[ (if C is closed, then these intervals must be considered in S!).
For any a € D~ U D™, we call I(a) the intersection between [C'(s)C(t)] and the chord segment
associated to the o-chord of origin s+ a, and define A(a) by C'(s)I(a) = A(a) C'(s)C(t).

Notice that if a o-chord of C' intersects |C'(s)C'(¢)[ then its origin can be taken in D~ U{0} U
Dt. Hence, to prove that no o-chord set of C contains /, the middle of [C'(s)C'(t)], it is sufficient
to prove that A > on DT as well as A < = on D™,

1. We first establish that for £ > 0 small enough, A(—¢) < 1 < A(e).

Consider £,&’ such that s < s+ <t < t+ ¢ and (s + ¢,t + £') is another o-chord
of C (implicitly, ¢ depends on s, and ¢). Now define k(¢) such that C(¢),C(t + £'),C(s)
and A% = C(s) + k()C'.(s) are four points satisfying the equi-area hypothesis of Lemma 3.

Necessarily, M. = [C(t)C(s)] N [C(t + ") A®] belongs to [I(c)C(s)], so that A(e) > A(e) where
N(e) is deﬁned by C(s)M. = XN (e)C(s)C(t). Moreover, from Lemma 3 we get
1 _ 5 [COC{+e), k) CL(5)]

) ke

T—NE [CHCE),FEICH)
[C4(5), COC (4]

[Ch (), CHICM]

2+
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C

K C(s)

Ct+e")

Figure 3.10: The middle point property (2)

Since C is convex, [, (s),C(s)C'(t)] > 0, and as (s,¢) is a regular chord of C, we have as well,
for £ > 0 small enough, [C*% (s),C(t)C(t+¢')] > 0. Consequently, A(g) > N(g) > L fore > 0

small enough, and a symmetric proof would establish A(—¢) < % for £ > 0 small enough.

2. Let us check that X is continuous. Given a € D~ U DT, there exists a unique b(a) such
that (s+a,t+b(a)) is a o-chord of C. Since the map (s,t) — area (C;4) is continuous, so is the
map a — b(a). Now, as I(a) = [C(s)C(t)]N [C(s+ a(C(t + b(a))], a simple computation gives

Ma) = [C(s+a)C(t + b(a)),C(s)C(t+ b(a))]
N [C(s+a)C(t+b(a),C(s)C(t)]

and the non-vanishing denominator ensures that A is continuous on D* U D~. Last, we know

1

from Proposition 8 that A can be continuously extended to 0 by taking A(0) = 3.

3. Now we prove that A has no local maximum on DT, and no local minimum on D~.

If A has a local maximum in a € DT, then for £ small enough, I(a +¢) and I(a — £) belong
to the segment [/(a)C(s)] (see Figure 3.11). Then, due to the position of C'(s 4+ a + ) and
C(s+a—¢) relatively to C'(s+a), it is clear that the intersection of the o-chords of origin s+a
and s+ a + ¢ lies on [C'(s 4 a)l(a)], whereas the intersection of the o-chords of origin s + a
and s+ a — ¢ cannot lie on [C'(s + a)(a)[. But this is a contradiction with Step 1 applied to
the o-chord of origin s + a, since we would have A'(—¢) > X(e) for the corresponding A'. As a
conclusion, A has no local maximum on DT, and a symmetric proof establishes that A has no

local minimum on D~ either.

4. From Step 2 and 3 we deduce that A is monotone on DT (resp. on D7), and the only
possibility according to Step 1 (and to the fact that A(€) — £ ase — 0) is that X is nondecreasing
on DT (resp. on D7) and remains strictly larger than % on DT (resp. strictly lower than L on

2
D7). Consequently, I does belong to £,(C).
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Cista-9 CO ¢

C(state)

C(t+b(a))

Figure 3.11: The middle property (3)

5. Now we can build a bijective and continuous correspondence between C and F,(C) as
follows : given C(s) € C, there exists a unique 6(s, o) such that (s — §,s+ ) is a o-chord of C'.
According to Theorem 1,

Cols) = 5(Cls = 8) +Cs+9)

belongs to F,(C), and the correspondence C'(s) — C,(s) is one to one and clearly bicontinuous.
a

Notice that the natural correspondence between C and its affine erosion gives sense to F,(C),

meaning the parameterization induced by C' on the o-affine erosion of the curve C'(1).

Corollary 2 If C is a non-trivial convex semi-closed curve and o a regular scale of C, then

E,(C) is of class C'.

Proof :
If this is not the case, then we can find a M € F,(C) such that T}, # T5;. But necessarily

these semi-tangents arise from two distinct o-chord segment containing M, which is impossible

according to Theorem 1. O

We shall estimate the regularity of F,(C) more precisely later . Now, let us compute again
the affine erosion of the “corner” of Proposition 1 using Theorem 1. First, it is clear that the
boundary of the “corner”

{O +zvy +yve; 2 >0,y >0}

is a semi-closed curve C with o,(C) = 400 (any scale is regular) : thus, we know from Theorem

1 that its o-affine erosion is exactly given by the middle of its o-chords.
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The chord set (O, v, v2) of C delimited by the points O + 2z vy and O 4 2y vy has an area
equal to 2 zy. [vy, vy] (cf. figure 3.12). Consequently, the o-affine erosion of C is the set of the
middle points O+ 2wy +yv, constrained by the area equality 2 zy. [vy, v2] = o, which corresponds

to the hyperbola defined in Equation 3.1.

Figure 3.12: Affine erosion of a “corner” (2)

3.3.3 Regular scales

In this section, we characterize the regular scales of a non-trivial convex semi-closed curve.

Proposition 9 Let C be a non-trivial convex semi-closed curve. The set of the regular scales of

C is [0,0.(C)[.

Proof :

Suppose that o,(C) < 4+oo (otherwise there is nothing to prove), and consider C': I — R?
a regular parameterization of C. In what follows, we consider vy an arbitrary nonzero vector
of the plane, and the angle function ay : I — S (respectively a_ : I — S') defined by
oy (s) = ZL(wg, Ch (5)) (a—(s) = Z(wp, C”(s)) respectively).

1. First we show that if o is a regular scale of C and 0 < ¢’ < o, then ¢’ is also a regular scale of
C. Suppose that it is not the case, i.e. that we can find a non-regular o’-chord (s,t) of C'. We can
choose £ > 0 in such a manner that (s,t+¢) is a o-chord of C'. Since ay () < ay(t+¢) < a_(s)
and a4 (t) —a_(s) € [7,27[, we have ag(t +¢) — a_(s) € [7, 27 which means that (s,t4¢) is a
non-regular o-chord of C'. This contradiction proves that ¢’ is a regular scale of C. Hence, the

set of regular scales of C is [0, 0,(C)[ or [0, 0,(C)].

2. Now we prove that ¢,(C) is not a regular scale of C.

2.a. If C'is closed, then I = S, and there exist two sequences (s,,) and (¢,) such that (s,,?,)

is a non-regular o,-chord of C' with ¢,, = ¢,(C) as n — +00. Since S1is compact, we can find
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an increasing map ¢ : N — IN such that

lim (s tom)) = (a,0) € I x 1.

M (S b

Now, because area (C;) is continuous with respect to s and ¢, we have
area (Cyp) = 0,(C).

If we define a,, = min(a, s,(,,)) and b, = max(b,t,(,)), we have, in St and for n large enough,

at(by) —a_(ay,) € [7,27]. (3.4)

Now remark that a_ is left-continuous and ay is right-continuous and deduce from (3.4) that

modulo 27,

a4 () = a_(a) € [r, 2],
and since ay (b) — a_(a) = 27 is impossible, (a,b) is a non-regular chord of C'.

2.b. If C is not closed, then we can suppose that I = R and as C is a semi-closed curve,

Li_m at —lima™ €0,7],

so that if (a,b) is a non-regular o-chord, necessarily a(b) — a_(a) = 7 and C'(] — oo, a[) and
C'([b,4o0[) must be two parallel half lines. Now define o’ = sup{z; a_(z) = a_(a)} and
b =inf{a; ay(z) = ay(b)}: (d’,b) is a non-regular chord of C' and clearly area (Cyy) = 0, (C).
a

Corollary 3 Let C be a non-trivial convex semi-closed curve, then o,.(C) > 0 if and only if no
part of C is a segment [AB] such that (T, TE) € [, 2x][.

Proof :
1. If [AB] is a piece of C such that Z(T7, T§) € [, 2x[, then (A, B) is a non-regular 0-chord
of C, and consequently ¢, (C) = 0.

2. Conversely, let us suppose now that ¢,.(C) = 0. From Proposition 9 we know that
we can find a non-regular O-chord of C, i.e. a part of C which is a segment [AB] such that
(T, TE) € [x,27[. O

This result allows us to check that the characteristic constant o, is non zero for a large
class of convex semi-closed curves, including C'! ones and all polygons such that the sum of two

successive angle steps remains strictly below 7.

Corollary 4 IfC is a convex semi-closed curve of class C*, then a,(C) > 0.
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Proof :

Suppose that C is a convex semi-closed curve of class C'* for which ¢, (C) = 0, from Corollary
3 a part of C should be a segment [AB] such that T, # T§, which is impossible since T = T3
and the regularity of C forces T}; = Ty and TX =T, O

Corollary 5 IfC = AgA;y...A, is a convex polygon, then o,.(C) > 0 iff for all i modulo n,

[Ai A1, AiyaAigs] > 0.

Proof :

This is a simple consequence of Corollary 3, and if [4;4;11, A;42A;43] > 0 for all i we even
know that
0,(A1A2...A,) > minarea (A; A;114;42).

K3

d

What happens for a non-regular chord 7 Considering the proof of Theorem 1, we can see
that if Z(T7, T};) €]r, 27 we have both A > % and A < %, i.e. no point of the o-chord segment
[AB] belongs to F,(C). In other words, the curve described by the middle points of the o-chord
segments has “ghost parts” which must be removed to obtain the desired affine erosion. For
instance, these “ghost parts” appear at any scale of erosion for a triangle, for which o, = 0 (see

Figure 3.13).

Figure 3.13: “ghost parts” always appear in the affine erosion of a triangle

The need to remove these ghost parts is in some way related to the Huygen’s principle

construction used for the propagation of fronts. Behind this construction hides an entropy
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condition : if the propagating front is viewed as a burning flame, then once a particle is burnt
it stays burnt and cannot burn any more (see [65]), so that such “ghost parts” of fronts have no

physical meaning.

If £/(T,,TE) = 7 (ie. T, = —TFE), Definition 10 makes the chord (A, B) non regular
despite the fact that the middle point of the associated chord segment does belong to E,(C).
The reason why we did not allow this configuration in our definition of a regular chord is that
we want not only the reverse inclusion between the middle points and the affine erosion, but
also a bijective correspondence. The case of a square highlights this phenomenon : at any scale,
four points of the affine erosion are the middle points of an infinite number of o-chord segments,

which produces singularities (discontinuity of the tangent) at these points (see Figure 3.14).

Figure 3.14: Four singularities appear in the affine erosion of a square

3.3.4 Consistency

Theorem 2 Let C = C(I) be a semi-closed convex curve of class C™ with n > 1. Then for any
o0 < 0.(C), E;(C) is a semi-closed convex curve of class C™. If n > 2, the infinitesimal evolution

as 0 — 0 of a point C(s) € C is given by

2
3

173

Co(s) =C(s) + w.o3 -'y(s)% N(s) + o(ag) with w = 3 (5) )

where v(s) and N(s) are respectively the curvature of C and the normal vector to C at point
C(s). Moreover, if n > 3, the remaining part is O(U%) at any point where the curvature v(s) is

nonzero.

Proof :
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1. Consider s — C'(s) an Euclidean length parameterization of C (i.e. |C'(s)| = 1 every-
where). Since C is convex, we know from Theorem 1 that £, (C) is exactly made of the middle of
the o-chords of C as soon as 0 < ¢ < ¢,(C) (which makes sense because we know from Corollary

4 that ,(C) > 0). Let (s — 8,54 &) be a o-chord of C' and C,(s) the middle of the associated
segment (see Figure 3.15).

C(s 9

C(s)

C(st+d

Figure 3.15: Affine erosion of a convex semi-closed curve

Since (' is of class C'!, we can use the Green formula to compute the area

1
o= §F(s7 d(s,0)), where

F(s,t) = /:H [C(h),C"(B)] dh + [C(s+1),C(s—t) — C(s+1)].

—t
A simple computation gives
oF

E(SJ) =[C(s+t)—C(s—1),C'(s+1t) —C'(s — 1)]

and aa—F(s,t) =[C(s+1t)—C(s—1),C'(s+ 1)+ C'(s — t)] .

s
C' being convex, we have, for any distinct points C'(a) and C'(b) of C, the inequality

[C"(a),C(b) = C(a)] > 0,

and the equality holds if and only if the piece of curve C'([a, b]) is a segment. Hence, the numbers
[C(s+t)—C(s—1t),C"(s+1t)] and [C(s+t) — C(s—t),—C'(s —t)] are positive and their sum
cannot be zero unless ¢ = 0, which is not the case, or unless C'(s +t) = C'(s — t), which is
impossible as soon as 0 < t < J. As a consequence,

%—ZZ(S, 5)>0
(which simply means that the area o of the chord-set C's_; ;45 increases with §), and the global
inversion theorem allows us to claim that the map s+ §(s, o) is of class C™ as well as the map

(s,t) — F(s,t).
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We just proved that the function
1
s Cy(s) = 3 (C(s—6(s,0))+C(s+6(s,0)))
is of class C. Moreover, since the vectors C'(s — (s, 0)) and C’(s+ (s, 0)) cannot be colinear

for ¢ < 0,(C), the derivative

Q%Cg(s) =(1- %)C’(s -6+ (1+ %)C’(s +9) (3.5)
never vanishes. As a consequence, the curve C, is of class C" in the geometric sense (that is C,
is a regular parameterization).

Incidentally, remark that it can easily check from Equation 3.5 that %Cg and C'(s+§) —

C'(s—0) are colinear, i.e. that the o-chord segments of C are the tangents to F,(C) as expected.

2.a. If C is of class C?, the curvature at point C'(s) is defined by v(s) = [C’(s),C"(s)]. A

simple expansion near t = 0 gives

or
ot

which can be integrated to obtain

(s,t) = [2tC"(s) + o(t), 2tC" (5) + o(t)] = 4t7~(s) + o(t?), (3.6)

20 = %537(8) + 0(8%).

Thus, whenever v(s) # 0 we have

and finally

where N(s) is the normal vector to C'in C'(s).

2.b. If ¥ = 0 we use a geometric argument. Given ¢ > 0, let R = 73,

the disk Dr with center C'(s) + RN(s) and radius R is locally contained in Z(C) near C'(s) (see
Figure 3.16). In particular, there exists o > 0 such that

Since vy(s) = 0,

Vo <oy, C(s)+RN(s) g Cs_5545 and DpNCs_ss4s CZL(C)

(once again, § depends on s and o). Now, calling H the orthogonal projection of C'(s) on the

chord segment [C'(s — §),C'(s+ 6)] and writing d = dist(C'(s), H), we claim that

o>dy/R?— (R-d)2
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C(s 9

Figure 3.16: Case v =0

The reason for this last inequality is that o is larger than the shaded zone of Figure 3.16, which
is itself larger than dv/R? — (R — d)? (the equality happens when the chord is orthogonal to N).

Hence,

o> dvV2Rd — &

and

3 a g
A2 ¢ ——— < —
V2R—d " VR

since d < R due to the fact that C'(s) + RN(s) € Cs_5 s45. Consequently,

which means that

d= o(ag). (3.7)

Now, we constrain o to be small enough in order to ensure that Z(C’(s — ¢),C’(s)) and
Z(C'(s),C"(s+6)) belong to [0, 7/2]. Recalling that the pieces of curve C'([s—4, s]) and C'([s, s+
d]) have length §, we deduce that both dist(C'(s—§), H) and dist(H, C'(s+3)) belong to [6 —d, 6],
so that

N

dist(H,Cy(s)) <

Then, Equation 3.7 implies that

as announced.
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3. If n > 3, the expansion of Equation 3.6 can be improved into
oF
E(Sv t) = 4t27(8) + O(tS)v

and following the same computation as in Step 2.a, on can establish that

).

Wl

Co(s) = C(s)+w-0F -47(s) N(s)+O(c

d

Remark : If the curvature vanishes, we can be more precise. Suppose that C'is locally C'® near

s where y(s) = 0 and 7"(s) # 0. At point s, we have, writing T = C’(s),

" = yN=20

C/// — —’)/2T+’)//N:’)//N
CW = =39y'T+ (y"~+)N=17"N
Consequently,
F 3 ¢t
O ety = [ztc%s) +o), o) + O<t5>] = 2L4"(s) + 0(°)
and an integration yields
2 = £3%"(s) + O(F7),
or equivalently
1
150 \ & 3
5(s,0) = (7,,(8)) +0(od).
Therefore, the point C'(s) is mapped onto
1
Co(s) = 5lC(s=08) +C(s+9)]
4
= O+ W) + O
15% 4 1 AL 4
= ()4 2ot () N(s) + O

Incidentally, we check that

Cols) = C(s) + o(0?),
but we can see that the expansion

Co(s) = C(s) +0(%)
is not generally true when v(s) = 0 (and is false as soon as y"(s) # 0). O

Remark : Theorem 2 proves that the affine erosion preserves the regularity of a convex curve.
Unfortunately, it does not regularize a convex curve of class C™ into a convex curve of class C™
with m > n. One can check this on the C'* curve C made of the half line {y = 0,2 < 0} and the
half parabola {y = 2%, 2 > 0} : for any ¢ > 0, E,(C) is not 2.
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3.4 Affine erosion of non convex curves
3.4.1 Structure

Lemma 4 If S is a simple C-set and M € 0L,(5) — 0S, then 0E,(S) is locally a convex curve

near M.

Proof :

Let M belong to 0E,(S) — dS. We know from Lemma 1 that M belongs to a (possibly
infinite) chord segment of a component of 35. As S is open and M € S, for € > 0 small enough,
the open disk D(M, ) is included in S (see Figure 3.17). But since the complementary set to any
chord set of S in D(M, ¢) is convex, necessarily I, (5)ND(M,e) is convex (it is the intersection
of convex subsets of D(M,¢)). Consequently, 0F,(5) is near M a convex curve, because it is

locally the boundary of a convex set. O

Figure 3.17: local convexity in M € 0F,(S) — S

Lemma 5 If S is a simple C-set and M € 0F,(S) N 0S with ¢ > 0, then 95 is not locally

concave near M.

Proof :

Suppose that M € dF,(S)NdS and 99 is not locally concave near M. Using a parameteri-
zation C' of 05 near M = C'(s), we have for £ > 0 small enough,

[C(s—e)C(s),C(s)C(s+¢)] > 0.

Thus, M belongs to the topological opening of a o-chord set Cs_. s4. for € > 0 small enough,
which is in contradiction with M € dF,(9). O
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According to Lemma 4 and Lemma 5, the boundary of the affine erosion of a simple C-set
is everywhere locally concave or locally convex. Thus, it is a collection of curves. Hence, we
can give sense to the affine erosion of a piecewise convex semi-closed curve as a collection of

semi-closed curves (and we shall prove later that these curves are also piecewise convex).

Definition 12 The o-affine erosion of a piecewise convexr semi-closed curve C is the collection

of semi-closed curves

E,(C) = 0E,(I(C)).

Proposition 10 The affine erosion of a piecewise convex semi-closed curve C is, up to a finite

number of points, the disjoint union of a finite union of concave curves (C;) and convex curves

(D]‘), with
o Vi, C; CC, and no concave sub-curve of C contains more than one C;.

o Yy, D]‘QC:@.

Proof :

Let us define the curves Cy as the connected components of F,(C) NC (minus their extremal
points if any). According to Lemma 5, these curves are concave, and if C; and C; belong to the
same concave component of C, necessarily ¢ = ¢’ (a nonnegative chord segment of C cannot have
both its endpoints on the same concave component of C). Hence, there is a finite number of

curves C;. Now, call D; the connected components of
E,(C)\JCi.
7
We have to prove that there is a finite number of such curves.

First, there can be only a finite number of non semi-closed D;, because these D; are connected
to some C; according to Lemma 5. Second, let us choose an arbitrary direction v of the plane,
and consider the multivalued map ¢ which associate, to any line D directed by v, all area values
of all chord sets of C defined from a piece of D. Because C has a finite number of components,
¢ can be described by a finite set of continuously increasing single-valued maps (@) (only a
finite number of accidents happen to ¢ when D sweeps the plane). Then, to each map ¢y is
associated at most one closed D;, so that the number of closed D;’s is finite. Last, as for the

semi-closed but nonclosed D;’s, there is at most two of them. O

Corollary 6 The affine erosion of a piecewise convex semi-closed curve is a collection of piece-

wise convex semi-closed curves. Fquivalently, the affine erosion of a C-set is a C-sel.

Proof :

The first part is a direct consequence of Proposition 10. As for a C-set S, it is sufficient to

notice that the boundary of E,(5) is included in the affine erosion of the components of 95. O
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3.4.2 Inflexion points

We would like to prove that the number of inflexion points (in a generalized sense) cannot
increase when we compute the affine erosion of a piecewise convex closed curve. This is another

stability property of the affine erosion, complementary to the inclusion principle.

Let C = C'(I) be a piecewise convex curve. We define a canonical decomposition of C into

convex curves. We say that a point M of C is

e convex if C is locally convex near M,

e concave if C is locally concave near M,

We consider the sub-curves CZ»‘" of C defined as the open connected components of the set of all
convex points of C, and the concave sub-curves C; symmetrically defined. If a convex curve
CZ»'" and a concave curve C; overlap, either they are equal to the same segment, or, if not, they
have each a segment in common at one of their endpoints. In that case, we remove from CZ»‘"
and € half of this segment. This way, we obtain a canonical (and minimal) decomposition of
C into convex and concave parts. A junction between some CZ»‘" and some C; is called a simple
junction, while a junction between two C’s or two C;’s is called a double junction (see
Figure 3.18).

C

Figure 3.18: Simple (S) and double (D) junctions of a closed curve C.

We define #7(C), the number of junctions of C as the number of simple junctions of
C plus twice the number of double junctions of C. If C is a C? closed curve whose curvature
vanishes at a finite number of points, the junctions of C are all simple and correspond to the

inflexion points of C. A polygon has no double junction either.

Proposition 11 If C is a piecewise convex closed curve and o > 0, then F,(C) has no double

junction and

#J (E(C)) < #T(C).
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— E,©

- - - C+E/C)

Figure 3.19: Simple junctions of E,(C).

Proof :
1. Suppose that a component D(J) of I, (C) has a double junction M = D(s). Since D(I) is

not locally convex near M, necessarily M belongs to C = C'(I) and C is locally concave near M.
Hence, near M, C N D(J) = {M}. This means that D(]s — e, s[) and D(]t,t + [) are segments
for £ > 0 small enough. Thus, M cannot be a double junction of D(.J), which is a contradiction.

We deduce that F,(C) has no double junction as soon as ¢ > 0.
2. We prove that
#J (Es(C)) < #T(C)-

2.a. Let us consider D; a maximum convex piece of I,(C), i.e. such that £,(C) is not locally
convex at the extremal points A and B of D;. From Lemma 4 we know that A and B must

belong to C.

If D; C C, it is a segment and neither C nor F,(C) can have any junction on D;. If D; ¢ C
but D; is a segment, then [,(C) has no junction between A and B (see Figure 3.19). Last, if
D; is not a segment, then £;(C) has exactly two simple junctions between A and B (see Figure
3.19). But since the piece of C between A and B cannot be concave (it has a nonzero positive
chord), the number of junctions of C between A and B included is at least 2 (with the convention
that a double junction in A (or in B) is counted once for each of the two D; it belongs to).

Hence, in all cases, between A and B (included), F,(C) has not more junctions than C.
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2.b. We claim that E,(C) cannot have any junction outside a piece of curve D; of the previous
kind. The reason is that on these remaining parts, F,(C) is strictly concave (i.e. nowhere locally
convex), so that any junction between these remaining parts should be a double junction, which

is impossible according to Step 1. Hence, we have

#J(Eo(C)) < #J(C)

as announced. |

3.4.3 Consistency

Theorem 3 IfC is a piecewise convex semi-closed curve of class piecewise C™, then E;(C) is a
collection of piecewise convexr semi-closed curves of class piecewise C™. If n > 2, each point M

of C can be associated to a point M, of E,(C) such that
2 1 2
My =M+w-0o7-(y7)7 N+o(od),
where v and N are respectively the curvature of C and the normal vector' to C at point M. As

1 /3\3
usual, we set w = 3 (5) " and vt = max(0,7).

Proof :

1. From Proposition 10, we know that F,(C) is made of a finite number of curves of three
kinds : pieces of C, which are C", segments, which are C°°, and new convex pieces, which can

be proved to be C™ using the arguments of Theorem 2. Hence, F,(C) is piecewise C".

2. Consider M a point of C, and call v the curvature of C in M.

S

Figure 3.20: Case v < 0

2.a. If v < 0, call T the tangent to C in M, and let oy be the nonzero area of the C-set
delimited by a segment of the kind |M — aT, M + bTJ, where both a and b are positive. Any

'If v = 0, IV is not uiquely defined but any choice is convenient since ('y+)% N=o0.
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chord-set of C containing M contains the previous chord set (see Figure 3.20), and consequently
its area must be larger than og. In other words, for any o < 09, M belongs to £,(C) and taking
M, = M closes the case.

2.b. If v > 0, call C; the largest convex component of C containing M. For ¢ small enough,
any o-chord set of C containing M is defined by two points of C;, so that the “evolution” of M

is given by Theorem 2 and the proof is complete.

2.c. If v = 0, the geometric argument used in the proof of Theorem 2 still applies. O

3.4.4 Other possible definitions of the affine erosion

The affine erosion of a convex set S is obtained in a simple way, by removing from S any part
of S with area o of the kind H NS, where H is a half plane. This may be the simplest way to
obtain a global affine invariant set-shortening process tangent to the afline scale space. Now, if
one wants to generalize this definition to non-convex sets, one must be careful, and the natural
generalization (removing from S any connected component of H NS with area o) is not that
good : this definition does not ensure a very important property, the global inclusion principle
(see Figure 3.21), which states that E,(S1) C E,(52) when S; C Sy. This principle has strong

consequences for the iterated operator, and guarantees numerical stability.

C

Figure 3.21: Inclusion principle is lost for the alternative definition of the affine erosion

With our definition of the affine erosion, the global inclusion principle is satisfied, but the
connectedness is not preserved (whereas it is preserved for the former definition). Notice, how-

ever, that these two definitions yield the same infinitesimal evolution (for scales small enough).



66

CHAPTER 3. AFFINE EROSION OF CURVES AND SETS



Chapter 4

Comparison between affine erosion
and scale space

In this chapter, we compute exactly the affine erosion and the affine scale space of conics.
We show that for these curves the affine erosion remains a good approximation of its tangent
operator not only for infinitesimal areas : this suggests that we can build a fast scheme for the

affine scale space by iterating the affine erosion with rather large scale steps.

4.1 Affine scale space of curves

From now on, we note ¢t — ASS;(C) the affine scale space of a curve C, when it exists. In
other words, if we can find a function (s, t) — C(s,t) such that s — C'(s,0) is a parameterization
of C, we say that s — C'(s,t) is a parameterization of ASS(C) if we have for all s and ¢ > 0,

5= 5,1

where v(s,t) and N(s,t) represent the curvature and the unit normal vector of the curve C'(-,¢)

W=

N(s, 1), (4.1)

at point C'(s,t). As before, we take the convention that if r is a negative number, #'/3 = —|r|1/3,
At an inflexion point, N is not defined but since we have v = 0, the right hand term of Equation
4.1 is naturally equal to zero. Notice that Equation 4.1 assumes that C' is derivable with respect

to t and twice derivable with respect to s.

If the curves (ASS¢(C));~o can be represented by functions of the kind z — (z,y(2,t)) in an

orthonormal basis, then Equation 4.1 is equivalent to

8y 82y %

Indeed, let us denote by y' and y” the first and second order derivatives of y with respect to z.

For such a Cartesian parameterization we have

"

¥

,l) = ———~
7(2:1) 1497}

9

67
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and in the associated orthonormal basis, the unit tangent and normal vectors to the curve are

respectively
1
T(z,t) = —— (1,4
and
N(et) = ——— (~4/,1)
x? = 1
1_|_y/2 Yy
Thus, we have in the same basis,
1
0,1) = —— (N+4'T),
(0.1) = = (N+y')

so that Equation 4.2 is equivalent to

oC 1 1 y//1/3 y/

It has been proven (see [68],[29]) that the tangential component is of no influence on the whole
curve evolution since it corresponds to a renormalization of the space parameter s (i.e. a
movement of each point C'(s,t) along the curve C'(-,¢)). Therefore, Equation 4.3 is equivalent

to Equation 4.1.

Theorem 2 states that for regular convex curves the operator F,s/. is tangent to the the

operator ASS, , when h — 0, provided we set

2
1 (3) 3
w==-1(=] .
2 \2
In this chapter, we compute explicitly the affine scale space and the affine erosion for several
convex curves, and we check that these operators are very close for small scales. In fact, for

conics (ellipses, hyperbolae, parabolae, and “corners” as degenerated hyperbolae), both the

affine erosion and the affine scale space can be exactly computed.

4.2 Affine erosion and scale space of an ellipse

4.2.1 Affine erosion

Proposition 12 The o-affine erosion of an ellipse with area Aqg is an ellipse with same axes
and excentricity and with area
2 0(0)
A(o) = Ag cos —
where §(o) is defined by
2ro
f(o) —sinf(o) = —.
(o) —sinf(o) m

In particular, for an infinitesimal erosion, we have the following canonical expansion

3 2772

AT(12) = A — =L o). (4.4)
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Figure 4.1: Affine erosion of a circle

Proof :

1. Consider the parameterization of the ellipse

[ A
M(t) = f(cost'vl + sin ¢ vy)

satisfying [vy, ] = 1. We can find a linear map ¢ with determinant 1 which transforms the
affine basis (w1, v2) into an orthogonal basis, in which ¢(M(t)) describes a circle enclosing the
same area Ag. Then, because the affine erosion commutes with the rotations, the affine erosion
of a circle with radius Ry cannot be anything but a circle with same center and with radius

R(o) < Ry. On Figure 4.1 we can see that
R(oc) = Rycos 8o)
0 in 6
and o = R%(——Sm )

Hence, as ¢ commutes with the affine erosion and with the homothetic transformations, we

deduce that on the ellipse as well as on the circle, the affine erosion acts as a homothetic

transformation with ratio cos ﬂzﬂ, which proves the first result of Proposition 12.

2. Let us evaluate now A(c) = Ag cos? ﬂ;l when o tends towards 0. From

0 —sinf = 2;;—0
0
we see that #(c) — 0 as 0 — 0, and
63(o) 9 2ro
—— (1+0(%(0))) = =,

which gives (o) = O(U%) and
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In this way, we obtain

z 1
Alo) = Ao (1-sin? A2) = g = 20 (BED)7 4 0oy = a0 — 4 (27 +0(0h
2 4 Ag 2
The “canonical” expansion of A(o) is
AT(t2) = AL —w t+0(2),
with
2 (377)% 5 (272
W= — B e .
3\ 2 3
We remark incidentally that as o goes near its critical value o, = % corresponding to the

ellipse extinction, we have

B(o.+h) =7 — 2h+ o(h)
Ao

and consequently

Oloc+h) 7w 2h
COST_—ZL-AO—I—O(/}).

It follows that the ratio %Z) = cos 6(2—0) admits a linear expansion near its extinction value.

Figure 4.2 shows the value of the normalized area AAO and the ratio ’/A% depending on the

normalized erosion parameter -.
(=3

>
S

Qla

)
0 1 O 0
Figure 4.2: Area for the affine erosion of an ellipse

4.2.2 Affine scale space

Proposition 13 The affine scale space at scale t of an ellipse with area Ag is an ellipse with

same azes and excentricity, whose area A(t) satisfies

2
A3 (1) = Af — gﬂ : (4.5)
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Proof :

As for the affine erosion, the affine invariance of the affine scale space reduces the problem to
the computation of the affine scale space of a circle. Because of the rotation invariance, the ASS
of a circle is a a family of circles (C¢)¢>0 with same center O and radius R(t). A trigonometric

parameterization of the circles C; satisfies Equation 4.1 as soon as we have for any ¢ > 0,

4
RE(1) = R5(0) - 5t,
and Equation 4.5 simply arises from the equality A(t) = 7 R*(t). O

If we compare Equations 4.5 and 4.4, we can check that the operator A4S5S, } is tangent to

Ey 22, simply because

3 2772
o= N

53

W

T

o

This property is illustrated on Figure 4.3. The normalized area (A(-)/A0)§ is represented both
for the affine erosion F, and for the normalized affine scale space ASS; (with t = w - o5 for the

reason we explained before).

(2)

— daffineerosion

- affine scale space (normalized)

2/3
X ﬁ 1 (Gge)

™
Figure 4.3: Comparison between the affine erosion and scale space of an ellipse
As we can see, the action of the affine erosion on ellipses is very close to the one of its tangent

operator, the ASS, even for large scales. This suggests that we can build a fast scheme for the

ASS by iterating the affine erosion with rather large scale steps.
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4.3 Affine erosion and scale space of a hyperbola

4.3.1 Affine erosion

Proposition 14 The o-affine erosion of a hyperbola with apparent area Ag is a hyperbola with

same axes and with apparent area

0
A(o) = Ao dﬁ%, (4.6)
where §(o) is defined by
2
6(c) — sh (o) = A—"O.

In particular, for an infinitesimal erosion, we have the canonical expansion

AT (17) = AT (0) + ﬁ-wr O(t?).
Proof :
M(t.)
M(t,)
Vo
0,

Figure 4.4: Affine erosion of a hyperbola

Let (O, w1, v2) be an affine basis with same axes as the hyperbola C. In this basis, a parametric
equation of C is given by

Ao

M(t) = (X(t),Y () = ale', e™), with o* = Tor, o]

Let us now consider two points M (t;) and M (tz) of C with t; =t — & and t, = t + £ (see Figure

4.4) . In order that the chord set (¢1,¢;) of C has area o, we should have
o 1 b

' 1
orog] = 2, MOMO1d A+ SM(G) = M), M(t)]
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1 2 dX dY 1

= = Y— - X—dt —(X(t)Y () =Y ()X (¢
2.y, dt dt "’2( (t)Y (t2) = Y (t1) X (t2))
a2 t2 2

= — e~tel +ele tdt + a—(e_e — 60)
2/, 2

= a*(# —sho).

Since 0,(C) = 400, Theorem 1 ensures that the affine erosion of C is the set of the middle

points of such o-chord segments, i.e.

a [ [ [ [ 0
P(t) = 5 (et_5 +efte et 4 e_t_5) = ach§ (ef e,
As 8 does not depend on ¢, this proves that the affine erosion acts on C as a homothetic trans-

formation with center O and ratio Chg7 and

o 20
§—shg=—— =",
a [1)17’02] AO

As regards the canonical expansion of A(t) near t = 0, the computation is the same as for

the ellipse, except that the constant 7 disappears, so that the coefficient ¢, % becomes \3/% O

Remark : One can be surprised that # does not depend on ¢. It can be simply explained by the
fact that the parametric representation of the hyperbola we used is, up to a multiplicative factor,
the affine abscissa representation, and since the affine curvature of a hyperbola is constant, the

area of a o-chord set (¢,¢+ z) only depends on z.

Let us now evaluate A(c) when ¢ tends to infinity. We have

() 0 20
—0(o)y — 22
2 + O(e ) 1407
which gives
4o 1
(s) — 27 -
e m + O(U).

Replacing this expression in Equation 4.6 yields

Alo) = Ao (e%f) +2+ O(e—%)))

Hence, A(o) admits an asymptotic linear expansion at infinity. Figure 4.5 represents the nor-

malized apparent area 4- depending on the normalized erosion parameter 2, for the affine
AO AO ’

erosion of a hyperbola.
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A
AO

2

> q

0

Figure 4.5: Area evolution for the affine erosion of a hyperbola

4.3.2 Affine scale space

The affine scale space of a hyperbola has been computed by Alvarez and Morales in [5]. Here

we use a different parameterization.

Proposition 15 The affine scale space at scale t of a hyperbola with apparent area Ag is a
hyperbola with same axes and whose apparent area satisfies
4

2
AT(t) = AS + 3t (4.7)

Proof :

Let Hg be a hyperbola with apparent area Ag and R = (O, w1, v2) an orthonormal basis of
the plane, we can find an affine map with determinant 1 which transforms the axes of Hy into

(O, ;) and (O, vy), so that Hy = ¢(Hyp) can be represented in R by the function
A
y(e) =5

22
Now, let us consider a family of hyperbolae H; = M (-,t) of apparent area A(t) > 0 defined by

A(t)
(0,1 = 50
On one hand,
dy _ A
o 2z’

and on the other hand,

9y \T _ AT
ox? oz
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Consequently, the family H; is the scale space of Hy as soon as Equation 4.2 is satisfied, i.e. as

soon as A(t) is solution of the differential equation

W=

Al(t) =243 (t).

Solving this equation yields A
2
AT(t) = AS + 3t (4.8)

Hence, the scale space of Hy, given by qb_l(f{t), is the one announced in Proposition 15, and

since the apparent area is invariant under ¢~!, Equation 4.8 remains true. O

Figure 4.6 represents the compared apparent areas obtained on a hyperbola with the affine
erosion F, and with the normalized affine scale space ASS; (t = wag). As for ellipses, notice

how close the affine scale space and the affine erosion behave.

2)

1+ 2/3

o &)

1

Figure 4.6: Canonical area evolution for the affine erosion of a hyperbola

4.4 Affine erosion and scale space of a parabola

Proposition 16 The o-affine erosion of the parabola of equation y = px? in an orthonormal

basis is the translated parabola of equation

2
N
y = pe® +piot (Z) ’ (4.9)

in the same basis. In particular, Eys/2 acts as a semi-group operator upon the family of parabolae
Py iy = pa? + X since
Egyyzre 0 E(h2)3/2(PA) = E(h1-|—h2)3/2(P/\)-

A consequence is the exact equality

ASS,w(P\) = Epaye (P,
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where as usual

Proof :

Since a parabola is a semi-closed convex curve with o, = +o00, we know from Theorem 1 that
its o-affine erosion is given by the set of the middle points of its o-chord segments. Consider a
o-chord (z — &,z + &) of the parabola y = pz?, the resulting middle point is (z,y,(z)) where
(2 -0+ (x+8)?

Yo (z) =p 5 = p(a? + §%).

Besides, a simple computation yields
z+6

o = &pllx =8+ (z+0)} - /x—é psids

= 20p(z* +48%) — g[(ac +6)° — (xz = 0)7]
iy
3

and finally,

2
Yo (z) = pa® +p (%U) = pa?+ pod (ﬁ)

2
Consequently, Eyae(P\) = Pytan where ao = p% (%) ®, which establishes the announced semi-
group property. But since ASS,.} is the tangent operator to E;s/., we have (as we shall prove
later)

ASSun(Py) = lim [Euer| (P = Bjap(Py).

We can also check this result directly by using Equation 4.2. Taking the second order derivative
with respect to z in Equation 4.9 yields

0%y
Z 7 _9
8$2 p7

so that @ — y(x,t) represents the affine scale space of P} as soon as

39_ 1
FTi (2p)*.

Consequently, ASS, ,(Fo) is the curve given by

2
y(z,t) = pa’ + (2p)7 - wh = pa® + pSh G) K
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4.5 Affine erosion of a triangle

The complete description of the affline erosion of a polygon will be given further. Here we just
deal with the simplest case, namely the triangle. This case is interesting because all triangles
are equivalents in Affine Geometry. One may refer to Chapter 6 (numerical scheme) for the

precise description on the affine erosion of a general polygon.

Proposition 17 The affine erosion of a triangle is a “hyperbolic triangle”, i.e. the concatena-

tion of three hyperbola pieces, each one given in barycentric coordinates by the equation
2 1 1
i —t T
e e, ——e" —e t<In| —=—4/——2
et bl (ﬁ : )
In particular, the extinction scale of a unit area triangle is

! 0,444
0. = - =10,
9

Figure 4.7: Affine erosions of a triangle for different scales
Notice that this is NOT the scale space spanned by the iteration of the affine erosion ! Each
curve represents the action of the affine erosion on the initial triangle, for different values of the
erosion area.

Proof :

1. First, notice that we can find an affine map which transforms a given triangle into a unit
area equilateral triangle. Thus, it is sufficient to establish the proof for such a triangle thanks to

the affine invariance of the affine erosion (see Proposition 5). By symmetry, it is clear that the
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extinction point of an equilateral triangle is its center. As a consequence, the extinction point
of any triangle must be the barycenter of its vertices (notice that this property is false for other

polygons in general). One can check easily that the chord set of minimum area which contains

the barycenter of a unit area equilateral triangle has area % (see Figure 4.8). Consequently, the

extinction scale of any triangle is % of its area.

Oe

Figure 4.8: Extinction area of a triangle

2. Consider the o-chords segments of the triangle whose endpoints lie on two fixed edges of
the triangle. The middle points of these o-chord segments span a piece of hyperbola, simply
because the affine erosion of a “corner” is, as we saw previously in Proposition 1, a piece of
hyperbola. Consequently, Proposition 8 ensures that the affine erosion of a triangle is the
concatenation of three pieces of hyperbola (there are exactly three different pairs of edges for a

triangle).

3. The previous hyperbolae can be described in barycentric coordinates by an equation of
the kind
(e e, K(o)—e' —e™?), 1 <t<ta. (4.10)

(we recall that (a,b, c) are barycentric coordinates of M in the affine basis (A, B, C) if and only
if (a+b+¢c)OM=aOA+bOB + cOC for any point O if the plane). Let us compute K (o).
Remember that if vy, vs, v3 are three vectors of R?, one has
[’l)l7 1)2] U3 —|— [’l)g7 1)3] m —|— [’l)37 ’l)l] Vo = 0.
Applying this to M A, M B and M B where ABC' is a triangle with unit area, we get
1 1 1
M= 3 [MA,MB]C+ 3 [MB,MC] A+ 3 [MC, MA]B.

In other words, a system of barycentric coordinates of M in the basis (A, B, () is given by the
areas of the triangles M BC', MC' A and M AB. Now, if we maket = 0in Equation 4.10, we obtain

the point M of Figure 4.9, which, according to the previous remark, can be represented in the

' 2
basis (A4, B,C') by (%, %,S). Moreover, one can see easily that .S = % and o = (%) .

Now, identifying the previous coordinates (up to a multiplicative factor) with (1,1, K (o) — 2),

we get
1—
K -2 =5,
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so that ) )

79

Now, a simple computation resulting from the permutation of the affine bases gives the bound

value

1 1
[t <In | —=—14/=—2].
Vo o

Then, by solving the equation

e
Q

we find again the extinction scale o =

A c B

Figure 4.9: Computing K (o)

Remark : As announced in the previous chapter, the triangle is an example of a simple convex

C-set whose extinction area is less than half of its area.

As far as we know, the affine scale space of a triangle has not been computed exactly, and it

is uncertain that there exists a simple analytic expression for it. However, we can observe that

for the reasons previously explained, the affine invariance constrains the extinction point of a

triangle to be its barycenter. Numerical simulations give for the normalized extinction area of

the affine scale space of a triangle the value o/ ~ 0,42 (it means that a unit area triangle and

an ellipse of area 20! disappear simultaneously).
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Chapter 5

Affine erosion of grey-level images

In this chapter, we first extend the affine erosion to any set of the plane and to lower semi-
continuous grey level images. Then, we study its asymptotic behaviour and prove the conver-
gence of the iterated affine erosion+4dilation towards the affine morphological scale space. We
also compare the affine erosion to classical affine inf-sup operators, and we establish the link

with Matheron’s Theorem (characterization of morphological operators).

5.1 Morphological principles

Suppose that we want to analyze an image u, given as a map u : R? — R. The first question we
should answer is : what relevant informations does contain u, physically speaking 7 A important
remark is that our interpretation of an image does not depend on its absolute contrast, but rather
on the fact that some objects are brighter than others (we can check this each time we put on
sunglasses). Hence, we should consider that a given image u (i.e. a map u : R* — R) carries the
same information as any image of the kind ¢(u), where g is an arbitrary contrast change, that
is to say an increasing and continuous scalar function. This point of view has been successfully
adopted by Mathematical Morphology (in the case of flat grey-scale kernels) to design efficient

operators for image analysis. Formally, we are led to consider equivalence classes of the relation
u~v & dg, v=g(u).

According to this equivalence, an image u reduces to the decreasing collection of its level sets!

() = o € R% u(@) > A},
Conversely, any image u can be recovered from the family of its level sets by the relation

u(z) = sup{A; z € U,},

'For our study, it is more convenient to consider the open level sets rather than the closed ones defined by

xa(u) = {z € R*; u(z) > A}

81
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and two images having the same collection of level sets are equivalent (see [41]).

From this point of view, it is natural to say that an operator T acting on images is a

morphological operator if it satisfy the morphological invariance described in Chapter 2 :

[Morphological Invariance] : For any increasing continuous function g,
T(gou)=goT(u).

Although this idea is directly inspired from Mathematical Morphology, we must mention
that the previous definition of a morphological operator is different from what Serra calls a
morphological filter?. As well, the affine erosion we defined in Chapter 3 is not an erosion on a

lattice in Serra’s sense (see [70]). The reason is that the relation
E,(ANB) = E,(A)N E,(B)

is false in general (whereas it is true for the Euclidean erosion).

5.2 From sets to images

Let us consider an operator T" acting on sets : we would like to define a corresponding operator
T on an image u by applying T to the level sets of u. In other words, we ask the following
question : is there an operator 7" which satisfies yy(T'(u)) = T'(x(u)) for any X and a certain
class of images u 7 Obviously, T must satisfy some hypotheses because the level sets of an image
u satisfy the inclusion

Azpo = xa(w) C xulu)
and

Xoate(u) 7 xa(u)  as e\ 0.

This last relation means that € — y\4.(%) is nonincreasing and that
VA, () = [ xoage(w);
£>0
it is equivalent to say that
Ve, u(z) =sup{); z€ x\(u)}. (5.1)
From now on, O denotes the set of the open sets of R?* and LSC(RR?) the set of the lower

semi-continuous functions defined on R%. We recall that u : R?> — R is lower semi-continuous

(ls.c.) if and only if each level set of u is open.

Definition 13 An operator T acting on sets is nondecreasing if

VX,Y, XCY = T(X)cCT().

%in [70], an operator % is a morphological filter if it is both nondecreasing (v < v = (u) < ¥(v)) and
idempotent (¢ oy = ¢).
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Definition 14 A nondecreasing operator T : O w— O is /-continuous if

vixgeolN  x, X = T(X,) S T(X).

For a nondecreasing operator T : O +— O, it equivalent to say that T is -continuous or

that it is lower-semi-continuous for the so-called “hit and miss” topology® (see [69]).

Proposition 18 If T : O+ O is a nondecreasing /-continuous operator, then the relation

A (T'(u)) =T (xa(u) (5.2)

defines a unique operator T : LSC'(IR?) — LSC(R?). Moreover, T is a nondecreasing, morpho-
logical and 1-Lipschitz operator.

Proof :

1. If T exists, then it is unique. The reason is that Equation 5.1 rewritten for T(u) yields

Ve, T(u)(z)=sup{X; z e x\(T(u))},

and if T satisfies Equation 5.2, it is completely defined from T by

T(u)(z) =sup{r; & € T(xa(u))}. (5.3)

2. Let us now consider the operator defined by Equation 5.3, and prove that it satisfies

Equation 5.2. On one hand,

ze(T(w) = T(u)(z) >\
= dAg> A, z€ T(X/\o (u))
= z€T(x(u)),

the last inference arising from the monotonicity of T', because
A<Ao = xa(u) Cxalu) = T(xa(w) C T(xa(u)).
On the other hand, remember that

Xe (u) /l X (u) as € \l 07

and since T is lower semi-continuous we have

Tose(w) A Ta(w)  as = N\0

#This topology on open sets of the plane is spanned by the sets

Og17G27...Gp = {O S 07 K CO and Vl’ Gi ¢ 0}7

where K is a compact set and each GG; is an open set.



84 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGES

and in particular

U 700w () = T () = T([ xat<(w).

>0 e>0
Hence,
zeTnm) = 2€JT(0ue(w)
e>0
= Je>0, zcT(xrpe(u))
= >0, Tu)(z)>A+e
= T(u)(z) > A

= ze\(T(u).

As a consequence, T defined in Equation 5.3 satisfies Equation 5.2.

3. Let us check the announced properties of T

3.a. T is nondecreasing, and T inherits this property because of Equation 5.3. Indeed, if u;
and uy are two l.s.c. images such that uy < ug, then we have for any A, xa(u1) C xa(ug), and

consequently T'(u1) < T(up) because of Equation 5.3.

3.b. T is morphological because if g is a contrast change, i.e. an increasing continuous scalar

function, we have
(1) = X (g(w),

and Equation 5.3 ensures that

3.c. Let us prove that T is 1-Lipschitz. Let u and v be two l.s.c. images such that for any
x, |u(z) — v(z)| < k. The monotonicity of 7" yields

Vo, T(u—k)(@) < T(0)(@) < T(ut F)(2),
and since T'(u + k) = T(u) + k, we have for any ,
T (u)(&) — T(0) (@) < k.
Hence, we proved that 7' is 1-Lipschitz, i.e.

I () = T(0)lloe <l = v oo

A consequence is that 7' restricted to L is uniformly continuous. O

5.3 Affine erosion of grey level images

We would like to extend the affine erosion to grey-level images through the morphological level

set decomposition. For that purpose, we first need to define the affine erosion of any subset
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of the plane (or, at least, of any open set). But the geometrical definition of the affine erosion
(Definition 5) does not make sense for any subset of the plane, since in general its boundary is

not a curve in a reasonable sense.

We could use the following result due to E. Giusti [38] : if u is of bounded variation, then
its A-level sets are Caccioppoli sets for almost any A. This result could be of great interest for
our purpose since up to a negligeable set of points, the essential boundary of a Caccioppoli set

is made of a countable number of closed curves, for we have
llullpy = /length(GXA(u)) dx.

We prefer, however, to define the affine erosion of an image in a more simple way, using the

inclusion property.

Definition 15 The o-affine erosion of a set U C R? is the set

E,(U) = U E,(S).
S C—set, SCU

This definition makes sense because if U is a C-set, we know that for any C-set .S subset of U
we have I/,(S) C E,(U). Moreover, the extended operator E, is clearly nondecreasing because
if U C V, any C-set subset of U is also subset of V', that is

{SC—set; SCU} C {SC—set; SCV}
and consequently
E,(S) C UJ E,(S).
S C—set, SCU S C—set, SCV
Lemma 6 For any set U C R*, E,(U) is open.

Proof :

By Corollary 1 we know that for any C-set S, F,(S) is open, and consequently

E,(U) = UJ E,(S)
S C—set, SCU

is open as a reunion of open sets. O

Lemma 7 For any set U C R?, we have

E,(U) = UJ E,(S).
S bounded C—set, SCU
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Proof :
Since

EU)= | s
S C—set, SCU

we only need to prove Lemma 7 when U is a C-set.

1. We claim that there exists a nondecreasing sequence S,, of bounded C-sets such that
U=U,8S, and S,, C U for all n. Let us define

N A FE T B N
= — X |
2% [2n7 Qn] [2n7 omn

I (i,)) € Z?

and consider K, an increasing sequence of compact sets such that R? = U, K,. The increasing
sequence .5, defined as the topological opening of the union of the A?; for which A7, C UNK,,

satisfies the previous constraints.

2. Let M € E,(U), and suppose that M & U,E,(5,) (we are going to prove that this is
not possible). If we define D, as the line going through M and oriented by a € S, then for
any n we can find o, € S and a 0,-chord segment of S, included in D,, (and with the same
orientation), such that o, < 0. Now, up to a subsequence extraction, we can suppose that the
sequence (w,,0,) converges towards (&, ) € S x [0, 0].

Since F,(U) is open and M € E,(U) we can find a closed disk D(M,¢) with center M and
radius € > 0 such that D(M, <) C F,(U). Consider N the intersection between §D(M, <) and
Dsy 72 (see Figure 5.1). The line going through N and oriented by & defines on U a bounded
chord set K containing N, and for n large enough we have D,, N K = (), so that o, > area (K),
and letting n tend to infinity yields area (K) < & < o, which is in contradiction with N € E,(U).
|

Figure 5.1: For n large enough, D, N K = 0.

Proposition 19 The restriction F, : O — O is /-continuous.
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Proof :

Since F, is nondecreasing, we have to prove that for any nondecreasing sequence (X,) of

open sets,

U E-(X0) 2 E-( Xn).
nelN nelN

Let X = U, X, consider a bounded C-set S such that S C UX,, and suppose that for any n
we can find z,, € S\ X. Since S is compact, we can extract from (z,) a subsequence which
converges towards € S. But for any n, S\ X, is closed, and as z, € S\ X, for any k > n,
we have € S\ X,, for all n. This means z € S\ X, which is impossible, this set being empty
since S C X.

Consequently, there exists ng € N such that S C X,,,, which proves that

E,(S) C Ep(Xy,) C | Eo(Xn).
nEIN

The last inclusion being true for any bounded C-set S such that S C X, we deduce from Lemma
7 that

E,(X) = U E,(S) C | Eo(Xn).
S bounded C—set, SCX nelN

d

Now, since F, : O — O is nondecreasing and -continuous, we can define the affine erosion of

a lower semi-continuous image according to Proposition 18.
Definition 16 The o-affine erosion of a ls.c. image u : R* — R is the image

Eo(u) :z—sup{A € R; z € E,(x\(u))},

where xx(u) = {z; u(z) > A} is the A-level set of u.
Once again, we use the same notation for the affine erosion of an image, without risk of confusion.

Lemma 8 F, : LSC(R?) — LSC(RR?) is a nondecreasing, morphological, 1-Lipschitz and affine

mvariant operator.

Proof :

The first three properties are a consequence of Proposition 18. As regards the affine invari-

ance, we have to prove that for any affine map ¢,

Ecr~|det¢|(u) °0¢= ECT(U © ¢)

This is a consequence of Proposition 5, since y(u o ¢) = ¢(ya(u)). O
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Lemma 9 For any image u, E,(u) is nonincreasing with respect to o, i.e.

o1<0or = L, (u) > Ey,(u).

Proof :

This is a consequence of Lemma 2. O
Lemma 10 [f u is k-Lipschitz, so is F,(u).

Proof :
The map u being k-Lipschitz, we have

w(@) — Kyl < w(z+y) < u(z) + kllyll.

Considering this last inequality as the comparison between three functions of z (i.e. with y

fixed), the monotonicity and the translation invariance of E, yield
Eo(u)(@) = kllyll < Es(u)(2+y) < Eo(u)(@) + klyll,

which proves that E,(u) is k-Lipschitz. O

We just saw that the affine erosion satisfies three main axioms of the affine morphological

scale space, namely
[Global Comparison Principle] : u <v = F,(u) < E;(v).
[Morphology] : For every increasing continuous function ¢, F,(gou) = g o F,(u).
[Affine invariance] : For every affine map ¢, Fy.|gecg|(u) 0 ¢ = E,(uo ).

We shall prove later that the [Local Comparison Principle] is also satisfied by the affine

erosion. Thus, the major differences between the affine erosion and the AMSS are :

e The axiom [Contrast reversal] : T;(—u) = —T(u), which is satisfied by the AMSS but
not by the affine erosion. This leads us to define the dual operator to the affine erosion,

called affine dilation and satisfying

for any continuous image u. The relation
E;,oD,(—u)=—-D, 0 F,

ensures that the [Contrast reversal] axiom is asymptotically satisfied when the operator

D, o E, (or, equivalently, F, o D,) is iterated.
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e The semi-group property
Tipp =Ty o Ty,

which is not satisfied by the affine erosion, even for any scale normalization of the kind
Ty = Ey(p). This is the reason why we need to iterate the affine erosion (or, to be precise,

an associated alternate operator) in order to build a good approximation of the AMSS.

5.4 Comparison with the inf-sup operators

In this section, we compare the action of F, with the one of the inf-sup operator associated to
the basis B. made of all closed convex sets with area 1 and symmetrical with respect to 0. We

define

SI,(u)(z) = sup inf u(z++/o.y), and
BeB. YeB

IS, (u)(z) = inf sup u(z+ o.y).
BeBe yep

We know from [41] that if we iterate n times on a continuous periodic image ug the alternated
operator SI, o IS,, then as n — +o00, 0 — 0 with nos — t, we obtain the flow of images u(., )

which is a viscosity solution of the equation

d
SA | Du curv(u)51

ot

with initial condition u(-,0) = ug, ¢ being a positive constant. Notice that these morphological
operators on images can be simply extended to sets via Equation 5.2. For any subset U of the

plane, we define

SI,(U)y={zc R* SI,(1y(z)) =1},

which is equivalent to
SI,(Uy={zeU, dBeB, z++/o-BCU}.
Proposition 20 For any open set U and any scale o,
Sl (U) C E,(U) CU.

FEquivalently, for any lower semi-continuous image u,

Slyy(u) < Ey(u) < u.
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Figure 5.2: SI,(S) C E,(S5).

This result simply means that F, “erodes” a shape less than S1s, does.

Proof :

1. We first establish the proof for a C-set S. If M belongs to SI,(5), then there exists a
convex closed set B of area 20, symmetrical with respect to M, and contained in S. Now, if D
is a positive chord segment of S such that the associated chord set K contains M, let H be the
half plane containing K and delimited by the line supporting D (cf. Figure 5.2). Then, BN H
is connected (as the intersection of two convex sets) and contains M, so that it is contained in

K. Consequently, the symmetry of B yields
1
area (K) > jarea (B)=0

(the inequality is strict because B is closed and S is open), which means that M belongs to
FE,(S). Hence, for any C-set S we have S1y,(S) C E,(S).

2. If U is an open subset of the plane we have

U Shke(S) c U E.(S)=E.(U)cCU. (5.4)
S C—set, SCU S C—set, SCU

Now, if z € SI5,(U), we can find B € B, such that z+v20B C U. Let S. = &+(v/20+¢) é,
where é is the topological opening of B. Since B is compact and U is closed, the distance

between these disjoint sets is nonzero and consequently .S. C U for a certain £ > 0 small enough.

Thus, S is a C-set included in U and such that @ € SI5,(5.), and we get

zc UJ S, (S).
S C—set, SCU
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We just proved the inclusion

Sly,(U) C UJ S, (S). (5.5)
S C—set, SCU

Finally, Equations (5.4) and (5.5) imply as required
Sh,(U)C E,(U)ycU (5.6)

for any open set U.

3. If uy and uy are two images such that

VA7 X/\(ul) C X/\(u2)7

then Ve, wuj(z) < uz(e). Now, if u is a lower semi-continuous image, we can apply Equation 5.6
to x(u) to obtain
YA, Slas(xa(u)) C Es(xa(u)) C xa(u),

and since Equation 5.2 defines F, (u) and SI;,(u), we have

VA, xa(STas(u)) C xa(Es(u)) C xalu),

which proves that
Ve, Sy, (u)(z) < E,(u)(z) < u(z).

Remark : The preceeding result is not true for a closed set in general : for a closed disk D,
S1y,(D) is the closure of the open disk F,(D). One may also wonder if the reverse inclusion
E,(U) C SIy,(U) happens. For a triangle T with unit area, we have ST, (T) =0 < o > %

see Figure 5.3), whereas the corresponding extinction scale for F, is . More precisely, one
g ) P g P ¥

5
can prove that E,(T) # SIp,(T) for any scale 0 < o < 5. However, for regular convex sets and

small scales, this reverse inclusion happens.

Proposition 21 If S is a closed convex set whose boundary is C', then there is a limit scale

o1(S) > 0 such that Sy, (S) = E,(S) for all ¢ < 0y(9).

Proof :

1. Let S be a closed convex set whose boundary C is defined by a regular parameterization
C: 1 — C of class C''. We first prove that for o > 0 small enough and for any o-chord set Cf,
the set symmetrical to C; with respect to the middle point of [C'(s)C(¢)] is included in S.

l.a. Define o1 = area(S)/2. For any s € I and 0 < ¢ < oy, consider the unique o-
chord segment [C'(s)C'(t)] (where t depends on s and o) and I(s) the intersection between C
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Figure 5.3: The largest symmetric convex set contained in a unit area triangle has area 2/3.

I(s) :

Figure 5.4: Definition of a(s, o)

and the midperpendicular of (C'(s),C(t)) (see Figure 5.4). If ¢ = 0, C'(s) = C(t) and this
midperpendicular is the line which goes through C'(s) and which is orthogonal to the tangent to
Cin C(s) . We call a(s,o) the measure in ]0, 7] of the angle between C'(s)C(t) and C(s)1(s).
Since (s,0) — «(s,0) is continuous on the compact set I x [0, o1], necessarily
= inf ,
o (s,cr)EHIlX[O,crl] 04(5 U)

is nonzero and for any ¢ < 01 and s € I, we have a(s, o) > ag.

1.b. For any s € I, consider o(s) the area of the largest C-set C; such that
1
£C(5).C1) = 2o
(such a C-set exists because the map ¢t — Z(C’(s),C’(t)) increases continuously from 0 towards
27). Notice that if we had o(s) = 0 for some s, then C([s,?]) would be a segment, which is
impossible since Z(C’(s), C'(t)) # 0. Hence, o(s) = 0 is nonzero for all s € I, and since s — o(s)
is continuous on the compact set I, we have

o9 = irelga(s) > 0.
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l.c. Now we claim that for any ¢ < min(oy,02) and for any o-chord set Cf;, the set C’SJ
symmetric to Cs; with respect to the middle point of [C'(s)C'(t)] is included in S. Define € the
intersection between the tangents to C in C(s) and C(t), and © the point symmetric to Q with
respect to the middle point of [C'(s)C'(t)]. Since o < o9, we have

B = £(C"(s), C'(1)) €]0, al,
and as 0 < 01 we know that the triangle C'(s)C'(¢)J is included in S, .J being defined by
£(C(s)C(1),C(s) ) = £(C ()], C()C(s)) = ao

(see Figure 5.5). Now, as C; is included in the triangle C'(s)C'()Q, it is sufficient to prove that
Q belongs to the triangle C'(s)C/(¢).J. But this is a simple consequence of 8 < ag, because

0 < Z(C(5)C(1),C(5)) < 3

as well as

] Ct
L | Csi

Figure 5.5: C’SJ is included in S

2. In order to prove Proposition 21, according to Proposition 20 it is sufficient to check
that for o/ < min(oy,03), Ex/(S) C Sy, (S). Consider a point M € E,/(S) : necessarily, any
o-chord segment of S whose middle point is M is such that ¢ > ¢’ (and since S is convex,
there exists at least one such chord segment). But in this case, we proved on Step 1.c that we

can find a convex closed set B with area 20 (made from the symmetrization of a chord-set, see
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Figure 5.5), symmetrical with respect to M and contained in S. Applying on B a homothetic
transformation with center M and ratio y/o//o < 1, we obtain a convex closed set B’ with area
20', symmetrical with respect to M and contained in S. Consequently, M € SI,,/(S), and the

proof is complete. O

5.5 Asymptotic behaviour of the affine erosion

In the previous chapter, we investigated the asymptotic behaviour of the geometrical affine
erosion, and we proved that it was consistent with the affine scale space of curves. Hence, we
can expect the affine erosion of images to be consistent with the affine morphological scale space

(AMSS).

In [41], F.Guichard and J.-M.Morel proved that S, is (semi-)consistent with the AMSS. We

prove the same result for the affine erosion, i.e. that

Nt

FE,(u)=u+w- U§.|Du| [Curv_(u)]sl +O(09).

Here, r~— means min(r,0) and we keep the convention that if r < 0, rs = —|r . Using the
dual operator to affine erosion, the affine dilation (defined by D,(u) = —FE,(—u) as we saw
previously), we shall obtain the exact consistency with AMSS (i.e. curv(u) instead of curv™(u))

by considering the alternate operator D, o F, (or E, o D,).

The classical way (see [41]) to estimate the asymptotic behaviour of such operators is to

reduce the problem to quadratic forms by using a local comparison principle.

5.5.1 A local comparison principle

First, we need to define the concept of C-images (which are to images what C-sets are to sets)

and establish an approximation lemma.
Definition 17 An image v is a C-tmage if all of its non trivial level sets are C-sets.
By trivial set, we mean either the empty set or the whole plane.

Lemma 11 Consider a Lipschitz image u. Then, for any compact subset K of the plane and

any £ > 0, there exists a C-image u. such that |u — u.| < on K.

Proof :
u being k-Lipschitz on the compact set K, we first define the family of squares

ne

k-

Ai,j = [ai7 ai-l—l] X [ajv aj+1]7 (27]) € sz where apn =

9
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Now, we can let
us(w) = 1nf{u(y)1f((y)7 3(7/7])7 (1127 y) € AZ]}7

where 1g is the characteristic function of K (i.e. which equals 1 on K and 0 outside). This
definition ensures that all non trivial level sets of u. are C-sets (their boundaries are made of

polygons), and moreover we have
Ve, 0<u(z)lrx(z) — u(z) < k.diam (4;;) =«.

Hence, u. satisfies |u — u.| < e on K. O

Proposition 22 (Local Comparison Principle) Let u and v be two k-Lipschitz images such

that uw > v on the disk with center zy and radius r. Then we have, for any o > 0,

o (1) (20) > Eo(0)(20) — °2

Proof :

Given ¢ > 0, by Lemma 11 we can find a C-image w such that |w — u| < ¢ on the open disk
D(zg,r). Besides, we define w™ (respectively w™) as the C-image equal to w on D(zo,7) and
equal to +oo outside (resp. equal to w on D(zg,7) and to —oc outside). Notice that infinite
values are convenient here, but we could use finite (and large enough) values as well. We are

going to prove that
Eo(w™)(@0) > Ep(w?)(20) = —+O(e) (5.7)

as € — 0. For that purpose, we consider «,  such that
Ey(w™)(mo) < a < 3 < Ey(wh) ()

(if Ey(w™) (=) = E,(wt)(zo), this is not possible, but we are done since Equation 5.7 is clearly
satisfied).

The definition of £, states the existence of a chord (A, B) of the level set xz(w™) such that
xy € [AB] and the associated chord set K has an area not larger than o (see Figure 5.6). The
construction of w™ ensures that K is bounded. Besides, no piece of [AB] can define a chord
set of x(w™) contained in K because since this chord set would have an area not larger than
o, it would be a contradiction to the fact that o > FE,(w™)(#). As a consequence, the set
C=0xo(w™)NKND(xy,r) “attains” the boundary of the circle D(zg, r). If we define as well
C' = dxp(wt) N KN D(zy,r) and

d=inf{|z— |; (z,2) € C xC'},
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on the one side we have

B — o < 2+ kd, (5.8)

because u is k-Lipschitz and |w — u| < ¢ on D(zg,r). On the other side, one can easily inscribe

in K a triangle with basis r and height d, which proves that area (K) > rd, and consequently
o> rd. (5.9)

Finally, Equations 5.8 and 5.9 give

ﬁ_a<k£+2€7
r

and considering the limits o — F,(w™)(ao) and 8 — F,(w™)(z), we obtain the desired Equa-
tion 5.7.

Last, as we have both u > w™ —¢ and v < wT +¢ on R?, we can apply twice the monotonicity

of F, to deduce from Equation 5.7 that

By (u)(0) 2> Eq(v)(20) — ==+ O(e),

and letting € — 0 achieves the proof. O

. Dbn
Figure 5.6: A local comparison principle

Corollary 7 (Uniform Local Comparison Principle) Let u and v be two k-Lipschitz im-

ages such that u > v on D(zg,r). Then,

Yz € D(ao, g), Eq(u)(2) > Eq(v)(z) - 2’“7"

Proof :

r

For any ¢ € D(=o, 5) we can apply Proposition 22 since u > v on D(z, 5) and we obtain the

desired inequality. O
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5.5.2 Consistency

Lemma 12 (Locality) Let u and v be two k-Lipschitz images such that
u(z) — v(z) = O(lz — =o|*) as = — .

Then,

Proof :

We borrow the proof from [41]. Since u(z) — v(z) = O(|& — x|?), we can find two positive

numbers B and C such that
Vr < R, V& € D(zo,7), v(z)—Cr® < u(z) <v(z) +Cr’.

These three functions are k-Lipschitz, so we can apply the local comparison principle (Proposi-

tion 22) to obtain, for any o,

o (0) 20) ~ Cr° = 2% < 5, () (0) < B () (m0) + €0 4 27

4

Choosing 0 = r*, we get as announced

Remark : Lemma 12 remains true if we write “uniformly with respect to @5” for the hypothesis

and the conclusion.

Lemma 13 If u is a polynomial whose degree is at most 2, then for any =y € R?,

E, (u)(20) = u(0) +w - 05 - | Dul(zo) [y~ (u) (20)]5 + O(c7). (5.10)

Proof :

If the degree of w is strictly less than 2, then F,(u) = u, and Equation 5.10 is clearly
satisfied. Otherwise, according to the morphological invariance of F,, we can assume that
u(xy) = 0. Moreover, we can chose a (positively oriented) system of coordinates such that
zo = (2o, yO)T and either

u((z,y)") = az® + by?
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or
u((z,y)") = az’® + by,
where (a,b) € R x {—1,1}. If u((z,y)T) does not depend on z, the level lines of u are straight
lines and Equation 5.10 is clearly satisfied. Hence, we suppose a # 0 in the following.
L. Case u((z,y)T) = aa® + by.

We deal with the case b = 1, the case b = —1 being similar. The level lines of u are parabolae,

so that we can use Proposition 16 to compute
Ey(u)(zo) =X = @€ E,({y=—az®+)})
= @ e{y=—ar’+w((-20)") 07 +bA}),
so that

2
g3,

W=

Eq(u)(20) = u(@o) +w((2a)7)
On the other hand,

1
3

Alw)(eo) = | ({0021, = 2,00, + (1)) | (a0) = (207)2,
so that u satisfies Equation 5.10 (with no remainder).

2. Case u((z,y)T) = az? + by?, ab > 0.

The case b = 1 is obvious since F,(u) = w and A(u) = 0. Thus we suppose that b = —1
and @ < 0. The level line {u(z) = A} is empty if A > 0, and it is an ellipse with area
7|A||a|~1/? otherwise. Hence, we can apply Proposition 12 and a simple computation based on

the asymptotic expansion (4.4) yields

ol

B, (u) (o) = u(zmo) +w(Sau(ao)) Tot + O(0?),

and
1
A(u)(z0) = (Sa(axf — y5))®
as expected.
3. Case u((z,y)T) = ax? + by?, ab < 0.
The level lines of u are hyperbolae, and the reasoning is similar to Step 2 using Proposition

14. O

Proposition 23 (Consistency) Let u be a k-Lipschitz image of class C* near zy, then as

o — 0,
Ep(u)(mo) = u(@o)+w- o7 -[Dul(zo) [y~ (u)(2)]F + O(o%),
Dy (u)(20) = u(ao) +w -0 - [Dul(zo) [yF(u)(20)]7 + O(07),
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Proof :

u being a C® near xy, we can consider i, its Taylor expansion at order 2 near z. Thus,
u(z) = i(z) + O(|z - 2o|”)
as ¢ — xp. From Lemma 12, we deduce that as ¢ — 0,
Eq(u)(z0) — £y (i) (m) = O(c'Y),
and using Lemma 13 we get as expected
Eq(u)(20) = u(@o) +w - 05 - | Dul(mo) [y (u) (@0)]* +O(o%).

The consistency for D, follows immediatly since D, (u) = —F,(—u). O

Remark : In fact, the consistency is uniform in a neighborhood of .

Next, we extend this consistency property to the alternate operators D, o E, and F, o D,.

We first prove that they satisfy a Local Comparison Principle.

Lemma 14 Let u and v be two k-Lipschitz images such that w > v on D(zg,r). Then,

Va ¢ D($07£)7 DCTOECT(U)(w) ZDUOEU(U)(:I;)_ 616_0-7
r

and the same inequality holds for E, o D,.

Proof :

The proof is a direct consequence of Lemma 7. We know that for € D(#o, 5), we have

By (u) (@) > , (v) (2) ~ 220
which we rewrite .
() (@) >~ (u) (o) - 22

Now, from Lemma 10, —F, (u) is also k-Lipschitz, as well as — F,(v) — @ Hence, we can apply

the Uniform Local Comparison Principle once again to obtain
Ve € D(zo,~), Es[—E,(v)(2)] > E, |~ By (u)(@) - —| - =2,

4 r r

which yields

as announced. |
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Theorem 4 (Consistency) Let u be a k-Lipschitz image of class C* near zg, then as o — 0,
Ty () (m0) = ul@o) +w - 05 - | Dul (o) [y () (m))* +O(0 ),

for both T, = D,oFE, and T, = E, 0 D,.

Proof :

We check that the proof of Proposition 23 can be applied here. First, the consistency of the
alternate operators for second order polynomials is straightforward since for such polynomials
FE,;0D,(u) and D, o E,(u) are both equal to either F,(u) or D,(u). Last, the locality property

of Lemma 12 for D, o F, and E, o D, is a direct consequence of Lemma 14. d

Remark : As for F,, one easily proves that the consistency property of Theorem 23 is uniform

near xg.

5.6 Using Matheron’s Theorem

There is another way to establish the consistency of the operator F, : it is based on Matheron’s

characterization of monotone morphological operators and on a consistency Theorem due to
F.Guichard and J.-M.Morel (see [41]).

Theorem 5 (Matheron) Let T be a translation invariant monotone® morphological’ operator

on a set of functions F containing the characteristic functions of all the level sets of the elements

of F. Then, one can find a family B of subsets of IR? such that

Yu € F, T(u)(x) =sup inf ulz+y).
(1)() = sup inf u(a+y)

Indeed, the operator F, being translation invariant, nondecreasing and morphological, the

Matheron’s characterization applies and we can write, for any l.s.c. image u,

By (u)(z) = sup it u(+ Vo - y).

We should take
B.={X CR* 0¢ E,(X)},

but from Lemma 7 we know that it is sufficient to take
B. = {X bounded C —set; 0 € F;(X)}.

Thus, F, belongs to the class of affine invariant inf-sup operators which have been studied in

[41]. In particular, we can expect to use the following consistency theorem :

*i.e. nondecreasing
®i.e. satisfying [Morphological Invariance].
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Theorem 6 (F.Guichard, J.-M.Morel) Let B be a localizable set of plane closed nonempty
bounded sets which is invariant by the special linear group SL(R*). Then, there exists two

constants ¢t and ¢~ depending on B such that, for any image u C* in a neighbourhood of x,

Binfg sup u(z+ /s - y) = u(ao) + 5°/° | Dulao)| g (curv(u) (o)) + o(s*?),
€be yeB

where ¢(r) = ctrrifr>0

= (—r)% if r <0.

To apply Theorem 6 to the affine erosion, the only requirement we have to check is that the

basis Be is localizable in the following sense (see [41]).

Proposition 24 (Localizability) The basis B, associated with the affine erosion operator is

localizable, i.e. there exists a constant ¢ > 0 such that

¥r > /e, VB € Be, 3B € B., B' C D(0,r) and (B, B) < -.
T

Here, the notation D(0,r) represents the open disk of radius r centered at the origin, and

d(B’, B) means the Hausdorff semi-distance between B’ and B, given by

§(B',B) = sup d(z',B) = sup inf |z—2/|.
T'cB’ wleB/$€B

Proof :
The proof is similar to the proof of the Local Comparison Principle (Proposition 22), which

is not surprising.

1. Given r > 1 and a set B element of B., we have 0 € IV(B) and by Definition of I (B)
we can find a C-set A included in B such that 0 € E4(A) (i.e. A € B.). We consider the
L1-Euclidean dilation of A restrained to the disk D(0,r), i.e.

B ={z € D(0,r); d(z, A) <

= | =

1.
B’ is a C-set containing AN D(0,r), contained in D(0,r), and

§(B',B) <4(B',A)+6(A,B) < % +0.
Now we are going to prove that B’ € B, that is to say that 0 € Fy(B').

Suppose that 0 belongs to D, a chord segment of B’ associated to a chord set K of area o

(see Figure 5.7). Two cases can be distinguished.
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lLa. If ANK C D(0,r), then a subset of K defines a chord set of A containing 0 and of area

no more than o. But since A € B, we necessarily have ¢ > 1.

1.b. If AN K is not a subset of D(0,r), which means that K N 9D(0,r) is not empty, then
we can easily inscribe in K a triangle of base larger than r and height % (see Figure 5.7), so that

we get 0 = area (K) > 1.

In both cases, 0 belongs to no 1-chord set of B’, so that B’ € B.. Consequently, we proved
that
Vr > /e, VB € B., 3B € B. (C —set), B' C D(0,r) and (B, B) <

9

1
,
which ensures that B, is localizable with a constant ¢ = 1. |

Cbon

Figure 5.7: Area of K is greater than 1

Hence, Theorem 6 applies to B, and we have, for any image C® near g,

Fo () (o) = sup inf u(eo + /7 - y) = (o) + [ Du(ao)lg (curv(u) (20)) o7 +o(71), (5.11)

where g(r) = ctrrifr>0

= ¢ (—r)% if r <0.
2/3
At this stage, one easily checks that ¢t =0 and ¢ =w = % (%) .

In [41], the consistency of the alternate operators is proved only when B is made of all
unit area convex sets symmetrical with respect to 0, and the proof is based on a more precise

estimation of the inf-sup and sup-inf operators in this case.

However, it seems that the method we used in the previous section still works for any

localizable basis of structuring elements invariant by SL(R?) (and in particular for B.). Since



5.7. CONVERGENCE 103

the consistency mainly requires a local comparison principle, we only need to check that the
alternate operators I.S;0 51 and SI; 015, satisfy the following local comparison principle. The

proof is more or less the same as for Lemma 14.

Lemma 15 If B is localizable and invariant by SL(R?), and if u and v are two k-Lipschitz

unctions in D(zg, r) satisfying w < v in D(zg, 1), then for any s < ¢~ 'r?
f 05 ying ~ 05 » Yy ~ »

1S, 0 SI,(u) (o) < 1S 0 ST,(v) (o) + kc;, (5.12)
where ¢ depends only on B. The same property holds for 1550 SI;.

Proof :

First, we know from [41] that (5.12) is satisfied for both S/, and IS, taking ¢ = ¢g. But
since ¢~'r? does not depend on zy, (5.12) is satisfied for SI; and IS, in the whole disk D(wzo, 5)
as soon as s < 2¢~1r?/4, provided that we take ¢ = 2¢5. Hence, we can apply once again the
Local Comparison Principle to deduce that for any s < ¢71r? (5.12) is satisfied for 15,0 S/,
and SI; o0 1S,, with ¢ = 4e¢p. O

Hence, we can generalize the consistency property of [41] for the alternate operators 5505

and ST; o IS, for any localizable and affine-invariant basis of structuring elements.

5.7 Convergence

As we know that the affine erosion of images is consistent with the AMSS, it is natural to
wonder whether the iterated infinitesimal affine erosion spans exactly the affine morphological
scale space. The answer is yes, and the proof is classical (see [9], [22], [41] and [20]). The only

refinement we bring is that we allow non uniform subdivisions.

Definition 18 A subdivision of an interval [a,b] is a finite sequence s = (sg, $1, . ..S,) such that

a=8)<5 <...<8, =b. The step of s is

|s| = sup (s; — si-1).
1<i€n

In the following definition, S(R?) is the set of 2 x 2 symmetric real matrices.

Definition 19 A function I : S(R*) x R* — R? is elliptic if
Vip, X,Y)e R*x S(R*) x S(R*), X<Y = F(X,p)>F(Y,p).
Theorem 7 Let F be a continuous elliptic function, and T} an operator on Lipschitz images

(the Lipschitz constant being preserved). Suppose that T}, commutes with additions of constants,

contrast changes and translations, and that for any u C® near z,

Th(u)(20) = u(@o) + h F(D*u(zo), Du(zo)) + o(h). (5.13)
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Given a Lipschitz image ug, we define, for any subdivision s of [0,1],
ug(e,0) = ug(z) and

us(®, 541) = Toiyy—ss us(, s;).
Then, as |s| — 0, us(.,t) converges uniformly on every compact subset of the plane towards a

function & — u(=,t), the unique viscosity solution of

ou 9
E_F(D w, Du)

u(z,0) = uo(z).

The proof can be found in [41] for example.

Corollary 8 Let ug be a Lipschitz image, and us(-, s;) the filtered images obtained as in theorem
7. Then, as |s| = 0, us(.,t) converges uniformly on every compact subset of the plane to the

unique viscosity solution of the AMSS partial differential equation

94— - IDulg(enrs(u),
subject to initial condition u(z,0) = uo(z), where
g(c) = ()3 if Ty = Epp,
= (¢7)5 if T = Dype,

.
C3 lf Th = Eh3/2 (0] Dh3/2 or Th = Dh3/2 (0] Eh3/2'

N

. _ 13
with as usual w = 5 (5)

Proof :

We apply the previous theorem to the operators I s/2, Dys/2, ... and their associated contin-
uous elliptic function

F(D*u, Du) = w - | Du|g(curv(u)).

The required consistency property (Equation 5.13) is a direct consequence of Theorem 4. O

Remark : Following [22], we could also use the mean
1
My, = §(Eh3/2 + Dh3/2)

instead of the alternate operators Fs/2 o Dyasps and Dyajs o Eya/2. The consistency follows
immediatly from the consistency of £/, and D,s/,, and the convergence theorem still applies.
This “mean” operator has one advantage : it is symmetric, so that the resulting scheme is fully
invariant under a contrast reversal (whereas the alternate scheme is only asymptoticly invariant
under a contrast reversal). However, M}, does not satisfy the morphological invariance axiom,

and it creates new grey levels on images.



Chapter 6

Numerical scheme

Numerically, a curve is nothing but a finite set of numbers which are interpreted as coordinates
or parameters to produce a continuous curve. The simplest way to represent a curve numerically
is to define it as a polygon, but some higher order representations, e.g. splines, have appeared

to be more efficient for some applications.

Many reasons lead to choose the polygonal representation to implement the affine erosion
on curves. The polygonal representation is very simple, affine invariant, and the level lines of a
grey-level discrete image are naturally defined as polygons if we consider the pixels as squares.
But the major advantage of this representation in our case is, as we shall see further, that we
can compute ezactly the affine erosion of a polygon. The lack of regularity of polygons (not C*
everywhere) shall not be a problem, since most of the previous analyses apply to piecewise C'!

curves.

Obviously, neither the affine erosion nor the AMSS of a polygon is a polygon. But since
no simple dense set of parameterized curves satisfies this property (as far as we know), an
approximation is always required to iterate the affine erosion. The main advantage of being
able to compute exactly the affine erosion of a polygon is that we can fully dissociate the two
approzimate operations required to compute the AMSS : the scale quantization step (we have to
iterate the affine erosion several times) and the space quantization step, which is necessary to
work on discrete data. By processing these two steps successively and independently, we avoid
a classical trap which prevents geometrical algorithms from satisfying the [Inclusion Principle]
and [Affine Invariance] properties. In particular, our method sets no a priori relation between
the number of vertices of a polygon and the number of vertices of the polygon resulting on the
approximation of its affine scale space at any scale : this number can drastically increase (case
of a triangle) or decrease as well (case of a very “noisy” curve). In other words, our algorithm
processes a polygon as a curve and not as a set of points, and for that reason it is not a point

evolution scheme.

In this chapter, we describe exactly the affine erosion of a polygon, convex or not. Then

we give a simple numerical algorithm to compute the affine erosion of convex polygons, as well

105



106 CHAPTER 6. NUMERICAL SCHEME

as an exact algorithm in the general case. We also present briefly a simplified algorithm which

runs faster, and produces similar results.

6.1 Affine erosion of a polygon
6.1.1 Regular convex case

Proposition 25 Let P = P P;...P, be a convex polygon, and 0 < o < o,(P). The o-affine
erosion of P is a C! curve made of the concatenation of the pieces of hyperbolae H,; . defined by

Fquations 6.2 to 6.7, the couples (i, k) satisfying Fquation 6.1 and being sorted in lexical order.

Proof :

If P = PiP;...P, is a (positively oriented) convex polygon and 0 < ¢ < 0,(P), we know
from Theorem 1 that F,(P) is made exactly of the middle points of the o-chord segments of
P. Consider two non-parallel edges [P;,_y P;] and [PyPgy1], then there exists o-chords whose
endpoints lie on [P;_y P;] and [Py Pg41] if and only if

1 1
§[ka7]B]<U+Ui7k<§[IP1€+17]B—1]7 (61)
where [ is defined as
I:=(P_1P) N (PyPry). (6.2)
and
oi k= area (I P,...Py) (6.3)

(see Figure 6.1). In this case, we know from Proposition 1 that the middles of the o-chord

segments whose endpoints lie on [P,_1 P;| and [Py Pry1] span a piece of hyperbola

Hip: M) =T+ XMeIP+e'IP), t1 <t<ty (6.4)

)

whose apparent area is
o+o=2\[IP,IP],

o+ 0k
A= T Tk .
\ 207 173 (6:5)

We need to compute the endpoints of H;y, i.e. the value of ¢; and ¢;. Two cases happen

for ¢y : if area (I P,_1Py) > 0 + 0, i, there exists a o-chord segment [P;_y.J] where J € [P, Pr41]

so that

(see Figure 6.1), otherwise there exists a o-chord [J P;] where J € [P,_1 P;]. In the first case, we
have

I+4+2)-e [P = P_4,
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Figure 6.1: Piece of hyperbola resulting from two edges.

whereas

]-|-2,\-et1]Pk =P

for the alternative case. Symmetrically, one easily checks that if area (I P;FPyy1) > 0 + 055 we

have

I—I—Q/\-€t2IPk = Pri1,

and

T+2)-¢e7 2P, = P, otherwise.
In other words,

dist(I, Pi_y)

b= -1
L= TN dist(T, P)

if area (IP_1Py) >0+ 055, t3 = —In(2X) otherwise, (6.6)
dist(I, Pysy)

Ly =1
2= NN dist(T, By)

if area (I P;Pyy1) > 0+ 05k, ty =In(2X) otherwise. (6.7)

The admissible hyperbolae H;j are encountered on I, (P) in lexical order, that is H;j <
H jr means either “0 < ¢ or “4 =1 and k — ¢ < k' —i < k — ¢+ n modulo n”. The reason
is very simple : as we know that F,(P) is convex, we must consider the o-chords segments of
P in such an order that the angles of their directions increase continuously on S!. Thus, the

previous assertion simply results from the inequality
i<j<k = aPP)<a(PF) <a(PP;) < oPP)+2r,

where a(v) measures on S! the angle between a fixed vector and the vector v. a
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6.1.2 Non regular convex case (removing ghosts parts)

When P is a convex polygon and o > o,(P), we noticed in Chapter 3 (see Figure 3.13 for
example) that “ghosts parts” can appear in the curve made of the middle points of the o-chord
segments of P. We cannot avoid this situation since o, (P) = 0 for some polygons. Moreover, we
saw in Chapter 4 that we could hope to iterate the affine erosion with rather large scale steps ;
to this aim, we must be able to compute the affine erosion of any polygon with arbitrary large

scales, and not only when ¢ < o,(P).

Figure 6.2: Non regular chords span “ghost” hyperbolae.

We can see on Figure 6.2 that non-regular chords span “ghost parts”, which do not take
part of the affine erosion of . By the way, these “ghost parts” are also hyperbolae, and their
apparent area is equal to A — o + 0; 1, A being the area of P. Thus, we can forget these ghost
hyperbolae, and E,(P) is included in the collection of hyperbolae defined in Proposition 25,
with the restriction

[Pi—1 P, PyPyy1] > 0.

Now, in order to compute exactly the affine erosion of P, we have to compute hyperbolae
intersections in order to remove the remaining “ghost parts”. In general, computing the inter-
section between two hyperbolae reduces to an algebraic equation of degree 4, but in the situation
we are facing, one can see that when two pieces of hyperbola have a common intersection, they

must have a common axis, so that the problem reduces to a second degree equation which can be
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solved exactly. Hence, it is quite simple to compute the exact affine erosion of a convex polygon
for arbitrary large scales. In the next section, we investigate the general (and more complicated)

case of non-convex polygons.

6.1.3 General case (non convex polygons)

Proposition 26 The affine erosion of a (possibly non convex) polygon is one or several gen-
eralized “hyperbolic polygon”, resulting from the concatenation of segments and convex pieces of

hyperbolae.

The proofis straightforward from Proposition 10, because the affine erosion can only “create”

segments and hyperbolae pieces. If P = Py P, ... P, is a polygon, we can write

E,(P)=Z(P)- |J Co(P...Py),

1<2,k<n

where C, (P; ... Py) is the union of the chord sets of P, with area smaller than o, and resulting
from chord segments whose endpoints lie on the edges [P;P;y1] and [Py—1 P] (with the circular
conventions Py = P,, P,y1 = Py and when k< ¢, P... P, = PPiy1...PoPr... Pio1 Py).

Let P;... Py be a polygonal curve, and consider two points (A, B) € [P;Pi41] X [Pr—1Px]. We
shall say that the segment [AB] is occluded if it is not a chord segment of P = P, ... Py, i.e. if
for some j € {i+1,...,k— 2},

[AB] ([P, Py # 0.

Now, we shall say that the polygonal curve P = P;... Py is

e partially occluded if for at least one (A, B) € [P, Piy1[X]Py_1, P), the segment [AB] is

occluded,

e totally occluded if all segments [AB], (A, B) € [P, Pit1] X [Px-1, Px] are occluded.

If P;...Py is totally occluded, it is clear that Cy(P; ... Py) = 0. It is equivalent to say that
(P;Py) is not a chord of P.

Lemma 16 Suppose that P; ... Py is partially (but not totally) occluded, and [P; P41, Py—1Py] >
0. Then one can find (A, B) € [P;P,41] X [Pr—1Px] such that P,AP;41 ... Py_1 BPy is not occluded

and

Co(P;...Py) = Cy(PAPy, ... Py BP}).
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Proof :

More than a proof, we give an effective construction of A and B. The first remark is that if
Co(P;...P;) =0, we can choose A = P; and B = Pj. Hence, we suppose that C,(P;...P;) # 0
in the following.

Since [P;Pit1, Pr—1P;] > 0, we can find an affine map ¢ such such that det¢ = 1 and
&(P;) = (2;,y;) in an orthonormal basis, with z; = 2,41 = ys—1 =y = 0, 2 > 0, y; > 0,

Tp—1 < &) and y;41 < y; (see Figure 6.3).

Vi ¢

x|y

$}(II
z2(0

Figure 6.3: Solving partial occlusions.

Now, consider four positive real numbers a, b, z, y and look at Figure 6.3. The point M(a, b)

belongs to the boundary of the chord set K, of the corner ' = Ry x Ry if and only if

a b
2y,
r oy
In this case, we have
. bz —a) aly—Db) bz — a) ab?
K,,)=ab =ab ,
area (K, ) = ab+ 5 + 5 ab + 5 +2($—a)

and we can deduce that the o-chord set of C defined from the segment [(x,0), (0,2%] contains

M if and only if z belongs to the interval

+ <

b(z — a) ab?
2 2(z — a) 7

I, (a,b)= {w, ab +

An explicit computation gives

I,(a,b) = [% (1— 1—27“()) % (1“/1_27@1))]7
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with the conventions I, (a,b) = () if the square root is not defined, and I, (a,b) = R if one of a,b

is not positive.

Let us now define

JII ﬂ Icr(xjvyj)

i2<i<h—2
(with the convention J; =R if ¢ +2 > k — 2), and

20 20

Jy = 0, 25— M max(0, g
2 [maX( y Uk 1)7$k:| |:yi7max(07yi+1)

(with the convention 1/0 = 4+o00). Since we supposed Cy(P;...P;) # @, J; N J3 is not empty

and we can write J; N.Jy = [21, 22]. Then, one checks easily that the two points

A= (0.2)  and B=o(,0)

Z2

satisfy the conclusion of the Lemma. O

We investigate the possible “shapes” of C,(P; ... P). According to the previous Lemma, we
can suppose without loss of generality that no occlusions appear. In the following, area (P; ... Px)

means the algebraic area of the polygon P;Fiy1 ... Fy, defined for example by

1
area(P;...P) == > [PP), PPiy].

i<j<k

If area (P41 ...P,—1) > o, any chord segment whose endpoints lie on [P, Pi11] and [Py_1 P]
defines a chord set of area greater than o, so that C,(P;...P;) = 0. Hence, we shall suppose

that area (P41 ...P,—1) < o in the three following cases which remain.

e case 1 (regular case) : If area(P,...P;) > o and [P,Py1, Pr—1P:] > 0, the inside
boundary of C,(P;...P;) is made of a piece of hyperbola, completed with two half-chord seg-

ments at its endpoints (see Figure 6.4).

e case 2 (reverse case) : If area(F;...P;) > o and [P,P11, Pr_1F:] < 0 the inside
boundary of C,(P;...Py) is a polygonal curve of the kind AQB, where (A, B) € [PiP41] X
[Pr—1Px]. The point Q is obtained as the intersection between the two o-chord segments defined
from A and B. Remember that as in the convex case, either A = P; or (A, Py_1) is a o-chord
(and a symmetrical alternative holds for B). As we noticed previously, the ghost hyperbola
spanned by the o-chord segments is strictly contained in C,(F;...F;) and does not contribute

to its boundary (see Figure 6.5).

e case 3 (sub-area case) : If area(P,...P;) < o, the inside boundary of C,(P;...P;) is
simply the segment P;Pj4.
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Figure 6.4: Regular case.

Figure 6.5: Reverse case.
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6.2 Algorithm

Now are now in position to describe an ezact algorithm to compute the affine erosion of any

polygon. It consists of three steps.

Step A : We collect all the pieces of curves which can possibly be part of E,(P). As we noticed

previously, these pieces are of three kinds (see Figure 6.6).

1. The valid pieces of hyperbola H; j described previously, completed with their two half
chord segments at their endpoints. As we noticed before, the interval [t,t5] defining
each piece of hyperbola (Equation 6.4) may have to be shortened in case of partial

occlusions (see Lemma 16).

2. The two “limit” o-chord segments of each ghost piece of hyperbola resulting from

non-regular chords.

3. The o'-chord segments (0 < ¢’ < o) defined by two vertices in the sub-area case.

Figure 6.6: The three kinds of curves encountered in the affine erosion of a polygon

Step B : We remove the useless pieces of curves according to their position. More precisely, with
each piece of curve C obtained in step A we associate two numbers a(C), b(C) representing
the starting point of the first chord segment spanning C and the endpoint of the last chord
segment spanning C : since these points belong to the polygon P, we can represent them as
numbers ¢+, meaning the point (1 —«)P;+aP,41. The key point of this representation is
that two pieces of curves C; and Cs obtained in Step A have a common intersection if and
only if the intervals [ay, ;] and [ag, by] are not disjoint. Therefore, if a1 < ay < by < by,

the piece of curve Cy is useless and can be removed.

Step C : We compute the intersections between the remaining pieces of curves (sorted with respect

with their starting number a). At this stage, we may have to compute intersections between
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two segments, between a segment and an hyperbola, or between two hyperbolae. The two
first cases reduce to equations of degree 1 and 2 respectively. The last case (intersection
of two hyperbolae) can be more difficult. If the two hyperbolae have a common axis, then
the intersection equation is of degree 2 and can be solved easily. However, in more general
cases (which happen), we can have two solve an algebraic equation of degree 4 ; if so, we

compute the intersection by using Newton’s algorithm, which converges in a few iterations.

Now, for each intersection, we remove from each of the two curves the parts which are “on
the right” of the other one, according to the definition of the affine erosion. We have to
maintain — at least, formally— two data structures to process this step correctly : one is
the original set of curves obtained from step B, the other is a copy of these curves, updated

iteratively as we just explained.

We must mention that many intersections simply result from two successive hyperbolae as
in the convex case ; to process these intersections, no computation is required : one only

needs to remove the two corresponding half-chord segments.

Finally, we obtain the affine erosion of the polygon as the concatenation (in the natural
order) of the pieces of curves obtained from step C. This algorithm is a bit heavy (about 1600
lines of C source code), but not too slow for reasonable polygons (1 second or so for a polygon
with 100 vertices). One must be careful when computing the intersections, because of the finite
numerical precision of the computer (this can be done by considering point equalities modulo a

relative error, for instance).

Figures 6.7, 6.8 and 6.9 are an example of the results we obtain after steps A, B and C.

4 .
=
/ n"&§

W
0

Figure 6.7: curves obtained ater step A

In this algorithm, we did not mention the problem of topological changes that occurs when
the initial polygon breaks into non connected parts (remember that the affine erosion does not

always preserve the connectedness). This problem is not very difficult to handle, but requires a
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Figure 6.8: curves obtained ater step B

Figure 6.9: curve obtained ater step C
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high computation cost : each time an hyperbola or a segment is computed, one must look for
a possible intersection with an edge of the polygon, and break the resulting curve into several

parts when the case happens. Fortunately, such external occlusions are seldom.

6.3 Affine subsampling and iteration

So far, we know how to compute exactly the affine erosion of a polygon. To iterate this process,
we need to quantize the resulting curve (which is, as we shown, a concatenation of hyperbola
pieces and segments) in order to get a new polygon. Fortunately, there is a simple way to sample

a piece of hyperbola in an affine-invariant way. Consider the parameterization
H : M(t) = Me'vy + e y), th <t <ty

then (¢,¢+ ) is an e-chord set of H if and only if ¢ = A?(sha — ), where sh denotes the
hyperbolic sine (see the proof of Proposition 14). Hence, the polygon FyP;...P, defined by

ko k
Po=M ((1 LAV —tg)
n n

is a discrete affine invariant quantization of H with “area step”

Given ¢ > 0, we can quantize the affine erosion of a polygon up to the area step £ by choosing,
for each piece of hyperbola, the minimum entire value of n such that £(n) < e. This can be

done, for instance, by tabling the inverse function n(s/A?) for the small values and using, for

/\2
n >~ —

Not surprisingly, this quantization step is a kind of discrete affine erosion of scale €. Thus, as

the large ones, the expansion

W=

we want to minimize its influence on the affine erosion, we must choose £ < o, where o is the
scale of the computed affine erosion. This condition forces the second iteration of F, to be
non-local in the sense that the o-chord sets of the resulting approximate polygon contain many
edges (i.e. k — ¢ > 1 for the valid H;y, see Figure 6.10). In that sense, our algorithm is quite
different from a local point evolution scheme, for which the scale quantization step must be
small compared to the space quantization step in order to ensure a minimum of stability. Here,
the inverse phenomenon happens : the scale quantization step (o) is much larger than the space
quantization step (). An important consequence is that we can effectively iterate only a few
times (i.e. with large scale steps) the affine erosion to compute the affine scale space. Indeed, we
do not loose accuracy since € can remain small and the affine erosion remains near its tangent

operator (the Affine Scale Space) even for rather large scales, as we noticed in Section 2.4.
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Figure 6.10: Two iterations of the affine erosion on a triangle. The second iteration is non-local
with respect to the quantization, since each piece of the second iteration curve depends on many
points of the first iteration one.

6.4 A simplified algorithm

Another way to implement the affine scale space is to iterate a pseudo affine erosion, written

E! . which processes separately the convex components of a given piecewise convex closed curve.

6.4.1 Pseudo affine erosion

If we want to define a kind of affine erosion for a non semi-closed curve ¢ — that is, a curve
with two endpoints —, we must choose a boundary condition. Our approach will be to fix these
endpoints : in practice, these endpoints will correspond to inflexion points of a larger curve,
and we know that these points do not move at order 1 since the curvature of the curve vanishes
at them. How can we define the affine erosion of ¢ 7 We shall not investigate the problem in
general, but one can see easily that for small scales, no external occlusions appear and c itself

is included in the boundary of

€y = U 9,

SeKs(c)

so that it makes sense to define F,(c) by
Jde, = ¢ |_| FE,(c),

the symbol U meaning a disjoint union (see Figure 6.11).

Let us call o,,(c) the maximum scale for which we can compute the affine erosion of ¢ as

described previously. If no external occlusion appear at any scale (i.e. it the two endpoints of ¢
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Figure 6.11: Affine erosion of a non semi-closed curve

are a non-zero chord of ¢), we restrain o,,(c) to the area of ¢ (defined as the area of the chord

set associated to the extremal points of ¢).

Given a piecewise convex closed curve C, we consider the canonical decomposition ¢ =
€1¢3 . .. ¢y, the curves ¢; being defined as the convex (or concave) curves extracted from C between
two successive junctions (see Chapter 3 and Figure 6.12). For any ¢ < ¢,,(C) = min; ,,(¢;), we

can define the pseudo affine erosion of ¢ by

EL(C) = Ey(c1) Ex(ca) ... Es(cn).

As for the affine erosion, one can prove that the pseudo affine erosion of a curve cannot have

any double junction.

Figure 6.12: Pseudo affine erosion of a closed curve
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6.4.2 Algorithm

The algorithm to compute F! (C) when C is a polygon is easy to devise. First, we remark that a
polygon has no double junctions, and that its simple junctions are the middle of “inflexion” edges.
Then, the algorithm to compute the affine erosion of each convex component of C is exactly the
one we described previously for convex polygons. Hence, computing E (C) is simpler and faster
than computing D, o E,(C), since it does not require to compute intersections in general (unless

non-regular chords happen, which is very rare for small scales).

It is clear that E! is consistent with the affine scale space. However, the inclusion property
is only satisfied for small scales, because if C and C’ are two piecewise convex closed curves, we

only have
Z(C) CZ(C") = Yo < min(0,(C),0,(C")), Z(EL(C)) CZ(E.L(C)).

Another drawback of this simplified algorithm is that if the curve C is very irregular, o, (C)
may be very small and a lot of iterations are required to compute the afline scale space of C at

a large scale. This happens because only a few inflexion points disappear at each iteration.

In practice, the simplified algorithm based on the pseudo affine erosion is faster and simpler.
We checked on experiments (see next chapter) that it produces similar results compared to the
exact three-steps algorithm we described previously, provided that the scale steps are chosen

small enough.
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