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Chapter 2The A�ne Scale Space2.1 Image analysis and scale spacesWhen devising an algorithm to analyze images, a major question must be raised : what kindof information are we looking for, and how can we extract it from the image ? In particular, itis clear that what we can see on an image depends on the focalization of the look we take atit : we cannot at the same time examine small details and recognize large structures. Hence,there is a natural scale parameter that cannot be eluded in the analysis process. This suggeststhat an image should be represented in a multiscale way, the smallest details being described atsmall scales and the largest ones at large scales. Such a multiscale representation of an imageis called a scale-space : to a raw image u0 we associate a continuous collection of images(u(t))t>0 that are obtained from u0 by a simpli�cation process which \eliminates" details as thescale increases. The collection of operators (Tt) that de�ne u(t) from u0 is called a multiscaleanalysis of images.From a mathematical point of view, an image shall be regarded in the following as a mapu0 : FR2 ! FR, the value u(x) corresponding to the grey-level1 (the luminance) at point x = (x; y)of the plane2. Then, a scale space is represented by a map u : FR2 � [0;+1[! FR, the thirdcoordinate being the scale t. A simple example of a linear scale space can be de�ned by the heatequation 8>><>>: @u@t = �uu(�; 0) = u0(�); (2.1)where � = @2@x2 + @2@y2 is the two-dimensional Laplacian operator. The simpli�cation processinduced by Equation 2.1 is an isotropic di�usion that can also be described by the convolutionof u0 with a two-dimensional Gaussian kernel. Although Equation 2.1 satis�es the requiredproperties to de�ne an interesting scale space, as we shall see later, it is not well adapted to1We do not consider the case of color images.2In practice, a grey-level image is represented by computers as a �nite two-dimensional array of integer values.23



24 CHAPTER 2. THE AFFINE SCALE SPACEimage analysis due to its linear nature. The main reason is that the image formation processresults from a superimposition of objects rather than from a linear combination of them.2.2 De�nitionThe a�ne scale space has been discovered a few years ago in its image and geometrical formu-lation (see [4] and [68]).2.2.1 Image formulationLet us �rst express it in terms of image processing. The a�ne morphological scale space (shortlywritten AMSS) is de�ned by the degenerated parabolic evolution equation8>><>>: @u@t = jDujcurv(u) 13u(�; 0) = u0(�): (2.2)The term Du = (ux; uy) represents the spatial gradient of u, ux and uy being short notationsfor the partial derivatives @u@x and @u@y . The second order operatorcurv(u) = div � DujDuj� = (ux)2uyy � 2uxuyuxy + (uy)2uxxjDuj3can be viewed as the curvature at point x of the level line3 of u going through x. In the following,we take the convention that r 13 means �jrj 13 when r is negative. When Du = 0, curv(u) is notde�ned, but jDujcurv(u) 13 = h(ux)2uyy � 2uxuyuxy + (uy)2uxxi13is naturally equal to zero, so that Equation 2.2 remains de�ned. Hence, from now on we assumethat jDujcurv(u) 13 is de�ned and equal to 0 when Du = 0.In fact, Equation 2.2 is a parabolic PDE of the kind@u@t = F (D2u;Du);where F : S(FR2) � FR2 ! FR is a continuous function, nondecreasing with respect to its �rstargument (for the usual order de�ned on S(FR2), the set of symmetric 2� 2 real matrices). Forthis kind of evolution equations, weak solutions |only continuous| have been de�ned, andare called for historical reasons viscosity solutions. We shall be more precise in Chapter 5, butone may refer to [10] or [27] for further details. The reason why Equation 2.2 is called A�neMorphological Scale Space comes from important properties of the associated multiscale analysis(Tt)t>0, de�ned by (Tt u0) (x) = u(x; t):3Of course, this makes sense only at points where the equation u = cte de�nes locally a smooth curve.



2.2. DEFINITION 25First, the nature of Equation 2.2 concedes a semi-group structure to this family of operators,inasmuch as Tt+s = Tt � Ts:Secondly, these operators are morphological, that is, they satisfy the property[Morphological Invariance] : For any nondecreasing (or nonincreasing) continuous functiong : FR! FR, 8u; 8t; Tt(g � u) = g � Tt(u):The fact that Tt commutes with any contrast change g implies that it operates on the level linesof u ; we shall give a geometric interpretation of this later. The word \a�ne" comes from aninteresting geometrical invariance :[A�ne invariance] : For any bijective a�ne map �,8t; 9t0; 8u; Tt(u � �) = Tt0(u) � �:By a�ne map, we mean any linear operator on FR2. If � belongs to the special linear group |i.e. det� = 1 |, we have Tt(u � �) = Tt(u) � �: Another relevant property of the semi-group(Tt) is the maximum principle, which gives sense to viscosity solutions for (2.2). This principlecan be expressed by[Comparison Principle] : 8u; v; u 6 v ) 8t > 0; Ttu 6 Ttv:A local version of this principle (called Local Comparison Principle) is also satis�ed (see Chap-ter 5). These principles are very important, and they guarantee that Equation 2.2 \simpli�es"the initial image u0 as the scale t increases. They also ensure numerical stability to associatedalgorithms.We shall come back to these fundamental properties, but it is interesting to mention thatthe AMSS is the only regular multiscale analysis which satis�es them. This was proved byL.Alvarez, F.Guichard, P.-L.Lions and J.-M.Morel in [4]. As regards the linear scale spacewe de�ned in introduction by Equation 2.1, it also satis�es the semi-group property and thecomparison principle, but it is neither a�ne invariant nor morphological. Figure 2.1 comparesthis scale space with the AMSS for an image of a cheetah.



26 CHAPTER 2. THE AFFINE SCALE SPACE

Figure 2.1: Two scale spaces of a cheetah image.The two images of �rst column are the same original image of a cheetah head. This image isanalyzed with two di�erent scale spaces : the a�ne morphological scale space (row 1) and thelinear scale space (row 2). Column 2 corresponds to a medium scale of analysis and column 3 toa larger scale. Notice how the a�ne morphological scale space preserves geometrical structures,whereas the linear scale space performs mainly a global blur.2.2.2 Geometric formulationWe now come to the geometric formulation of the a�ne scale space. Because of the morphologicalinvariance, the evolution of u0 according to Equation 2.2 is formally equivalent to the evolutionof its level curves. This curve evolution was discovered by G.Sapiro and A.Tannenbaum : itis the a�ne analog of the Euclidean shortening 
ow studied by M.Gage and R.S.Hamilton in[36] and M.A.Grayson in [39]. An initial curve p 7! C0(p) = C(p; 0) evolves according to theequation @C@t (p; t) = 
(p; t) 13N(p; t); (2.3)where 
(p; t) andN(p; t) are respectively the curvature and the normal vector of the curve C(�; t)in C(p; t). Replacing p with an a�ne arclength parameter s satisfying the constant determinantrelation "@C@s ; @2C@s2 # = 1;



2.2. DEFINITION 27

Figure 2.2: A�ne Scale Space of a \hand" curve.The scale of analysis is, from left to right, and then top to bottom : 0 (original curve), 1, 8, 200.It is clear that the original curve (top-left) cannot be directly analyzed by a shape recognitiondevice due to its very noisy aspect. This is the reason why we need to simplify it in the mostnatural possible way, which has been theoretically proven to be the a�ne scale space. To ensuregood performances of the shape recognition process, a high accuracy is needed in the computationof the scale space, even for large scales.



28 CHAPTER 2. THE AFFINE SCALE SPACEEquation 2.3 reduces to a nonlinear intrinsic heat equation@C@t = @2C@s2 :As for the image formulation, the collection of curves (C(�; t))t>0 is called A�ne Scale Space.We must mention the fact that the existence and uniqueness of a solution of (2.3) for aninitial non-convex curve has not been proved so far (whereas it has been proved in [36], [39] inthe Euclidean case). Hence, although the image and the geometrical formulations of the a�nescale space are formally equivalent, we shall rather use the �rst one to establish precise results.Figure 2.2 shows the geometrical a�ne scale space of a \real-world" curve that was obtainedfrom the photograph of a hand.2.2.3 ApplicationsBy now, the main application of the a�ne scale space is probably shape analysis. It was usedby T.Cohignac in [26] to perform an a�ne invariant shape recognition algorithm for partiallyoccluded shapes. In this case, classical methods based on a global a�ne normalization cannotbe used anymore, and one needs to characterize a shape locally by a�ne invariant descriptors.This was done by T.Cohignac by means of a technique which is directly related to the a�ne scalespace (see Figure 2.3). To perform an e�cient shape recognition, an accurate implementationof the a�ne scale space is required, both for small and for large scales.
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2.2. DEFINITION 29The AMSS model can also be viewed, when applied at small scales, as an a�ne invariantdenoising process, very e�cient |like the median �lter| in the case of non-additive noises(impulse noise4 for example). This property is illustrated on Figure 2.4.

Figure 2.4: Denoising e�ects of scale spaces.Top-Left : original Lena image,Top-Right : Lena image corrupted with 30% impulse noise ,Bottom-Left : Top-Right image smoothed by the linear scale space,Bottom-Right : Top-Right image smoothed by the AMSSDue to its morphological nature, the A�ne Morphological Scale Space (AMSS) performs a muchbetter noise removal than any linear process, especially in the case of a non-additive noise.4Corrupting an image with a 10% impulse noise means that random, independent and uniformly distributedvalues are attributed to a uncorrelated random 10% amount of the image pixels.



30 CHAPTER 2. THE AFFINE SCALE SPACE2.3 Numerical schemes for the A�ne Scale Space2.3.1 De�nitionsConsider a numerical scheme for the AMSS, described by the iteration of an operator T depend-ing on a scale step �t and a space step �x. As in [40], we shall say that T is consistent withthe AMSS if Tu� u�t ! jDujcurv(u) 13when the steps �x and �t tend to 0 in a suitable way. The scheme is convergent if the iterated�lter Tn = T � T � : : :T converges5 towards the AMSS at scale t when �t and �x tend to 0 ina suitable way, and n�t! t.2.3.2 The Osher-Sethian's methodSince the image formulation of the a�ne scale space (Equation 2.2) and the geometrical formu-lation (Equation 2.3) are equivalent, a numerical scheme for a formulation can be transposedinto a numerical scheme for the other one. S.Osher and J.A.Sethian successfully used an imageformulation to compute the a�ne scale space of a planar set (see [65], [71]). They also appliedto several other evolution equations the general idea of viewing a hypersurface as the level setof a scalar function. The great advantage of this method is that the topological changes onthe evolving set (e.g. loss of connectedness) are automatically handled by the function ; thisapproach permits complicated curve evolutions, but it inherits the drawbacks of the numericalscheme used for the associated scalar function. Moreover, it is likely | though not proven bynow | that no topological change can occur in the special case of the planar a�ne scale space(that is, a Jordan curve remains a Jordan curve), so that such an image formulation is notabsolutely required to compute the a�ne scale space of a curve.2.3.3 State of the artThe Bence-Merriman-Osher Algorithm for Mean Curvature MotionIn [12], J.Bence, B.Merriman and S.Osher proposed a very simple algorithm for computing themean curvature 
ow. The mean curvature scale space is de�ned by8>><>>: @u@t = jDujcurv(u)u(�; 0) = u0(�): (2.4)It is quite similar to the AMSS, except that it is not a�ne invariant. The Bence-Merriman-Osher scheme seems di�cult to extend to the a�ne case, but we would still like to mention it.The idea is to compute the evolution of a set by applying the heat equation to its characteristic5We shall be more precise later about the kind of convergence we mean (simple, uniform, . . . ).



2.3. NUMERICAL SCHEMES FOR THE AFFINE SCALE SPACE 31function, the result being thresholded after each iteration. In other words, the evolution of a setS0 is obtained by iterating the kernel H(t) = Q �Gt � �;where Q(u) = fx 2 FRn; u(x; t) > 12g; �(S)(x) = ( 1 if x 2 S;0 otherwise;and Gt is the Gaussian convolution kernel solving the heat equation@u@t = �u:As n ! 1, H(t=m)mS0 tends towards the mean curvature 
ow of S0 at scale t, at least in theviscosity sense for the associated characteristic function. This convergence property has beenproved by G.Barles and C.Georgelin in [9], and by L.C.Evans in [30]. H.Ishii also proposeda generalization in [45]. However, such a scheme does not remain consistent in its discreteimplementation, as F.Guichard remarked in [40].A quasilinear schemeAn e�cient quasilinear �nite di�erence scheme was proposed in 1993 by L.Alvarez and F.Guichard(see [40] for example). The idea is to iterate the discrete evolutionun+1(x) = un(x) + �t �A(un)(x);where A(u)(x) is a discrete approximation at point x of jDujcurv(u) 13 using the 9 values of u ona 3x3 neighborhood of x. They proved that one can choose A(u) in order that the approximationA(u) ' jDujcurv(u) 13 is exact for any polynomial u of degree 3. The resulting scheme is neithermorphological nor monotone, but is experimentally stable. Of course, such a local scheme cannotbe really a�ne invariant, because the neighborhood size is �xed in advance.Inf-Sup operatorsIn [41], F.Guichard and J.-M.Morel showed that appropriate iterated inf-sup operators convergetowards the a�ne morphological scale space. We shall describe these operators more preciselyin Chapter 5. The Euclidean case had been treated before by F. Catt�e and F. Dibos in [22].However, because of the spatial quantization and the morphological invariance (no new grey-level is created on the image), the discrete alternate iterated inf-sup operator gets \stuck" afterseveral iterations (that is, no evolution occurs any longer). Indeed, on a spatial grid, a levelcurve is constrained to move at entire speeds : at each step, either it does not move, or it jumpsover one pixel at least (see [26]).



32 CHAPTER 2. THE AFFINE SCALE SPACEA multiscale spline representationIn [17], G.Sapiro, A.Cohen and A.M.Bruckstein described a multiscale representation of planarshapes using B-splines. This representation is a�ne invariant, but it cannot be described by anevolution equation, and in particular it does not satisfy the inclusion principle (analog for setsto the comparison principle for images) :A � B ) 8t > 0; Tt(A) � Tt(B): (2.5)For that reason, it is not well adapted to image analysis and has little to do with the a�nemorphological scale space.The Osher-Sethian algorithmAs we described in Introduction, one can apply a numerical scheme for the AMSS to a set Sby considering its signed distance image u(x) = "(x)dist(x; S), where "(x) = �1 if x 2 S, 1otherwise. With this method, S.Osher and J.A.Sethian transposed the di�cult problem of ageometric curve evolution into the implementation of the AMSS. However, the major drawbackis that the full a�ne invariance is impossible to obtain with such a method, since no imagerepresentation can be a�ne invariant. In addition, the large image size required to achieve areasonable precision in the curve evolution makes the process rather slow.2.3.4 Point evolution schemesFor the a�ne scale space of curves, all geometrical schemes that have been proposed so far su�erfrom the space quantization of the curves (see [40]), which prevents the inclusion principle (2.5)from being satis�ed. The main di�culty comes from the fact that there is no a priori relationbetween the number of vertices of a polygon and the number of the vertices needed to representits a�ne shortening6 (this number increases drastically for a triangle, but decreases as muchfor a very irregular curve). Thus, any algorithm based on a point-by-point evolution cannotimplement the a�ne scale space successfully.However, it is likely that the most accurate implementation of the A�ne Scale Space is acurve evolution one, because it seems impossible to achieve precise evolutions and to guaranteea full a�ne invariance in any image evolution algorithm.2.4 A fully consistent schemeHow can we implement the a�ne scale space with a geometrical algorithm ? Since no pointevolution scheme can be e�cient, we have to consider the problem globally, that is, to �nd an6i.e. its a�ne scale space at a given scale.



2.4. A FULLY CONSISTENT SCHEME 33operator T acting on curves and consistent with the a�ne scale space : this way, we can hope tobuild a numerical scheme for the a�ne scale space by iterating T . Moreover, we would like thisoperator to be a�ne invariant, monotone (i.e. preserving global inclusion), and easy to computeon a general kind of discrete curves (on polygons for example).We shall propose such an operator and call it a�ne erosion. It is more or less a continuousgeneralization of a discrete operator brie
y described in [40]. It is also somewhat related to thenotion of characteristic area introduced by T.Cohignac (see [26]) : indeed, the following studyproves that as the scale t tends towards 0, the characteristic area of all non-in
exion pointsof the curve is equivalent to �c:t�, c and � being universal constants. This can suggest ourde�nition of the a�ne erosion.In Chapter 3, we de�ne precisely the a�ne erosion for a certain kind of curves and sets. Weinvestigate some properties of this operator, and point out an important characterization forconvex curves. We also prove that the number of in
exion points (in a generalized sense) cannotincrease when this operator is applied to a non-convex curve. Last, we establish the geometricalconsistency of the a�ne erosion with respect to the geometrical a�ne scale space.In Chapter 4, we compare the A�ne Scale Space and the a�ne erosion on a few examples,namely conics. We compute explicitly the action of these operators, and show that the a�neerosion remains a good approximation of the a�ne scale space not only for small scales. Thissuggests that the a�ne erosion can be iterated using rather large scale steps to approximate thea�ne scale space e�ciently.We extend the a�ne erosion to grey-level images in Chapter 5, by applying the geometricala�ne erosion to the level sets of an image. The resulting operator is fully consistent, inasmuch asit satis�es the most important properties of the a�ne scale space (the a�ne and morphologicalinvariances and the comparison principle), except |naturally| the semi-group property (this iswhy we need to iterate the a�ne erosion). We also make a comparison with the inf-sup operatorsstudied in [41], and in particular we prove that for C1 curves, a classical a�ne invariant inf-sup operator acts exactly like the a�ne erosion for small scales. Then, we establish preciseconsistency and convergence properties for the alternated iterated scheme associated with thea�ne erosion. We link these results with Matheron's Theorem and techniques used in [41].Chapter 6 is devoted to the numerical scheme. We prove that the a�ne erosion of a polygonis made of the concatenation of hyperbola pieces and segments. We present an algorithm tocompute exactly the a�ne erosion of a polygon, and show that the resulting curve can bequantized in an a�ne invariant way. We compare the space and scale discretizations, and showthat our algorithm has little to do with classical �nite element methods. Then we present anapproximate algorithm, which is very close to the �rst one, much faster, and which also givesaccurate results.



34 CHAPTER 2. THE AFFINE SCALE SPACELast, we present in Chapter 7 several experiments. A�ne erosions and scale spaces arecomputed for simple polygons and more complicated curves, including \real-world" curves givenby level curves of digitized photographs.We conclude in Chapter 8 on the possible application of such a global technique to otherevolution equations, and we indicate further axes of development.



Chapter 3A�ne erosion of curves and sets3.1 PreliminariesIn order to de�ne what we shall call the a�ne erosion of a curve or a set, we �rst need to makeclear what kind of curves and sets we are going to consider, since it is impossible to dissociatethe relation between a set and its boundary in the de�nition. We �rst restrain our study to setswhose boundaries can be described by piecewise convex curves, for which the de�nition and thebasic properties of the a�ne erosion are natural. In a further chapter, we shall extend the a�neerosion to any set of the plane and to grey-level images.Let us begin with some notations and de�nitions. We write dist(A;B) for the Euclideandistance between two points A and B of the plane, AB for the vector B �A, jABj = dist(A;B)for the Euclidean norm of AB and [AB] (resp. ]AB[) for the closed (resp. open) segment withendpoints A and B. The determinant of two vectors v1 and v2 will be noted [v1; v2], and if theyare both nonzero we note \(v1; v2) 2 S1 = FR=2�ZZ the angle from v1 to v2.When s and t belong to the circle S1, [s; t] means the class of the interval [s0; t0] where s0and t0 are real number such that s0 = s and t0 = t modulo 2� and s0 6 t0 < s0 + 2�. As well, theinequality a1 6 a2 6 ::: 6 an on S1 means that we can �nd some real numbers a01; a02; :::a0n equalto a1; a2; :::an modulo 2� such that a01 6 a02 6 ::: 6 a0n < a01+2� (which makes sense for n > 3).We choose to call a simple curve any subset of FR2 homeomorphic to the circle S1 (closedcurve) or FR (non closed curve). We shall often refer to a simple curve using the notationC(I), which means implicitly that C : I ! C(I) is a parameterization of the curve ; unlessadditional speci�cation is given, we shall suppose in general that I = FR or I = S1. Amongall possible parameterizations of a curve, two classes can be distinguished according to the setfC([s; t[); s; t 2 Ig. Choosing a class of parameterization de�nes an orientation of the curve. Asusual, a curve C is of class C1 if it admits a parameterization C : I ! C of class C1 such thatC0 never vanishes (such a parameterization is called regular). A curve is of class Cn (n > 1) ifit admits a regular parameterization of class Cn.35



36 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSWe de�ne a semi-closed curve as an oriented simple curve C such that FR2� C has exactlytwo connected components, called the inside part and the outside part of C according to theorientation of C (with the classical convention that the inside part of C, noted I(C), is \on theleft" when one runs positively on C). A semi-closed curve can also be viewed as a simple orientedclosed curve de�ned on the Alexandro� compacti�cation of the plane FR2 [ f1g ; in particular,a closed curve is semi-closed.Let C(I) be a simple curve. Then, (s; t) 2 I2 is a chord of C if and only if the piece ofcurve C(]s; t[) and the open segment ]C(s)C(t)[ are disjoint or equal. The connected closed setenclosed by C(]s; t[) and the chord segment ]C(s)C(t)[ is a chord set of C, written Cs;t (seeFigure 3.1). If area (Cs;t) = �, then (s; t) is called a �-chord and Cs;t a �-chord set of C.
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CFigure 3.1: A chord set of a simple curve.Notice that the chord segment [C(s)C(t)] can intersect C n C([s; t]).Following this idea, if C(]a; b[) is a semi-closed curve (fa; bg � FR), we say that (s; b) is anin�nite �-chord of C if there exists a half line D with start-point C(s) such that C(]s; b))\D =; and the chord set Cs;b enclosed by D and C(]s; b[) is of �nite area �. The case of the in�nitechord (a; s) is symmetric. Last, (a; b) is an in�nite �-chord of C if there exists a line D suchthat C(]a; b[)\D = ; and the chord set Ca;b enclosed by D and C(]s; b[) is of �nite area �. Forexample, if we consider the curve C(FR) de�ned by C(x) = (x; e�x2) in an orthonormal basisof the plane, then the line fy = 0g is an in�nite chord segment associated to the p�-chord setC�1;+1 (from now on, we assume that a \chord segment" can be �nite or in�nite, i.e. either atrue segment, a half line, or a line).If C is oriented and area (Cs;t) 6= 0, the orientation induced by C on the boundary of Cs;ttells whether (s; t) is a positive or a negative chord. We take the convention that a 0-chord setis both positive and negative. The collection of all positive (resp. negative) �-chord sets of Cwill be written K+� (C) (resp. K�� (C)). Since the previous de�nition of a chord set does notdepend on the parameterization of the curve, it makes sense to write K+� (C) (resp. K�� (C)) forthe collection of all positive (resp. negative) �-chord sets of an oriented curve C.Now we give a de�nition of convex curves which makes also sense in the case of non semi-closed curves.



3.1. PRELIMINARIES 37De�nition 1 An oriented simple curve C(I) is� locally convex in C(s) if for " > 0 small enough,[C(s� ")C(s); C(s)C(s+ ")] > 0:� locally concave in C(s) if for " > 0 small enough,[C(s� ")C(s); C(s)C(s+ ")] 6 0:� convex (resp. concave) if it is locally convex (resp. concave) everywhere.A (non oriented) simple curve is convex if it is convex for a certain orientation.We may use the term \strictly convex" (resp. strictly concave) for an oriented curve whichis convex and nowhere locally concave (resp. concave and nowhere locally convex). In otherwords, a curve is strictly convex if it is convex and does not contain any segment of nonzerolength.For a convex curve, it is not true in general that any chord set is convex (see Figure 3.2).However, if the curve is convex and semi-closed, then its inside part is convex and any couple(s; t) 2 I2 (with s 6 t if I � FR) de�nes a convex chord set. Conversely, any convex subset ofthe plane is the inside part of a semi-closed convex curve.
C(t)

C(s)

Cs,tFigure 3.2: A non convex chord-set of a convex curve.We recall that if C is a convex curve, one can �nd a regular parameterization C admittingeverywhere a non-vanishing left and right derivative C 0� and C 0+ (which can di�er at most on acountable number of points). Given a point A of an oriented convex curve C, we note T�A (resp.T+A) the unitary left-tangent (resp. right-tangent) of C in A. Thus, if C = C(I) and A = C(s),we have C 0+(s) = jC 0+(s)jT+A and C 0�(s) = jC 0�(s)jT�A.De�nition 2 A piecewise convex curve is a simple curve C(I) for which there exists a �nitesubdivision (s1; s2; : : :sn) of I such that each sub-curve C(]si; si+1[) is convex.In general, we shall suppose that the subdivision (si) is optimal, i.e. that n is minimal.However, even with this constraint the decomposition is not necessarily unique (consider the caseof a polygonal curve for example). We shall see later that there exists a canonical decomposition.



38 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSDe�nition 3 An open subset S of the plane FR2 is a C-set if(i) it has a �nite number of connected components(ii) the boundary of any connected component is a �nite disjoint union of semi-closed piecewiseconvex curves.These oriented curves enclosing the connected components of S are called the components of@S.Remark : One should be careful not to mix up the connected components of a C-set S withthe components of @S. In particular, the components of @S are not necessarily disjoint : if S isthe inside of a \8", the boundary of S is connected but has two components. On Figure 3.3 forexample, the initial C-set S has 3 connected components and @S has 4 components.The previous de�nition of a C-set is a compromise between regularity (the boundary of aC-set admits a tangent almost everywhere) and generality (any �nite union of convex sets is aC-set, as well as the inside part of any polygon).De�nition 4 A C-set is simple if its boundary has only one component.A simple C-set S shall often be written I(C), which means that C is a semi-closed piecewiseconvex curve whose inside part is S. Notice that a C-set S can always be writtenS =Gi 0@Si nGj Ti;j1A ;where the Si and Ti;j are �nite collections of simple C-sets and the symbols t and A meanrespectively a disjoint union of sets and the topological closure of a set A.3.2 A�ne erosion of setsIn this section, we de�ne the a�ne erosion of a C-set, and we establish some basic properties ofthis operator.3.2.1 De�nitionDe�nition 5 The �-a�ne erosion of a C-set S is the set of the points of S which cannot beenclosed in any positive chord set with area less than � of a component of @S.E�(S) = S n [�0 6 �K 2 K+�0(@S) K:



3.2. AFFINE EROSION OF SETS 39Here, K+�0(@S) means all the �'-chord sets of all components of @S. Figure 3.3 represents anintricate C-set and its a�ne erosion (only the oriented boundaries of the sets have been drawnfor a better understanding).
σ

σ

S

E   (S)Figure 3.3: A�ne erosion of an intricate C-set3.2.2 ExampleBefore we go further, let us compute explicitly the a�ne erosion of a \corner". This computationhas strong consequences on the numerical scheme we present later. Other exact computationscan be found in the next chapter.Proposition 1 The �-a�ne erosion of the \corner"W = fO + x v1 + y v2; x > 0; y > 0gis the inside (convex) part of a hyperbola, given in the a�ne basis (O; v1; v2) by the equationx:y > �2 [v1; v2] ; x > 0; y > 0: (3.1)In what follows, � will be called the apparent area of the hyperbola de�ned by Equation 3.1.Proof :First, we notice that only the positive chord sets with area � are signi�cant to de�ne thea�ne erosion of W because W is convex (a positive chord set with area less than � can alwaysbe enclosed in a positive �-chord set).Now, any positive �-chord segment of W is supported by a line with equation x=a+ y=b = 1(see Figure 3.4) submitted to the area constraint 2� = ab [v1; v2]. Consequently, the boundary



40 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSof E�(W ) is obtained by the envelope of these lines, given by the system8>>>><>>>>: Da : xa + a [v1; v2] y2� = 1D0a : �xa2 + [v1; v2] y2� = 0:Then, eliminating a yields xy = �2 [v1; v2] : �
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(x,y)
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σ

a

b

Da
vFigure 3.4: A�ne erosion of a \corner"3.2.3 Topological structureWe now establish a useful property of the a�ne erosion : if S is a C-set, each point of theboundary of E�(S) lies on a chord segment of S.De�nition 6 Let S be a C-set and C(I) a component of @S, then a �0-chord (s; t) of C is�-limit chord if �0 6 � and C has no chord (s0; t0) of area lower than � including strictly (s; t)(i.e. such that s0 < s 6 t 6 t0 or s0 6 s 6 t < t0 in I).Lemma 1 For any C-set S, the boundary of E�(S) is included in the union of the positive�-limit chord segments of S.Proof :1. First, we prove that any M 2 @E�(S) belongs to a positive �0-chord segment of acomponent of @S, where �0 6 �.M 2 @E�(S) means that we can �nd a sequence (An; Bn) of �nite and positive chords witharea less than � and such that dist(M; [AnBn])! 0 as n! 1. Since S has a �nite number of



3.2. AFFINE EROSION OF SETS 41components, necessarily one component C of @S contains a in�nite number of chords (An; Bn).Thus, we can extract from the sequence (An; Bn) a subsequence (A'(n); B'(n)) of �n chords ofC, and we can suppose that �n ! �0 6 � either (up to another subsequence extraction).1.a. If (A'(n)) and (B'(n)) are bounded, we can extract from (A'(n); B'(n)) a convergentsubsequence in C2. The limit (A;B) satis�es d(M; [AB]) = 0, which means that M 2 [AB], anda part of [AB] | or [AB] itself | de�nes a �0-chord segment of S containing M (with �0 6 �).1.b. If (A'(n)) is bounded and (B'(n)) is not, we can extract from (A'(n)) a subsequencethat converges towards A 2 C. If A = M , then M belongs to the chord [A;A] of C and wehave �nished. If A 6= M , then a part of the half line [AM) de�nes a positive chord segmentof C (�nite or in�nite) containing M . The case (B'(n)) bounded and (A'(n)) not bounded issymmetric.1.c. If both (A'(n)) and (B'(n)) are not bounded, then up to a subsequence extraction wecan �nd a nonzero vector v such that \(v; A'(n)B'(n)) is de�ned and converges towards zero.Then, the line (M; v) de�nes a �0-chord segment of S (�nite or in�nite) containing M (with�0 6 �).2. Last, we note that only the �-limits chord sets are signi�cant to de�ne E�(S), because ifa chord (A;B) is not �-limit we can �nd a �-limit chord set which contains strictly the chordset associated to (A;B). �Corollary 1 The a�ne erosion of a C-set is an open subset of the plane.Proof :From Lemma 1 we know that if S is a C-set, the boundary of E�(S) is part ofA = [�0 6 �K 2 K+�0(@S) K:Therefore, cE�(S) = A [ cS is closed (because it contains its boundary) and E�(S) is open (cSdenotes the complementary set of S, i.e. cS = FR2 n S). �Remark : Lemma 1 highlights the necessity of considering in�nite chords for non-boundedcurves. Look at the previous example of the C-set S de�ned in an orthonormal basis of theplane by the equation y < e�x2 : if we had not allowed in�nite chords in the a�ne erosion ofS, then the �-a�ne erosion of S would have been the closed half plane fy 6 0g for any � > p�(instead of the open half plane fy < 0g), and Corollary 1 would not have been satis�ed anymore.However, in�nite chord are rather rare, because :



42 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS� a bounded C-set has no in�nite chord,� if a non-bounded C-set S admits an in�nite chord, then it contains a half line which is anasymptote to a component of @S.We could have restrained our de�nition of the a�ne erosion to less general sets (to boundedsets, for example) in order to avoid the case of in�nite chords ; however, in the next chapter weshall be interested in non-bounded conics like hyperbolae and parabolae. Moreover, it is moresatisfactory to de�ne the a�ne erosion of any convex set (bounded or not).3.2.4 A�ne dilationWe can de�ne in two equivalent ways the dual operator to a�ne erosion, that we shall call a�nedilation. The �rst one is to reverse the orientation of the curves, the second one is to considerthe open complementary of each set (for which the orientation of the boundary is reversed).De�nition 7 The �-a�ne dilation of a C-set S is de�ned byD�(S) = E�(cS):Proposition 2 The closure of the �-a�ne dilation of a C-set S is the union of S and allnegative chord-sets with area less than � of the components of @S.D�(S) = S [ [�0 6 �K 2 K��0(@S) K:Proof :This is a simple consequence of the identity K�� (S) = K+� (cS).3.2.5 Basic properties of the a�ne erosionLemma 2 E�(S) is nonincreasing with respect to �, i.e.�1 6 �2 ) E�2(S) � E�1(S):Proof :We just need to notice that if �1 6 �2 then[�0 6 �1K 2 K+�0(@S) K � [�0 6 �2K 2 K+�0(@S) K;and consequently E�2(S) � E�1(S). �



3.2. AFFINE EROSION OF SETS 43De�nition 8 We call extinction scale of a C-set S and we note �e(S) the lower bound of thescales � for which E�(S) = ;.Proposition 3 If S is a simple bounded C-set, then �e(S) 6 12 area (S).Proof :Let us prove that for any simple bounded C-set S of area 2�, E�(S) = ;. Consider M apoint of S : there exist two points A and B lying on @S such that the open segment ]AB[ isincluded in S and contains M . This segment de�nes two positive chord-sets of S of area �1 and�2 such that �1 + �2 = area (S). Necessarily, �1 6 � or �2 6 �, which means that M belongs toa positive chord set of area not larger than �, i.e. M 2= E�(S). �One could think that the extinction scale of a simple bounded C-set is exactly half of itsarea. Although this is true for convex C-sets symmetric with respect to a point, this resultis generally false for other simple C-sets, even convex. In the next chapter, we show that theextinction area of a triangle is 49 of its area.
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Figure 3.5: A C-set with small area and large extinction areaProposition 3 is not true for a non simple bounded C-set. In fact, it is possible to builda C-set of area as small as we want comparatively to its extinction area. The shaded part ofFigure 3.5 de�nes a C-set of area less than 2"(�+1), whereas its extinction scale is exactly �=2,i.e. half of the area of the enclosing disk. Indeed, we can deduce from Proposition 3 that theextinction area of any bounded C-set is less than half the external area of its largest connectedcomponent (the external area of a connected C-set is the area enclosed by its external boundary,i.e. including the area of its \holes").Proposition 4 E�(S) is nondecreasing with respect to S, i.e.S1 � S2 ) E�(S1) � E�(S2):



44 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSProof :Let S1 and S2 be two C-sets such that S1 � S2, and consider M a point of S2. IfM does notbelong to E�(S2), there exists a positive �0-chord segment D (�nite or in�nite) of a componentof @S2 such that �0 6 � and M belongs to the associated chord set.1. If M 2= S1, then E�(S1) � S1 yields M 2= E�(S1).2. If M 2 S1, consider the connected component A of S1 containing M .2.a. If A\D = ;, then the external boundary of A encloses a subset of area less than �0, sothat from Proposition 3 we get M 2= E�(S1).2.b. If A\D 6= ;, then A\D is a disjoint union of chord segments of S1 (�nite or in�nite),and one of these chord segments de�nes a �00-chord set of S1 containing M (see Figure 3.6). Butsince S1 � S2, we have �00 6 �0, so that M 2= E�(S1):Thus, M 2= E�(S2) ) M 2= E�(S1), which means that E�(S1) � E�(S2). �
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SFigure 3.6: E� is monotoneProposition 5 The a�ne erosion is covariant with respect to the a�ne transformations of theplane, i.e for any a�ne map �, � (E�(S)) = E��jdet�j (�(S)) ;det� being the determinant of the linear part of �, i.e. det� = detA where �(M) = AM + Band (A;B) 2 L(FR2)� FR2.Proof :This elementary result simply arises from the fact that for a C-set S, we have� �K+� (@S)� = ��(K); K 2 K+� (@S)	 = K+��jdet�j(@�(S)): �



3.3. AFFINE EROSION OF CONVEX CURVES 453.3 A�ne erosion of convex curvesLet us �rst consider two particular kinds of convex C-sets : half planes, and strips (i.e. setsenclosed by two parallel straight lines). These C-sets (to which we shall refer as trivial C-sets)are invariant under a�ne erosion, because they only have 0-chord sets. One easily checks thatthey are the only simple C-sets which satisfy this property. So, since they would not satisfymost of the statements which follow, we shall exclude them most of the time. Another reasonis that any nontrivial convex C-set is simple.3.3.1 Basic statementsProposition 6 The a�ne erosion of a convex C-set is a convex C-set.Proof :If S is a convex C-set, then S � K is also convex for any positive �-chord set K of @S. Itfollows that E�(S) = \�0 6 �K 2 K+� (S) (S �K)is convex as an intersection of convex sets. �A consequence of this proposition is that we can de�ne the a�ne erosion for convex curves.According to the previous remark, we call trivial any convex semi-closed curve made of a straightline. From now on, we also suppose that a convex semi-closed curve is naturally oriented in sucha way that its inside is convex. Hence, nontrivial convex semi-closed curves and nontrivial convexC-sets are equivalent since the map C 7! I(C) establishes a bijective correspondence betweenthem. Notice incidentally that any chord set of a convex set is positive and �nite (i.e. bounded).De�nition 9 The �-a�ne erosion of a convex semi-closed curve C is the convex semi-closedcurve E�(C) = @E�(I(C)):Of course, the notation E�(C) is abusive, but more simple. We shall always avoid anypossibility of confusion between the a�ne erosion of a set and the a�ne erosion of a curveanyway.Proposition 7 If S is a non-trivial convex C-set, then for any � 6 �e(S), only the �-chord setsmatter in the de�nition of the �-a�ne erosion of S, i.e.E�(S) = S � [K2K+� (@S)K:



46 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSProof :Let C(I) be the boundary of S : since S is convex, any couple (s; t) 2 I2 is a chord of C,and the map t 7! area (Cs;t) is continuous and increasing from 0 towards area (S) (which maybe in�nite) unless S is trivial, which is not the case here. Consequently, if (s; t) is a �0-chord ofS with �0 < � 6 �e(S) 6 area (S), then (s; t + ") is a �-chord of S for a judicious choice of ",and Cs;t � Cs;t+", which means that (s; t) is not a �-limit chord of C. In other words, all �-limitchords of S are �-chords of S and Lemma 1 achieves the proof. �3.3.2 The middle point propertyWe now establish an interesting property of convex semi-closed curves : their �-a�ne erosion isalways included in the set of the middle points of their �-chord segments, and the equality holdsbeyond a limit scale of erosion (which is nonzero for most of the curves). The reason is roughlyexplained on Figure 3.7 : given a curve C = C(I) and �-chord segment [C(s)C(t)], another�-chord segment of C intersects [C(s)C(t)] in I(�), and as � ! 0, the area equality forces12r21(�) � � = 12r22(�) � � + o(�);so that r1(�) � r2(�) ! 0 and I(�) converges towards the middle of [C(s)C(t)]. This meansthat the envelope of the �-chord segments of C is made of the middle points of these segments.Under additional conditions, we shall prove that this envelope is exactly the �-a�ne erosion ofC.
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r  (  )2Figure 3.7: The middle point propertyWe begin with a useful geometric lemma.Lemma 3 Consider A,B,A',B' four distinct points of the plane such that[AB] \ [A0B0] = fMgand area (MAA0) = area (MBB0):



3.3. AFFINE EROSION OF CONVEX CURVES 47Then, dist(A;B)dist(A;M) = 2� [AA0; BB0][AB;BB0] :
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M

A

Figure 3.8: 4 points LemmaProof :Let us �rst de�ne � with AM = �AB, which implies MB = (1 � �)AB. Since the area ofthe triangles MAA0 and MBB0 are equal, we have�AA0; AM� = �BB0; BM� ;which gives � �AA0; AB� = (1� �) �AB;BB0� : (3.2)Moreover, as M also lies on the segment [A0B0], we can write�MA0;MB0� = 0 = �MA+ AA0;MB +BB0� = ���AB + AA0; (1� �)AB +BB0� ;so that �� �AB;BB0�+ (1� �) �AA0; AB� + �AA0; BB0� = 0: (3.3)Now, multiplying Equation 3.3 by � and replacing the second term from Equation 3.2, we obtain��2 �AB;BB0�+ (1� �)2 �AB;BB0�+ � �AA0; BB0� = 0;and the terms in �2 cancel so that� �2 �AB;BB0� � �AA0; BB0�� = �AB;BB0� :Finally, we obtain as announced1� = dist(A;B)dist(A;M) = 2� [AA0; BB0][AB;BB0 ] : �



48 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS
ε

ε

A

ε

ε

C

M

B B

B

ε

I
I

A

Figure 3.9: The middle point property (1)Proposition 8 If C is a non-trivial convex semi-closed curve, then for any scale �, E�(C) isincluded in the set of the middle points of the �-chord segments of C.Proof :First recall that since C is convex, we can choose a regular parameterization C of C (i.e. suchthat its left and right derivative C 0� and C 0+ never vanish). Let I be a point of E�(C). Lemma1 states that we can �nd a �-chord (s; t) of C such that [AB] = [C(s)C(t)] contains I . De�ning� by I = (1� �)A+ �B, we shall prove that both � 6 12 and � > 12 , or, in other words, that Iis the middle of [AB].1. First consider " > 0 such that s + " < t. Since the map x 7! area (C(s + "; t + x)) isincreasing, there exists a unique "0, depending on s; t and ", such that (s+ "; t + "0) is another�-chord of C. Necessarily, [AB] and [A"B"] = [C(s+ ")C(t+ "0)] have a common point I", andthe areas of the curved triangles I"AA" and I"BB" are equal.2. It is clear that there exists a unique real k(") such that A, B, A" and B" = B+k(")C 0+(t)are four points satisfying the hypotheses of Lemma 3. Moreover, the convexity of C forces therelated intersection point M" = [AB] \ [A"B"] to belong to the segment [BI"] (cf. Figure 3.9).Since every point of [BI"] belongs to the chord set Cs+";t+"0 , necessarily I 2= [BM"], which meansthat � 6 �" where �" is de�ned by I" = (1� �")A+ �"B.3. From Lemma 3, we know that1�" = 2� [AA"; BB"][AB;BB" ] = 2� �AA"; C 0+(t)��AB;C 0+(t)� ;and since AA" ! 0 as "! 0, we get 1�" ! 2 as "! 0;



3.3. AFFINE EROSION OF CONVEX CURVES 49which proves that � 6 12 according to Step 2.4. A symmetrical reasoning proves that � > 12 as well, and consequently � = 12 , i.e. I is themiddle of the segment associated to the �-chord (s; t). �From this result, it is natural to wonder whether there is an exact correspondence betweenthe �-a�ne erosion of a non-trivial convex semi-closed curve and the set of the middle pointsof its �-chord segments. We are going to prove that the answer is positive for a large classof curves, including C1 curves and many polygons, provided that � is small enough. For thatpurpose, we introduce the following de�nitions of regular chord and regular scale.De�nition 10 Let C be a convex semi-closed curve, then a chord (A;B) of C is regular if\(T�A;T+B) 2 [0; �[.De�nition 11 Let C be a non-trivial convex semi-closed curve. A real � > 0 is a regular scalefor C if any �-chord of C is regular. We note �r(C) the upper bound of the regular scales of C.Theorem 1 (middle point property) Let C be a non-trivial convex semi-closed curve, and� a regular scale of C. Then E�(C) is exactly the set of the middle points of the �-chord segmentsof C, and there is a natural homeomorphism between C and E�(C).Proof :According to Proposition 8, we only have to prove that the middle point of any �-chordbelongs to E�(C). Consider C a regular parameterization of C, let (s; t) be a �-chord of C,and de�ne � the smallest positive number x such that (s� x; s) is a �-chord of C. Finally, letD+ =]� �; 0[ and D� =]0; t� s[ (if C is closed, then these intervals must be considered in S1).For any a 2 D� [ D+, we call I(a) the intersection between [C(s)C(t)] and the chord segmentassociated to the �-chord of origin s+ a, and de�ne �(a) by C(s)I(a) = �(a)C(s)C(t).Notice that if a �-chord of C intersects ]C(s)C(t)[ then its origin can be taken in D� [f0g[D+. Hence, to prove that no �-chord set of C contains I , the middle of [C(s)C(t)], it is su�cientto prove that � > 12 on D+ as well as � < 12 on D�.1. We �rst establish that for " > 0 small enough, �(�") < 12 < �(").Consider "; "0 such that s < s + " < t < t + "0 and (s + "; t + "0) is another �-chordof C (implicitly, "0 depends on s; t and "). Now de�ne k(") such that C(t); C(t + "0); C(s)and A" = C(s) + k(")C 0+(s) are four points satisfying the equi-area hypothesis of Lemma 3.Necessarily, M" = [C(t)C(s)]\ [C(t + "0)A"] belongs to [I(")C(s)], so that �(") > �0(") where�0(") is de�ned by C(s)M" = �0(")C(s)C(t). Moreover, from Lemma 3 we get11� �0(") = 2� �C(t)C(t+ "0); k(")C 0+(s)��C(t)C(s); k(")C 0+(s)�= 2 + �C 0+(s); C(t)C(t+ "0)��C0+(s); C(s)C(t)� :
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C(t)Figure 3.10: The middle point property (2)Since C is convex, �C0+(s); C(s)C(t)� > 0, and as (s; t) is a regular chord of C, we have as well,for " > 0 small enough, �C0+(s); C(t)C(t+ "0)� > 0. Consequently, �(") > �0(") > 12 for " > 0small enough, and a symmetric proof would establish �(�") < 12 for " > 0 small enough.2. Let us check that � is continuous. Given a 2 D� [ D+, there exists a unique b(a) suchthat (s+ a; t+ b(a)) is a �-chord of C. Since the map (s; t) 7! area (Cs;t) is continuous, so is themap a 7! b(a). Now, as I(a) = [C(s)C(t)]\ [C(s+ a(C(t+ b(a))], a simple computation gives�(a) = [C(s+ a)C(t+ b(a)); C(s)C(t+ b(a))][C(s+ a)C(t+ b(a)); C(s)C(t)] ;and the non-vanishing denominator ensures that � is continuous on D+ [ D�. Last, we knowfrom Proposition 8 that � can be continuously extended to 0 by taking �(0) = 12 .3. Now we prove that � has no local maximum on D+, and no local minimum on D�.If � has a local maximum in a 2 D+, then for " small enough, I(a+ ") and I(a� ") belongto the segment [I(a)C(s)] (see Figure 3.11). Then, due to the position of C(s + a + ") andC(s+a� ") relatively to C(s+a), it is clear that the intersection of the �-chords of origin s+aand s + a + " lies on [C(s + a)I(a)], whereas the intersection of the �-chords of origin s + aand s + a � " cannot lie on [C(s + a)I(a)[. But this is a contradiction with Step 1 applied tothe �-chord of origin s + a, since we would have �0(�") > �0(") for the corresponding �0. As aconclusion, � has no local maximum on D+, and a symmetric proof establishes that � has nolocal minimum on D� either.4. From Step 2 and 3 we deduce that � is monotone on D+ (resp. on D�), and the onlypossibility according to Step 1 (and to the fact that �(")! 12 as "! 0) is that � is nondecreasingon D+ (resp. on D+) and remains strictly larger than 12 on D+ (resp. strictly lower than 12 onD�). Consequently, I does belong to E�(C).
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Figure 3.11: The middle property (3)5. Now we can build a bijective and continuous correspondence between C and E�(C) asfollows : given C(s) 2 C, there exists a unique �(s; �) such that (s� �; s+ �) is a �-chord of C.According to Theorem 1, C�(s) = 12(C(s� �) + C(s+ �))belongs to E�(C), and the correspondence C(s) 7! C�(s) is one to one and clearly bicontinuous.� Notice that the natural correspondence between C and its a�ne erosion gives sense to E�(C),meaning the parameterization induced by C on the �-a�ne erosion of the curve C(I).Corollary 2 If C is a non-trivial convex semi-closed curve and � a regular scale of C, thenE�(C) is of class C1.Proof :If this is not the case, then we can �nd a M 2 E�(C) such that T+M 6= T�M . But necessarilythese semi-tangents arise from two distinct �-chord segment containing M , which is impossibleaccording to Theorem 1. �We shall estimate the regularity of E�(C) more precisely later . Now, let us compute againthe a�ne erosion of the \corner" of Proposition 1 using Theorem 1. First, it is clear that theboundary of the \corner" fO + xv1 + yv2; x > 0; y > 0gis a semi-closed curve C with �r(C) = +1 (any scale is regular) : thus, we know from Theorem1 that its �-a�ne erosion is exactly given by the middle of its �-chords.



52 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSThe chord set (O; v1; v2) of C delimited by the points O + 2x v1 and O + 2y v1 has an areaequal to 2 xy: [v1; v2] (cf. �gure 3.12). Consequently, the �-a�ne erosion of C is the set of themiddle points O+xv1+yv2 constrained by the area equality 2 xy: [v1; v2] = �, which correspondsto the hyperbola de�ned in Equation 3.1.
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vFigure 3.12: A�ne erosion of a \corner" (2)3.3.3 Regular scalesIn this section, we characterize the regular scales of a non-trivial convex semi-closed curve.Proposition 9 Let C be a non-trivial convex semi-closed curve. The set of the regular scales ofC is [0; �r(C)[.Proof :Suppose that �r(C) < +1 (otherwise there is nothing to prove), and consider C : I ! FR2a regular parameterization of C. In what follows, we consider v0 an arbitrary nonzero vectorof the plane, and the angle function �+ : I ! S1 (respectively �� : I ! S1) de�ned by�+(s) = \(v0; C 0+(s)) (��(s) = \(v0; C 0�(s)) respectively).1. First we show that if � is a regular scale of C and 0 6 �0 6 �, then �0 is also a regular scale ofC. Suppose that it is not the case, i.e. that we can �nd a non-regular �0-chord (s; t) of C. We canchoose " > 0 in such a manner that (s; t+ ") is a �-chord of C. Since �+(t) 6 �+(t+ ") 6 ��(s)and �+(t)���(s) 2 [�; 2�[, we have �+(t+ ")� ��(s) 2 [�; 2�[ which means that (s; t+ ") is anon-regular �-chord of C. This contradiction proves that �0 is a regular scale of C. Hence, theset of regular scales of C is [0; �r(C)[ or [0; �r(C)].2. Now we prove that �r(C) is not a regular scale of C.2.a. If C is closed, then I = S1, and there exist two sequences (sn) and (tn) such that (sn; tn)is a non-regular �n-chord of C with �n ! �r(C) as n ! +1. Since S1 is compact, we can �nd



3.3. AFFINE EROSION OF CONVEX CURVES 53an increasing map ' : IN! IN such thatlimn!1(s'(n); t'(n)) = (a; b) 2 I � I:Now, because area (Cs;t) is continuous with respect to s and t, we havearea (Ca;b) = �r(C):If we de�ne an = min(a; s'(n)) and bn = max(b; t'(n)), we have, in S1 and for n large enough,�+(bn)� ��(an) 2 [�; 2�[: (3.4)Now remark that �� is left-continuous and �+ is right-continuous and deduce from (3.4) thatmodulo 2�, �+(b)� ��(a) 2 [�; 2�];and since �+(b)� ��(a) = 2� is impossible, (a; b) is a non-regular chord of C.2.b. If C is not closed, then we can suppose that I = FR and as C is a semi-closed curve,lim+1�+ � lim�1�� 2 [0; �];so that if (a; b) is a non-regular �-chord, necessarily �+(b)� ��(a) = � and C(]�1; a[) andC([b;+1[) must be two parallel half lines. Now de�ne a0 = supfx; ��(x) = ��(a)g andb0 = inffx; �+(x) = �+(b)g : (a0; b0) is a non-regular chord of C and clearly area (Ca0b0) = �r(C).�Corollary 3 Let C be a non-trivial convex semi-closed curve, then �r(C) > 0 if and only if nopart of C is a segment [AB] such that \(T�A;T+B) 2 [�; 2�[.Proof :1. If [AB] is a piece of C such that \(T�A;T+B) 2 [�; 2�[, then (A;B) is a non-regular 0-chordof C, and consequently �r(C) = 0.2. Conversely, let us suppose now that �r(C) = 0. From Proposition 9 we know thatwe can �nd a non-regular 0-chord of C, i.e. a part of C which is a segment [AB] such that\(T�A;T+B) 2 [�; 2�[. �This result allows us to check that the characteristic constant �r is non zero for a largeclass of convex semi-closed curves, including C1 ones and all polygons such that the sum of twosuccessive angle steps remains strictly below �.Corollary 4 If C is a convex semi-closed curve of class C1, then �r(C) > 0.



54 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSProof :Suppose that C is a convex semi-closed curve of class C1 for which �r(C) = 0, from Corollary3 a part of C should be a segment [AB] such that T�A 6= T+B, which is impossible since T+A = T�Band the regularity of C forces T+B = T�B and T+A = T�A . �Corollary 5 If C = A0A1:::An is a convex polygon, then �r(C) > 0 i� for all i modulo n,[AiAi+1; Ai+2Ai+3] > 0:Proof :This is a simple consequence of Corollary 3, and if [AiAi+1; Ai+2Ai+3] > 0 for all i we evenknow that �r(A1A2:::An) > mini area (AiAi+1Ai+2): �What happens for a non-regular chord ? Considering the proof of Theorem 1, we can seethat if \(T�A ;T+B) 2]�; 2�[ we have both � > 12 and � < 12 , i.e. no point of the �-chord segment[AB] belongs to E�(C). In other words, the curve described by the middle points of the �-chordsegments has \ghost parts" which must be removed to obtain the desired a�ne erosion. Forinstance, these \ghost parts" appear at any scale of erosion for a triangle, for which �r = 0 (seeFigure 3.13).
Figure 3.13: \ghost parts" always appear in the a�ne erosion of a triangleThe need to remove these ghost parts is in some way related to the Huygen's principleconstruction used for the propagation of fronts. Behind this construction hides an entropy



3.3. AFFINE EROSION OF CONVEX CURVES 55condition : if the propagating front is viewed as a burning 
ame, then once a particle is burntit stays burnt and cannot burn any more (see [65]), so that such \ghost parts" of fronts have nophysical meaning.If \(T�A;T+B) = � (i.e. T�A = �T+B), De�nition 10 makes the chord (A;B) non regulardespite the fact that the middle point of the associated chord segment does belong to E�(C).The reason why we did not allow this con�guration in our de�nition of a regular chord is thatwe want not only the reverse inclusion between the middle points and the a�ne erosion, butalso a bijective correspondence. The case of a square highlights this phenomenon : at any scale,four points of the a�ne erosion are the middle points of an in�nite number of �-chord segments,which produces singularities (discontinuity of the tangent) at these points (see Figure 3.14).
Figure 3.14: Four singularities appear in the a�ne erosion of a square3.3.4 ConsistencyTheorem 2 Let C = C(I) be a semi-closed convex curve of class Cn with n > 1. Then for any� < �r(C), E�(C) is a semi-closed convex curve of class Cn. If n > 2, the in�nitesimal evolutionas � ! 0 of a point C(s) 2 C is given byC�(s) = C(s) + !:� 23 � 
(s) 13 N(s) + o(� 23 ) with ! = 12 �32�23 ;where 
(s) and N(s) are respectively the curvature of C and the normal vector to C at pointC(s). Moreover, if n > 3, the remaining part is O(� 43 ) at any point where the curvature 
(s) isnonzero.Proof :



56 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS1. Consider s 7! C(s) an Euclidean length parameterization of C (i.e. jC 0(s)j = 1 every-where). Since C is convex, we know from Theorem 1 that E�(C) is exactly made of the middle ofthe �-chords of C as soon as 0 < � < �r(C) (which makes sense because we know from Corollary4 that �r(C) > 0). Let (s� �; s + �) be a �-chord of C and C�(s) the middle of the associatedsegment (see Figure 3.15).
C(s-  )δ

δ

NC(s)

σC  (s)

C(s+  )

σFigure 3.15: A�ne erosion of a convex semi-closed curveSince C is of class C1, we can use the Green formula to compute the area� = 12F (s; �(s; �)); whereF (s; t) = Z s+ts�t �C(h); C 0(h)� dh + [C(s+ t); C(s� t)� C(s+ t)] :A simple computation gives@F@t (s; t) = �C(s+ t)� C(s� t); C 0(s+ t) � C 0(s � t)�and @F@s (s; t) = �C(s+ t)� C(s� t); C 0(s+ t) + C 0(s� t)� :C being convex, we have, for any distinct points C(a) and C(b) of C, the inequality�C 0(a); C(b)� C(a)� > 0;and the equality holds if and only if the piece of curve C([a; b]) is a segment. Hence, the numbers[C(s+ t)� C(s� t); C 0(s+ t)] and [C(s+ t)� C(s� t);�C 0(s� t)] are positive and their sumcannot be zero unless � = 0, which is not the case, or unless C(s + t) = C(s � t), which isimpossible as soon as 0 < t 6 �. As a consequence,@F@t (s; �) > 0(which simply means that the area � of the chord-set Cs��;s+� increases with �), and the globalinversion theorem allows us to claim that the map s 7! �(s; �) is of class Cn as well as the map(s; t) 7! F (s; t).



3.3. AFFINE EROSION OF CONVEX CURVES 57We just proved that the functions 7! C�(s) = 12 (C(s� �(s; �)) + C(s+ �(s; �)))is of class Cn. Moreover, since the vectors C 0(s� �(s; �)) and C 0(s+ �(s; �)) cannot be colinearfor � < �r(C), the derivative2 @@sC�(s) = (1� @�@s )C 0(s� �) + (1 + @�@s )C0(s+ �) (3.5)never vanishes. As a consequence, the curve C� is of class Cn in the geometric sense (that is C�is a regular parameterization).Incidentally, remark that it can easily check from Equation 3.5 that @@sC� and C(s + �) �C(s� �) are colinear, i.e. that the �-chord segments of C are the tangents to E�(C) as expected.2.a. If C is of class C2, the curvature at point C(s) is de�ned by 
(s) = [C 0(s); C 00(s)]. Asimple expansion near t = 0 gives@F@t (s; t) = �2tC 0(s) + o(t); 2tC 00(s) + o(t)� = 4t2
(s) + o(t2); (3.6)which can be integrated to obtain 2� = 43�3
(s) + o(�3):Thus, whenever 
(s) 6= 0 we have�(s; �) = � 3�2
(s)� 13 + o(� 13 );and �nally C�(s) = 12 [C(s� �) + C(s+ �)]= C(s) + �22 C00(s) + o(�2)= C(s) + 12 �32�23 � 23 � 
 13 (s)N(s) + o(� 23 );where N(s) is the normal vector to C in C(s).2.b. If 
 = 0 we use a geometric argument. Given " > 0, let R = "�3. Since 
(s) = 0,the disk DR with center C(s) +RN(s) and radius R is locally contained in I(C) near C(s) (seeFigure 3.16). In particular, there exists �0 > 0 such that8 � < �0; C(s) +RN(s) 62 Cs��;s+� and DR \ Cs��;s+� � I(C)(once again, � depends on s and �). Now, calling H the orthogonal projection of C(s) on thechord segment [C(s� �); C(s+ �)] and writing d = dist(C(s); H), we claim that� > dqR2 � (R� d)2:



58 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS
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Figure 3.16: Case 
 = 0The reason for this last inequality is that � is larger than the shaded zone of Figure 3.16, whichis itself larger than dpR2 � (R� d)2 (the equality happens when the chord is orthogonal to N).Hence, � > dp2Rd� d2and d 32 6 �p2R� d 6 �pRsince d 6 R due to the fact that C(s) + RN(s) 62 Cs��;s+� . Consequently,d 6 � 23R 13 6 "� 23 ;which means that d = o(� 23 ): (3.7)Now, we constrain � to be small enough in order to ensure that \(C 0(s � �); C 0(s)) and\(C 0(s); C 0(s+�)) belong to [0; �=2]. Recalling that the pieces of curve C([s��; s]) and C([s; s+�]) have length �, we deduce that both dist(C(s��); H) and dist(H;C(s+�)) belong to [��d; �],so that dist(H;C�(s)) 6 d2 :Then, Equation 3.7 implies that dist(C(s); C�(s)) = o(� 23 )as announced.



3.3. AFFINE EROSION OF CONVEX CURVES 593. If n > 3, the expansion of Equation 3.6 can be improved into@F@t (s; t) = 4t2
(s) +O(t3);and following the same computation as in Step 2.a, on can establish thatC�(s) = C(s) + ! � � 23 � 
 13 (s)N(s) +O(� 43 ): �Remark : If the curvature vanishes, we can be more precise. Suppose that C is locally C5 nears where 
(s) = 0 and 
 00(s) 6= 0. At point s, we have, writing T = C 0(s),C00 = 
N = 0C000 = �
2T+ 
 0N = 
 0NC(4) = �3

 0T+ (
 00� 
3)N = 
 00NConsequently,@F@t (s; t) = "2tC 0(s) + O(t3); t33 C(4)(s) +O(t5)# = 2 t43 
00(s) + O(t6);and an integration yields 2� = 215�5
 00(s) + O(�7);or equivalently �(s; �) = � 15�
 00(s)� 15 + O(� 35 ):Therefore, the point C(s) is mapped ontoC�(s) = 12 [C(s� �) + C(s+ �)]= C(s) + �424C(4)(s) + O(�6)= C(s) + 15 1524 � 45 � (
 00(s)) 15 N(s) + O(� 65 ):Incidentally, we check that C�(s) = C(s) + o(� 23 );but we can see that the expansion C�(s) = C(s) +O(� 43 )is not generally true when 
(s) = 0 (and is false as soon as 
 00(s) 6= 0). �Remark : Theorem 2 proves that the a�ne erosion preserves the regularity of a convex curve.Unfortunately, it does not regularize a convex curve of class Cn into a convex curve of class Cmwith m > n. One can check this on the C1 curve C made of the half line fy = 0; x 6 0g and thehalf parabola fy = x2; x > 0g : for any � > 0, E�(C) is not C2.



60 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS3.4 A�ne erosion of non convex curves3.4.1 StructureLemma 4 If S is a simple C-set and M 2 @E�(S)� @S, then @E�(S) is locally a convex curvenear M .Proof :Let M belong to @E�(S) � @S. We know from Lemma 1 that M belongs to a (possiblyin�nite) chord segment of a component of @S. As S is open andM 2 S, for " > 0 small enough,the open disk D(M; ") is included in S (see Figure 3.17). But since the complementary set to anychord set of S in D(M; ") is convex, necessarily E�(S)\D(M; ") is convex (it is the intersectionof convex subsets of D(M; ")). Consequently, @E�(S) is near M a convex curve, because it islocally the boundary of a convex set. �
M

S

D(M,   )ε

σE   (S)

Figure 3.17: local convexity in M 2 @E�(S)� SLemma 5 If S is a simple C-set and M 2 @E�(S) \ @S with � > 0, then @S is not locallyconcave near M .Proof :Suppose that M 2 @E�(S)\ @S and @S is not locally concave near M . Using a parameteri-zation C of @S near M = C(s), we have for " > 0 small enough,[C(s� ")C(s); C(s)C(s+ ")] > 0:Thus, M belongs to the topological opening of a �-chord set Cs�";s+" for " > 0 small enough,which is in contradiction with M 2 @E�(S). �



3.4. AFFINE EROSION OF NON CONVEX CURVES 61According to Lemma 4 and Lemma 5, the boundary of the a�ne erosion of a simple C-setis everywhere locally concave or locally convex. Thus, it is a collection of curves. Hence, wecan give sense to the a�ne erosion of a piecewise convex semi-closed curve as a collection ofsemi-closed curves (and we shall prove later that these curves are also piecewise convex).De�nition 12 The �-a�ne erosion of a piecewise convex semi-closed curve C is the collectionof semi-closed curves E�(C) = @E�(I(C)):Proposition 10 The a�ne erosion of a piecewise convex semi-closed curve C is, up to a �nitenumber of points, the disjoint union of a �nite union of concave curves (Ci) and convex curves(Dj), with� 8i; Ci � C, and no concave sub-curve of C contains more than one Ci.� 8j; Dj \ C = ;.Proof :Let us de�ne the curves Ci as the connected components of E�(C)\C (minus their extremalpoints if any). According to Lemma 5, these curves are concave, and if Ci and Ci0 belong to thesame concave component of C, necessarily i = i0 (a nonnegative chord segment of C cannot haveboth its endpoints on the same concave component of C). Hence, there is a �nite number ofcurves Ci. Now, call Dj the connected components ofE�(C) n[i Ci:We have to prove that there is a �nite number of such curves.First, there can be only a �nite number of non semi-closed Dj , because these Dj are connectedto some Ci according to Lemma 5. Second, let us choose an arbitrary direction v of the plane,and consider the multivalued map ' which associate, to any line D directed by v, all area valuesof all chord sets of C de�ned from a piece of D. Because C has a �nite number of components,' can be described by a �nite set of continuously increasing single-valued maps ('k) (only a�nite number of accidents happen to ' when D sweeps the plane). Then, to each map 'k isassociated at most one closed Dj , so that the number of closed Dj 's is �nite. Last, as for thesemi-closed but nonclosed Dj 's, there is at most two of them. �Corollary 6 The a�ne erosion of a piecewise convex semi-closed curve is a collection of piece-wise convex semi-closed curves. Equivalently, the a�ne erosion of a C-set is a C-set.Proof :The �rst part is a direct consequence of Proposition 10. As for a C-set S, it is su�cient tonotice that the boundary of E�(S) is included in the a�ne erosion of the components of @S. �



62 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS3.4.2 In
exion pointsWe would like to prove that the number of in
exion points (in a generalized sense) cannotincrease when we compute the a�ne erosion of a piecewise convex closed curve. This is anotherstability property of the a�ne erosion, complementary to the inclusion principle.Let C = C(I) be a piecewise convex curve. We de�ne a canonical decomposition of C intoconvex curves. We say that a point M of C is� convex if C is locally convex near M ,� concave if C is locally concave near M ,We consider the sub-curves C+i of C de�ned as the open connected components of the set of allconvex points of C, and the concave sub-curves C�j symmetrically de�ned. If a convex curveC+i and a concave curve C�j overlap, either they are equal to the same segment, or, if not, theyhave each a segment in common at one of their endpoints. In that case, we remove from C+iand C�j half of this segment. This way, we obtain a canonical (and minimal) decomposition ofC into convex and concave parts. A junction between some C+i and some C�j is called a simplejunction, while a junction between two C+i 's or two C�j 's is called a double junction (seeFigure 3.18).
D

S
S

S

S S

S

CFigure 3.18: Simple (S) and double (D) junctions of a closed curve C.We de�ne #J (C), the number of junctions of C as the number of simple junctions ofC plus twice the number of double junctions of C. If C is a C2 closed curve whose curvaturevanishes at a �nite number of points, the junctions of C are all simple and correspond to thein
exion points of C. A polygon has no double junction either.Proposition 11 If C is a piecewise convex closed curve and � > 0, then E�(C) has no doublejunction and #J (E�(C)) 6 #J (C):



3.4. AFFINE EROSION OF NON CONVEX CURVES 63
σE  (   )CC +

B

A
A

B

A

B

AA
A

A’

B’ S

S
S

S

S

S

B

B B

C

CσE  (   )

Figure 3.19: Simple junctions of E�(C).Proof :1. Suppose that a component D(J) of E�(C) has a double junction M = D(s). Since D(I) isnot locally convex near M , necessarily M belongs to C = C(I) and C is locally concave near M .Hence, near M , C \D(J) = fMg. This means that D(]s� "; s[) and D(]t; t+ "[) are segmentsfor " > 0 small enough. Thus,M cannot be a double junction of D(J), which is a contradiction.We deduce that E�(C) has no double junction as soon as � > 0.2. We prove that #J (E�(C)) 6 #J (C):2.a. Let us consider Dj a maximum convex piece of E�(C), i.e. such that E�(C) is not locallyconvex at the extremal points A and B of Dj . From Lemma 4 we know that A and B mustbelong to C.If Dj � C, it is a segment and neither C nor E�(C) can have any junction on Dj . If Dj 6� Cbut Dj is a segment, then E�(C) has no junction between A and B (see Figure 3.19). Last, ifDj is not a segment, then E�(C) has exactly two simple junctions between A and B (see Figure3.19). But since the piece of C between A and B cannot be concave (it has a nonzero positivechord), the number of junctions of C between A and B included is at least 2 (with the conventionthat a double junction in A (or in B) is counted once for each of the two Dj it belongs to).Hence, in all cases, between A and B (included), E�(C) has not more junctions than C.



64 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS2.b. We claim thatE�(C) cannot have any junction outside a piece of curve Dj of the previouskind. The reason is that on these remaining parts, E�(C) is strictly concave (i.e. nowhere locallyconvex), so that any junction between these remaining parts should be a double junction, whichis impossible according to Step 1. Hence, we have#J (E�(C)) 6 #J (C)as announced. �3.4.3 ConsistencyTheorem 3 If C is a piecewise convex semi-closed curve of class piecewise Cn, then E�(C) is acollection of piecewise convex semi-closed curves of class piecewise Cn. If n > 2, each point Mof C can be associated to a point M� of E�(C) such thatM� =M + ! � � 23 � (
+) 13 N+ o(� 23 );where 
 and N are respectively the curvature of C and the normal vector1 to C at point M . Asusual, we set ! = 12 �32�23 and 
+ = max(0; 
).Proof :1. From Proposition 10, we know that E�(C) is made of a �nite number of curves of threekinds : pieces of C, which are Cn, segments, which are C1, and new convex pieces, which canbe proved to be Cn using the arguments of Theorem 2. Hence, E�(C) is piecewise Cn.2. Consider M a point of C, and call 
 the curvature of C in M .
σ0

S

MFigure 3.20: Case 
 < 02.a. If 
 < 0, call T the tangent to C in M , and let �0 be the nonzero area of the C-setdelimited by a segment of the kind ]M � aT;M + bT[, where both a and b are positive. Any1If 
 = 0, N is not uiquely de�ned but any choice is convenient since (
+) 13 N = 0.



3.4. AFFINE EROSION OF NON CONVEX CURVES 65chord-set of C containing M contains the previous chord set (see Figure 3.20), and consequentlyits area must be larger than �0. In other words, for any � < �0,M belongs to E�(C) and takingM� =M closes the case.2.b. If 
 > 0, call Ci the largest convex component of C containing M . For � small enough,any �-chord set of C containing M is de�ned by two points of Ci, so that the \evolution" of Mis given by Theorem 2 and the proof is complete.2.c. If 
 = 0, the geometric argument used in the proof of Theorem 2 still applies. �3.4.4 Other possible de�nitions of the a�ne erosionThe a�ne erosion of a convex set S is obtained in a simple way, by removing from S any partof S with area � of the kind H \ S, where H is a half plane. This may be the simplest way toobtain a global a�ne invariant set-shortening process tangent to the a�ne scale space. Now, ifone wants to generalize this de�nition to non-convex sets, one must be careful, and the naturalgeneralization (removing from S any connected component of H \ S with area �) is not thatgood : this de�nition does not ensure a very important property, the global inclusion principle(see Figure 3.21), which states that E�(S1) � E�(S2) when S1 � S2. This principle has strongconsequences for the iterated operator, and guarantees numerical stability.
σE’

Figure 3.21: Inclusion principle is lost for the alternative de�nition of the a�ne erosionWith our de�nition of the a�ne erosion, the global inclusion principle is satis�ed, but theconnectedness is not preserved (whereas it is preserved for the former de�nition). Notice, how-ever, that these two de�nitions yield the same in�nitesimal evolution (for scales small enough).
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Chapter 4Comparison between a�ne erosionand scale spaceIn this chapter, we compute exactly the a�ne erosion and the a�ne scale space of conics.We show that for these curves the a�ne erosion remains a good approximation of its tangentoperator not only for in�nitesimal areas : this suggests that we can build a fast scheme for thea�ne scale space by iterating the a�ne erosion with rather large scale steps.4.1 A�ne scale space of curvesFrom now on, we note t 7! ASSt(C) the a�ne scale space of a curve C, when it exists. Inother words, if we can �nd a function (s; t) 7! C(s; t) such that s 7! C(s; 0) is a parameterizationof C, we say that s 7! C(s; t) is a parameterization of ASSt(C) if we have for all s and t > 0,@C@t (s; t) = 
(s; t) 13 N(s; t); (4.1)where 
(s; t) and N(s; t) represent the curvature and the unit normal vector of the curve C(�; t)at point C(s; t). As before, we take the convention that if r is a negative number, r1=3 = �jrj1=3.At an in
exion point, N is not de�ned but since we have 
 = 0, the right hand term of Equation4.1 is naturally equal to zero. Notice that Equation 4.1 assumes that C is derivable with respectto t and twice derivable with respect to s.If the curves (ASSt(C))t>0 can be represented by functions of the kind x 7! (x; y(x; t)) in anorthonormal basis, then Equation 4.1 is equivalent to@y@t =  @2y@x2! 13 : (4.2)Indeed, let us denote by y0 and y00 the �rst and second order derivatives of y with respect to x.For such a Cartesian parameterization we have
(x; t) = y00(1 + y02) 32 ;67



68 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEand in the associated orthonormal basis, the unit tangent and normal vectors to the curve arerespectively T(x; t) = 1p1 + y02 (1; y0)and N(x; t) = 1p1 + y02 (�y0; 1):Thus, we have in the same basis, (0; 1) = 1p1 + y02 (N+ y0T);so that Equation 4.2 is equivalent to@C@t = (y00) 13 � (0; 1) = 
 13 N + y001=3 y0p1 + y02 T: (4.3)It has been proven (see [68],[29]) that the tangential component is of no in
uence on the wholecurve evolution since it corresponds to a renormalization of the space parameter s (i.e. amovement of each point C(s; t) along the curve C(�; t)). Therefore, Equation 4.3 is equivalentto Equation 4.1.Theorem 2 states that for regular convex curves the operator Eh3=2 is tangent to the theoperator ASS!:h when h! 0, provided we set! = 12 �32� 23 :In this chapter, we compute explicitly the a�ne scale space and the a�ne erosion for severalconvex curves, and we check that these operators are very close for small scales. In fact, forconics (ellipses, hyperbolae, parabolae, and \corners" as degenerated hyperbolae), both thea�ne erosion and the a�ne scale space can be exactly computed.4.2 A�ne erosion and scale space of an ellipse4.2.1 A�ne erosionProposition 12 The �-a�ne erosion of an ellipse with area A0 is an ellipse with same axesand excentricity and with area A(�) = A0 cos2 �(�)2 ;where �(�) is de�ned by �(�)� sin �(�) = 2��A0 :In particular, for an in�nitesimal erosion, we have the following canonical expansionA 23 (t 32 ) = A 230 � 3s2�23 � t +O(t2): (4.4)
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Figure 4.1: A�ne erosion of a circleProof :1. Consider the parameterization of the ellipseM(t) = sA0� (cos t v1 + sin t v2)satisfying [v1; v2] = 1. We can �nd a linear map � with determinant 1 which transforms thea�ne basis (v1; v2) into an orthogonal basis, in which �(M(t)) describes a circle enclosing thesame area A0. Then, because the a�ne erosion commutes with the rotations, the a�ne erosionof a circle with radius R0 cannot be anything but a circle with same center and with radiusR(�) < R0. On Figure 4.1 we can see thatR(�) = R0 cos �(�)2and � = R20 ��2 � sin �2 � :Hence, as � commutes with the a�ne erosion and with the homothetic transformations, wededuce that on the ellipse as well as on the circle, the a�ne erosion acts as a homothetictransformation with ratio cos �(�)2 , which proves the �rst result of Proposition 12.2. Let us evaluate now A(�) = A0 cos2 �(�)2 when � tends towards 0. From� � sin � = 2��A0we see that �(�)! 0 as � ! 0, and�3(�)6 �1 +O(�2(�))� = 2��A0 ;which gives �(�) = O(� 13 ) and �(�) = �12��A0 �13 +O(�):



70 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEIn this way, we obtainA(�) = A0 �1� sin2 �(�)2 � = A0 � A04 �12��A0 � 23 + O(� 43 ) = A0 � A 130 �3��2 � 23 +O(� 43 ):The \canonical" expansion of A(�) isA 23 (t 32 ) = A 230 � ! � t +O(t2);with ! = 23 �3�2 � 23 = 3s2�23 :We remark incidentally that as � goes near its critical value �e = A02 corresponding to theellipse extinction, we have �(�e + h) = � � 2�A0h+ o(h)and consequently cos �(�e + h)2 = ��4 � 2hA0 + o(h):It follows that the ratio qA(�)A0 = cos �(�)2 admits a linear expansion near its extinction value.Figure 4.2 shows the value of the normalized area AA0 and the ratio q AA0 depending on thenormalized erosion parameter ��e .
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Figure 4.2: Area for the a�ne erosion of an ellipse4.2.2 A�ne scale spaceProposition 13 The a�ne scale space at scale t of an ellipse with area A0 is an ellipse withsame axes and excentricity, whose area A(t) satis�esA 23 (t) = A 230 � 43� 23 t: (4.5)



4.2. AFFINE EROSION AND SCALE SPACE OF AN ELLIPSE 71Proof :As for the a�ne erosion, the a�ne invariance of the a�ne scale space reduces the problem tothe computation of the a�ne scale space of a circle. Because of the rotation invariance, the ASSof a circle is a a family of circles (Ct)t>0 with same center O and radius R(t). A trigonometricparameterization of the circles Ct satis�es Equation 4.1 as soon as we have for any t > 0,R0(t) = �� 1R� 13 :The solution of this ordinary di�erential equation is given byR 43 (t) = R 43 (0)� 43 t;and Equation 4.5 simply arises from the equality A(t) = �R2(t). �If we compare Equations 4.5 and 4.4, we can check that the operator ASS!:h is tangent toEh3=2 , simply because 43� 23 � ! = 3s2�23 :This property is illustrated on Figure 4.3. The normalized area (A(�)=A0) 23 is represented bothfor the a�ne erosion E� and for the normalized a�ne scale space ASSt (with t = ! � � 23 for thereason we explained before).
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Figure 4.3: Comparison between the a�ne erosion and scale space of an ellipseAs we can see, the action of the a�ne erosion on ellipses is very close to the one of its tangentoperator, the ASS, even for large scales. This suggests that we can build a fast scheme for theASS by iterating the a�ne erosion with rather large scale steps.



72 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACE4.3 A�ne erosion and scale space of a hyperbola4.3.1 A�ne erosionProposition 14 The �-a�ne erosion of a hyperbola with apparent area A0 is a hyperbola withsame axes and with apparent area A(�) = A0 ch2�(�)2 ; (4.6)where �(�) is de�ned by �(�)� sh �(�) = 2�A0 :In particular, for an in�nitesimal erosion, we have the canonical expansionA 23 (t 32 ) = A 23 (0) + 3r23 � t+ O(t2):Proof :
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vFigure 4.4: A�ne erosion of a hyperbolaLet (O; v1; v2) be an a�ne basis with same axes as the hyperbola C. In this basis, a parametricequation of C is given byM(t) = (X(t); Y (t)) = a(et; e�t); with a2 = A02 [v1; v2] :Let us now consider two points M(t1) and M(t2) of C with t1 = t� �2 and t2 = t+ �2 (see Figure4.4) . In order that the chord set (t1; t2) of C has area �, we should have�[v1; v2] = 12 Z t2t1 �M 0(t);M(t)� dt + 12 [M(t1)�M(t2);M(t2)]



4.3. AFFINE EROSION AND SCALE SPACE OF A HYPERBOLA 73= 12 Z t2t1 Y dXdt �XdYdt dt + 12 (X(t1)Y (t2)� Y (t1)X(t2))= a22 Z t2t1 e�tet + ete�t dt + a22 (e�� � e�)= a2(� � sh �):Since �r(C) = +1, Theorem 1 ensures that the a�ne erosion of C is the set of the middlepoints of such �-chord segments, i.e.P (t) = a2 � �et� �2 + et+ �2 ; e�t+ �2 + e�t� �2� = a ch�2 � (et; e�t):As � does not depend on t, this proves that the a�ne erosion acts on C as a homothetic trans-formation with center O and ratio ch �2 , and� � sh � = �a2 [v1; v2] = 2�A0 :As regards the canonical expansion of A(t) near t = 0, the computation is the same as forthe ellipse, except that the constant � disappears, so that the coe�cient 3q2�23 becomes 3q23 . �Remark : One can be surprised that � does not depend on t. It can be simply explained by thefact that the parametric representation of the hyperbola we used is, up to a multiplicative factor,the a�ne abscissa representation, and since the a�ne curvature of a hyperbola is constant, thearea of a �-chord set (t; t+ x) only depends on x.Let us now evaluate A(�) when � tends to in�nity. We havee�(�)2 + O(e��(�)) = 2�A0 ;which gives e�(�) = 4�A0 + O( 1� ):Replacing this expression in Equation 4.6 yieldsA(�) = A04 �e�(�) + 2+ O(e��(�))�= � + A02 + O( 1� ):Hence, A(�) admits an asymptotic linear expansion at in�nity. Figure 4.5 represents the nor-malized apparent area AA0 depending on the normalized erosion parameter �A0 , for the a�neerosion of a hyperbola.



74 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACE
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0Figure 4.5: Area evolution for the a�ne erosion of a hyperbola4.3.2 A�ne scale spaceThe a�ne scale space of a hyperbola has been computed by Alvarez and Morales in [5]. Herewe use a di�erent parameterization.Proposition 15 The a�ne scale space at scale t of a hyperbola with apparent area A0 is ahyperbola with same axes and whose apparent area satis�esA 23 (t) = A 230 + 43 t: (4.7)Proof :Let H0 be a hyperbola with apparent area A0 and R = (O; v1; v2) an orthonormal basis ofthe plane, we can �nd an a�ne map with determinant 1 which transforms the axes of H0 into(O; v1) and (O; v2), so that ~H0 = �(H0) can be represented in R by the functiony(x) = A02x :Now, let us consider a family of hyperbolae ~Ht =M(�; t) of apparent area A(t) > 0 de�ned byy(x; t) = A(t)2x :On one hand, @y@t = A0(t)2x ;and on the other hand,  @2y@x2! 13 = A 13 (t)x :



4.4. AFFINE EROSION AND SCALE SPACE OF A PARABOLA 75Consequently, the family ~Ht is the scale space of ~H0 as soon as Equation 4.2 is satis�ed, i.e. assoon as A(t) is solution of the di�erential equationA0(t) = 2A 13 (t):Solving this equation yields A 23 (t) = A 230 + 43 t: (4.8)Hence, the scale space of H0, given by ��1( ~Ht), is the one announced in Proposition 15, andsince the apparent area is invariant under ��1, Equation 4.8 remains true. �Figure 4.6 represents the compared apparent areas obtained on a hyperbola with the a�neerosion E� and with the normalized a�ne scale space ASSt (t = !� 23 ). As for ellipses, noticehow close the a�ne scale space and the a�ne erosion behave.
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1Figure 4.6: Canonical area evolution for the a�ne erosion of a hyperbola4.4 A�ne erosion and scale space of a parabolaProposition 16 The �-a�ne erosion of the parabola of equation y = px2 in an orthonormalbasis is the translated parabola of equationy = px2 + p 13� 23 �34� 23 (4.9)in the same basis. In particular, Eh3=2 acts as a semi-group operator upon the family of parabolaeP� : y = px2 + � since E(h1)3=2 �E(h2)3=2(P�) = E(h1+h2)3=2(P�):A consequence is the exact equalityASS!�h(P�) = Eh3=2(P�);



76 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEwhere as usual ! = 12 �32� 23 :Proof :Since a parabola is a semi-closed convex curve with �r = +1, we know from Theorem 1 thatits �-a�ne erosion is given by the set of the middle points of its �-chord segments. Consider a�-chord (x� �; x+ �) of the parabola y = px2, the resulting middle point is (x; y�(x)) wherey�(x) = p(x� �)2 + (x+ �)22 = p(x2 + �2):Besides, a simple computation yields� = �p[(x� �)2 + (x+ �)2]� Z x+�x�� ps2ds= 2�p(x2 + �2)� p3[(x+ �)3 � (x� �)3]= 43�3;and �nally, y�(x) = px2 + p�3�4 � 23 = px2 + p 13� 23 �34�23 :Consequently, Eh3=2(P�) = P�+�h where � = p 13 �34�23 , which establishes the announced semi-group property. But since ASS!�h is the tangent operator to Eh3=2 , we have (as we shall provelater) ASS!�h(P�) = limn!1 hE(h=n)3=2in (P�) = Eh3=2(P�):We can also check this result directly by using Equation 4:2. Taking the second order derivativewith respect to x in Equation 4.9 yields @2y@x2 = 2p;so that x 7! y(x; t) represents the a�ne scale space of P0 as soon as@y@t = (2p) 13 :Consequently, ASS!:h(P0) is the curve given byy(x; t) = px2 + (2p) 13 � !h = px2 + p 13h�34�23 : �



4.5. AFFINE EROSION OF A TRIANGLE 774.5 A�ne erosion of a triangleThe complete description of the a�ne erosion of a polygon will be given further. Here we justdeal with the simplest case, namely the triangle. This case is interesting because all trianglesare equivalents in A�ne Geometry. One may refer to Chapter 6 (numerical scheme) for theprecise description on the a�ne erosion of a general polygon.Proposition 17 The a�ne erosion of a triangle is a \hyperbolic triangle", i.e. the concatena-tion of three hyperbola pieces, each one given in barycentric coordinates by the equation(et; e�t; 2p� � et � e�t); jtj 6 ln 1p� �r 1� � 2!In particular, the extinction scale of a unit area triangle is�e = 49 = 0; 444:::

Figure 4.7: A�ne erosions of a triangle for di�erent scalesNotice that this is NOT the scale space spanned by the iteration of the a�ne erosion ! Eachcurve represents the action of the a�ne erosion on the initial triangle, for di�erent values of theerosion area.Proof :1. First, notice that we can �nd an a�ne map which transforms a given triangle into a unitarea equilateral triangle. Thus, it is su�cient to establish the proof for such a triangle thanks tothe a�ne invariance of the a�ne erosion (see Proposition 5). By symmetry, it is clear that the



78 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEextinction point of an equilateral triangle is its center. As a consequence, the extinction pointof any triangle must be the barycenter of its vertices (notice that this property is false for otherpolygons in general). One can check easily that the chord set of minimum area which containsthe barycenter of a unit area equilateral triangle has area 49 (see Figure 4.8). Consequently, theextinction scale of any triangle is 49 of its area.
eσFigure 4.8: Extinction area of a triangle2. Consider the �-chords segments of the triangle whose endpoints lie on two �xed edges ofthe triangle. The middle points of these �-chord segments span a piece of hyperbola, simplybecause the a�ne erosion of a \corner" is, as we saw previously in Proposition 1, a piece ofhyperbola. Consequently, Proposition 8 ensures that the a�ne erosion of a triangle is theconcatenation of three pieces of hyperbola (there are exactly three di�erent pairs of edges for atriangle).3. The previous hyperbolae can be described in barycentric coordinates by an equation ofthe kind (et; e�t; K(�)� et � e�t); t1 6 t 6 t2: (4.10)(we recall that (a; b; c) are barycentric coordinates ofM in the a�ne basis (A;B;C) if and onlyif (a + b+ c)OM = aOA + bOB + cOC for any point O if the plane). Let us compute K(�).Remember that if v1; v2; v3 are three vectors of FR2, one has[v1; v2]v3 + [v2; v3]v1 + [v3; v1]v2 = 0:Applying this to MA;MB and MB where ABC is a triangle with unit area, we getM = 12 [MA;MB]C + 12 [MB;MC]A+ 12 [MC;MA]B:In other words, a system of barycentric coordinates of M in the basis (A;B;C) is given by theareas of the trianglesMBC,MCA andMAB. Now, if we make t = 0 in Equation 4.10, we obtainthe point M of Figure 4.9, which, according to the previous remark, can be represented in thebasis (A;B;C) by (1�S2 ; 1�S2 ; S). Moreover, one can see easily that S = C0MCM and � = �CMCC0 �2.Now, identifying the previous coordinates (up to a multiplicative factor) with (1; 1; K(�)� 2),we get 1� S2 (K(�)� 2) = S;



4.5. AFFINE EROSION OF A TRIANGLE 79so that K(�) = 21� S = 2p� :Now, a simple computation resulting from the permutation of the a�ne bases gives the boundvalue jtj 6 ln 1p� �r 1� � 2! :Then, by solving the equation 1p� �r 1� � 2 = 1;we �nd again the extinction scale � = 49 . �
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BA Figure 4.9: Computing K(�)Remark : As announced in the previous chapter, the triangle is an example of a simple convexC-set whose extinction area is less than half of its area.As far as we know, the a�ne scale space of a triangle has not been computed exactly, and itis uncertain that there exists a simple analytic expression for it. However, we can observe thatfor the reasons previously explained, the a�ne invariance constrains the extinction point of atriangle to be its barycenter. Numerical simulations give for the normalized extinction area ofthe a�ne scale space of a triangle the value �0e ' 0; 42 (it means that a unit area triangle andan ellipse of area 2�0e disappear simultaneously).



80 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACE



Chapter 5A�ne erosion of grey-level imagesIn this chapter, we �rst extend the a�ne erosion to any set of the plane and to lower semi-continuous grey level images. Then, we study its asymptotic behaviour and prove the conver-gence of the iterated a�ne erosion+dilation towards the a�ne morphological scale space. Wealso compare the a�ne erosion to classical a�ne inf-sup operators, and we establish the linkwith Matheron's Theorem (characterization of morphological operators).5.1 Morphological principlesSuppose that we want to analyze an image u, given as a map u : FR2 ! FR. The �rst question weshould answer is : what relevant informations does contain u, physically speaking ? A importantremark is that our interpretation of an image does not depend on its absolute contrast, but ratheron the fact that some objects are brighter than others (we can check this each time we put onsunglasses). Hence, we should consider that a given image u (i.e. a map u : FR2 ! FR) carries thesame information as any image of the kind g(u), where g is an arbitrary contrast change, thatis to say an increasing and continuous scalar function. This point of view has been successfullyadopted by Mathematical Morphology (in the case of 
at grey-scale kernels) to design e�cientoperators for image analysis. Formally, we are led to consider equivalence classes of the relationu � v , 9 g; v = g(u):According to this equivalence, an image u reduces to the decreasing collection of its level sets1��(u) = fx 2 FR2; u(x) > �g:Conversely, any image u can be recovered from the family of its level sets by the relationu(x) = supf�; x 2 U�g;1For our study, it is more convenient to consider the open level sets rather than the closed ones de�ned by��(u) = fx 2 FR2; u(x) > �g:81



82 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESand two images having the same collection of level sets are equivalent (see [41]).From this point of view, it is natural to say that an operator T acting on images is amorphological operator if it satisfy the morphological invariance described in Chapter 2 :[Morphological Invariance] : For any increasing continuous function g,T (g � u) = g � T (u):Although this idea is directly inspired from Mathematical Morphology, we must mentionthat the previous de�nition of a morphological operator is di�erent from what Serra calls amorphological �lter2. As well, the a�ne erosion we de�ned in Chapter 3 is not an erosion on alattice in Serra's sense (see [70]). The reason is that the relationE�(A \B) = E�(A) \E�(B)is false in general (whereas it is true for the Euclidean erosion).5.2 From sets to imagesLet us consider an operator T acting on sets : we would like to de�ne a corresponding operator~T on an image u by applying T to the level sets of u. In other words, we ask the followingquestion : is there an operator ~T which satis�es ��( ~T(u)) = T (��(u)) for any � and a certainclass of images u ? Obviously, T must satisfy some hypotheses because the level sets of an imageu satisfy the inclusion � > � ) ��(u) � ��(u)and ��+"(u)% ��(u) as "& 0:This last relation means that " 7! ��+"(u) is nonincreasing and that8�; ��(u) = [">0��+"(u);it is equivalent to say that 8x; u(x) = supf�; x 2 ��(u)g: (5.1)From now on, O denotes the set of the open sets of FR2, and LSC(FR2) the set of the lowersemi-continuous functions de�ned on FR2. We recall that u : FR2 ! FR is lower semi-continuous(l.s.c.) if and only if each level set of u is open.De�nition 13 An operator T acting on sets is nondecreasing if8X; Y; X � Y ) T (X) � T (Y ):2in [70], an operator  is a morphological �lter if it is both nondecreasing (u 6 v )  (u) 6  (v)) andidempotent ( �  =  ).



5.2. FROM SETS TO IMAGES 83De�nition 14 A nondecreasing operator T : O 7! O is %-continuous if8(Xn) 2 OIN; Xn %n X ) T (Xn)%n T (X):For a nondecreasing operator T : O 7! O, it equivalent to say that T is %-continuous orthat it is lower-semi-continuous for the so-called \hit and miss" topology3 (see [69]).Proposition 18 If T : O 7! O is a nondecreasing %-continuous operator, then the relation��( ~T(u)) = T (��(u)) (5.2)de�nes a unique operator ~T : LSC(FR2)! LSC(FR2). Moreover, ~T is a nondecreasing, morpho-logical and 1-Lipschitz operator.Proof :1. If ~T exists, then it is unique. The reason is that Equation 5.1 rewritten for ~T (u) yields8x; ~T (u)(x) = supf�; x 2 ��( ~T(u))g;and if ~T satis�es Equation 5.2, it is completely de�ned from T by~T (u)(x) = supf�; x 2 T (��(u))g: (5.3)2. Let us now consider the operator de�ned by Equation 5.3, and prove that it satis�esEquation 5.2. On one hand,x 2 ��( ~T (u)) ) ~T (u)(x) > �) 9�0 > �; x 2 T (��0(u))) x 2 T (��(u));the last inference arising from the monotonicity of T , because� < �0 ) ��0(u) � ��(u) ) T (��0(u)) � T (��(u)):On the other hand, remember that��+"(u)% ��(u) as "& 0;and since T is lower semi-continuous we haveT (��+"(u))% T (��(u)) as "& 03This topology on open sets of the plane is spanned by the setsOKG1;G2 ;:::Gp = fO 2 O; K � O and 8i; Gi 6� Og;where K is a compact set and each Gi is an open set.



84 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESand in particular [">0T (��+"(u)) = T (��(u)) = T ([">0��+"(u)):Hence, x 2 T (��(u)) ) x 2 [">0T (��+"(u))) 9" > 0; x 2 T (��+"(u))) 9" > 0; ~T(u)(x) > �+ ") ~T (u)(x) > �) x 2 ��( ~T (u)):As a consequence, ~T de�ned in Equation 5.3 satis�es Equation 5.2.3. Let us check the announced properties of ~T .3.a. T is nondecreasing, and ~T inherits this property because of Equation 5.3. Indeed, if u1and u2 are two l.s.c. images such that u1 6 u2, then we have for any �, ��(u1) � ��(u2), andconsequently ~T (u1) 6 ~T (u2) because of Equation 5.3.3.b. ~T is morphological because if g is a contrast change, i.e. an increasing continuous scalarfunction, we have ��(u) = �g(�)(g(u));and Equation 5.3 ensures that ~T (g(u)) = g( ~T(u)):3.c. Let us prove that ~T is 1-Lipschitz. Let u and v be two l.s.c. images such that for anyx, ju(x)� v(x)j 6 k. The monotonicity of ~T yields8x; ~T (u� k)(x) 6 ~T(v)(x) 6 ~T (u+ k)(x);and since ~T (u+ k) = ~T (u) + k, we have for any x,j ~T (u)(x)� ~T (v)(x)j 6 k:Hence, we proved that ~T is 1-Lipschitz, i.e.k ~T(u)� ~T (v)k1 6 ku� vk1:A consequence is that ~T restricted to L1 is uniformly continuous. �5.3 A�ne erosion of grey level imagesWe would like to extend the a�ne erosion to grey-level images through the morphological levelset decomposition. For that purpose, we �rst need to de�ne the a�ne erosion of any subset



5.3. AFFINE EROSION OF GREY LEVEL IMAGES 85of the plane (or, at least, of any open set). But the geometrical de�nition of the a�ne erosion(De�nition 5) does not make sense for any subset of the plane, since in general its boundary isnot a curve in a reasonable sense.We could use the following result due to E. Giusti [38] : if u is of bounded variation, thenits �-level sets are Caccioppoli sets for almost any �. This result could be of great interest forour purpose since up to a negligeable set of points, the essential boundary of a Caccioppoli setis made of a countable number of closed curves, for we havejjujjBV = Z length(@��(u)) d�:We prefer, however, to de�ne the a�ne erosion of an image in a more simple way, using theinclusion property.De�nition 15 The �-a�ne erosion of a set U � FR2 is the setE�(U) = [S C�set; S�U E�(S):This de�nition makes sense because if U is a C-set, we know that for any C-set S subset of Uwe have E�(S) � E�(U). Moreover, the extended operator E� is clearly nondecreasing becauseif U � V , any C-set subset of U is also subset of V , that isfS C� set; S � Ug � fS C� set; S � V gand consequently [S C�set; S�U E�(S) � [S C�set; S�V E�(S):Lemma 6 For any set U � FR2, E�(U) is open.Proof :By Corollary 1 we know that for any C-set S, E�(S) is open, and consequentlyE�(U) = [S C�set; S�U E�(S)is open as a reunion of open sets. �Lemma 7 For any set U � FR2, we haveE�(U) = [S bounded C�set; S�U E�(S):



86 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESProof :Since E�(U) = [S C�set; S�U S;we only need to prove Lemma 7 when U is a C-set.1. We claim that there exists a nondecreasing sequence Sn of bounded C-sets such thatU = [nSn and Sn � U for all n. Let us de�neAni;j = [ i2n ; i+ 12n ]� [ j2n ; j + 12n ]; (i; j) 2 ZZ2;and consider Kn an increasing sequence of compact sets such that FR2 = [nKn. The increasingsequence Sn, de�ned as the topological opening of the union of the Ani;j for which Ani;j � U \Kn,satis�es the previous constraints.2. Let M 2 E�(U), and suppose that M 62 [nE�(Sn) (we are going to prove that this isnot possible). If we de�ne D� as the line going through M and oriented by � 2 S1, then forany n we can �nd �n 2 S1 and a �n-chord segment of Sn included in D�n (and with the sameorientation), such that �n 6 �. Now, up to a subsequence extraction, we can suppose that thesequence (�n; �n) converges towards (~�; ~�) 2 S1 � [0; �].Since E�(U) is open and M 2 E�(U) we can �nd a closed disk D(M; ") with center M andradius " > 0 such that D(M; ") � E�(U). Consider N the intersection between @D(M; ") andD~�+�=2 (see Figure 5.1). The line going through N and oriented by ~� de�nes on U a boundedchord set K containing N , and for n large enough we have D�n \K = ;, so that �n > area (K),and letting n tend to in�nity yields area (K) 6 ~� 6 �, which is in contradiction with N 2 E�(U).�
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εFigure 5.1: For n large enough, D�n \K = ;.Proposition 19 The restriction E� : O ! O is %-continuous.



5.3. AFFINE EROSION OF GREY LEVEL IMAGES 87Proof :Since E� is nondecreasing, we have to prove that for any nondecreasing sequence (Xn) ofopen sets, [n2INE�(Xn) � E�( [n2INXn):Let X = [nXn, consider a bounded C-set S such that S � [Xn, and suppose that for any nwe can �nd xn 2 S n X . Since S is compact, we can extract from (xn) a subsequence whichconverges towards x 2 S. But for any n, S nXn is closed, and as xk 2 S nXn for any k > n,we have x 2 S nXn for all n. This means x 2 S nX , which is impossible, this set being emptysince S � X .Consequently, there exists n0 2 IN such that S � Xn0 , which proves thatE�(S) � E�(Xn0) � [n2INE�(Xn):The last inclusion being true for any bounded C-set S such that S � X , we deduce from Lemma7 that E�(X) = [S bounded C�set; S�X E�(S) � [n2INE�(Xn): �Now, since E� : O ! O is nondecreasing and %-continuous, we can de�ne the a�ne erosion ofa lower semi-continuous image according to Proposition 18.De�nition 16 The �-a�ne erosion of a l.s.c. image u : FR2 ! FR is the imageE�(u) : x 7! supf� 2 FR; x 2 E�(��(u))g;where ��(u) = fx; u(x) > �g is the �-level set of u.Once again, we use the same notation for the a�ne erosion of an image, without risk of confusion.Lemma 8 E� : LSC(FR2)! LSC(FR2) is a nondecreasing, morphological, 1-Lipschitz and a�neinvariant operator.Proof :The �rst three properties are a consequence of Proposition 18. As regards the a�ne invari-ance, we have to prove that for any a�ne map �,E��jdet�j(u) � � = E�(u � �):This is a consequence of Proposition 5, since ��(u � �) = �(��(u)): �



88 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESLemma 9 For any image u, E�(u) is nonincreasing with respect to �, i.e.�1 6 �2 ) E�1(u) > E�2(u):Proof :This is a consequence of Lemma 2. �Lemma 10 If u is k-Lipschitz, so is E�(u).Proof :The map u being k-Lipschitz, we haveu(x)� kkyk 6 u(x+ y) 6 u(x) + kkyk:Considering this last inequality as the comparison between three functions of x (i.e. with y�xed), the monotonicity and the translation invariance of E� yieldE�(u)(x)� kkyk 6 E�(u)(x+ y) 6 E�(u)(x) + kkyk;which proves that E�(u) is k-Lipschitz. �We just saw that the a�ne erosion satis�es three main axioms of the a�ne morphologicalscale space, namely[Global Comparison Principle] : u 6 v ) E�(u) 6 E�(v).[Morphology] : For every increasing continuous function g, E�(g � u) = g �E�(u).[A�ne invariance] : For every a�ne map �, E��jdet�j(u) � � = E�(u � �):We shall prove later that the [Local Comparison Principle] is also satis�ed by the a�neerosion. Thus, the major di�erences between the a�ne erosion and the AMSS are :� The axiom [Contrast reversal] : Tt(�u) = �Tt(u), which is satis�ed by the AMSS butnot by the a�ne erosion. This leads us to de�ne the dual operator to the a�ne erosion,called a�ne dilation and satisfyingD�(u) = �E�(�u)for any continuous image u. The relationE� �D�(�u) = �D� �E�ensures that the [Contrast reversal] axiom is asymptotically satis�ed when the operatorD� �E� (or, equivalently, E� �D�) is iterated.



5.4. COMPARISON WITH THE INF-SUP OPERATORS 89� The semi-group property Tt+t0 = Tt � Tt0;which is not satis�ed by the a�ne erosion, even for any scale normalization of the kindTt = Ef(t). This is the reason why we need to iterate the a�ne erosion (or, to be precise,an associated alternate operator) in order to build a good approximation of the AMSS.5.4 Comparison with the inf-sup operatorsIn this section, we compare the action of E� with the one of the inf-sup operator associated tothe basis Bc made of all closed convex sets with area 1 and symmetrical with respect to 0. Wede�ne SI�(u)(x) = supB2Bc infy2B u(x+p�:y); andIS�(u)(x) = infB2Bc supy2B u(x+p�:y):We know from [41] that if we iterate n times on a continuous periodic image u0 the alternatedoperator SI� � IS�, then as n! +1, � ! 0 with n� 23 ! t, we obtain the 
ow of images u(:; t)which is a viscosity solution of the equation@u@t = c jDuj curv(u)13with initial condition u(�; 0) = u0, c being a positive constant. Notice that these morphologicaloperators on images can be simply extended to sets via Equation 5.2. For any subset U of theplane, we de�ne SI�(U) = fx 2 FR2; SI�(1U(x)) = 1g;which is equivalent to SI�(U) = fx 2 U; 9B 2 B; x+p� �B � Ug:Proposition 20 For any open set U and any scale �,SI2�(U) � E�(U) � U:Equivalently, for any lower semi-continuous image u,SI2�(u) 6 E�(u) 6 u:
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K
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HFigure 5.2: SI2�(S) � E�(S).This result simply means that E� \erodes" a shape less than SI2� does.Proof :1. We �rst establish the proof for a C-set S. If M belongs to SI2�(S), then there exists aconvex closed set B of area 2�, symmetrical with respect to M , and contained in S. Now, if Dis a positive chord segment of S such that the associated chord set K contains M , let H be thehalf plane containing K and delimited by the line supporting D (cf. Figure 5.2). Then, B \His connected (as the intersection of two convex sets) and contains M , so that it is contained inK. Consequently, the symmetry of B yieldsarea (K) > 12area (B) = �(the inequality is strict because B is closed and S is open), which means that M belongs toE�(S). Hence, for any C-set S we have SI2�(S) � E�(S):2. If U is an open subset of the plane we have[S C�set; S�U SI2�(S) � [S C�set; S�U E�(S) = E�(U) � U: (5.4)Now, if x 2 SI2�(U), we can �nd B 2 Bc such that x+p2�B � U . Let S" = x+(p2�+") �B,where �B is the topological opening of B. Since B is compact and cU is closed, the distancebetween these disjoint sets is nonzero and consequently S" � U for a certain " > 0 small enough.Thus, S" is a C-set included in U and such that x 2 SI2�(S"), and we getx 2 [S C�set; S�U SI2�(S):



5.4. COMPARISON WITH THE INF-SUP OPERATORS 91We just proved the inclusion SI2�(U) � [S C�set; S�U SI2�(S): (5.5)Finally, Equations (5.4) and (5.5) imply as requiredSI2�(U) � E�(U) � U (5.6)for any open set U .3. If u1 and u2 are two images such that8�; ��(u1) � ��(u2);then 8x; u1(x) 6 u2(x). Now, if u is a lower semi-continuous image, we can apply Equation 5.6to ��(u) to obtain 8�; SI2�(��(u)) � E�(��(u)) � ��(u);and since Equation 5.2 de�nes E�(u) and SI2�(u), we have8�; ��(SI2�(u)) � ��(E�(u)) � ��(u);which proves that 8x; SI2�(u)(x) 6 E�(u)(x) 6 u(x): �Remark : The preceeding result is not true for a closed set in general : for a closed disk D,SI2�(D) is the closure of the open disk E�(D). One may also wonder if the reverse inclusionE�(U) � SI2�(U) happens. For a triangle T with unit area, we have SI2�(T ) = ; , � > 13(see Figure 5.3), whereas the corresponding extinction scale for E� is 49 . More precisely, onecan prove that E�(T ) 6= SI2�(T ) for any scale 0 < � < 49 . However, for regular convex sets andsmall scales, this reverse inclusion happens.Proposition 21 If S is a closed convex set whose boundary is C1, then there is a limit scale�l(S) > 0 such that SI2�(S) = E�(S) for all � < �l(S).Proof :1. Let S be a closed convex set whose boundary C is de�ned by a regular parameterizationC : I ! C of class C1. We �rst prove that for � > 0 small enough and for any �-chord set Cs;t,the set symmetrical to Cs;t with respect to the middle point of [C(s)C(t)] is included in S.1.a. De�ne �1 = area (S)=2. For any s 2 I and 0 6 � 6 �1, consider the unique �-chord segment [C(s)C(t)] (where t depends on s and �) and I(s) the intersection between C
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Figure 5.3: The largest symmetric convex set contained in a unit area triangle has area 2=3.
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σ
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C(t)Figure 5.4: De�nition of �(s; �)and the midperpendicular of (C(s); C(t)) (see Figure 5.4). If � = 0, C(s) = C(t) and thismidperpendicular is the line which goes through C(s) and which is orthogonal to the tangent toC in C(s) . We call �(s; �) the measure in ]0; �2 [ of the angle between C(s)C(t) and C(s)I(s).Since (s; �) 7! �(s; �) is continuous on the compact set I � [0; �1], necessarily�0 = inf(s;�)2I�[0;�1]�(s; �)is nonzero and for any � 6 �1 and s 2 I , we have �(s; �) > �0.1.b. For any s 2 I , consider �(s) the area of the largest C-set Cs;t such that\(C 0(s); C 0(t)) = 12�0(such a C-set exists because the map t 7! \(C 0(s); C 0(t)) increases continuously from 0 towards2�). Notice that if we had �(s) = 0 for some s, then C([s; t]) would be a segment, which isimpossible since \(C 0(s); C 0(t)) 6= 0. Hence, �(s) = 0 is nonzero for all s 2 I , and since s 7! �(s)is continuous on the compact set I , we have�2 = infs2I �(s) > 0:



5.4. COMPARISON WITH THE INF-SUP OPERATORS 931.c. Now we claim that for any � 6 min(�1; �2) and for any �-chord set Cs;t, the set ~Cs;tsymmetric to Cs;t with respect to the middle point of [C(s)C(t)] is included in S. De�ne 
 theintersection between the tangents to C in C(s) and C(t), and ~
 the point symmetric to 
 withrespect to the middle point of [C(s)C(t)]. Since � 6 �2, we have� = \(C 0(s); C 0(t)) 2]0; �0];and as � 6 �1 we know that the triangle C(s)C(t)J is included in S, J being de�ned by\(C(s)C(t); C(s)J) = \(C(t)J; C(t)C(s)) = �0(see Figure 5.5). Now, as ~Cs;t is included in the triangle C(s)C(t)~
, it is su�cient to prove that~
 belongs to the triangle C(s)C(t)J . But this is a simple consequence of � 6 �0, because0 6 \(C(s)C(t); C(s)~
) 6 �as well as 0 6 \(C(t)~
; C(t)C(s)) 6 �:
s,t
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Ω
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Figure 5.5: ~Cs;t is included in S2. In order to prove Proposition 21, according to Proposition 20 it is su�cient to checkthat for �0 6 min(�1; �2), E�0(S) � SI2�0(S). Consider a point M 2 E�0(S) : necessarily, any�-chord segment of S whose middle point is M is such that � > �0 (and since S is convex,there exists at least one such chord segment). But in this case, we proved on Step 1.c that wecan �nd a convex closed set B with area 2� (made from the symmetrization of a chord-set, see



94 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESFigure 5.5), symmetrical with respect to M and contained in S. Applying on B a homothetictransformation with center M and ratio p�0=� < 1, we obtain a convex closed set B0 with area2�0, symmetrical with respect to M and contained in S. Consequently, M 2 SI2�0(S), and theproof is complete. �5.5 Asymptotic behaviour of the a�ne erosionIn the previous chapter, we investigated the asymptotic behaviour of the geometrical a�neerosion, and we proved that it was consistent with the a�ne scale space of curves. Hence, wecan expect the a�ne erosion of images to be consistent with the a�ne morphological scale space(AMSS).In [41], F.Guichard and J.-M.Morel proved that SI� is (semi-)consistent with the AMSS. Weprove the same result for the a�ne erosion, i.e. thatE�(u) = u+ ! � � 23 :jDuj [curv�(u)] 13 +O(� 34 ):Here, r� means min(r; 0) and we keep the convention that if r < 0, r 13 = �jrj 13 . Using thedual operator to a�ne erosion, the a�ne dilation (de�ned by D�(u) = �E�(�u) as we sawpreviously), we shall obtain the exact consistency with AMSS (i.e. curv(u) instead of curv�(u))by considering the alternate operator D� �E� (or E� �D�).The classical way (see [41]) to estimate the asymptotic behaviour of such operators is toreduce the problem to quadratic forms by using a local comparison principle.5.5.1 A local comparison principleFirst, we need to de�ne the concept of C-images (which are to images what C-sets are to sets)and establish an approximation lemma.De�nition 17 An image u is a C-image if all of its non trivial level sets are C-sets.By trivial set, we mean either the empty set or the whole plane.Lemma 11 Consider a Lipschitz image u. Then, for any compact subset K of the plane andany " > 0, there exists a C-image u" such that ju� u"j 6 " on K.Proof :u being k-Lipschitz on the compact set K, we �rst de�ne the family of squaresAi;j = [ai; ai+1]� [aj ; aj+1]; (i; j) 2 ZZ2; where an = n"k � p2 :



5.5. ASYMPTOTIC BEHAVIOUR OF THE AFFINE EROSION 95Now, we can let u"(x) = inffu(y)1K(y); 9(i; j); (x; y) 2 A2i;jg;where 1K is the characteristic function of K (i.e. which equals 1 on K and 0 outside). Thisde�nition ensures that all non trivial level sets of u" are C-sets (their boundaries are made ofpolygons), and moreover we have8x; 0 6 u(x) 1K(x)� u"(x) 6 k:diam(Ai;j) = ":Hence, u" satis�es ju� u"j 6 " on K. �Proposition 22 (Local Comparison Principle) Let u and v be two k-Lipschitz images suchthat u > v on the disk with center x0 and radius r. Then we have, for any � > 0,E�(u)(x0) > E�(v)(x0)� k�r :Proof :Given " > 0, by Lemma 11 we can �nd a C-image w such that jw� uj 6 " on the open diskD(x0; r). Besides, we de�ne w+ (respectively w�) as the C-image equal to w on D(x0; r) andequal to +1 outside (resp. equal to w on D(x0; r) and to �1 outside). Notice that in�nitevalues are convenient here, but we could use �nite (and large enough) values as well. We aregoing to prove that E�(w�)(x0) > E�(w+)(x0)� k�r +O(") (5.7)as "! 0. For that purpose, we consider �; � such thatE�(w�)(x0) < � < � < E�(w+)(x0)(if E�(w�)(x0) = E�(w+)(x0), this is not possible, but we are done since Equation 5.7 is clearlysatis�ed).The de�nition of E� states the existence of a chord (A;B) of the level set ��(w+) such thatx0 2 [AB] and the associated chord set K has an area not larger than � (see Figure 5.6). Theconstruction of w+ ensures that K is bounded. Besides, no piece of [AB] can de�ne a chordset of ��(w�) contained in K because since this chord set would have an area not larger than�, it would be a contradiction to the fact that � > E�(w�)(x0). As a consequence, the setC = @��(w�)\K \D(x0; r) \attains" the boundary of the circle @D(x0; r). If we de�ne as wellC 0 = @��(w+) \K \D(x0; r) andd = inffjx� x0j; (x; x0) 2 C � C 0g;



96 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESon the one side we have � � � 6 2"+ kd; (5.8)because u is k-Lipschitz and jw � uj 6 " on D(x0; r). On the other side, one can easily inscribein K a triangle with basis r and height d, which proves that area (K) > rd, and consequently� > rd: (5.9)Finally, Equations 5.8 and 5.9 give � � � 6 k�r + 2";and considering the limits �! E�(w�)(x0) and � ! E�(w+)(x0), we obtain the desired Equa-tion 5.7.Last, as we have both u > w��" and v 6 w++" on FR2, we can apply twice the monotonicityof E� to deduce from Equation 5.7 thatE�(u)(x0) > E�(v)(x0)� k�r + O(");and letting "! 0 achieves the proof. �
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D(    ,r)Figure 5.6: A local comparison principleCorollary 7 (Uniform Local Comparison Principle) Let u and v be two k-Lipschitz im-ages such that u > v on D(x0; r). Then,8x 2 D(x0; r2); E�(u)(x) > E�(v)(x)� 2k�r :Proof :For any x 2 D(x0; r2) we can apply Proposition 22 since u > v on D(x; r2) and we obtain thedesired inequality. �



5.5. ASYMPTOTIC BEHAVIOUR OF THE AFFINE EROSION 975.5.2 ConsistencyLemma 12 (Locality) Let u and v be two k-Lipschitz images such thatu(x)� v(x) = O(jx� x0j3) as x! x0:Then, E�(u)(x0)�E�(v)(x0) = O(� 34 ) as � ! 0:Proof :We borrow the proof from [41]. Since u(x)� v(x) = O(jx � x0j3), we can �nd two positivenumbers R and C such that8r < R; 8x 2 D(x0; r); v(x)� Cr3 6 u(x) 6 v(x) + Cr3:These three functions are k-Lipschitz, so we can apply the local comparison principle (Proposi-tion 22) to obtain, for any �,E�(v)(x0)� Cr3 � 2k�r 6 E�(u)(x0) 6 E�(v)(x0) + Cr3 + 2k�r :Choosing � = r4, we get as announcedE�(u)(x0)�E�(v)(x0) = O(� 34 ) as � ! 0: �Remark : Lemma 12 remains true if we write \uniformly with respect to x0" for the hypothesisand the conclusion.Lemma 13 If u is a polynomial whose degree is at most 2, then for any x0 2 FR2,E�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
�(u)(x0)] 13 +O(� 34 ): (5.10)Proof :If the degree of u is strictly less than 2, then E�(u) = u, and Equation 5.10 is clearlysatis�ed. Otherwise, according to the morphological invariance of E�, we can assume thatu(x0) = 0. Moreover, we can chose a (positively oriented) system of coordinates such thatx0 = (x0; y0)T and either u((x; y)T) = ax2 + by2



98 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESor u((x; y)T) = ax2 + by;where (a; b) 2 FR � f�1; 1g. If u((x; y)T) does not depend on x, the level lines of u are straightlines and Equation 5.10 is clearly satis�ed. Hence, we suppose a 6= 0 in the following.1. Case u((x; y)T) = ax2 + by.We deal with the case b = 1, the case b = �1 being similar. The level lines of u are parabolae,so that we can use Proposition 16 to computeE�(u)(x0) = � ) x0 2 E�(fy = �ax2 + �g)) x0 2 fy = �ax2 + !((�2a)+) 13� 23 + b�g);so that E�(u)(x0) = u(x0) + !((2a)�) 13� 23 :On the other hand,A(u)(x0) = ��(ux)2uyy � 2uxuyuxy + (uy)2uxx��� 13 (x0) = (2a�) 13 ;so that u satis�es Equation 5.10 (with no remainder).2. Case u((x; y)T) = ax2 + by2, ab > 0.The case b = 1 is obvious since E�(u) = u and A(u) = 0. Thus we suppose that b = �1and a < 0. The level line fu(x) = �g is empty if � > 0, and it is an ellipse with area�j�jjaj�1=2 otherwise. Hence, we can apply Proposition 12 and a simple computation based onthe asymptotic expansion (4.4) yieldsE�(u)(x0) = u(x0) + !(8au(x0)) 13� 23 + O(� 43 );and A(u)(x0) = (8a(ax20 � y20)) 13as expected.3. Case u((x; y)T) = ax2 + by2, ab < 0.The level lines of u are hyperbolae, and the reasoning is similar to Step 2 using Proposition14. �Proposition 23 (Consistency) Let u be a k-Lipschitz image of class C3 near x0, then as� ! 0, E�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
�(u)(x0)] 13 + O(� 34 );D�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
+(u)(x0)] 13 + O(� 34 );



5.5. ASYMPTOTIC BEHAVIOUR OF THE AFFINE EROSION 99Proof :u being a C3 near x0, we can consider ~u, its Taylor expansion at order 2 near x0. Thus,u(x) = ~u(x) +O(jx� x0j3)as x! x0. From Lemma 12, we deduce that as � ! 0,E�(u)(x0)� E�(~u)(x0) = O(� 34 );and using Lemma 13 we get as expectedE�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
�(u)(x0)] 13 +O(� 34 ):The consistency for D� follows immediatly since D�(u) = �E�(�u). �Remark : In fact, the consistency is uniform in a neighborhood of x0.Next, we extend this consistency property to the alternate operators D� �E� and E� �D�.We �rst prove that they satisfy a Local Comparison Principle.Lemma 14 Let u and v be two k-Lipschitz images such that u > v on D(x0; r). Then,8x 2 D(x0; r4); D� �E�(u)(x) > D� �E�(v)(x)� 6k�r ;and the same inequality holds for E� �D�.Proof :The proof is a direct consequence of Lemma 7. We know that for x 2 D(x0; r2), we haveE�(u)(x) > E�(v)(x)� 2k�r ;which we rewrite �E�(v)(x) > �E�(u)(x)� 2k�r :Now, from Lemma 10, �E�(u) is also k-Lipschitz, as well as �E�(v)� 2k�r . Hence, we can applythe Uniform Local Comparison Principle once again to obtain8x 2 D(x0; r4); E� [�E�(v)(x)] > E� ��E�(u)(x)� 2k�r �� 4k�r ;which yields D� �E�(u)(x) > D� �E�(v)(x)� 6k�ras announced. �



100 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESTheorem 4 (Consistency) Let u be a k-Lipschitz image of class C3 near x0, then as � ! 0,T�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
(u)(x0)] 13 +O(� 34 );for both T� = D� �E� and T� = E� �D�.Proof :We check that the proof of Proposition 23 can be applied here. First, the consistency of thealternate operators for second order polynomials is straightforward since for such polynomialsE� �D�(u) and D� �E�(u) are both equal to either E�(u) or D�(u). Last, the locality propertyof Lemma 12 for D� �E� and E� �D� is a direct consequence of Lemma 14. �Remark : As for E�, one easily proves that the consistency property of Theorem 23 is uniformnear x0.5.6 Using Matheron's TheoremThere is another way to establish the consistency of the operator E� : it is based on Matheron'scharacterization of monotone morphological operators and on a consistency Theorem due toF.Guichard and J.-M.Morel (see [41]).Theorem 5 (Matheron) Let T be a translation invariant monotone4 morphological5 operatoron a set of functions F containing the characteristic functions of all the level sets of the elementsof F . Then, one can �nd a family B of subsets of FR2 such that8u 2 F ; T (u)(x) = supB2B infy2B u(x+ y):Indeed, the operator E� being translation invariant, nondecreasing and morphological, theMatheron's characterization applies and we can write, for any l.s.c. image u,E�(u)(x) = supB2Be infy2B u(x+p� � y):We should take Be = fX � FR2; 0 2 E1(X)g;but from Lemma 7 we know that it is su�cient to takeBe = fX bounded C� set; 0 2 E1(X)g:Thus, E� belongs to the class of a�ne invariant inf-sup operators which have been studied in[41]. In particular, we can expect to use the following consistency theorem :4i.e. nondecreasing5i.e. satisfying [Morphological Invariance].



5.6. USING MATHERON'S THEOREM 101Theorem 6 (F.Guichard, J.-M.Morel) Let B be a localizable set of plane closed nonemptybounded sets which is invariant by the special linear group SL(FR2). Then, there exists twoconstants c+ and c� depending on B such that, for any image u C3 in a neighbourhood of x0,infB2Be supy2B u(x+ps � y) = u(x0) + s2=3 jDu(x0)j g (curv(u)(x0)) + o(s2=3);where g(r) = c+ r 13 if r > 0= c� (�r) 13 if r < 0:To apply Theorem 6 to the a�ne erosion, the only requirement we have to check is that thebasis Be is localizable in the following sense (see [41]).Proposition 24 (Localizability) The basis Be associated with the a�ne erosion operator islocalizable, i.e. there exists a constant c > 0 such that8r > pc; 8B 2 Be; 9B0 2 Be; B0 � D(0; r) and �(B0; B) 6 cr:Here, the notation D(0; r) represents the open disk of radius r centered at the origin, and�(B0; B) means the Hausdor� semi-distance between B0 and B, given by�(B0; B) = supx02B0 d(x0; B) = supx02B0 infx2B jx� x0j:Proof :The proof is similar to the proof of the Local Comparison Principle (Proposition 22), whichis not surprising.1. Given r > 1 and a set B element of Be, we have 0 2 E1(B) and by De�nition of E1(B)we can �nd a C-set A included in B such that 0 2 E1(A) (i.e. A 2 Be). We consider the1r -Euclidean dilation of A restrained to the disk D(0; r), i.e.B0 = fx 2 D(0; r); d(x; A) 6 1r g:B0 is a C-set containing A \D(0; r), contained in D(0; r), and�(B0; B) 6 �(B0; A) + �(A;B) 6 1r + 0:Now we are going to prove that B0 2 Be, that is to say that 0 2 E1(B0).Suppose that 0 belongs to D, a chord segment of B0 associated to a chord set K of area �(see Figure 5.7). Two cases can be distinguished.



102 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGES1.a. If A\K � D(0; r), then a subset of K de�nes a chord set of A containing 0 and of areano more than �. But since A 2 Be, we necessarily have � > 1.1.b. If A \K is not a subset of D(0; r), which means that K \ @D(0; r) is not empty, thenwe can easily inscribe in K a triangle of base larger than r and height 1r (see Figure 5.7), so thatwe get � = area (K) > 1.In both cases, 0 belongs to no 1-chord set of B0, so that B0 2 Be. Consequently, we provedthat 8r > pc; 8B 2 Be; 9B0 2 Be (C� set); B0 � D(0; r) and �(B0; B) 6 1r ;which ensures that Be is localizable with a constant c = 1. �
D(0,r)

0 D

K
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A
r

rFigure 5.7: Area of K is greater than 1Hence, Theorem 6 applies to Be and we have, for any image C3 near x0,E�(u)(x0) = supB2Be infy2B u(x0 +p� � y) = u(x0) + jDu(x0)jg (curv(u)(x0)) � 23 + o(� 23 ); (5.11)where g(r) = c+ r 13 if r > 0= c� (�r) 13 if r < 0:At this stage, one easily checks that c+ = 0 and c� = ! = 12 �32�2=3.In [41], the consistency of the alternate operators is proved only when B is made of allunit area convex sets symmetrical with respect to 0, and the proof is based on a more preciseestimation of the inf-sup and sup-inf operators in this case.However, it seems that the method we used in the previous section still works for anylocalizable basis of structuring elements invariant by SL(FR2) (and in particular for Be). Since



5.7. CONVERGENCE 103the consistency mainly requires a local comparison principle, we only need to check that thealternate operators ISs �SIs and SIs � ISs satisfy the following local comparison principle. Theproof is more or less the same as for Lemma 14.Lemma 15 If B is localizable and invariant by SL(FR2), and if u and v are two k-Lipschitzfunctions in D(x0; r) satisfying u 6 v in D(x0; r), then for any s 6 c�1r2,ISs � SIs(u)(x0) 6 ISs � SIs(v)(x0) + kcsr ; (5.12)where c depends only on B. The same property holds for ISs � SIs.Proof :First, we know from [41] that (5.12) is satis�ed for both SIs and ISs, taking c = cB. Butsince c�1r2 does not depend on x0, (5.12) is satis�ed for SIs and ISs in the whole disk D(x0; r2)as soon as s 6 2c�1r2=4, provided that we take c = 2cB. Hence, we can apply once again theLocal Comparison Principle to deduce that for any s 6 c�1r2, (5.12) is satis�ed for ISs � SIsand SIs � ISs, with c = 4cB. �Hence, we can generalize the consistency property of [41] for the alternate operators ISs�SIsand SIs � ISs for any localizable and a�ne-invariant basis of structuring elements.5.7 ConvergenceAs we know that the a�ne erosion of images is consistent with the AMSS, it is natural towonder whether the iterated in�nitesimal a�ne erosion spans exactly the a�ne morphologicalscale space. The answer is yes, and the proof is classical (see [9], [22], [41] and [20]). The onlyre�nement we bring is that we allow non uniform subdivisions.De�nition 18 A subdivision of an interval [a; b] is a �nite sequence s = (s0; s1; : : :sn) such thata = s0 6 s1 6 : : : 6 sn = b. The step of s isjsj = sup16i6n(si � si�1):In the following de�nition, S(FR2) is the set of 2� 2 symmetric real matrices.De�nition 19 A function F : S(FR2)� FR2 ! FR2 is elliptic if8 (p;X; Y ) 2 FR2 � S(FR2)� S(FR2); X 6 Y ) F (X; p) > F (Y; p):Theorem 7 Let F be a continuous elliptic function, and Th an operator on Lipschitz images(the Lipschitz constant being preserved). Suppose that Th commutes with additions of constants,contrast changes and translations, and that for any u C3 near x0,Th(u)(x0) = u(x0) + hF (D2u(x0); Du(x0)) + o(h): (5.13)



104 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESGiven a Lipschitz image u0, we de�ne, for any subdivision s of [0; t],us(x; 0) = u0(x) andus(x; si+1) = Tsi+1�si us(x; si):Then, as jsj ! 0, us(:; t) converges uniformly on every compact subset of the plane towards afunction x 7! u(x; t), the unique viscosity solution of8>><>>: @u@t = F (D2u;Du)u(x; 0) = u0(x):The proof can be found in [41] for example.Corollary 8 Let u0 be a Lipschitz image, and us(�; si) the �ltered images obtained as in theorem7. Then, as jsj ! 0, us(:; t) converges uniformly on every compact subset of the plane to theunique viscosity solution of the AMSS partial di�erential equation@u@t = ! � jDujg(curv(u));subject to initial condition u(x; 0) = u0(x), whereg(c) = (c+) 13 if Th = Eh3=2 ;= (c�) 13 if Th = Dh3=2 ;= c 13 if Th = Eh3=2 �Dh3=2 or Th = Dh3=2 �Eh3=2 :with as usual ! = 12 �32�23 .Proof :We apply the previous theorem to the operators Eh3=2 ; Dh3=2 ; ::: and their associated contin-uous elliptic function F (D2u;Du) = ! � jDujg(curv(u)):The required consistency property (Equation 5.13) is a direct consequence of Theorem 4. �Remark : Following [22], we could also use the meanMh = 12(Eh3=2 +Dh3=2)instead of the alternate operators Eh3=2 � Dh3=2 and Dh3=2 � Eh3=2 . The consistency followsimmediatly from the consistency of Eh3=2 and Dh3=2 , and the convergence theorem still applies.This \mean" operator has one advantage : it is symmetric, so that the resulting scheme is fullyinvariant under a contrast reversal (whereas the alternate scheme is only asymptoticly invariantunder a contrast reversal). However, Mh does not satisfy the morphological invariance axiom,and it creates new grey levels on images.



Chapter 6Numerical schemeNumerically, a curve is nothing but a �nite set of numbers which are interpreted as coordinatesor parameters to produce a continuous curve. The simplest way to represent a curve numericallyis to de�ne it as a polygon, but some higher order representations, e.g. splines, have appearedto be more e�cient for some applications.Many reasons lead to choose the polygonal representation to implement the a�ne erosionon curves. The polygonal representation is very simple, a�ne invariant, and the level lines of agrey-level discrete image are naturally de�ned as polygons if we consider the pixels as squares.But the major advantage of this representation in our case is, as we shall see further, that wecan compute exactly the a�ne erosion of a polygon. The lack of regularity of polygons (not C1everywhere) shall not be a problem, since most of the previous analyses apply to piecewise C1curves.Obviously, neither the a�ne erosion nor the AMSS of a polygon is a polygon. But sinceno simple dense set of parameterized curves satis�es this property (as far as we know), anapproximation is always required to iterate the a�ne erosion. The main advantage of beingable to compute exactly the a�ne erosion of a polygon is that we can fully dissociate the twoapproximate operations required to compute the AMSS : the scale quantization step (we have toiterate the a�ne erosion several times) and the space quantization step, which is necessary towork on discrete data. By processing these two steps successively and independently, we avoida classical trap which prevents geometrical algorithms from satisfying the [Inclusion Principle]and [A�ne Invariance] properties. In particular, our method sets no a priori relation betweenthe number of vertices of a polygon and the number of vertices of the polygon resulting on theapproximation of its a�ne scale space at any scale : this number can drastically increase (caseof a triangle) or decrease as well (case of a very \noisy" curve). In other words, our algorithmprocesses a polygon as a curve and not as a set of points, and for that reason it is not a pointevolution scheme.In this chapter, we describe exactly the a�ne erosion of a polygon, convex or not. Thenwe give a simple numerical algorithm to compute the a�ne erosion of convex polygons, as well105



106 CHAPTER 6. NUMERICAL SCHEMEas an exact algorithm in the general case. We also present brie
y a simpli�ed algorithm whichruns faster, and produces similar results.6.1 A�ne erosion of a polygon6.1.1 Regular convex caseProposition 25 Let P = P1P2:::Pn be a convex polygon, and 0 < � < �r(P). The �-a�neerosion of P is a C1 curve made of the concatenation of the pieces of hyperbolae Hi;k de�ned byEquations 6.2 to 6.7, the couples (i; k) satisfying Equation 6.1 and being sorted in lexical order.Proof :If P = P1P2:::Pn is a (positively oriented) convex polygon and 0 < � < �r(P), we knowfrom Theorem 1 that E�(P) is made exactly of the middle points of the �-chord segments ofP . Consider two non-parallel edges [Pi�1Pi] and [PkPk+1], then there exists �-chords whoseendpoints lie on [Pi�1Pi] and [PkPk+1] if and only if12 [IPk ; IPi] 6 � + �i;k 6 12 [IPk+1; IPi�1] ; (6.1)where I is de�ned as I := (Pi�1Pi) \ (PkPk+1): (6.2)and �i;k := area (IPi:::Pk) (6.3)(see Figure 6.1). In this case, we know from Proposition 1 that the middles of the �-chordsegments whose endpoints lie on [Pi�1Pi] and [PkPk+1] span a piece of hyperbolaHi;k : M(t) = I + �(etIPk + e�tIPi); t1 6 t 6 t2 (6.4)whose apparent area is � + �i;k = 2�2 [IPk; IPi] ;so that � = s � + �i;k2 [IPk; IPi] : (6.5)We need to compute the endpoints of Hi;k, i.e. the value of t1 and t2. Two cases happenfor t1 : if area (IPi�1Pk) > � + �i;k, there exists a �-chord segment [Pi�1J ] where J 2 [PkPk+1](see Figure 6.1), otherwise there exists a �-chord [JPk ] where J 2 [Pi�1Pi]. In the �rst case, wehave I + 2� � e�t1IPi = Pi�1;
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I J k+1Figure 6.1: Piece of hyperbola resulting from two edges.whereas I + 2� � et1IPk = Pkfor the alternative case. Symmetrically, one easily checks that if area (IPiPk+1) > � + �i;k wehave I + 2� � et2IPk = Pk+1;and I + 2� � e�t2IPi = Pi otherwise:In other words,t1 = � ln dist(I; Pi�1)2� � dist(I; Pi) if area (IPi�1Pk) > � + �i;k; t1 = � ln(2�) otherwise; (6.6)t2 = ln dist(I; Pk+1)2� � dist(I; Pk) if area (IPiPk+1) > � + �i;k; t2 = ln(2�) otherwise: (6.7)The admissible hyperbolae Hi;k are encountered on E�(P) in lexical order, that is Hi;k <Hi0;k0 means either \i < i0" or \i = i0 and k � i < k0 � i < k � i + n modulo n". The reasonis very simple : as we know that E�(P) is convex, we must consider the �-chords segments ofP in such an order that the angles of their directions increase continuously on S1. Thus, theprevious assertion simply results from the inequalityi 6 j 6 k ) �(PiPj) 6 �(PiPk) 6 �(PjPk) < �(PiPj) + 2�;where �(v) measures on S1 the angle between a �xed vector and the vector v. �



108 CHAPTER 6. NUMERICAL SCHEME6.1.2 Non regular convex case (removing ghosts parts)When P is a convex polygon and � > �r(P), we noticed in Chapter 3 (see Figure 3.13 forexample) that \ghosts parts" can appear in the curve made of the middle points of the �-chordsegments of P . We cannot avoid this situation since �r(P) = 0 for some polygons. Moreover, wesaw in Chapter 4 that we could hope to iterate the a�ne erosion with rather large scale steps ;to this aim, we must be able to compute the a�ne erosion of any polygon with arbitrary largescales, and not only when � < �r(P).
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Figure 6.2: Non regular chords span \ghost" hyperbolae.We can see on Figure 6.2 that non-regular chords span \ghost parts", which do not takepart of the a�ne erosion of P . By the way, these \ghost parts" are also hyperbolae, and theirapparent area is equal to A� � + �i;k, A being the area of P . Thus, we can forget these ghosthyperbolae, and E�(P) is included in the collection of hyperbolae de�ned in Proposition 25,with the restriction [Pi�1Pi; PkPk+1] > 0:Now, in order to compute exactly the a�ne erosion of P , we have to compute hyperbolaeintersections in order to remove the remaining \ghost parts". In general, computing the inter-section between two hyperbolae reduces to an algebraic equation of degree 4, but in the situationwe are facing, one can see that when two pieces of hyperbola have a common intersection, theymust have a common axis, so that the problem reduces to a second degree equation which can be



6.1. AFFINE EROSION OF A POLYGON 109solved exactly. Hence, it is quite simple to compute the exact a�ne erosion of a convex polygonfor arbitrary large scales. In the next section, we investigate the general (and more complicated)case of non-convex polygons.6.1.3 General case (non convex polygons)Proposition 26 The a�ne erosion of a (possibly non convex) polygon is one or several gen-eralized \hyperbolic polygon", resulting from the concatenation of segments and convex pieces ofhyperbolae.The proof is straightforward from Proposition 10, because the a�ne erosion can only \create"segments and hyperbolae pieces. If P = P1P2 : : :Pn is a polygon, we can writeE�(P) = I(P)� [16i;k6nC�(Pi : : :Pk);where C�(Pi : : :Pk) is the union of the chord sets of P , with area smaller than �, and resultingfrom chord segments whose endpoints lie on the edges [PiPi+1] and [Pk�1Pk] (with the circularconventions P0 = Pn, Pn+1 = P1 and when k < i, Pi : : :Pk = PiPi+1 : : :PnP1 : : :Pk�1Pk).Let Pi : : :Pk be a polygonal curve, and consider two points (A;B) 2 [PiPi+1]� [Pk�1Pk ]. Weshall say that the segment [AB] is occluded if it is not a chord segment of P = Pi : : :Pk , i.e. iffor some j 2 fi+ 1; : : : ; k� 2g, [AB] \ [PjPj+1] 6= ;:Now, we shall say that the polygonal curve P = Pi : : :Pk is� partially occluded if for at least one (A;B) 2 [Pi; Pi+1[�]Pk�1; Pk], the segment [AB] isoccluded,� totally occluded if all segments [AB], (A;B) 2 [Pi; Pi+1]� [Pk�1; Pk] are occluded.If Pi : : :Pk is totally occluded, it is clear that C�(Pi : : :Pk) = ;. It is equivalent to say that(PiPk) is not a chord of P .Lemma 16 Suppose that Pi : : :Pk is partially (but not totally) occluded, and [PiPi+1; Pk�1Pk] >0. Then one can �nd (A;B) 2 [PiPi+1]�[Pk�1Pk ] such that PiAPi+1 : : :Pk�1BPk is not occludedand C�(Pi : : :Pk) = C�(PiAPi+1 : : :Pk�1BPk):



110 CHAPTER 6. NUMERICAL SCHEMEProof :More than a proof, we give an e�ective construction of A and B. The �rst remark is that ifC�(Pi : : :Pk) = ;, we can choose A = Pi and B = Pk. Hence, we suppose that C�(Pi : : :Pk) 6= ;in the following.Since [PiPi+1; Pk�1Pk] > 0, we can �nd an a�ne map � such such that det� = 1 and�(Pj) = (xj ; yj) in an orthonormal basis, with xi = xi+1 = yk�1 = yk = 0, xk > 0, yi > 0,xk�1 < xk and yi+1 < yi (see Figure 6.3).
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MbFigure 6.3: Solving partial occlusions.Now, consider four positive real numbers a; b; x; y and look at Figure 6.3. The point M(a; b)belongs to the boundary of the chord set Kx;y of the corner C = FR+ � FR+ if and only ifax + by = 1:In this case, we havearea (Kx;y) = ab+ b(x� a)2 + a(y � b)2 = ab+ b(x� a)2 + ab22(x� a) ;and we can deduce that the �-chord set of C de�ned from the segment [(x; 0); (0; 2�x ] containsM if and only if x belongs to the intervalI�(a; b) = (x; ab+ b(x� a)2 + ab22(x� a) 6 �) :An explicit computation givesI�(a; b) = 24�b 0@1�s1� 2ab� 1A ; �b 0@1 +s1� 2ab� 1A35 ;



6.1. AFFINE EROSION OF A POLYGON 111with the conventions I�(a; b) = ; if the square root is not de�ned, and I�(a; b) = FR if one of a; bis not positive.Let us now de�ne J1 = \i+26j6k�2 I�(xj ; yj)(with the convention J1 = FR if i+ 2 > k � 2), andJ2 = [max(0; xk�1); xk] \ �2�yi ; 2�max(0; yi+1)�(with the convention 1=0 = +1). Since we supposed C�(Pi : : :Pk) 6= ;, J1 \ J2 is not emptyand we can write J1 \ J2 = [z1; z2]. Then, one checks easily that the two pointsA = ��1 �(0; 2�z2 )� and B = ��1 ((z1; 0))satisfy the conclusion of the Lemma. �We investigate the possible \shapes" of C�(Pi : : :Pk). According to the previous Lemma, wecan suppose without loss of generality that no occlusions appear. In the following, area (Pi : : :Pk)means the algebraic area of the polygon PiPi+1 : : :Pk, de�ned for example byarea (Pi : : :Pk) = 12 Xi<j<k [PiPj ; PiPj+1] :If area (Pi+1 : : :Pk�1) > �, any chord segment whose endpoints lie on [PiPi+1] and [Pk�1Pk ]de�nes a chord set of area greater than �, so that C�(Pi : : :Pk) = ;. Hence, we shall supposethat area (Pi+1 : : :Pk�1) 6 � in the three following cases which remain.� case 1 (regular case) : If area (Pi : : :Pk) > � and [PiPi+1; Pk�1Pk ] > 0, the insideboundary of C�(Pi : : :Pk) is made of a piece of hyperbola, completed with two half-chord seg-ments at its endpoints (see Figure 6.4).� case 2 (reverse case) : If area (Pi : : :Pk) > � and [PiPi+1; Pk�1Pk ] 6 0 the insideboundary of C�(Pi : : :Pk) is a polygonal curve of the kind A
B, where (A;B) 2 [PiPi+1] �[Pk�1Pk ]. The point 
 is obtained as the intersection between the two �-chord segments de�nedfrom A and B. Remember that as in the convex case, either A = Pi or (A; Pk�1) is a �-chord(and a symmetrical alternative holds for B). As we noticed previously, the ghost hyperbolaspanned by the �-chord segments is strictly contained in C�(Pi : : :Pj) and does not contributeto its boundary (see Figure 6.5).� case 3 (sub-area case) : If area (Pi : : :Pj) 6 �, the inside boundary of C�(Pi : : :Pj) issimply the segment PiPj+1.
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6.2. ALGORITHM 1136.2 AlgorithmNow are now in position to describe an exact algorithm to compute the a�ne erosion of anypolygon. It consists of three steps.Step A : We collect all the pieces of curves which can possibly be part of E�(P). As we noticedpreviously, these pieces are of three kinds (see Figure 6.6).1. The valid pieces of hyperbola Hi;k described previously, completed with their two halfchord segments at their endpoints. As we noticed before, the interval [t1; t2] de�ningeach piece of hyperbola (Equation 6.4) may have to be shortened in case of partialocclusions (see Lemma 16).2. The two \limit" �-chord segments of each ghost piece of hyperbola resulting fromnon-regular chords.3. The �0-chord segments (0 6 �0 6 �) de�ned by two vertices in the sub-area case.
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Figure 6.6: The three kinds of curves encountered in the a�ne erosion of a polygonStep B : We remove the useless pieces of curves according to their position. More precisely, witheach piece of curve C obtained in step A we associate two numbers a(C); b(C) representingthe starting point of the �rst chord segment spanning C and the endpoint of the last chordsegment spanning C : since these points belong to the polygon P , we can represent them asnumbers i+�, meaning the point (1��)Pi+�Pi+1. The key point of this representation isthat two pieces of curves C1 and C2 obtained in Step A have a common intersection if andonly if the intervals [a1; b1] and [a2; b2] are not disjoint. Therefore, if a1 < a2 < b2 < b1,the piece of curve C2 is useless and can be removed.Step C : We compute the intersections between the remaining pieces of curves (sorted with respectwith their starting number a). At this stage, we may have to compute intersections between



114 CHAPTER 6. NUMERICAL SCHEMEtwo segments, between a segment and an hyperbola, or between two hyperbolae. The two�rst cases reduce to equations of degree 1 and 2 respectively. The last case (intersectionof two hyperbolae) can be more di�cult. If the two hyperbolae have a common axis, thenthe intersection equation is of degree 2 and can be solved easily. However, in more generalcases (which happen), we can have two solve an algebraic equation of degree 4 ; if so, wecompute the intersection by using Newton's algorithm, which converges in a few iterations.Now, for each intersection, we remove from each of the two curves the parts which are \onthe right" of the other one, according to the de�nition of the a�ne erosion. We have tomaintain | at least, formally| two data structures to process this step correctly : one isthe original set of curves obtained from step B, the other is a copy of these curves, updatediteratively as we just explained.We must mention that many intersections simply result from two successive hyperbolae asin the convex case ; to process these intersections, no computation is required : one onlyneeds to remove the two corresponding half-chord segments.Finally, we obtain the a�ne erosion of the polygon as the concatenation (in the naturalorder) of the pieces of curves obtained from step C. This algorithm is a bit heavy (about 1600lines of C source code), but not too slow for reasonable polygons (1 second or so for a polygonwith 100 vertices). One must be careful when computing the intersections, because of the �nitenumerical precision of the computer (this can be done by considering point equalities modulo arelative error, for instance).Figures 6.7, 6.8 and 6.9 are an example of the results we obtain after steps A, B and C.
Figure 6.7: curves obtained ater step AIn this algorithm, we did not mention the problem of topological changes that occurs whenthe initial polygon breaks into non connected parts (remember that the a�ne erosion does notalways preserve the connectedness). This problem is not very di�cult to handle, but requires a
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Figure 6.8: curves obtained ater step B

Figure 6.9: curve obtained ater step C



116 CHAPTER 6. NUMERICAL SCHEMEhigh computation cost : each time an hyperbola or a segment is computed, one must look fora possible intersection with an edge of the polygon, and break the resulting curve into severalparts when the case happens. Fortunately, such external occlusions are seldom.6.3 A�ne subsampling and iterationSo far, we know how to compute exactly the a�ne erosion of a polygon. To iterate this process,we need to quantize the resulting curve (which is, as we shown, a concatenation of hyperbolapieces and segments) in order to get a new polygon. Fortunately, there is a simple way to samplea piece of hyperbola in an a�ne-invariant way. Consider the parameterizationH : M(t) = �(etv1 + e�tv2); t1 6 t 6 t2 :then (t; t + x) is an "-chord set of H if and only if " = �2(sh x � x), where sh denotes thehyperbolic sine (see the proof of Proposition 14). Hence, the polygon P0P1:::Pn de�ned byPk =M �(1� kn)t1 + knt2�is a discrete a�ne invariant quantization of H with \area step""(n) = �2(sh 1n � 1n):Given " > 0, we can quantize the a�ne erosion of a polygon up to the area step " by choosing,for each piece of hyperbola, the minimum entire value of n such that "(n) 6 ". This can bedone, for instance, by tabling the inverse function n("=�2) for the small values and using, forthe large ones, the expansion n '  �26"! 13 :Not surprisingly, this quantization step is a kind of discrete a�ne erosion of scale ". Thus, aswe want to minimize its in
uence on the a�ne erosion, we must choose " � �, where � is thescale of the computed a�ne erosion. This condition forces the second iteration of E� to benon-local in the sense that the �-chord sets of the resulting approximate polygon contain manyedges (i.e. k � i � 1 for the valid Hi;k, see Figure 6.10). In that sense, our algorithm is quitedi�erent from a local point evolution scheme, for which the scale quantization step must besmall compared to the space quantization step in order to ensure a minimum of stability. Here,the inverse phenomenon happens : the scale quantization step (�) is much larger than the spacequantization step ("). An important consequence is that we can e�ectively iterate only a fewtimes (i.e. with large scale steps) the a�ne erosion to compute the a�ne scale space. Indeed, wedo not loose accuracy since " can remain small and the a�ne erosion remains near its tangentoperator (the A�ne Scale Space) even for rather large scales, as we noticed in Section 2.4.
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Figure 6.10: Two iterations of the a�ne erosion on a triangle. The second iteration is non-localwith respect to the quantization, since each piece of the second iteration curve depends on manypoints of the �rst iteration one.6.4 A simpli�ed algorithmAnother way to implement the a�ne scale space is to iterate a pseudo a�ne erosion, writtenE 0�, which processes separately the convex components of a given piecewise convex closed curve.6.4.1 Pseudo a�ne erosionIf we want to de�ne a kind of a�ne erosion for a non semi-closed curve c | that is, a curvewith two endpoints |, we must choose a boundary condition. Our approach will be to �x theseendpoints : in practice, these endpoints will correspond to in
exion points of a larger curve,and we know that these points do not move at order 1 since the curvature of the curve vanishesat them. How can we de�ne the a�ne erosion of c ? We shall not investigate the problem ingeneral, but one can see easily that for small scales, no external occlusions appear and c itselfis included in the boundary of c� = [S2K�(c)S;so that it makes sense to de�ne E�(c) by@c� = c G E�(c);the symbol t meaning a disjoint union (see Figure 6.11).Let us call �m(c) the maximum scale for which we can compute the a�ne erosion of c asdescribed previously. If no external occlusion appear at any scale (i.e. it the two endpoints of c
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Figure 6.11: A�ne erosion of a non semi-closed curveare a non-zero chord of c), we restrain �m(c) to the area of c (de�ned as the area of the chordset associated to the extremal points of c).Given a piecewise convex closed curve C, we consider the canonical decomposition C =c1c2 : : : cn, the curves ci being de�ned as the convex (or concave) curves extracted from C betweentwo successive junctions (see Chapter 3 and Figure 6.12). For any � < �m(C) = mini �m(ci), wecan de�ne the pseudo a�ne erosion of c byE0�(C) = E�(c1)E�(c2) : : :E�(cn):As for the a�ne erosion, one can prove that the pseudo a�ne erosion of a curve cannot haveany double junction.
Figure 6.12: Pseudo a�ne erosion of a closed curve



6.4. A SIMPLIFIED ALGORITHM 1196.4.2 AlgorithmThe algorithm to compute E 0�(C) when C is a polygon is easy to devise. First, we remark that apolygon has no double junctions, and that its simple junctions are the middle of \in
exion" edges.Then, the algorithm to compute the a�ne erosion of each convex component of C is exactly theone we described previously for convex polygons. Hence, computing E 0�(C) is simpler and fasterthan computing D� �E�(C), since it does not require to compute intersections in general (unlessnon-regular chords happen, which is very rare for small scales).It is clear that E 0� is consistent with the a�ne scale space. However, the inclusion propertyis only satis�ed for small scales, because if C and C 0 are two piecewise convex closed curves, weonly have I(C) � I(C 0) ) 8� 6 min(�m(C); �m(C 0)); I �E 0�(C)� � I �E0�(C 0)� :Another drawback of this simpli�ed algorithm is that if the curve C is very irregular, �m(C)may be very small and a lot of iterations are required to compute the a�ne scale space of C ata large scale. This happens because only a few in
exion points disappear at each iteration.In practice, the simpli�ed algorithm based on the pseudo a�ne erosion is faster and simpler.We checked on experiments (see next chapter) that it produces similar results compared to theexact three-steps algorithm we described previously, provided that the scale steps are chosensmall enough.
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