
Chapter 7ExperimentsIn this chapter, we present several experiments obtained with the algorithms described in theprevious chapter. We �rst compute the a�ne erosion of some polygonal curves for di�erentvalues of the area parameter, and check the a�ne invariance of the algorithm. We also show thee�ects of the a�ne discretization of the computed curves. Then, we compute the a�ne scalespace of these curves by iterating the a�ne erosion (plus dilation) on them. We compare theresults obtained with the exact algorithm to those obtained with the simpli�ed algorithm basedon the pseudo a�ne erosion.7.1 A�ne erosionsOn the following experiments (Figure 7.1 to 7.6), the a�ne erosion E�(C) of an initial curve C isrepresented for di�erent values of the area parameter �, actually taken in arithmetic progression.We begin with simple polygons and end with more complicated polygonal curves. It is importantto notice that this representation is NOT the a�ne scale space of the initial curve C, sincethe a�ne erosion operator is not iterated but simply computed for the same initial curve andincreasing values of the area parameter. We shall compute later the corresponding a�ne scalespaces.These �gures can also be viewed as the level sets of an \a�ne distance" function x 7! d(x; C).For any point x lying inside a closed curve C, d(x; C) can be de�ned as the smallest area of apositive chord set of C enclosing x, i.e.d(x; C) = infK2K+(C); x2K area (K):In particular, we have d(x; C) = 0 if and only if x 2 C, andE�(C) = fx 2 I(C); d(x; C) = �g:To give an example, computing the 67 iterations of Figure 7.2 takes 0.3 second (CPU time)on a HP 735/125 station. 121
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Figure 7.1: A�ne erosions (modi�ed square)
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Figure 7.2: A�ne erosions (teeth polygon)
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Figure 7.3: A�ne erosions (non-symmetric star)
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Figure 7.4: A�ne erosions (rough circle)
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Figure 7.5: A�ne erosions (exact circle)
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Figure 7.6: A�ne erosions (regular curve)



128 CHAPTER 7. EXPERIMENTS7.1.1 DiscretizationThe next experiments (Figures 7.7 to 7.9) highlight the a�ne invariance property of the dis-cretization process we described in the previous chapter. The a�ne erosion of some of theprevious curves is computed for increasing values of the area parameter, and with a rather largesub-sampling area step in order the discretization to be easily seen. Notice how the samplingadapts to the resulting curve.

Figure 7.7: Discretized a�ne erosions (triangle)
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Figure 7.8: Discretized a�ne erosions (modi�ed square)
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Figure 7.9: Discretized a�ne erosions (teeth polygon)



7.1. AFFINE EROSIONS 1317.1.2 A�ne InvarianceWe now check the a�ne invariance of the exact algorithm described in the previous chapter.We apply an a�ne transformation to the initial curve of Figure 7.2 and then compute the a�neerosion for the same values of the area parameter (Figure 7.10). The inverse a�ne transformationbeing applied (Figure 7.11), we check that we obtain the same result as Figure 7.2.We use the same method to check that the discretization is a�ne invariant too (Figure 7.13to be compared to Figure 7.9).
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Figure 7.10: A�ne erosions (distorted teeth polygon)
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Figure 7.11: Inverse a�ne transformation of the previous �gureAccording to the theory, we obtain the same result as on Figure 7.2.
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Figure 7.12: Discretized a�ne erosions (distorted teeth polygon)
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Figure 7.13: Inverse a�ne transformation of the previous �gure



136 CHAPTER 7. EXPERIMENTS7.2 A�ne scale spaces7.2.1 Exact algorithmThe following experiments simulate the a�ne scale space on non-convex polygonal curves, asobtained by iterating the exact algorithm . Each curve corresponds to one iteration of the a�neerosion plus dilation, computed using the exact algorithm described in the previous section. Aspredicted by the theory, the curves collapse in a \elliptically shaped" point (see [67]).Computing the 29 iterations of Figure 7.18 takes 6 minutes (CPU time) on a HP 735/125station. The number of sampled points reaches 700 for some iterations and the number ofcomputed curves (hyperbolae and segments) attains 1600.
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Figure 7.14: A�ne scale space (triangle)

Figure 7.15: A�ne scale space (clover polygon)
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Figure 7.16: A�ne scale space (non-symmetric star)
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Figure 7.17: A�ne scale space (exact circle)
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Figure 7.18: A�ne scale space (weird polygon) | computation time : 6 minutes



7.2. AFFINE SCALE SPACES 1417.2.2 Simpli�ed algorithmFirst, we check that the simpli�ed algorithm give similar results to the exact one for the previous\weird" polygon : Figure 7.19 is quite similar to Figure 7.18, while the computation time isreduced to 7 seconds (instead of 6 minutes for the exact algorithm).Then, we compute the a�ne scale space of large curves (about 4000 vertices and 1800 convexcomponents for the initial curve represented on Figure 7.27). Notice the �ne precision of Figure7.28, which is impossible to attain with Sethian's algorithm for a reasonable amount of time andmemory. For the \whale" polygon (Figures 7.23 to 7.26), the almost auto-intersections of theinitial curve would probably cause any �nite di�erence algorithm to fail, because the topologicalstructure of the initial curve is very instable under a pixel discretization.
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Figure 7.19: A�ne scale space using the simpli�ed algorithm (weird polygon) | computationtime : 7 seconds
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Figure 7.20: A�ne scale space using the simpli�ed algorithm (teeth polygon)
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Figure 7.21: A�ne scale space (rough circle)
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Figure 7.22: A�ne scale space using the simpli�ed algorithm (regular curve). The computationtime is only 0.9 second, and the algorithm is stable despite the coarse quantization of curves weused here.
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Figure 7.23: whale : initial curve (t=0)

Figure 7.24: whale : �ltered curve (t=100, 200)
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Figure 7.25: whale : �ltered curve (t=1200, 2200, 3200, 4200)

Figure 7.26: whale : �ltered curve (t=5200, 6200, . . . , 16200)
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Figure 7.27: hand : initial curve (t=0)
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Figure 7.28: hand : �ltered curve (t=1)
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Figure 7.29: hand : �ltered curve (t=8)
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Figure 7.30: hand : �ltered curve (t=20)
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Figure 7.31: hand : �ltered curve (t=200)
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Figure 7.32: hand : �ltered curve (t=300, 400, . . . , 1300)
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Figure 7.33: dog : initial curve (t=0)
Figure 7.34: dog : �ltered curve (t=1)
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Figure 7.35: dog : �ltered curve (t=10)
Figure 7.36: dog : �ltered curve (t=100)
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Figure 7.37: dog : �ltered curve (t=1000)

Figure 7.38: dog : �ltered curve (t=1000, 2000, . . . , 18000) | computation time : 2.5 seconds



7.3. AFFINE SCALE SPACE OF NON-CLOSED CURVES 1577.3 A�ne scale space of non-closed curvesSince the simpli�ed algorithm allows to compute a�ne erosions of non-closed curves, it is possibleto compute the a�ne scale space of a non-closed curve by iterating this operator. The need toconsider the a�ne scale space for non-closed curves is explained in [21] : the a�ne scale spaceof non-closed curve can be de�ned thanks to a symmetrization-periodization process (Neumanncondition) which makes the extremities �xed. If the two extremities are distinct, the asymptoticstate is a segment. When they are not, a singularity may appear (see Figure 7.40).
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Figure 7.39: A�ne scale space a a non-closed curve (modi�ed teeth polygon)
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Figure 7.40: A�ne scale space of a circle with a �xed point
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Chapter 8ConclusionIn this study, we presented a geometrical algorithm that can compute the a�ne scale space ofa curve. Compared to Sethian's approach based on an image formulation, it is a faster1 andmore accurate method that allows complicated curve evolutions. Unlike classical geometricalschemes that rely on the computation of �nite di�erences to perform point evolutions (see [65]),our scheme satis�es a natural property (the inclusion principle) that guarantees its numericalstability. It is also fully a�ne invariant, even in its numerical implementation (up to the com-puter precision). Thanks to these properties, the algorithm we proposed should be an interestingalternative to Sethian's approach, especially for shape recognition tasks (see [26]). We basedour method on the iteration of a non-local operator which can be exactly computed on poly-gons. This property allows to separate the two approximation steps required in curve-evolutionalgorithms : the scale step, directly related to the number of iterations required, and the spacestep, i.e. the precision used in the discrete representation of curves. In our algorithm, thecurve evolution between two iterations can be much larger than the quantization step used torepresent the curves, while such a possibility is excluded for classical schemes in order to ensuretheir stability. The consequence is that our algorithm can accurately compute the evolution ofa curve at a large scale in only a few iterations.8.1 ApplicationsAs we just explained, the main practical application of this study should concern Thierry Co-hignac's method for local a�ne shape recognition (see [26]). Indeed, we can hope that his algo-rithm would gain computation time, robustness and accuracy by using our geometrical schemeto compute the a�ne scale space.From a theoretical point of view, it would also be interesting to know what happens to thecharacteristic points of a curve when the evolution step t tends to zero. Our study states that1Since the geometrical algorithm is much more precise than the scalar one, it is di�cult to compare preciselytheir computation costs, but a proportion of 1 for 1000 gives a rough idea of it.161



162 CHAPTER 8. CONCLUSIONthe characteristic area is asymptotically equal to c � t�, c and � being universal constants, but itis likely that the second term of this expansion depends on the a�ne curvature2, which wouldprove that the characteristic points of a curve tend to the extrema of a function of the a�necurvature when t tends towards 0. Be that as it may, we now have an e�cient way to computethe a�ne curvature on a curve, by considering the a�ne curvature of the pieces of hyperbolaewhich compose its a�ne erosion (for a small value of the area parameter of course). Hence, theshape recognition process can be realized by identifying new \characteristic" points de�ned aspoints where the a�ne curvature reaches an extremum.Due to the duality of the image and curve formulation for the a�ne scale space, the iteratedgeometrical a�ne erosion also allows to compute the a�ne scale space of an image accurately.The computational cost is rather heavy since the geometrical scheme must be applied to everylevel curve of the initial image. However, we think that this way of representing an image withoutan inherent grid could be useful for some image processing tasks (zooming for example). Noticeincidentally that this de�nes the �rst purely morphological numerical implementation of theAMSS which does not get \stuck" (see Chapter 2).Last, the properties of the a�ne erosion we investigated in Chapter 3 might be useful inorder to prove the existence of solutions for the geometrical a�ne scale space (which has notbeen done yet, as we explained in Chapter 2).8.2 Further workIn Chapter 6, we de�ned two algorithms that compute the a�ne scale space of a curve : an exactalgorithm, based on the iteration of the a�ne erosion, and a simpli�ed algorithm, where theconvex components of the evolving curve are processed separately at each iteration. We noticedthat this simpli�ed algorithm performs similar evolutions for a much lower computational cost.In fact, the computation cost of the simpli�ed algorithm is proportional to the size of theinput curve (that is, its complexity is linear), whereas in general this cost is approximatelymultiplied by the number of the convex components for the exact algorithm. For non-convexpolygonal curves with more than 100 vertices (which correspond to a rather low precision for acomplicated curve), the di�erence can become important. As it computes almost no intersection,the simpli�ed algorithm is also more robust and easier to implement (\only" 900 lines of C sourcecode). Hence, we think that it would be interesting to study more precisely the correspondingoperator (the pseudo a�ne erosion) that we brie
y introduced in Chapter 6. In particular, itshould be possible to adjust the area step for each iteration automatically in order to obtain thebest compromise between precision and computation time.2we are sure that this is true for one term of the expansion at least, because the a�ne erosion would be thea�ne scale space otherwise.



8.2. FURTHER WORK 163We also think that it would be worthwhile investigating the case of non semi-closed curvesfurther in relation with the work of V.Caselles, B.Coll and J.-M.Morel (see [21]). Accordingto this paper, T-junctions should be kept �xed in order to perform an image evolution thatpreserves occlusions : from a geometrical point of view, this involves the evolution of non semi-closed curves.Extending the a�ne erosion to higher dimensions seems di�cult to achieve, above all inits numerical implementation. However, we think that the general idea we developed could beapplied to several other planar curve evolutions. In particular, it is likely that several othergeometrical curvature-driven evolution equations of the kind@C@t = F (
)N;could be numerically simulated using the same method. The main point is to �nd a non-localoperator satisfying three fundamental properties :1. it is tangent to the evolution semigroup (i.e. consistent with the evolution equation),2. it satis�es the inclusion principle,3. it can be explicitly computed on a dense set of curves (polygons for example).Condition 1 is obviously required. Condition 2 guarantees the numerical stability of the algo-rithm |which is fundamental for a curve evolution scheme| and allows large scale steps (andconsequently a fast algorithm). Condition 3, which may be weakened, enables to process eachiteration without depending on the quantization of the curve.To give an example, let us investigate the case of Mean Curvature Motion (case F (
) = 
),which is the Euclidean analog of the a�ne scale space. The a�ne erosion is based on an areacriterion, since it removes from a set any of its chord set having area less than �. Coming toEuclidean geometry, we can de�ne a chord length-based erosion operator which removes from aset any of its chord set whose chord segment has length lower than a given � (see Figure 8.1).Such an operator is consistent with the Mean Curvature Motion, and we think that it can beused to compute e�ciently the Euclidean shortening of a curve.
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C

δFigure 8.1: Euclidean analog of the a�ne erosion of a convex curveThe dashed curve is obtained by removing from the inside part of C any chord set whose chordhas length �. We conjecture that iterating such an operator leads to a good approximation of theEuclidean shortening 
ow associated to the Mean Curvature Motion.


