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Multiscale Analysis of Movies for
Depth Recovery
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Chapter 9

Introduction

9.1 The depth recovery problem

How can one establish a tridimensional map of a land area 7 How can the tridimensional
structure of a given object be measured 7 How can one make a mobile robot perceive the
geometry of an unknown environment 7 All these problems are in fact the same : recovering
the 3D-structure of a scene (land, object, environment) that can be observed. This problem
of structure recovery has motivated many researches for the last twenty years, and multi-image
analysis has been quickly identified as the most promising technique. Special devices like laser
telemeters have sometimes been used, but for the time being their efficiency seems limited to
very particular applications. As regards multi-image analysis, it is based on a simple geometric
observation that everybody made once when looking through the side window of a car or a
train : when one observes the landscape, the nearest objects “move” quicker than the farthest
ones as the vehicle goes forward. Human stereo-vision is based on the same principle : between
two observations from slightly different points of view (the two eyes), the relative positions of

objects change according to their distance to the observer.

Inspired by human vision, researchers have studied in detail the technique of stereo vision
analysis in the last two decades, in particular in association with edge-matching techniques. The
principle is simple : the computer gets two pictures of the same scene from two cameras, then
it detects on both images some features, for example, edges given by brisk contrast changes
along straight lines. Last, it tries to match these edges (that is to say, it tries to associate each
edge of the first image to its corresponding edge in the second image), and finally it recovers
their depth by analyzing their relative position between the two images. This technique, after a

certain success in the beginnings, finally appeared as insufficient for several reasons.

First, a simple analysis proves that the precision obtained in the determination of the depth
is better when the cameras are far from each other, whereas the matching process is easier when
they are close to each other. This incompatibility forced people to find a compromise between

precision and robustness.
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168 CHAPTER 9. INTRODUCTION

Another problem with edge-matching techniques is that they are more or less limited to
artificial environments, because they require scenes with strongly-determined edges. In the case
of natural textured scenes (e.g. a grass field), they are inefficient, and it can be a real problem

to find alternative features to match.

Although edge-matching techniques were still receiving a lot of attention, some researchers
tried to overcome the incompatibility between robustness and accuracy by considering whole
sequences of images instead of only two images : the question of “depth from motion” was born.
Even if the key to depth recovery is the same as to stereovision (analysis of the relative position
of scene objects), using a large number of images appeared to bring great improvements. Of
course, such a point of view was possible thanks to the increasing power of computers, both in
storage capacity and in computation speed. Indeed, it is important to notice that a reasonable
sequence of images (say 100 images of size 512x512 in 256 colors) represents 25 Mo of memory,
which can be analyzed in a few minutes by a good workstation (for a simple algorithm). With
50 frames per second, this means that real-time movie analysis cannot be performed by now

unless massive parallel machines are used.

The “depth from motion” problem (also called “structure from motion”) was investigated
mainly in two different ways. The first and probably most natural way is a generalization of
stereovision techniques : the idea is to track robust features (edges, corners, ...) in the successive
images and to deduce their depth from their velocity. This kind of method (see [35] for example)
is only efficient for a certain kind of scene (typically, a high-contrasted artificial scene), due to

the necessary use of edge-detection (or more generally, feature-detection) techniques.

The second approach for “structure from motion” was inspired by the classical Lagrangian
formulation of the problem. It is based on the following Lambertian assumption : the color of
a physical point does not depend on the point of view it is observed from. This assumption
implies the famous “Motion Constraint Equation”, which determines on the image sequence
what is called the optical flow : this is simply the apparent velocity flow induced in the sequence
of images by the apparent movement of the scene (induced itself by the camera movement).
Numerous techniques have been developed in order to determine optical flow, but their efficiency
is still debatable because of the stringent hypotheses they rely on (see [11] or [62] for detailed
studies). In fact, the main difficulty of the general “structure from motion” problem in its
Lambertian approach is that the system produced by the Motion Constraint Equation is under-
determined : there are more unknowns than scalar equations. Even worse, the optical flow
is not sufficient to recover the depth of objects for a general camera movement. Researchers
tried to overcome the difficulty by writing regularity constraints, but this only brought partial
solutions (or partial failures, depending on the point of view). In this context, the concept of
active vision emerged (see [1]) : “Most classical ill-posed problems of image sequence processing

become well-posed and robust when the processing system controls the motion of the camera”. Of
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course, such an assumption is not always relevant, for most image sequence analyzers are not
real-time processes. However, the weakened and less restrictive assumption of a known camera
movement (pre-determined or not) seems to be a good compromise : this will be our point of

view.

During this study, we shall consider image sequences produced by a moving camera looking
at a fived scene (i.e. with no moving objects!). In addition, we shall make the assumption
that the camera horizontal plane is fixed. This means that the optical axis of the camera and
the horizontal axis of the image plane? remain in a fixed plane. In order to check that this
condition is not too restrictive, we give some examples of camera movements which satisfy this

assumption.

1. Pure translation motion with transversal observation.
The camera path is a straight line parallel to the horizontal axis of the camera, and
the optical axis remains orthogonal to this line (see Figure 9.1). This situation happens
with a camera looking through the side window of a moving vehicle, to go back to our
first example. This motion also occurs when an observation plane flies over a region at
constant altitude with the camera optical axis pointing downwards®. Solving the depth
recovery problem in this case enables to establish a 3D-map of the region which has been

flown over. This camera movement will be our reference framework in the following.
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Figure 9.1: Pure translation motion.

2. Circular motion.

'Notice that it is equivalent to suppose that the camera is fixed and the whole scene has a rigid motion.

2The image plane, also called retinal plane or focal plane, is the plane where the physical image is produced
by the optical lens system of the camera.

*However, we shall see later that our study can be adapted when the altitude of the plane varies with time or
when the camera is not exactly pointing downwards.
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This kind of motion is more adapted to the determination of the 3D-structure of a given
object. The camera path is a circle, and the camera optical axis is constrained to point
towards the center of this circle (see Figure 9.2). This motion also naturally occurs for

non-geostationary satellites.

3D object

camer$

Figure 9.2: Circular motion.

3. “Radar” motion

The camera has a pure rotational motion, and the optical axis remains orthogonal to the

rotation axis (see Figure 9.3).
)
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Figure 9.3: “Radar” motion.

The important aspect of the assumption we make on the camera movement is that it con-

strains the apparent movement of objects to be horizontal in the image plane. The three exam-
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ples we gave prove that it is not too restrictive when the camera motion can be controlled. It

has often been used in previous works (see [13] and [57] for example).

9.2 Geometric framework

We now come to more precise definitions and notations.

Consider a surface ¥ of R? represented by the graph of the depth function Z(X,Y). Suppose
that 3 is observed under a perspective projection* by a camera centered in (C,0,0), with
focal length @ and an optical axis directed by the Z axis (see Figure 9.4). Each point M =
(X,Y,Z(X,Y)) of ¥ is projected on the image plane Il : Z = a into P = (z,y) = #(M) defined
by

 X-cC
XY
(9.1)
Y
Ty
Z 2
Y
>: observed surface
t M: image plane
X p
C: optical center
a,"/ a focal length
S X
n

Figure 9.4: Scene geometry

Conversely, given a point P of the image plane, we can define p(P) € ¥ as the closest point
to P on the half line [C'P), when it exists. Thus, p is a right inverse of 7 since 7 oy is the
identity map of = (X).

Now, if ¥ is a Lambertian surface characterized by its luminance U (M), the camera produces
the intensity image u : P +— U(u(P)), up to an increasing rescaling depending on the intensity
calibration of the camera. Notice that when the half line [C'P) intersects ¥ more than once,
an occlusion arises, and only the nearest point (i.e. u(P)) is observed, the other ones being

masked by it.

*This model of projection holds for classical “pinhole” cameras.
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We extend this to the case when the camera is moving along the X axis, the optical center
following the path (C(6),0,0), where 6 is the time variable. This way, we define the maps
7o : X — Il and pg : Il — X, and the image u : P+ u(P) becomes a movie u(P,0) = U(uy(P)),
that is to say a continuous sequence of images regarded as a scalar map defined on a subset of
R3.

The aim of our study is to compute the geometry of > — its observed part actually — from
the redundant information contained in the movie (z,y,8) — u(z,y, ), knowing that it should

satisfy the fundamental equation

X -C(9) Y
u(a Z(X,Y)7aZ(X,Y)70):U(X7Y)' (9.2)

9.3 Velocity field

To simplify the problem, we shall now suppose that no occlusion appears (we shall discuss the

general case later). Then, the relation M ~ P is bijective, that is to say we have y = 7=1 on

7(X). This induces a bijective relation between the scalar image maps f : [l x R — R and
their corresponding scene maps F': ¥ x R — R defined by

F(Mv 0) = f(ﬂ'é’(M)ve) = f(P(O),O).

Consider now a point M of Y. Projected on the movie, this point describes the movement

P(#) = mg(M), whose velocity can be determined from Equation 9.1 :
dP  dx dy . dx aC'(9) dy
= =—— o5 and — =

P (o4 th —= = — =
=) M T T a a9 ="

C" meaning the derivative of C'. Following this idea, we can define the derivative of an image
map f along the real movement by

oF d

P or_de g o
(P00 == DI G5 =56 = 45 "oz " 0

o6 = a6’
In particular, if Equation 9.2 is satisfied, the derivative of u along the movement must be

zero, because the corresponding scene function U(M) does not depend on 6. This implies a

specific formulation of the Motion Constraint Equation,

dx Ju OJu

@'%-F%—O. (9.3)

From this equation, it is natural to define the apparent velocity field of the movie by
vi= -2 (9.4)

when g—g # 0, remembering that if a scene interpretation exists (i.e. if Equation 9.2 is satisfied),

we have

aC'(9)

ZX.Y) (9.5)

v(z,y,0)=—
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everywhere v is defined (i.e everywhere 2% & 0).

Following this idea, we define the total derivative of a scalar image map f: [ xR — R as

bf_of  9f
D~ "or " 98

This is exactly the Lie derivative of f along the apparent movement vector & = (v,0,1). When
a scene interpretation is known, it can be identified as the time derivative of the scene map

associated to f. The importance of this total derivative operator will appear later.

9.4 Depth recovery

Theoretically, it is possible to estimate the apparent velocity field v using Equation 9.4, and
then to recover the depth Z by identifying v with the real velocity in Equation 9.5. This way,
choosing a fixed value of 8, we can hope to associate to any point P = (z,y,0) of the image

plane where the apparent velocity is defined and nonzero, the point M = pg(P) of ¥ defined by

w=(co- o) O _c’<e>) |

va va v

If C'(8), C'(#) and a are not known, the structure of ¥ is recovered up to a linear transformation
of the kind
(XY, 7)  (aX + 5, aY,72).

In practice, several difficulties appear when one tries to recover the geometry of X directly.
The first one occurs in the computation of v from Equation 9.4. Indeed, it is impossible to
obtain good estimations of the time derivative g—g using finite difference methods. The reason
is that most digital movies have a too large time sampling step, inasmuch as the number of
images per second produced in the sampling process is too small compared to the quick change
of scene details. In other words, the Nyquist limit is generally exceeded during the sampling
process, simply because most acquisition systems (cameras, camescopes, . ..) sample each image
independently without first processing a time frequency cutoff®. Hence, Shannon’s Theorem does
not apply any more and common approximations cannot be used to estimate time derivatives.
As concerns the spatial derivative g—g, its estimation hardly makes sense for textured areas,
because of the quick changes in the intensity. For areas where the intensity takes a constant
(or quasi-constant) value, the estimation of v becomes very sensitive to noise and quantization,

since the almost-zero quantity g—g appears in the denominator of v.

The “classical” method to overcome this kinds of problem is to apply a linear spatio-temporal
smoothing filter to the movie (see [13] for example), which can be seen as a (post-sampling) low-

pass filter. Such a kind of isotropic diffusion has disastrous effects on non-smooth details like

5In fact, this is not really a bad thing since the non-continuous structure of images due to the presence of
occlusions makes the classical sampling theory inadapted.
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edges or textured areas. Like all linear filters, it is not adapted to the structure of images which
result more from the superimposition of occluding objects than from the addition of weighted

harmonics (see [21]).

Another problem appearing in the naive reconstruction process we just described is that two
determinations of ¥ made from derivative estimations at different times #; and 6, may produce
slightly different results in practice, because real movies are not exactly time-coherent. This is
a very important problem since, as we saw in the introduction, the large number of images is

supposed to guarantee robustness and accuracy in the depth recovery.

All these remarks lead to think that the depth recovery must be achieved on a sort of
ideal movie, for which the computation of v can be made accurately and for which the depth
interpretation of the scene remains the same at any time. One can reasonably hope to obtain
such an ideal movie from a raw one thanks to the redundancy of the information spread among
all images. In the following study, we shall see that such a transformation is possible, and that it
can be obtained systematically by using an axiomatic formulation of the problem (Chapter 10).
This transformation can be formalized by a non-linear diffusion equation along the movement
field, which appears to have interesting properties (Chapter 11, 12). In Chapter 13, we provide a
numerical algorithm, easily implementable —even on parallel machines—, as well as conclusive
experiments on two classical natural movies. To conclude in Chapter 14, we generalize our study

to more general camera motions and highlight further axes of extension.



Chapter 10

Axiomatic formulation

In this chapter, we devise a multiscale analysis of movies devoted to the depth recovery by using
an axiomatic formulation. Such a methodology is not new : it has been successfully applied in
[4] and in [26] to find the Affine Scale Space as the optimal way (in a certain sense) to simplify
images and shapes. After making clear requirements, we establish a uniqueness result for our

model : there is only one analysis of movies compatible with the depth recovery.

Let us first define some notations. Given an open or closed subset Q of R", C"(Q2) means
the space of continuous maps u : @ — R of class C™ on €. As usual, ) means the topological

closure of ©Q in R™. We shall also write S(IR®) to denote the set of real symmetric 3x3 matrices.

As we saw previously, a movie is a real-valued map u defined on a subset of R>, the value
u(z,y,0) representing the light intensity at a point (z,y) of the plane at time §. The natural
domain for a digital movie is [y, 23] X [y1, y2] X [01, 02], but we shall see that it is simpler and
more logical to suppose that a movie is defined on R? x T, with either I =]6;, 8] or I = S' (case

of a time-periodic movie).

We recall that a multiscale analysis is a family of operators (7; : M — M50, ¢ representing
the scale of analysis. Here, M is a movie space, that is to say a space of continuous real-valued
maps defined on R? x T. The choice of M will become natural later, but is not necessary for the
time being since we only want to find constraints on (7). However, because of the singularity
which appears in the computation of the velocity field when the partial derivative u, vanishes

(ug is a short notation for g—g), we shall suppose in the following that for any n > 1, the space

MY ={ue MNC"(R* x T,R); Yz € R? u,(2) # 0}
is nonempty, and that given (A, p, 4) € R x R? x S(R?), it is possible to find u € M? such that
u(0) =X, Du(0)=p and D*u(0) = A.

175
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10.1 Architectural axioms

In the spirit of [4], we first constrain our multiscale analysis to satisfy some architectural axioms :
¢ [Recursivity] : Tp = Id and Vi, t' >0, Tyyp=TyoT,.

¢ [Local Comparison Principle] : if u < @ on B(z,r), then Tyu(z) < Tyu(z) for ¢ > 0 small

enough.

¢ [Regularity] : if u is a quadratic form (that is, u(z) = [A](z, 2)+ < p,z > + X\ where A is

a symmetric 3x3 matrix ([A] being the associated bilinear map), p a 3-dimensional vector and
A a given constant), then

. Thu—u

tim 70 2 = p(4,p. )

and F' depends continuously on A when p; # 0 (p; being the component of p along the z

coordinate).

The [Recursivity] axiom constrains the multiscale analysis to have a semi-group structure.
If the scale ¢ is discretized, this means that the analysis is obtained at scale n by iterating n

times a fixed filter. This axiom can be weakened in
[Pyramidal Architecture] : V¢, h, 3Ty pe, Tipn = Tyipne 0Ty,
However, we checked that under this hypothesis the final classification remains the same up

to a rescaling (as it has been proved in [4] for the affine scale space). This is the reason why we

directly assume that (7}) is a semi-group.

The [Local Comparison Principle] axiom is very important : it prevents the multiscale
analysis from creating new details in the analyzed movie as the scale increases. It also guarantees

the stability of associated numerical algorithms.

The [Regularity] axiom also contains the classical [Translation Invariance] axiom, which
states that the multiscale analysis does not depend on the origin of space and time coordinates.
When [ =]y, 6], the classical formulation of [Translation Invariance] is not possible any longer

because the domain is not translation-invariant.

These axioms can be found in the axiomatic characterization of the affine morphological
scale space for example ; only the [Regularity] axiom has been adapted to the depth recovery

problem. Please refer to [40] for complete discussion.

The classification starts with the following theorem.

Theorem 8 A multiscale analysis Ty : uo(-) — u(-,t) satisfying [Recursivity], [Local Com-
parison Principle] and [Regularity] can be described by a partial differential equation of the
kind

88—? = ['(D*u, Du, u) (10.1)
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submitted to initial condition u(-,0) = ug. Moreover, F is elliptic (that is to say nondecreasing
with respect to its first argument for the usual order on 3x3 symmetric matrices), and continuous

with respect with its first argument at any point where u, # 0.

The proof of an equivalent theorem can be found in [40] for example. The existence of F'is
a direct consequence of the [Regularity] axiom. The fact that the evolution is given by a PDE
of order two (and not more) results from the [Local Comparison Principle] axiom, as well as

the ellipticity of F.

Notice that Equation 10.1 makes sense (in terms of existence and unicity of solutions) ac-
cording to the theory of viscosity solutions (see [27]), provided that the singularity u, = 0 is
not involved. This point will become clearer in the next chapter. By now, the only important

point is that Equation 10.1 is satisfied in the classical sense by u at any point where u is C'* and

uy # 0.

10.2 Specific axioms

We now come to specific axioms with respect to the depth recovery problem. First, remember

that when u € M™ (n > 1), the apparent velocity field operator is well defined by

v[u] = 1
ul’

Since we are interested in the apparent velocity field, it seems natural that our analysis focuses
mainly on this datum. In that sense, it is rather natural to constrain the analysis to commute

with operators that preserve the apparent velocity field. This justifies the following axiom.

e [v-Compatibility]: For any & : R* — R, if
Yu e MY, Rpu € MY and v[Rpu] = v[u], with Rpu(z,y,0) = h (u(z,y,8),2,y,0),

then
Vt, Ty 0 Ry, = Rp o1y,

This axiom implies two weaker axioms, obtained for specific choices of h.

o [Strong Morphological Invariance]: For any monotone scalar map g,
Vu € M, Vt, Tig(u) = g(Tyu).
¢ [Transversal Invariance]: For any nonvanishing map g,

Vu € M, Vt, Ti(g(y) - w) = g(y) - (Tiu).

The first one is obtained by choosing h(u,z,y,0) = g(u). It is a strong formulation of the

morphological invariance, because g can be decreasing as well as increasing. In fact, this axiom is
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equivalent to the classical [Morphological Invariance] axiom plus the [Contrast reversal] axiom.
The second one, obtained with h(u,z,y,6) = g(y) - u, is a kind of morphological invariance in
the direction transversal to the movement. Notice that we supposed implicitely that M is stable
under the operations u — g ow and u — ¢(y) - u. Following [40], we also constrain the analysis

to commute with the superimposition of any uniform movement of the camera.

¢ [Galilean Invariance]:
Va € R, Yu € M, Vt, Ty(uo B,) = (Tyu) o By, with B,(z,y,0) = (z — ab,y,0).

Last, we would like the analysis not to depend on the focal length of the camera (the a
variable in the previous chapter). This can be translated into a commutation with spatial

homothetic transformations.

¢ [Zoom Invariance]:

VA #£0, Yu € M, Vt, T{(uo Hy) = (Tyu)o Hy, with Hy(z,y,0) = (Az, Ay, ).

10.3 Fundamental equation

We now prove that the set of axioms we constrained the multiscale analysis to satisfy is sufficient
to restrain the possible analyses to one candidate only'. We shall prove later that this candidate

is actually a solution.

Theorem 9 There exists at most one multiscale analysis of movies defined on M? satisfying
the architectural axioms plus [v-Compatibility], [Galilean Invariance] and [Zoom Invariance].

It must be described by the partial differential equation

U U
Up = Ugg — 2—€u€x + (—e)zum. (10.2)

xr ul’

Remark 1 : For the time being, Equation 10.2 is defined in the classical sense for u(-,¢) € M?2.
In fact, we shall see in the next chapter how we can define weak solutions of Equation 10.2 that

are not in M? but only continuous.

Remark 2 : Equation 10.2 can be rewritten into

up = uge with &= (—%

xr

,0,1) and  uge = [D*u](&,€),

LOf course, the identity operator is irrelevant here.



10.3. FUNDAMENTAL EQUATION 179

which means an anisotropic diffusion of u along the movement direction. The apparent acceler-

ation in the movie can be defined by

0 Dv 4
! = — = vp + VU,
Do~ '
which can be expanded in
1 Ug Ug U,
= <u€€ — 2—ug; + (_)2u1’x) = _ﬁ-

Hence, Equation 10.2 can also be rewritten into

Uy = —7 Uy

Lemma 17 For any multiscale analysis satisfying the architectural axioms and [v-Compatibility],

there exists a map F : R* — R such that

ur = u F(?,0). (10.3)

Proof :

Let us first make clear that the map I’ we write here is not the map F of Equation 10.1 :

we simply use the same notation to avoid introducing too many symbols.

We are going to use the fact that the [v-Compatibility] axiom implies the simpler axioms

[Strong Morphological Invariance] and [Transversal Invariance], as we noticed before.

Applying [Strong Morphological Invariance] for g(u) = u+A (A being an arbitrary constant)

proves that F' cannot depend on u in Equation 10.1, so that we have

du _ G(D*u, Du) (10.4)
ot
Now, the [Transversal Invariance] axiom states that for any nonvanishing function g of class
02

Yue MYy, G(D*(g(y) - u), D(g(y) u) = G(D*u, Du). (10.5)
Let A =[a;;] € S(R?), A € Rand p = (p;) € R® such that p; # 0 (the coordinates z,y, 8 will be
indexed by 1,2,3 in the following). By hypothesis on M2, we can build a movie u € M? such
that

1(0,0,0) = A, Du(0,0,0) = p, and D?*u(0,0,0) = A.
0
Now, consider the vector y=| 1 [, the projection matrix on the (z,8) plane
0

o O =
o o O
_ o o
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and the projection matrix on the line Ry

Qy=y2y=1-Q, =

o o O
o = O
o o O

I being the identity matrix of S(R?). Applying Equation 10.5 to u in (0,0, 0), we obtain
G(g(0)A+ g (0)y@ p+ g"(0)AQy, g(0)p+ ¢'(0)y) = G(A, p).
If we choose g(y) = 1+ y?/2, we get
VA, p, A, G(A+2AQy,p) =G(A, p), (10.6)
and taking A = —agy yields
VA, p, G(...,az,...)=G(...,0,..),

where the two terms only differ in the ag variable. Hence, G does no depend on ass.

Now we are going to show that G does not depend on ay5 and as3 either, by using the

[Causality] axiom, using a technique from Giga et Goto [37]%. Let us define A’ = A — a2,Qy

and for € > 0,
) ) € 0 0
a51+ a 2 2
I. = €QyL + %Qy =10 G217 s i: s 0
0 0 €
The characteristic polynom of the matrix
£ —a1 0
2 2
A = QyLAIQyL —A'+ L= —ay o 1 s —a93
€
0 —as3 £

is

det(e] — A) = 2(z — ¢ (x e+ M)) .

As the eigenvalues of A, are nonnegative, A. is positive (for the usual order in S(R?)), and

symmetrically A_. is negative, which yields
AL <QuAQ <A +1.
But the [Causality] axiom implies (see [37])

VA, B,p, A>B = G(A,p)>G(B,p),

2If we suppose that G is differentiable, then this property follows immediatly. Indeed, the [Causality] axiom

implies
2
oG oG oG
Vi, 5, det[D’G] = - >0
% 7, l,e] [ ] Oai; 8a]] (aalj) =
and since % =0, we get af;fl — aii -0
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so that
VA, p, G(Al - I, p) < G(QyJ-A/QyJ-vp) < G(Al + I, p)

Then, using Equation 10.6, we get
VA7p7 G(A+€I7p) < G(QyJ—AQyJ—7p) < G(A‘|’€va)

and taking the limit when £ — 0, the continuity of GG implies

VA, p, G(A7p) = G(QyJ-AQyJ-7p)7

which means that we can write

VA, p, G(a117012701370227023761337]?17]?27]?3) = H(a117a137a337p17pz7p3)-

Now, applying again the [Transversal Invariance] axiom to H, we obtain

VA, p,g,y H(ai1,ais, a3, p1, p2, ps) = H(ar1, ais, ass, p1, g’ (y)p2, ps) (10.7)

Choosing p, = 1 and g(y) = 1+ y*/2 as before, Equation 10.7 yields

VA, p1,p3,y H(alh a13, 433, P1, 17P3) = H(a117 @13, 433, P1, vaS)v

which proves that H does not depend on its fifth argument p,.

Now we use the [Strong Morphological Invariance] axiom. It has been proven (see [4] for
example) that this axiom, in combination with the [Causality] axiom, forces the second order
terms of the evolution to be of the kind [D?u](a, b), where a and b belong to the plane orthogonal
to Du, written (Du)~. Now, as we just saw, the [Transversal Invariance] axiom forbids any
dependency on y, so that @ and b must also belong to the (y)~ = (z,0) plane. Finally, a and
b must belong to the line (Du)™ N (y)~ = (§)~, so that the only admissible second order term
is? = —i[Dzu] (&,€), up to a multiplicative first order term. Notice that 7 is a morphological
operator.

As regards the first order terms, the [Transversal Invariance] axiom forbids any dependency
on u,. Hence, as 7 does not contain the u, term, u must satisfy an evolution equation of the
kind

w = F(7, ug, ug).
We rewrite this equation into
w = u,G(?,0,uy)

and apply the [Strong Morphological Invariance] axiom. Since 7 and v are morphological
operators, it yields

Vu, VA0, G(7,v,uy) =G(7,v, Auy). (10.8)
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For any («, 3) € R?, we consider a movie u € M? such that
u(z,y,0) = %02 +x— 36

in a vicinity of (z,y,6) = 0. We have u,(0) =1, v(0) = 3 and ? (0) = « so that Equation 10.8
can be rewritten into

Va, 3, VA#0, G(a,5,1)=G(a, 5, ),

which means that G does not depend on its third argument (notice that G does not need to be

defined when u, = 0). As a consequence, we can write
uy = uy F(7,0)

as announced. |

Remark : We proved that the [v-Compatibility] axiom, in association with the architectural
axioms, forbids any dependency of the evolution on y. In other words, the sliced images (z, 0) —
u(z,y,0) (with y fixed) are processed independently. In the following, we shall often ignore the

y coordinate and we shall write u(z, 8) instead of u(z,y, #), the y variable being supposed fixed.

Lemma 18 A multiscale analysis satisfying the architectural axioms plus [v-Compatibility] and

[Galilean Invariance] can be written

wy = ug  F(7) (10.9)

Proof :

Since the multiscale analysis commutes with the operator

B, i (z,y,8) — (z —ab,y,0),

we have 5 5
U
— B,)=—oB,.
grveBa) = e
Writing @ = u o B, yields
Uy = 8—$u(ac —ab,0) = u,y 0 B,
uy = %u(x —ab,0) = (ug — auy) o B,
v = —ﬁ =voB,+a«
Uy
~ Do .
? = = 0g+ 00y = (vg — vy + (V+ @)vy) 0 By =7 0 B,

Y
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From Lemma 17 we know that u; = u,F'(7,v). Hence,
Vu, o0, u (7,04 a) =u, F'(7,0),

so that F does not depend on its second argument. O

Lemma 19 A multiscale analysis satisfying the architectural axioms plus [v-Compatibility] and

[Zoom Invariance] can be written

”
ugF'(=) if wg #0,
us = v (10.10)

aug, if ug = 0.

Proof :
We proceed as for Lemma 18 : writing @ = wo Hy with Hy : (z,y,0) = (Az, Ay, 8), we get

- g Ug v

v I VS W

- v U AUy ?
?o= gt = (55 e Ha= o Hy

We can write Equation 10.3 as

o
w = u F(?,0) = ueG(';, v)

everywhere ug # 0, and since the evolution commutes with H), we have
7w
~.9).
v’ A

Taking the limit A — oo proves that G cannot depend on its second argument. Besides, every-

o
Vu, A, ueG(';, v) = ugG(

where uy = 0 we have

o
Yu, A, uF(?,0)= uIF('X,O)7

so that F'(?,0) = F(0,0). O

Proof of Theorem 9 :

If a multiscale analysis satisfies the axioms of Theorem 9, the corresponding evolution equa-
tion can be written in both forms given in Equation 10.9 and Equation 10.10. But the only
common case is

o
Uy = —Uy! = uez = Ugs,

which is the announced equation. O

Conversely, we have to check that it is possible to define from Equation 10.2 a multiscale

analysis of movies satisfying the previous axioms. This is the aim of the next chapter.
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Chapter 11

The Depth-Compatible Multiscale
Analysis

In this chapter, we give a rigorous definition for the DCMA Equation!

Up = Ugy — Q%Uh + (%)2um. (DCMA)
U U

xr xr

We define classical and weak solutions, and we establish uniqueness and existence theorems in
both cases. We also establish the link with the theory of viscosity solutions of second order

partial differential equations.

11.1 Classical solutions of the DCMA

For the reason we explained before, we forget the y variable in the following, and a movie is
defined on R x I, with either I =], 6] or I = S'. In the space variable, a periodization has no
meaning in terms of scene interpretation, so that we shall rather suppose that u tends towards
some constant when z grows to infinity. Notice that such a condition is classical, even in a more

restrictive formulation (e.g. u equals a constant outside a compact set, see [31] for example).

Definition 20 Forc= (c7,ct) € R* and n > 0, C" is the space of movies u € C"(R x I) such
that
suI_)|u(—x,0)—c_|—|—|u(x,0)—c+| —0 as z — +oo. (11.1)

oel

In all the following, we write Q2 = R x Ix]0,4+oc[ (2 is the domain of movie analyses).

Definition 21 For ¢ € R and n,p > 0, C™P is the space of movie analyses u € C°(Q) such
that

'The reason why we call this evolution equation DCMA (for Depth-Compatible Multiscale Analysis) will
become clear in the next chapter.

185
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1. sup |u(—z,0,t) —c |+ |u(z,0,t) —ct| =0 as = — +oo,
0l t<R

2. onQ, (x,0,t) = u(z,0,t) is of class C™ with respect to (z,0) and CP with respect to t.

When ¢~ = ¢t = 0, we shall say that u is “null at infinity”.

Let us come back to our problem. We want to define classical solutions of Equation (DCMA).
However, the space M? we introduced in the axiomatic formulation is too restrictive, because
of the condition wu, # 0. Indeed, this condition forces the partial maps = — u(z,y,8) to be
increasing or decreasing, which is not satisfactory, and prevents u from satisfying Equation 11.1
with ¢™ = ¢~ (this is the reason why we did not constrain ¢t = ¢ in the previous definitions :
since we want the axiomatic formulation to be relevant, the space M? must be nonempty). For
those reasons, we forget the condition u, # 0 and write a degenerate formulation of Equation
(DCMA) when u, vanishes.

Example : Consider g € C?(IR) such that g(z) — 0 as |z| — +00. We define the movie analysis
u: R x ST x [0, +00[— R by

u(z,0,t) = g(x — 0% — 2t),
the representant of  being taken in [—m, #[. Then, Equation (DCMA) is satisfied by u at any

point where u, # 0, and when u, = 0 we have also u; = 0. This suggests a simple degenerate

formulation of Equation (DCMA) when w, vanishes.
Incidentally, notice that u € Cg’z, but the condition

sup |u(z,0,t)] =0 as |z| — oo
6€l,t20

is not satisfied unless ¢ = 0. This is the reason why it is logical to consider the sup on {6 €

1,t < R} in Condition 1 of Definition 21.

Definition 22 Given ug € C2, we say that u is a classical solution of the DCMA associated to

the initial datum ug if
(i) wec,

(i1) on Q= R x Ix]0,+oo],

Ug

Ug 9

U = Ugg — 2—Ugy + (—) Uy when u, # 0,
ul’ X

ug = 0 when wu, = 0.

(iii) ¥(x,0,t) € 09, wu(z,0,t) = up(z, ).
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Remark : If I = S', 31 = () and the boundary condition (iii) means
V(z,0) e Rx I, u(z,0,0) = ug(z,0).

If we choose to fix a time-boundary condition (i.e. [ =)0y, 6;]) instead of a time-periodicity

condition, (iii) also constrains

V($7t) € R x [07+OO[7 u(xveivt) = UO(xvei) for i = 172

In order to state the uniqueness of solutions, we first establish a comparison principle.

Lemma 20 (comparison principle) Suppose that u and @ are two classical solutions of the

DCMA associated to initial data vy and g respectively. If ug < dp, then u < @ on Q.

Proof :

For R > 0, let us write

e(R) = sup u(z, 8,t) —a(z,0,t).
21> ROET <R

Since u and @ belong to C*! and C?’l, we have
g(R) — max(c” — &, ¢t —¢ét) as R — +oo,
with ¢ — ¢ < 0 because ug < %g. For a > 0, we consider
Az, 0,t) = u(z,0,t) — a(x,0,t) — at.

On the compact set Kr = [~ R, R] x I x [0, R], the continuous map A attains its maximum value

at a point zg = (20, bo, to).

1. Suppose that
|$0| <R, 6Oyl and E]O,R] (112)

In z; we have

Ay=As=0, A;>0 and D?A 0.

This yields

Du(zy) = Du(z), (11.3)
u(z0) — w(20) > @, (11.4)
and  D*u(z0) < D*i(z0), (11.5)

the last inequality being meant for the usual order on symmetric 2x2 matrices.
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La. If uy(20) # 0, then 4,(20) = uy(20) # 0. Now recall that

Up = Ugg — Q%Uh + (%)zum = F(Dzu7 Du),
U U

X X
where I is an elliptic operator, that is to say nondecreasing with respect to its first argument.
Hence, Equations 11.3 and 11.5 imply us(20) < @(z0), which is in contradiction with Equation
11.4.

L.b. If uy(2z9) =0, then @,(z) = 0, and since u and @ are solutions of the DCMA, we have

ut(20) = s (20) = 0, which is a contradiction with Equation 11.4.

2. As a consequence of 1.a and 1.b, Assumption 11.2 is false and necessarily we have either
|zg| = Ror by € dl ortg = 0. If |9| = R, then A(zg, 0o, t0) < e(R)+aR, while A(zq, g, t0) < R
when 6y € 91 or tg = 0. Consequently, we have

max A < max(0,e(R)) + aR,
Kpr
and making o — 0 proves that

u < &+ max(0,2(R)) on R xTx]I0,R].

Last, sending R to infinity forces max(0,(R)) to vanish and the proof is complete. O

Corollary 9 (contraction property) If u and @ are two classical solutions of the DCMA

assoctated to the initial data vy and g, then

[l = @loo < [luo = tollo-

Proof :
We simply need to notice that

up — ||uo — Uolleo < o < uo + ||uo — tol|sos

and apply the comparison principle, remarking that if w is a classical solution of the DCMA, so

is u + A for any A € R. a

Corollary 10 (uniqueness) A classical solution of the DCMA associated to a given initial

datum ug € C? is unique.

The proof follows immediatly from Corollary 9.

In order to ensure the existence of classical solutions of the DCMA, we now restrain the

space of initial data.
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Definition 23 For n > 1, we write V7 the space of movies u € C for which there exists a
movie v € C§~' such that

ug+vu, =0 on MRxI. (11.6)

v is called a velocity map of u.

The space VP is defined as elements of C? admitting a velocity map v € Cg_l’p.

Remark : Consider a movie v € V. If u,(z,0) # 0, v(z,0) is uniquely determined because
Equation 11.6 forces

v(z,8) = —Z—i(x,@).
But as we noticed previously, u,(z,#) is forced to vanish at least once for any value of 8, because

lim wu(z,0)=c.
|z|—=+co ( )

When wuy(z,0) = 0, Equation 11.6 implies ug(z,60) = 0, and if n > 2, differentiating Equation
11.6 with respect to # and z yields

ugg(z,0) + v(z, O)uge(z,0) =0 (11.7)

and

e (z,0) + v(z, O)uyy(z,8) =0. (11.8)
We deduce from Equation 11.7 and 11.8 that ugs + 2vugs + v*us = 0 as soon as u, = 0.

A consequence is that if u € V*! is a classical solution of the DCMA, then any velocity map

v of u satisfies on 2
Ug + v, =0
(11.9)
Uy = Ugs + VUgy + Uzuxx-

d

Proposition 27 (existence) Given an initial datum ug € VI (n > 2), there exists a unique

classical solution of the DCMA, and it belongs to V™.

Proof :

The existence will be a consequence of Lemma 22 (which follows), and the uniqueness follows

from Corollary 10. O

We are going to build explicit solutions of the DCMA. The idea is to notice that the trajec-
tories (i.e. the curves x(6) along which u is constant) are smoothed by the linear heat equation.
For that purpose, we need to introduce the natural domain I* for such trajectories. If I =]6y, 65[
then I* = I, and if I = S!, then I* = R (the natural injection S < [0, 27[C R being implicit).
To simplify the notations, we suppose in the following that 0 € 1.
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Definition 24 A map ¢ € C*"(R X I*) (n>0) is a 0-graph of uw € C? if
1. for any 6 € T*, the map x — (x,8) is increasing and bijective

2. for any (z,0) € R x I*,
u(p(z,0),6) = u(x,0), (11.10)

3. for anyx € R, ¢(2,0) =z, and if [ = S, then for any (z,0) € R x I*,

oz, 0+ 27) = ¢o(p(z,27),0), (11.11)

4. sup |gg(x,0)] =0 as R — 400 (in a generalized sense if n =0).
|z|>R,0€T

Remark : Notice that in Condition 4, the sup is taken for § € T and not for § € I*. If n = 0,
the term |@g(z, 8)| must be replaced by

(z,0+h) — 99(96,0)|
. .

lim sup | Ld
h—0

A simple proof by induction establishes that when I = S', Equation 11.11 implies
oz, 0+ 27n) = ¢(p(z,27n),0)
for any (2,6,n) € R x I* x .
Lemma 21 A movie u € C (n > 2) belongs to V! if and only if it admits a 6-graph of class
c".

Proof :
1. Suppose that u admits a #-graph of class C™. Then, Condition 1 implies that the relation
U(@($,0>,0):@9($70) (1112)

defines a unique continuous map v on R x I (if I = S, Equation 11.11 ensures the periodicity

of v in the @ variable). We can write
V(z,0) e Rx I, Vh e R, v(p(z,0)+ hpy(z,8)+o(h),0) = @o(x,0) + hogy(z,8) + o(h).
Since @, (2,0) > 0 a.e. due to Condition 1, we deduce that v is derivable with respect to  and
o, 0)0a(9(2,0),0) = 0, (3, B).

A similar reasoning proves that v is of class C~1. Differentiating Equation 11.10 with respect
to 0 yields
V(z,0) e Rx 1, @q(z,0)us(p(,0),0) + ug((2,0),0) = 0,
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so that v is a velocity map of u thanks to Equation 11.12.

Now let us write diam (/) the diameter of I. Given € > 0, Condition 4 ensures the existence
of a B > 0 such that

V(z,0) e Rx I, |e|>R = |pg(z,0)| <e.

Hence, if |2| > R' = R + ¢ - diam (I) we have

4
p(z,0) = p(z,0) —I—/ wolz, T)dr > —<|0] > R
0

and consequently
sup [v(z, 0) <e.
lz|> R’ 0€l
It follows that v € Cg_l and the same reasoning proves that u is constant at infinity, so that

ue V.

2. Conversely, if u € V7, consider a velocity movie v of u. Given (zg,8) € R x I, there

exists a unique solution X € C"™(I*) of the ordinary differential equation

dX
—(0) =v(X(9),9) (11.13)
do

submitted to the condition X (6y) = z¢. Since v € CZ™', v is bounded, so that X is defined on the
whole interval T*. Call p(zg, #) the solution X associated to 8y = 0, and let k = diam (1) - ||v]]co-
Then

sup[pg(x,0)| < sup  |u(x,0)| =0 as R — +oo,
lz|>R.6€1 le|» R—k,0€T

so that Condition 4 is satisfied for ¢.

In addition, the uniqueness of the solutions constrains the relation
if =0, v <z = plx,0) <o)

to extend to any value of 8, so that the map @ — ¢(z,0) is increasing. Now, suppose that
the value z¢ is not attained by the map z — ¢(x,8y) for a given value 6y. By considering the
ODE 11.13 submitted to initial condition X (#y) = ¢, we obtain the existence of a value X (0)
such that ¢(X(0), ) = z¢, which is a contradiction. Hence, the map = — ¢(z, 6p) is surjective
and Condition 1 is satisfied. If I = S!, Equation 11.11 is satisfied by ¢ simply because v is

27-periodic in the # variable.

Last, a classical theorem (dependency with initial conditions, see [7] for example) states that

@ is C™ and we can write

d

10 (u(e(x,8),0)) = po(x, O)us(p(x,0),0) + ug(p(x,0),0) = (vus + ug) (¢(x,0),0) = 0. (11.14)
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Then, integrating Equation 11.14 yields for any (x,6) € R x 1,

u(p(z,8),0) = u(p(z,0),0) = u(z,0),

so that Condition 2 is satisfied and ¢ is a #-graph of u of class C”. O

Lemma 22 Let ug € VI (n > 2), and o be a 0-graph of ug of class C". Define (z,6,t) —

p(z,0,t) as the unique solution of the monodimensional heat equation

88—"; - 8;79; (11.15)
on ¥ = R X I*x]0, 400 submitted to the boundary condition
V(z,0,t) € 0%, ¢(z,0,t) = po(z,8). (11.16)
Then, the unique map u : Q — R defined by
V(z,0,t) € Q, u(p(z,0,t),0,t) = ug(z,0) (11.17)

belongs to V" and is a classical solution of the DCMA associated to the initial datum ugp.

Proof :

1. Since the heat equation satisfies the comparison principle, the condition
z <2’ = golz,) < po(a,)
is preserved along evolution so that
v<a = VO, o(x,0,t) < 0,1).

and z — ¢(z,0,t) is increasing as expected.

2. Now we prove that z — ¢(2,0,t) is surjective. Condition 4 of Definition 24 shows that
we can find two constants A and B (with B = 0 if I* is bounded) such that

[po(z,0) — | < A+ B|6]

on Rx 1. If I = S, Equation 11.11 extends this property to R x I*. A simple result about the
heat Equation (see appendix to follow) states that

— 4¢
V(z,0,t) € Q*, |p(z,0,t)—z| <A+ Bl + By —. (11.18)

T

As a consequence, for any (8,t) € Ix]0,+oc[, = ¢(,0,1) is surjective.

3. Hence, Equation 11.17 defines a unique map u : Q — R and a proof similar to the one of
Lemma 21 shows that v € V" thanks to Equation 11.18.
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4. We check the boundary condition. For any (z,6,t) € 092, due to Equation 11.16 we have
oz, 8,t) = po(z, ),
while the definition of u (Equation 11.17) implies
u(p(x,8,t),0,t) = ug(z,0) = up(wo(z, 0), ),
and consequently
U(QOO($, 0)7 07 t) = uO(S‘QO(xv 0)7 0)
Hence, the boundary condition (iii) of Definition 22 is satisfied since the map

o0 — 0Q
($7 07 t) = (990($7 0)7 07 t)

is bijective.
5. Let us note 21 = (¢(2),0,t) for a given z € Q. If u,(2) = 0, differentiating Equation
11.17 with respect to ¢ yields
pi(2)us(z1) +w(z) = ulz) =0

as expected. If u;(21) # 0, we obtain

ur(z1) = —pi(2)us(21),

and o uo(2,0)) = 0 = @l (), 0.0) + wo(o(2).0.1),
as well as
d2
0 = W(uo(xvo))
d

= 10 (po(2)us(p(2),0,1) + us(p(2),0,1))
= wap(2)uz(p(2),0,1) + @Z(Z)ul’l’(@(z)v 0,8) + 206(2)uze(¢(2), 0, 1) + uge(p(2), 0, 1)

6
= pu(Dus(21) + ¢f () uwa(21) + 200(2)uso(21) + oo (21)
ug

Uu
= <_ut + ugyg — 2u—€uex + (u_)qux) (21)7

so that condition (ii) of Definition 22 is satisfied. Hence, u is a classical solution of the DCMA

associated to the initial datum wug. |

Lemma 22 proves that the DCMA Equation is a scalar formulation of the monodimensional
heat equation (11.15), like two other important equations of image processing : the Mean
Curvature Motion and the Affine Morphological Scale Space. The difference between them only
comes from the intrinsic parameter of the level lines : the Euclidean abscissa for the Mean
Curvature Motion, the affine abscissa for the Affine Scale space. For the DCMA, the natural
parameter is the time 6, which means that level lines are not considered as curves but as graphs.
This remark will permit to prove the existence of weak solutions for the DCMA, but in certain

cases only, namely, when the level lines of the initial datum can be described by graphs.
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11.2 Weak solutions of the DCMA

We define weak (only continuous) solutions of the DCMA as uniform limits of classical solutions.

Definition 25 Given a movie ug € C2, we say that a map u € CO° is a weak solution of the

DCMA associated to the initial datum ug if
V(z,0,t) € 09, u(z,0,t) = uo(z,0)

and if there exists a sequence (u)e~o of classical solutions of the DCMA such that v — u

uniformly on Q when ¢ — 0.

Lemma 23 (uniqueness) A weak solution of the DCMA associated to a given initial datum

1S UNtquUe.

Proof :
We simply prove that the contraction property (Corollary 9) is still satisfied. Let w and @

be two weak solutions of the DCMA associated to the initial data ug and @g. Then, we can find
two sequences u® and @° which converge uniformly towards u and @. Writing uj = u°(-, -,0) and

uy = u°(-,-,0), Corollary 9 ensures that

€

[0 = @[oo < flug — s,

and taking the (uniform) limits when ¢ — 0 yields
[l = lloo < [Juo = ol

as expected. O

Proposition 28 (existence) Call V. the topological closure of V* with respect to the || - ||s
norm. Then, given ug € V., there exists a unique weak solution u of the DCMA associated to

the initial datum ug.

Proof :

According to the hypothesis on ug, we can find a sequence ug € V2 which converges uniformly
towards ug. Then, call u® the classical solution of the DCMA associated to the initial datum ug
(Proposition 27 ensures the existence of u%). Lemma 20 forces u® to converge uniformly towards

a limit u € C2°, which is by construction a weak solution of the DCMA. O

To make more precise this existence property, we now build explicit weak solutions. The

construction is similar to the one used for classical solutions in the proof of Lemma 22.

Definition 26 We write V° the space of movies u € C° which admit a continuous §-graph.
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This generalizes Definition 23 thanks to Lemma 21.

Proposition 29 Let ug € V?, and g be a 8-graph of ug. Define (x,0,t) — p(x,0,t) as the
unique solution of the monodimensional heat equation 11.15 submitted to the boundary condition
11.16. Then, the unique map u defined from ¢ by Fquation 11.17 is a weak solution of the
DCMA.

Proof :

1. As for the definition of u and its belonging to C%°, the proof is already contained in

Lemma 22.

2. Since VY C V., we can consider @ the weak solution of the DCMA associated to the initial
datum ug, and (u®) a sequence of classical solutions which converges uniformly towards 4. Now

we want to prove that u = u, or, equivalently, that
V(z,0,t) € Q, a(p(x,0,1),0,t) = ug(x,0).
Given zg € R, e > 0, « > 0 and T > 0, define
A(6,t) = u®(p(20,0,t),0,t) — ug(z0,0) — at.
Since A is continuous on the compact set K7 = I x [0, T], there exists (6y,to) € K such that

max A = A(bp, to).

Kp

2.a. Suppose that
fp €I and ty > 0. (1119)

Then, in (6o,to) we have
A >0, Ag=0 and Ay 0.

This yields

puul +ug > o, (11.20)
wouy, + ug = 0, (11.21)
and c,ogu;x + 2¢pup, + ugy + @oous, < 0. (11.22)

If uS =0, then uf = 0, which is in contradiction with Equation 11.20. If u; # 0, since ¢; = @gg
and u® is a classical solution of the DCMA, Equation 11.21 and 11.22 imply

u? + S‘Qtu; < 07

which contradicts Equation 11.20 as well.
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2.b. Hence, Assumption 11.19 is false and we have either 6y € 9 or tg = 0, so that
©(z0, 6o, to) = oo, ). Writing u§ = u°(-,-,0), we get

u’ (99($07 007 t0)7 007 to) ug(@0($0, 00)7 00)

IN

uo(¢o(T0,00),00) + [|ug — uolloo

IN

(%o, 0) + [|ug — uolleo,
so that
V(z,0,t) € Rx K7, u(p(z,0,1),0,t) < uo(z,0) + o1 + [|ug — uol|co-

Then, sending « to zero and T to infinity yields

V(z,0,1) €2, u(p(e,0,1),0,1) < uo(e,0) + [Jug — vol|oo,

and passing to the limit when ¢ — 0 establishes

V(z,0,t) € Q, w(p(x,0,t),0,t) < up(x,0).
A symmetrical reasoning proves that u(e(z,8,t),0,t) > up(x,0) as well, so that v = @ as
announced. O
A consequence of this characterization of weak solutions is that a weak solution of the DCMA
associated to an initial datum uy € V? admits a kind of velocity movie as soon as ug is locally
Lipschitz in the z variable. To simplify the proof, we directly assume that the whole analysis
w is locally Lipschitz in the z variable, although it is not difficult to see that w inherits this

property from the initial datum wug.

Corollary 11 Let u be the weak solution of the DCMA associated to an initial datum ug € V2.
If w is locally Lipschitz in the x wvariable, then there exists a continuous map v defined on

Q = R x Ix]0,+oo] such that on £,

w(z +7v(z,0,t),0+7,t) = u(z,0,t)+ o) (11.23)

7_2

and u(x—l—rv(ac,@,t),@—l—r,t—?) = u(z,0,t)+ o(T?). (11.24)

Proof :
We associate ¢ to ug as in Proposition 29, and define v by Equation 11.12. Then,

U0($,0) = U(QO($,0—|— Tvt)ve—l_ Tvt)

= u(p(x,0,t)+1pg(x,0,t)+ o(7),0+7,1)
= u(p(a,0,t)+1v(p(x,0,t),0,t),0+7,1) + o(7),
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which establishes the first equality. For the second one, we write

72 72
up(z,0) = u (c,o(x,H—I—T,t— 7)70+T7t— 7)

2
= u (99(957970 + 7oz, 0,t) + 0(7'2),0—|—T,t— %)

2
= (sounat) 70(p(e,0,0),0,0),0+ 7,1 - %) +olr?)

and the proof is complete. O

Remark : Defining the Lie derivative of a map f along the vector £ = (v, 1) by

fe(z,0,t) = (if(ac—l—rv(x,&t),@—l— T,t)) ,

dr 7=0

Equation 11.24 is equivalent to ug = 0. As concerns Equation 11.24, it implies
piel 72
pu(x + rv(x,0,t),0+ 1,8 — 7) By =0,

where the notation d[z]f/de means the pseudo-second derivative of f, defined in = by

o et h)+ fle—h) —2f(2)

h—0 h?

Notice that this property is a generalization of Equation 11.9.

11.3 A viscosity formulation

We now establish the link between our definition of weak solutions and the theory of viscosity
solutions (see [27] for further details on viscosity solutions). For the DCMA, defining viscosity
solutions is not necessary because smooth movies remain smooth, which permits the previous
construction of weak solutions as uniform limits of smooth solutions. However, this is not
generally the case with non-linear parabolic PDE of the kind

ou

T F(D*u, Du, u)
defined from an elliptic operator I’ (consider the Mean Curvature Motion or the Affine Morpho-
logical Scale Space for example). Moreover, it is convenient to define weak solutions intrinsically,
without using limits of regular solutions. In the following, we give a reasonable definition of a

viscosity solution of the DCMA, and prove that a weak solution is a viscosity solution.

Definition 27 A bounded continuous map u : Q — R is a viscosity subsolution of the DCMA

if for any ¢ € C*(Q), at any point zg € Q where u — ¢ attains a local maximum, we have
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(i) If 6o £ 0, then & < das — Q%% + %)2%

(ii) If ¢, = 0, then ¢g = ¢y = 0 and IX € R such that 0 < dgg + 2APgr + A2Dys.

Condition (i) is the classical formulation of viscosity subsolutions, whereas (ii) is a degenerate
condition particular to the DCMA (see [31], [9] for examples of degenerate viscosity solutions in

the case of the Mean Curvature Motion).

The definition of a supersolution is symmetrical :

Definition 28 A bounded continuous map u : Q — IR is a viscosity supersolution of the DCMA

if for any ¢ € C*(Q), at any point zo € Q where u — ¢ attains a local minimum, we have

(i) If b # 0, then ér > by — Q%% + %)2%

(ii’) If ¢ = 0, then ¢y = ¢y = 0 and I\ € R such that 0 > ¢gg + 2APgy + N2chys.
We give the following equivalent definition of a subsolution for completeness.

Proposition 30 A bounded continuous map u : Q — IR is a viscosity subsolution of the DCMA
if for any (p, A) € R® x S3 and zy € Q such that

w(z) <ulzo) +p- (20— 2)+[Al(z0 — 2,20 — 2) + 0(]20 — z|2) as  z— 2o,

we have, writing p = (p;) and A = [a;;],
. P P
(i) If p1 # 0, then ps < azz — 2])—26121 + (])—2)2%17
1 1

(ii) If py = 0, then py = p3 = 0 and I\ € R such that 0 < agzy + 2Xaz; + Nay;.
The equivalent definition for supersolutions is straightforward.

Definition 29 A bounded continuous map u : Q — IR is a viscosity solution of the DCMA if it

is both a viscosity super-solution and a viscosity sub-solution.

Proposition 31 Given an initial datum ug € V2, the unique weak solution of the DCMA is a

viscosity solution.

Proof :
Let u be the weak solution of the DCMA associated to the initial datum wg. We prove that

u is a viscosity subsolution of the DCMA. Consider ¢ € C'°°(Q2), and suppose that u — ¢ attains

a local maximum in zg = (2o, 0o, to) € . Let ¢ be the map defined from wug as in Proposition
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29, and define z; = (z1,6o,t0) by ¢(21) = 2¢. Then, for b and ¢ in a vicinity of 0 (actually such
that g + b € I and o+ ¢ > 0),

u(p(x1,600+ b, tog+ ¢), 00+ b, to+ ¢) = ug(21,0) = u(e(x1, 6o, to), bo, to) = u(2o).
We can estimate

a(b,c) = @(x1,0p+b,to+ ¢) — 20
= @(a1,00+ b, to + ¢) — o(x1, 6o, to)
= boale) + gl 4 epila) +olb? 40
as b,c — 0. Now, since u — ¢ attains a local maximum in zy and
w(zo + a(b, c), 00+ b, to+ ¢) — u(zo, o, to) = 0,
we have
0 < ¢lzo+aldb,c),bo+b,to+ ¢) — ¢(xo, bo, to)

< b, )6 (0) + bn(20) + 0u(z0) + oD (20) 4 ba(b, e)n(z0) + 2-an (20) + o8 4 )

< (5999(21) + g@é’é’(zl) + C@t(h)) ¢ (20) + bPg(20) + co¢(20) + 1)2—2993(21)¢m(20)

2
0 (21) b (20) + s (20) - 0l +-0).

Necessarily, both factors of b and ¢ must be zero and the factor of 5> must be nonnegative. This

yields
©o(21) Pz (20) + P9(20) = 0, (11.25)
oi(z1) 02 (20) + ¢e(20) = 0, (11.26)
and  g(21) 62 (20) + 5 (21) Sur (20) + 206(21) P02 (20) + Pe0(20) > 0, (11.27)

but as ¢;(21) = @ee(z1), Equation 11.26 and 11.27 imply

P¢(20) < @Z(Zl)Cbm(Zo) + 204 (21) Pox(20) + Po0(20)- (11.28)

1. If ¢,(20) # 0, Equation 11.25 gives

pola) = =2 30)

and Equation 11.28 leads to the desired condition (i).

2. If ¢, (z0) = 0, then ¢y = ¢1(z) = 0 is a consequence of Equation 11.25 and 11.26, while
Equation 11.28 implies that the polynomial

X = X?¢,.(20) + 2X dg.(20) + doa(20)
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takes at least one nonnegative value, which is the desired condition (ii).

Consequently, u is a viscosity subsolution of the DCMA. A symmetrical reasoning shows

that it is a viscosity supersolution as well. O

We conjecture that a viscosity solution associated to a given initial datum is unique. In
particular, this would imply that the viscosity and the weak solutions of the DCMA are the

same, provided that the initial datum wug lies in V2.

11.4 Appendix on the heat equation

In the previous section, we used several results about the monodimensional heat equation. For
completeness, we briefly recall them. In all the following, either J =]6;,65] or J = R, and
Q = Jx]0,4o0].

Proposition 32 Given a continuous map f:J — R such that
JA, B, V8 e J, |f(0) <A+ B, (11.29)
there exists a unique continuous map ¢ : Q — R such that

(i) on Q, (0,t) — ©(0,t) is C* with respect to 8 and C'* with respect to t,

Op _ %
ot 00?2’

(iit) for any (0,t) € 0Q, p(0,t) = f(0)

(iv) VT > 0, 3A, B, ¥(0,t) € J x [0,T], |¢(0,1)| < A+ BlA|.

(ii) on £,

Remark : If J is bounded, then Equation 11.29 simply means that f is bounded, and Condition
(iv) means that ¢ is bounded too. If J = R, f and ¢ are constrained to be “sub-linear” in the

# variable.

We give a quick justification of Proposition 32 since the heat equation is generally considered
for bounded maps in the literature. (see [16] for example). As for the uniqueness, it results from

the following comparison principle.

Proposition 33 (comparison principle) Consider ¢ a solution of the heat equation (in the

sense of Proposition 32) associated to the initial datum f < 0. Then, ¢ <0.

Proof :
Suppose first that J = R. Given T > 0, there exists A, B such that

V(0,t) € J x[0,T], ©(8,t)—A— B|f| <O. (11.30)
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For R > 0 fixed, we consider the map

A0 = ¢(6,0) ~ (5 + 1)

2 (0% + 2t).

A satisfies the heat equation, and the maximum principle (see [16] for example) tells that

max A= max
[-R,R]x[0,T] [-R,R]x{0}u{—R,R}x[0,T]

On [-R, R] x {0}, A <0 because f <0, while Equation 11.30 yields A <0 on {—R, R} x [0,T].

Hence, we have

¥(0,1) € [-R,R] % [0,T], ¢(6,) < (% + %)(02 +21).

Sending R to infinity yields

V(0,t) € J x[0,T], ¢(8,t) <0, (11.31)

so that ¢ < 0 on J x [0,4o0[. If J is bounded, Equation 11.31 is a direct consequence of the

maximum principle applied to ¢, and the conclusion still holds. O

Now we give an explicit construction of solutions. If J = R, the solution is given by the

convolution with the Gaussian kernel :

+oo 2
p(0,t) = / f(6— a)%e_a Mg,

—00 47t

If J =)0y, 0], we write f(@) = f(8) — [(#), where [ is the unique affine map which forces
f(@l) = f(@g) = 0. Then, we extend f to an odd and 2(0; — 601)-periodic map and apply the
previous convolution formula. This way, we obtain a map ¢ which satisfies conditions (i), (ii)

and (iv) as well as ¢(61,t) = @(02,t) = 0 for any t > 0. Last, the map

¢ : Jx[0,+cc[—= R
(6,1) = ¢(6,1) + 1(9)

satisfies the desired conditions (i), (ii), (iii) and (iv).
Proposition 34 Here we suppose J = IR. If f satisfies
Vo e R, |f(6) <A+ B

then the solution o of the heat equation with initial datum [ satisfies

4t
v(0,1) € Rx[0,+oof, (6, 0)] < A+ Blo] + By/ —.
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Proof :
Calling Gy the Gaussian kernel, we have

p0.01< [ 170 - lGitadda < [T (A + BlOl + Blal)Gifa)da,

oo _
and the announced result is a consequence of the equalities

+oo +oo At
/ Gi(a)dae =1 and / la|Ge(a)da = [ —.

oo T

11.5 Further existence properties

In the previous sections, we did not prove the existence of (weak or classical) solutions of the
DCMA in the general case, that is to say when the initial datum admits no é-graph. In fact, we
do not believe that the DCMA admits a solution in general, at least a solution in the sense we

defined.
When the initial datum wg admits a #-graph, the DCMA is obtained by applying the linear

monodimensional heat equation to the level lines of ug. For an ordinary continuous map ug, the
level lines have no reason to be graphs in the 8 variable, since to a given value of 8, several values
of x will correspond in general. Hence, defining general solutions of the DCMA is somewhat
equivalent to defining solutions of the heat equation for multi-valued data. It is in that spirit
that L.C.Evans studied independently Equation 10.2 in his article “A geometric Interpretation
of the Heat Equation with Multivalued Initial Data” (see [32]). He regards the DCMA Equation

as the limit when £ — 0 of the more regular equation

2 2
U g — 2ugpugtyg + Uy Ugg

(11.32)

= u? 4 22u?
Equation 11.32 admits viscosity solutions because it is more or less the Mean Curvature Motion
(actually, the case ¢ = 1 is exactly the Mean Curvature Motion). He noticed that in the general
case (that is, when the level lines of the initial datum are not graphs), the regularizing effects
of the heat equation are so strong that the limit of approximate solutions is not continuous at
scale t = 0, because the level lines are constrained to become graphs instantaneously. It seems
difficult to overcome this difficulty unless we allow solutions of the DCMA not to be continuous
at scale t = 0. In fact, it might be possible to define a kind of projection operator which makes
the level lines of a movie unfold and become graphs. We shall come back to this when studying

a numerical scheme in Chapter 13.



Chapter 12

Properties of the DCMA

In this chapter, we investigate several properties of the DCMA. We first check the ones that
are constrained by the axiomatic formulation, and then we prove that the DCMA acts as a
strong smoothing process along the movement. We also establish integral estimations and try
to associate the DCMA to a variational principle. Coming back to the original context of depth
interpretation, we finally highlight geometrical properties and find a new characterization of the

DCMA.

12.1 Checking the axioms

In order to be sure that our axiomatic formulation is consistent, we have to check that the
axioms we introduced are satisfied by the DCMA. As regards the three architectural axioms
([Recursivity], [Local Comparison Principle] and [Regularity]), they are direct consequences

of the fact that the DCMA is given by an evolution equation
uy = F(D?*u, Du),

where F' is an elliptic operator. Now we prove that the DCMA satisfies the [Strong Morpho-

logical Invariance] property.

Proposition 35 Let u be a weak solution of the DCMA and g : R — IR a continuous map.
Then, g ou is a weak solution of the DCMA.

Proof :

Notice that this proposition makes sense because if u € C2, then gou € CY with
¢=(g(c7),g(c)).

1. First, suppose that u is a classical solution of the DCMA and that ¢ is of class C'?. Writing

@ = g ou, a simple computation gives
Uy = (¢ ou) - uy, @ = (g ou)-u,

203
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and
e = gy — Wy (Beyeg
Ugg = Ugg axuﬁx‘l’ (?NLQU) Ugs
_ " 2 2 2 / Uug Ug o
= g ou-(ug—2uj+ug)+ g (u) | wge — 2—ugy + (u_) .
T T
= g'(u) - uge

whenever 4, # 0. Hence, we have @; = 0 if @, = 0, and @; = 4g¢ if 4, # 0, so that 4 is a classical
solution of the DCMA.

2. Now let us come back to the general case when g is only continuous. Given € > 0, there

exists a map g° € C*(R) such that ||g — ¢°[|oc < &. Since the set
K = [=[lulloo = &, [Julloo + €]

is compact, ¢ is uniformly continuous on K thanks to Heine’s Theorem : in other words there
exists a positive number a < ¢ such that |g(z) — ¢(y)| < € as soon as |z — y| < a. Besides, we

can find a classical solution »® of the DCMA such that ||u — «°||oc < @. Then, we have
lgou— g 0wl < llgou—g 0wl +llg o u° — g o]l < 22,
and ¢® o u® is a classical solution of the DCMA. O

As for the [Transversal Invariance] property, it is clearly satisfied by the DCMA since the

y coordinate does not even appear in its definition.

Now we can check the [v-Compatibility] property. Consider a map h : R* — R such that
Vu e MY, Rpu e MY and o[Rpu] = ofu],

with Rpu(z,y,0) = h(u(z,y,8),z,y,0). Choosing u(z,y,6) = Atanhaz (tanh meaning the
hyperbolic tangent) proves that k is C'l. In addition, for any u € M! we must have

uxh€ = uﬁhx

in order that the condition v[Rpu] = v[u] is satisfied. If we now choose u(z,y,8) = tanh z + b0,
we obtain hy = 0 with b = 0 and then h, = 0 with b = 1, so that we finally have

R(A z,y,0) = f(\y).

Then, the relation T; o R, = Rj, 0o T} is a direct consequence of Proposition 35, the y coordinate

being fixed. O

The last two axioms, [Galilean Invariance] and [Zoom Invariance], are clearly satisfied by
the DCMA thanks to Lemma 18 and Lemma 19.



12.2. ASYMPTOTICS OF THE DCMA 205

12.2 Asymptotics of the DCMA

Given an evolution equation like the DCMA, a natural question arises : is there an asymptotic
state ? In other words, we would like to know whether the movie u(-,¢) tends towards a limit

movie U, as t — +oo.

Proposition 36 If u € V! is a weak solution of the DCMA, then the limit
U = lim u(-, 1)

t——+oo

exists and satisfies
b ZfI = Sl; uoo(xvy70) = uoo($7y70);
o if I =]01,0,], there exists v € C°(IR*) such that

Uoo (2 — v(2,9)0,y,0) = use (2,y,0).

Proof :
We proved in Proposition 29 that u satisfies

u(e(z,y,0,t),y,0,t) = u(z,y,0,0).
Since ¢ is a solution of the heat equation, there exists two maps a and b such that
oz, y,0,t) = alz,y)0+b(z,y) as t— 4oo,
and if 7 = S' the condition
vo(z,y,0,0) > 0 as |z] = +oo

forces a(z,y) = 0. O

Remark : The stronger condition in the case I = S' is only a consequence of the space
of solutions we choose. The main idea that must emerge from this proposition is that the

trajectories of the initial movie eventually become straight lines as t reaches infinity.

12.3 Diffusion of the movement

In the following, v is a map of class C? defined on a subset Q' of Q = R x Ix]0, 400, and on Q'
v satisfies

ug + vu, = 0. (12.1)
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This defines on €’ the operator
D_0 0
Do 00 dx’

as well as the notation

Jee = ID*1(6,€) with &= (v, 1).

Proposition 37 Let u € C"™! be a classical solution of the DCMA, with n > 0. Then the
o ) Ug . Dv D™ ) .
movement derivatives (velocity v = ——, acceleration ? = —, ... ——, ... ) are diffused in
( Y . D8 g i

the same direction as u, that is

D¥ D¥
Vk € {0,...n}, (D—OZ) = (D—OZ) whenever u, # 0.
t 139

In particular, the apparent velocity v follows the polynomial and causal diffusion equation

vy = Vgo + 2000, + vzvm whenever u, # 0.

To establish this property, it is interesting to introduce the formalism of the Lie brackets

2] 2]

associated to the partial derivatives aa_xv =5+ 57> which commute together, and to the total

. . D _ 8 9
derivative 56 = 55 T Vsg-
We compute

Jd D gD Do a0 d d Ja., 0 13}
= — V)5 = U

52 D6 = 9:D6 Door o296 "o " 96 T Vs

One easily checks as well that

oD oD 0
20°'De' ~ o " o Do T ow
This way, we can expand the fee = [D*f](£,€) notation into
0? 0? 5, 07
(e = 55 2565 T 90

ol dz’ 00 ol dz’ Ox
bo Do

D606 " Do oz

b.o 0, Dvd

56'96 T'97) " Daos

Duv
d finall t iting 7 = —
and finally we get, writing Da’

D?
In particular, if we write 1v = — the total derivative of 7, we have

D6
vge = V¥ — T
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Lemma 24 Independently of any evolution equation, on Q' we have

[~ (e og) = (0= vee) o (12:2

Proof :
We compute the Lie bracket
D D? 0 D
—1 = = _2 2 =

_ [D2 D]_[?G D

D62’ DI Y 92’ DO
D? o Jd D
= =Y oL X
0+D08x '[8967D0]
J
— T PN
(v Ux)@w
J
= Yy

Now, by linearity, we get as announced

Ot g] = [ D = (O 5] = (01— ) o

X

[Gt

Proof of Proposition 37 :

We take Q' = {z € Q, u,(2) # 0}, so that v is uniquely defined by Equation 12.1 on §'.
Applying Equation 12.2 to u yields

(% = )ss) % + %(Ut — uge) = (U — vgg ) o (12.3)

As u satisfies B% = 0 as well as uy = uge on Q' (u is solution of the DCMA), the left term of

Equation 12.3 is zero. Hence, on €’ we have v, = vg as announced in Proposition 37.

This proves that the right term of Equation 12.2 is zero on €', so that

0 D
[% —( ee W] =0 whenever wu, # 0.

Consequently, for any ¢ : Q' — R of class C? satisfying

qr = Gee,s

(%)t = (%) N whenever u, # 0.

Thus, a simple induction proves that the diffusion equation ¢ = g¢¢ is satisfied by all successive
Dv D™v
Da’ " Do

we have

total derivatives of v of class 2, that is, O

Now we would like to generalize Proposition 37 to the whole €, i.e. even at points where u,

vanishes.
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Proposition 38 Ifu € V131, then there exists a velocity map v associated to u which satisfies,

on the whole (,
DFv DFv
k — | = | == . 12.4

Moreover, if I =]0y,05[, then

V(z,i,t) € Rx {1,2}x]0,+oo[ 7 (z,6;,1) = 0. (12.5)

Proof :

Define ¢ as in Lemma 22, and consider the velocity map v defined by
v(p(z,0,t),0,t) = pa(x,0,t). (12.6)
1. We get, writing 2o = (z,6,t) and z; = (¢(z,6,1),0,1),
vi(z1) = walz0) — pi(20)ve(21)
= o00(20) — Po6(20)va(21),

while
w9 (z0) = vg(21) + @o(z0)va(21)
and
o0 (20) = vog(21) + 200 (20) v (1) + 95 (20) vaw (21) + o0 (20) 2 (21).

Hence, we have

vae(21) + 2¢9(20)ves(21) + @Z(Zo)vm(h)
= (U€€ + 27}7}91’ + Uzvam’) (Zl)

vi(2z1)

= vee(z1)

as expected. This proves that the right term of Equation 12.2 is identically zero on the whole
Q, so that this diffusion property extends to the successive total derivatives of v as we noticed

in the proof of Proposition 37.

2. Differentiating Equation 12.6 with respect with 6, we get
7 (p(z,0,1),0,t) = ppo(x,0,1),
so that for any (2,7,t) in R x {1,2} x]0, +o0[ we have

0 0
T (p(z,0,,1),0;,t) = oz, 0;,t) = %cp(x,@',t) = %99(96,02',0) =0.
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Remark : If u € C9° is a weak solution of the DCMA, locally Lipschitz in the z variable, it is
possible to establish an equivalent result in the continuation of Corollary 11, provided that we

substitute the total derivative % by the Lie derivative

T

felo,0.0) 1= (G0 + o, 0.0.0470) .

From Corollary 11 we know that there exists a velocity map v (i.e. such that ug = 0), defined

on €2, which also constrains

2
uw(z +Tv(z,0,t),0 4+ 7,1 — %) = u(z,0,t) + o(7?).

Then, it is not difficult to show that

2
v(z 4+ Tv(x,0,t),0+ 1,8 — %) = v(2,0,t) + Tve (2, 0,1) + o(77).

More generally, the successive Lie derivatives of v along the movement are well defined (? = vg,
Y="¢, ..., ol = (ll) o) and satisfy

2
ol (e + ro(z,0,1),0 + 7,1 — %) = ol (z,0,t) + rol"t (2, 0,1) 4+ o(?).

This highlights an interesting property of the DCMA : the velocity field is smoothed indirectly
through the anisotropic diffusion of u. Notice that the diffusion Equation

vy = vgg + 2vvge + Uzvxac
presents no singularity and is of the kind
vy = F(D?*v, Dv,v),

where F is a continuous elliptic operator. This means in particular that the classical theory of
viscosity solutions (see [27]) applies. Our study goes a little further as v does not necessarily
exist at £ = 0, but we saw that it can be defined for any ¢ > 0 as soon as ug € VY. This is a

direct consequence of the strong regularization effects of the heat equation.

As regards boundary conditions for v when ug is regular enough, we have
V(z,0) e R x 1, v(x,0,0) = vy(z,0)
and if 1 =16y, 05[, then
V(z,1,t) € R x {1,2}x]0, +o0[, (vg + vvg)(z,0;,t) =0

according to Proposition 38.
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12.4 A conservation law
12.4.1 Compactly supported movies

We would like to consider integrals like

+oo
// w(z,8) dedd.
IJ—

To simplify the results, we are going to work on compactly supported movies, which is not very

restrictive physically speaking. We first recall the classical

Definition 30 A movie u : Rx I — R is compactly supported if it is zero outside a compact
set of R x 1.

Practically, it is equivalent to say that there exists R > 0 such that u(z,8) = 0 as soon as

2| > R.

Lemma 25 A compactly supported movie uw € V' (n > 1) admits a compactly supported velocity
map.
Proof :
Suppose that u(z, ) = 0 when |z| > R and let v be a velocity map of u. There exists a map
¢ € C*(R) such that ¢(z) =01if |z| > R+ 1 and ¢(z) = 1 if |2| < R. Thus, the map
v (z,0) — o(x) - v(z,0)

is a velocity map of u because ug = u, = 0 when |z| > R. Last, it is clear that 0, as well as v,
is bounded and of class C"71. O

Proposition 39 Let u be the (weak or classical) solution of the DCMA associated to a compactly
supported initial datum ug € V§. Then,

AR > 0, V(z,0,t) € R x I x [0,+o0], lz| > R+t = u(xz,6,t) =0. (12.7)

and if n > 1, u admits a velocity map which satisfies the same conclusion.

Proof :

This is a simple consequence of Equation 11.18. Recall that the solution u of the DCMA
can be defined by

V(z,0,t) € Q, u(p(x,0,t),0,t) = up(x,0),
where  satisfies
3C, Y(z,0,1) € Q, |e(z,0,0)| > || - C -t

thanks to Equation 11.18. But since ug is compactly supported, there exists R > 0 such that
ug(z,0) = 0 as soon as |z| > R — C. Then, we have u(z,§,t) = 0 as soon as |z| >t + R. O
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12.4.2 Light Energy conservation

Proposition 40 Let u € Vg’l be the classical solution of the DCMA associated to a compactly
supported initial datum. Suppose that

(a) either [ = St
(b) or I # 51 andV(z,i) € Rx {1,2}, wu(x,6;,0)=0.

Then, the light energy at scale t, defined by

1
= 5//u2(x,0,t) dxd®,

is independent of t.

Proof :
We take the convention (6, 6;) = (0,2x) if I = S, and remark that if I =]6;,65[, then the

boundary condition on u implies
V(z,i,t) € R x{1,2} x [0, +o0[ wu(z,0;,t) = u(z,0;,0) =0
thanks to Condition (b), so that
V(z,i,t) € R x {1,2} x [0, +00[ wusx(z, ;)= %u(w,@i,t) =0.

In the following, v is a velocity map associated to u. Since u(-,-,¢) is compactly supported

_ l// w2dzdf
5

is taken on a compact set. Consequently, as u € Cg’l, I is derivable and we can derive under the

'y = //uutdde
= //uu55 dadf
= —//uux? dxdf
= //uux (vg + vv,) dadf

= // U, Vg — UGV, dxdf.
By integrating by parts, we get

I'(t) = - / [uuxv]zzi dz + / [uugv] ™22 df + //(uux)gv — (uug)yvdadd.

The first term is zero thanks to (a) or (b), the second one is zero because u(-,-,t) is compactly

thanks to Proposition 39, the integral

integral symbol to obtain

supported and v is bounded, and the third one is evidently zero. Hence, I(¢) does not depend
on t. a
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12.5 A variational principle
12.5.1 A minimization law

Proposition 41 Let u € Vg’l be the classical solution of the DCMA associated to a compactly
supported initial datum. Then the quantity

E(t) = %//?Q(x,o,t) dedo

decreases with scale and we have

Cil_f(t) —_ //(g—Z)dedO. (12.8)

Proof :

In all the following, v is a velocity field of u satisfying Equation 12.7. First notice that

2
T = D gy DYy
D62 Dé
as s0oo0on as D?
U= W :?€+U?x

We compute the derivative of E(t),
E() = // 77 e dudd
— //? (g + oW, — 27,) dedo
— //7% +(07) W, — 727, dedd.
Integrating by parts the first two terms yields
E(t) = / [291% do + / [0? ] df — //?exp +(07).W 4+ 727, dadd.

The first bracket is zero thanks to Equation 12.5 (or thanks to the periodicity of 2 W if I = S1),

and the second one is zero because v? ¥ is compactly supported at any scale t. Hence, we have
E(t) = —//?9\114- (7)o W + 227, dadd

— —//\Il(?g—l—v?x—l—vx?)—I—?z?xdde

= —//\IIQdach—//vx?\lldde—l—//???xdde. (12.9)
1 J
727 =[] =3 =
//. 2 dxdf 3//896(. ) dzdf =0

But as
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(because 7 is compactly supported at any scale t), the second term of Equation 12.9 can be

rewritten
B(t) = //vw?\lldde = //vx?\ll — 72?2 . dxdé
= //?(?ng—l—vvx?x — 728 — vv,? ) dadf

i
= //(2??9)% (277, vg ddf.

then, another integration by parts yields

2B(t) = / [?%w}: de +/ [7205] " i - // ?2(0,9 — vge) dedf = 0.

Finally, coming back to Equation 12.9, we obtain
E(t) = —/ W2dzd < 0

as announced.

d

Remark : Since E(t) is positive and decreases with scale, it converges to a minimum value as

t — +oo, and E’(t) — 0 as t = 4o0. Now, what are the movies u for which ¥ = 0 7 Coming
back to the construction of the solutions of the DCMA, one easily checks that the condition

W = 0 is equivalent to the condition
V(z,0) e Rx I, wgg(z,0) =0,
the map ¢ being defined as usual by
u(p(z,8),0) = u(z,0).
Equation 12.10 implies the existence of three maps A, B, C such that

V(z,0) e Rx I, o(z,0) = A(2)0? + B(2)8 + C ().

(12.10)

and since ¢(x,0) = z, necessarily C'(z) = z. Hence, the level lines of a movie u satisfying ¥ = 0

are parabolae.

12.5.2 A variational interpretation

At this point, it is natural to wonder whether Equation 12.8 results from a variational principle.

Let us consider the functional

E(v) = %//(U@ + vv,)? dzdb,
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defined on compactly supported movies of class C?. Then, we can differentiate £ to obtain
DJE(R) = // (vg + vop) (hy + (vh)e) dedf
_ //?hg + (20)hy + 20k dedd.

By integrating by parts the first two terms, we get, assuming that Equation 12.5 is satisfied by

7T # S,
(h) ://—?gh—?ﬂhdﬂgd@:—/ mhdwd@

Hence, the canonical evolution equation associated to the variational problem of minimizing &

that is to say

would be

dv D%
at — De?
Because of the last term 7wv,, we can see that the equation vy = v¢¢ induced by the DCMA is

= vge + 70y

not exactly the evolution equation associated to the minimization of £. However, Proposition
41 showed that for the DCMA evolution,

DUE(%) - %E(t) - —// (%) dedo

as if it was the case!. Hence, the DCMA is somewhat related to the problem of minimizing &.

12.6 Interpretation for the observed scene
In this section, we do not omit the y variable any longer.

12.6.1 Ideal movies

Definition 31 A movie u : B* x I — R is ideal if one can find three maps (C,Z,U) €
CO(I*) x C°(R*) x C°(R?) such that

n : RxIr - RxT
X-c@ v )
(X7 Y7 0) H (Z(X7 Y) 7Z(X7 Y)70

is bijective and

V(X,Y,0) € R xT*, uoll(X,Y,0)=U(X,Y). (12.11)

'The reason is simply that

D2
// D62f‘vmdxd9 =0

as we noticed previously.
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In other terms, a movie is ideal if it can be interpreted as the perfect observation of a scene
Z(X,Y),U(X,Y) (depth and Lambertian luminance) by a unit focal length camera submitted
to the movement X = C'(6). In this definition, occlusions are forbidden because Il is constrained

to be bijective. If I = S, the natural injection R < S! is implicit in the definition.

It is important to notice that the interpretation of a movie is never unique. Indeed, if
(C, Z,U) is an interpretation of u, then (AC, AZo Dy, Uo D)) with Dy : (X,Y) — (X/A\, Y/ is
another interpretation of u. This ambiguity is called the aperture problem : if one do not know
the focal length of a camera, the depth on the movie it produces can at most be recovered up
to a multiplicative factor . Moreover, it is clear that the depth cannot be recovered in regions
(X,Y,Z(X,Y)) where U is constant. Ambiguities in the depth recovery can also appear in case
of special relations between the depth (or luminance) and the camera movement, which are

actually not likely to occur in practice (see [44]).

12.6.2 Differential characterization of ideal movies

Proposition 42 If a movie is ideal and allows a derivable movement interpretation, then it

admits a velocity map v, and in any point where v is C? we have

v-V? —-7.Vv=0. (12.12)

In Equation 12.12 the symbol V means the spatial gradient operator

g 0
=509y
and as usual
? —@—v 4+ v
Y R o

Hence, Equation 12.12 can also be rewritten

vUgy; + Uzvxx —vguy =0
VVgy + vzvxy — vguy = 0

Proof :

Let (C, Z,U) be an interpretation of u such that C'is of class C''. We define a unique movie
v:R?xT—=Rby
-C'(8)
(X,Y,0) = ———=. 12.1
ve Y0 = 7% Y5 (12.13)

Then, differentiating Equation 12.11 with respect to 6 yields
(vugy +ug) o1l =0,

so that v is a velocity map of u as announced. Now, anywhere v is C? we have

_C//(G)

(v, +vg) o II(X,Y,0) = 727
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which can be combined with Equation 12.13 to yield
C'(0) -7 o (X,Y,0) =C"(0) -vo lI(X,Y, )

because Z does not vanish. Now, if C’(6) # 0, then v # 0 and ? /v does not depend on z, so
that
OZV?—: vV? —7Vvo
v
as announced. If C’(0) = 0 and C" () # 0, the same reasoning applies to the map v/?. Last, if
C’(0) = 0 and C"(8) = 0, Equation 12.12 is clearly satisfied because v =? = 0. O

A natural question arises : does an ideal movie remain ideal when it evolves according to
the DCMA 7 To prove that the answer is yes, we could show that the differential invariant of
Equation 12.12 remains null if it is null at initial scale. In fact, we state a better property by

interpreting the evolution of an ideal movie.

12.6.3 Evolution of ideal movies

Theorem 10 Let ug € C2 be an ideal movie associated with an interpretation (Zy(+), Uo(+), Co(*))
such that

Then the classical solution w of the DCMA defined from the initial datum wy is a multi-

scale collection of ideal movies ((u(-,t)) Moreover, these movies can be interpreted as

t30°

(Zo(+), Uo(+), C(-, 1)), where C(-,-) is defined by
Ci=Chy on Q= ]*X]O, +oof
with the boundary condition

¥(0,t) €0Q,  C(8,t) = Co(6).

Proof :

1. The movie ug being ideal, we have

X—Co0) Y
ZO(X7 Y) 7 ZO(X7Y

V(X,Y,0) e R? x I, u0< ),0) = Up(X,Y).

Let C' be the solution of the heat equation as specified in the theorem. The map
I : R*xTF — R*xTx][0,4o]

X —C(6,t) Y
(X,Y,0,t) — (ZO(X,Y) ’ZO(X,Y)’G’t)




12.6. INTERPRETATION FOR THE OBSERVED SCENE 217

is bijective because the heat equation satisfies the comparison principle. Hence, we can define a

collection of ideal movies (-, t) from

ioll(X,Y,0) = Up(X,Y), (12.14)

2. First we check that @ is C?. Choose (Xo, Yo, 00,t0) € R? x I*x]0,4+oc[, and write
(X (), Y(h)) the unique element of R? such that

(X (h),Y(Rh), 8, t0) = I1(Xo, Yo, b0, to) + (1, 0,0) = (20 + h, Yo, 0o, o).

We have, for any € and h,

C'(6o, to) — Co(0)

(w0 + h, yo, bo, to) = Uo(X (), Y (h)) = uo(zo + h + Zo(X (h), Y (h))

+ Yo, 0).
Now, there exists a unique #; such that
Co(61) = C(bo, to),
so that we finally get
w(zo + h, Yo, Oo, to) = uo(zo + h, Yo, 01).

This proves that @ is, like ug, derivable with respect to . A similar reasoning establishes that
ueCH.

3. Now we prove that « = 4. If we compute the derivatives of Equation 12.14 with respect

to 8 and ¢, we obtain

C'(6,1)
C Zo(X,Y)

c"(g,t) . N
— ————— 1, oll IT=0.
ZO(X,Y)U oll + @0 0

Uyoll+agoll =0 and

If %, oIl = 0, then @; o Il = 0, and if @, o Il # 0, eliminating C' yields

- Uyoll O g . D ﬂe] -
M= 22 % (20X, V)L ol = |ap—(-2)| o T = g o L.
e ZO(X,Y)80< o(X,Y)Z e ) [" pala, )] o= teco

xr

Hence, @ is a classical solution of the DCMA submitted to the same boundary constraint as
. Since these conditions define a unique solution, we can deduce that v = @, which proves
that each movie u(-,-,-, ) is ideal and that we can choose the interpretation announced in the

theorem. |

The signification of Theorem 10 is simple : when analyzed by the DCMA, an ideal movie
remains ideal and its interpretation is preserved up to a smoothing process on the camera

movement.
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12.6.4 Characterization of the DCMA

We now give another justification for the DCMA equation obtained in Theorem 9.

Theorem 11 The DCMA is, up to a rescaling, the only* multiscale analysis satisfying the
architectural axioms, the [v-compatibility] axiom, and such that an ideal movie (Co, Z,U) is

transformed into a sequence of ideal movies (C(t), Z,U) such that C(t) depends linearly on Cj.

Proof :

1. Let us start by writing the relations between the scene referential (X,Y,0,7) and the

image referential (z,y,0,¢) :

X —C(0,1)
X =——>2
T YT
Y
Y ==
YT XY
O < 0
T & t
From this, we compute the differentials
1—aZx Ly Vv 1
dr = ———dX — dY — —do — —(C! Zr)dT
! 7 7 790~ 7 (Gt eZn)
yZx L —yZy Y
dy = —-*—7dX - ———dY — =7pdT
Y 7 7 7T

Now, given a map I defined on both referentials, we have

dF = FxdX + FydY + FgdO© + FrdTl = F,dx + Fydy + Fydf + Fidt,

so that
1—aZx —yrx
Fy = F,(——)+ F,(—— 12.1
v o= RN 4 (TN (12.15)
—xly 1—yZy
Fy = F( 7 )+ Fy(T) (12.16)
-V
C 7
Fp = Fy(-=) - ZL(@F, + yF,) + F. (12.18)
Z Z
Notice that Equation 12.17 simply gives the total derivative of F
DF
— =Fo = F, F,.
Do <) g+ v

Now, applying Equation 12.15 and 12.16 to F' = Z, we get

Zhx = Zw(l — xZX) + Zy(—yZX)
Ly = Zw(—$ZY) + Zy(l — yZy)

2Once again, the identity operator is naturally irrelevant here.
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which yields, when the denominators do not vanish,

Zy Z
= and Zy = Y .
L+ aly +yZzy, L+ aly+yZy

Zx

Using Equation 12.18 applied to Z, we finally obtain

—Z.Cy + 27, A7y
- - ZX - Ct .
L+ aly 4y, Ly

Zr

2. Consider a multiscale analysis satisfying the hypotheses of Theorem 11. Then, from
Lemma 17 we know that it can be described by an evolution equation of the kind
?
w = ugk' (=, v), (12.19)
v
provided that we suppose that v does not vanish. If u is an ideal movie, we have v = —V/Z if

we note V = Cy, and Equation 12.19 can be rewritten

ou Vo V
o~ b =7)-
Then we can compute
1 Du VVyg — V2 Vi
Ut:—u—wD—etzvé’Fﬁ-U%Fl_U?@FZv (12'20)

Fy and F5 meaning the partial derivatives of F' with respect to arguments 1 and 2. Now, as

v Vo Zi Ve VZ

v Vv 7z VvV 72

and
w_Ye Zr
v V.o Z
Equation 12.20 yields
Vi Zr Vo VZ, VVgg — V7 Vi
— = —==(=- —F - —=F
vz - v ) vz oz

Since the multiscale analysis must preserve the depth interpretation of the scene, we must have

Z1 = 0, that is to say
VA
Z—Zt =} whenever Zx #0,
from what we deduce
12
Vi VeF VVee — Vi P Ve

vovi T 7F2 = %(Ct - VF). (12.21)
The left term of Equation 12.21 only depends on Z, 8, and t. Therefore, by formal independency
of Z, we necessarily have Cy = V F and F only depends on @ and ¢, that is to say F; = 0. Then,
Equation 12.21 is equivalent to

Vez
Vi= (Voo — 7)F1 + Vy I,
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and the only possibility for V' to evolve linearly is
Vi = AVy,
which yields a trivial evolution equation on u, and V; = AVyy, that is to say
F(a,b) = Aa.

This corresponds to the announced evolution Equation u; = uge, up to the rescaling ¢t — At. O



Chapter 13

Numerical scheme and experiments

In this chapter, we propose a simple morphological scheme to implement the DCMA numerically.
We prove its consistency in the “regular case”, and investigate its behaviour when singularities
appear. We link these observations with the difficulty encountered when trying to obtain theo-
retical existence properties for general initial data. Last, we present experiments on two classical
movies of outdoor scenes, and we highlight both time regularization effects of the DCMA and

its usefulness for depth recovery.

13.1 Definition

In order to apply the DCMA evolution to real movies, we need to devise a numerical scheme.
A “naive” discretization of the partial derivatives of u cannot be used, because in practice it is
well known that the time discretization is not thin enough. Moreover, such a discretization is
not likely to satisfy the axioms that we imposed to the DCMA. This is the reason why we focus

our attention on an inf-sup scheme. To this end, given a movie u : R? x T — R, we define

ISpu(xo,y0,00) = inf sup wu(xo+ v, yo, 00 +0),
velR —ngogh
STpu(xo,yo,00) = sup inf u(xg+ v, yo, 00 +0),

veR —h<U<h

1
and Thu = §(IShu—|—SIhu).

If I = S, all the quantities above are well defined. If I =]6,86,[, we take the convention
that

) w(z,y,6y) for <6,
u(e,y,0) = { u(z,y,0) for x> 6.

221
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X-Xo=V (60-&)

Figure 13.1: Inf-sup scheme used to implement the DCMA.

13.2 Consistency (regular case)

First, we establish a consistency result at points where u, does not vanish.

Theorem 12 If u is a bounded movie locally C* near zy, with u,(z) # 0, then
ISpu(z0) = u(z) + hzug'g(zo) +O(h%),
STyu(zo) = u(zo)+ hzugg(zo) +O(h%),
1
Thu(zo) = wu(zo0)+ §h2u5g(zo) + O(h%).
and the O(h?) is uniform in a neighborhood of zy.
From now on, we shall omit the y variable in the movies we consider. Since most of the quan-

tities involved in the following are continuous with respect to the y variable, the corresponding

estimations are easily proved to be locally uniform in the y coordinate.

Lemma 26 Consider a bounded movie u locally C? near zy and such that uz(20) # 0. Then,

in a neighborhood of zy we have, for h small enough,
1Sy = IShu,

with ISpu : (21,61) — inf sup u(xy 4 v8,0; +6).
lvI< = |01<h
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Proof :
1. Let K be a compact neighborhood of 2y on which u is C? and u, does not vanish. We

consider the compact set K’ = K +[—1, 1] x [—1, 1], and write

A =inf |u,;| and B =sup |ug|+ |ugl.
K K

From Taylor’s Theorem, the map
lu(zy +2,00) — u(2,01) — 2u.(z,0;)]

C(z)= sup
(1’1791)61( x?
is upper-bounded on [—1, 1] by
1
5 SUup |Uzz|,
5 S |ta ]|

while on [—oo, —1]U [1, 400] we have
2||ulloc + Ble|
p < 00

C(z) < su
el x?

Therefore, writing C' = ||C']|« yields
w(zr +x,01) > u(xy, 61) + vug(zg,601) — Ca

V($1701) € I(, Va € |R7
sgn (Ux(whel))\/g

For h < 1, let us take
xo(wy,01,h) =
2(x1,01,h) 11 %
with the classical convention that
1 if x>0,
sgn(z) =< 0 if 2=0,
-1 if z<0.

We obtain
Vh
u(zy +22,01) > u(wg,6q) + g |uz (21, 61)] — 11

> .0
u(xy 1)+1+%

2
u(z1,61) + DVh with D = A 0.

> -
- 2A+40>

Moreover, as |23| < VA, we have
= Oy(x1,01,h,0) = x—; €[-1,1] and (z1 + vbsh, 0y + 1) € K.
v

Hence,
w(zy + vk, 0y + 03h) > u(xy + v3h, 61) — BlO3|h > u(xy, 61) + DVh — Bh,
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2
and taking hy = inf (1, (%) ) yields for any (z1,6,) € K,

D
h < hyy o> = sp(v)(x1,601) := sup u(ay + vbh, 0, 4+ 6h) > u(xq,61) + E\/E (13.1)

1
Vh TS

2. For (21,0,) € K, we write

_ue

ve(21,01) = (z1,01) and fy, 0, (2) = u(vez, 2).

xr

A second-order expansion of f,, g, yields

6%h?
Vh<h17 V($1701) € K, V(U70) e R x [—171]7 u($1—|—?]0h701—|—0h) <U($1701)—|— 5 F,
where
FE = sup fa’c’l,é’l (z).
($1,€1)€I(,|l’|<h1
2
Thus, for h < kg :=inf (hl, (%) 3), Equation 13.1 yields
D .
ISpu(zy,601) <ulzy,01) + “Vh < inf sp(xy,61),
2 Jol> 2=
which proves that
Vh < ho, V(21,01) € K, [Spu(zy,601) = inf1 sp(v)(21,01) = IShu(xl,Hl)
|U|<TE
as expected. O

In the following Lemma, we equip the space R[X, ©] of 2-variables real polynomials with the

norm given by the maximum of the absolute values of the coeflicients, that is

12 @i X107 = max]ay].
?

%)
Lemma 27 Let P(x,0) be a polynomial whose degree is at most two. If P;(0,0) # 0, then

inf(1, P,(0,0)2)

Vh <
=16 PP+ 1

, 15,P(0,0) = P(0,0) + h*P£(0,0).

Proof :

1. Since the degree of P is at most two, the second-order expansion of P is exact :

P(v8,8) = P(0,0) + 8(av + b) + 62(v, DT[D?P)(v,1) with (a,b) = (Ps, P3)(0,0).
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Let us consider the new coordinate system (av + b, 6) instead of (v,#) (this is valid because

a #0). Writing
-b d—b
) 1)T[D2P](—7 1)7

a a

we get

IS,P(0,0) = inf sup P(v6,0)

|vl< o= —h<h<h

= P(0,0)+ inf sup 6(av+b)+6*(v, 1)T[D2P](v7 1)
lv|< 7 —h<O<h

= P(0,0)4+ _inf sup 66 + 62°Q(0)

sLb
|T|<\/Lﬁ —hgb<h

= P(0,0)+ inf sup 8|5|h+ 0*R2Q(S).
|22 1< 7 0<0<1

Now, let us define

up(8,0) = 0h|5| + 0°h*Q(8), s,(8) = sup up(5,0) and A, = inf  s,(0).

sLb
0gog1 |T|<\/Lg

We want to show that A, = h2Q(0)* for i small enough.

so that

2 0-b
2. For h < %7, we have [=2] <

A= inf  s,(8) < 5,(0) = sup 62h*Q(0) = R*Q(0)™.

sLb
|T|<\/Lg 0g0<1

Besides, as s,(3) = supgggcy wn(6,8) > upn(,0) = 0, we know that

Ap = inf s,(6) > 0.
" Seth()

In particular, this proves that if Q(0) < 0, then Ay, = 0 = L2Q(0)T.

3. Let us study the case Q(0) > 0. One easily checks that Q(¢) is a polynomial with degree

at most two, and that

1 1
sup |Q(8)] < 2||P (——I——)
e 1001271 (7

As a consequence, for h < a? we have

d—b

v, | = Q=0 -+

7

212 202 _ @
VO € (0,1, RIS +0°HQ(8) > 03| + 126*(Q(0) — 4+ =218

W9 €[0,1], un(8,6) > 0h[3|(1 — 4| P[|[Vh6) + h*6*Q(0)

sup_u,(6,0) > (0h]5](1 — 4| P||V6) + h26°Q(0) )
6elo,1] =1

= su(0) 2 h|o](1 — 4[| PIIVR) + 1*Q(0),

U

U

U
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and taking the inf on § yields

1St <77
4. We showed in 2 and 3 that A, = h*Q(0)" as soon as h < hg, with

: 2 2
hg := % < inf (az, Z—z, 16H17PH2) .
This achieves the proof since
Vh < ho, 1S,P(0,0) = P(0,0)4 r2Q(0)*
= P(0,0)+ A’ [(%b,l)T[DQP](%b,l)r

= P(0,0)+ h*P£(0,0).

Proof of Theorem 12 :

Let K be a compact neighborhood of zy = (¢, fy) on which u is C? and u, does not vanish.
For (z1,0;) € K, we write P, 4, the second-order expansion of u near (z1,6;). The regularity

of u ensures the existence of a constant C' > 0 such that
v(xlv 01) €K, V($, 0) S [_17 1]27 |u($1 +, 61 + 0) - Px1,6’1 ($, 0)| <Cy a? + 023'

This implies, for i € [0, 1],

VIO < 1, Vo] < % lu(1 + vOh, By + ) — Py, g, (v0h, )| < C\/3H5. (13.2)

From now on, we fix (z1,6;) € K and write P for P, 4,. If we apply the nondecreasing operator

IS, to Equation 13.2, we get
Vh €[0,1], ISpP(xy,61) — CV2h < IShu(xy,81) < ISR P(x1,01) + CV203.
Notice that the regularity of u implies that the map
(x1,01) — Pr g,

is continuous, as well as the map

inf(1, P.(0,0)?)

P—
16]|P||2 + 1

Hence, Lemma 27 ensures the existence of a constant hy > 0 independent of (z1,6:) such that

Vh €[0,1], 15,P(0,0) = P(0,0) + h*PE(0,0) = u(wy, 61) + h*ufy (w1, 61).
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In addition, from Lemma 26 we know that there exists hg, independent of (z1,6;), such that
Yh < hy, ISpu(zy,61) = 1Spu(xy,0y).
Therefore, for any h < hg := inf(hy, he) we have
ISh(u) = u+ hng'g + O(h?)
uniformly on K. The symmetric estimation on ST}, arises from
SI(u) = —ISp(—u) = u — h*(—uge)t + O(h%) = u + hzugg +O(h%),
and summing up these two estimations establishes the desired consistency property
Th(u) = u+ h*uge + O(h%)

uniformly on K. O

Theorem 12 proves the consistency of the numerical scheme given by the iteration of T} with
respect to the DCMA evolution. Due to the h? coefficient in the expansion of T}, it is natural
to consider the numerical scheme which associates, to a given movie ug and a scale t > 0, the

sequence of movies (U ¢)n>1 given by

w, =1} ug, with h, =1/2t/n,

and satisfying the boundary constraint
Y(z,y,0) € I(R* x I), un(x,y,0) = ug(z,y,0).

For an operator T, the notation 7™ means T'oT o...0o 7T n times.

Thanks to Theorem 12, we know that such a scheme is consistent. As for the convergence,
we could hope to prove that u, converges towards the DCMA of wg when the partial derivative
of ug with respect to @ never vanishes (but this would no be very useful). Unfortunately, we do
not think that this numerical scheme (or any other) converges towards a solution of the DCMA
in the general case. Indeed, as we explained in Chapter 11, we believe that such a solution does
not exist in general. We try to make clearer that point by investigating what happens near
singular points, i.e. points where u, = 0. Although the non-existence of general solutions for
the DCMA is a real theoretical problem, in practice the convergence of the numerical scheme is
assured due to the discrete nature of computer data (of course, the question of the interpretation

of the limit then becomes more tricky).
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13.3 Singular points

We first establish a preliminary lemma.

Lemma 28 [f (a,b) € R x [0, +o0], then

. YLb i a>—b,
F(a,b) := sup —6*+ b0 = 2 b2
0gf<1 —— if a< —b.
2a
Proof :
The map

o(8) =0 %02 + b8
is C'! on the compact set K = [0, 1], so that it attains its maximum value on K either on K or

in a critical point. That is,

b a b?
sup () = max(p(0), p(1), p(=-)) = max(0, 5 + b, —-),
0g0g1 a 2 2a
with the convention —b/a = —b*/(2a) = —occ if a = 0. O

Proposition 43 Let P be a polynomial with degree at most two such that P, (xg,60) = 0. Then,

in (z9,00) we have, as h — 0,

h
T,P =P+ 3 | Ps| sgn(Pyy) + O(h?)

Proof :

Without loss of generality, we can suppose that (zq, ) = (0,0). Since the degree of P is at

most two, we have

292
P(vbh,6h) = P(0,0)+b-6h + 5 Q(v),
where
b= P(0,0) and Q(v) = Psp(0,0) + 20Ps,(0,0) + v? P, (0, 0).
Therefore,
h202
(ISP —P)(0,0) = infsup [b-0h+ Q(v)
v jel<t 2
) h6?
= h-inf sup [|b] -0+ —Q(v)
v ogagl 2

= hinf F(hQ(v),[b])
hF(h -inf Q, |b])

because the map a — F(a,b) is increasing.
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e if |b] =0 or inf Q = —o0, then

(IS,P — P)(0,0) = %2 [inf Q] .

e if |b] # 0 and inf ) > —oo, then A -inf @ > —|b| for h small enough, so that

h2
(1SiP = P)(0,0) = h - |b| + 5 inf @ + o(h?).

Now, one can see easily that

P2
(i) if Py»(0,0) > 0, then inf @ = (ng - P—el’) (0,0).

(il) if Ppu(0,0) = Py (0,0) = 0, then inf Q = Py (0, 0).

(iii) if Py»(0,0) < 0 or (P;;(0,0) = 0 and F4,(0,0) # 0), then inf ) = —oo.

Hence, in (0,0) we have

IShP:P+O(h2)+ h|P9| if P.: >0 or P, = Fy, =0,
0 else.
Recalling that SI,P = —(1S5,(—P)), we obtain

SIhP:P+O(h2)—I-{ ~hiBs] i Pep <0 or Bop =P =0,

0 else.
and finally
1 h| Py if Py >0,
ThP:P—|—O(h2)—|—§- —~h|Py| if P <0,
0 else
as expected. O

The following table gives the values of 1.5, SI, and T} up to order 2 in h according to
conditions on Py, P, and FPy,. All these equalities hold for h small enough, and we took the

convention that

P99 if Pxx:P€ac:07
Peg = P2
& Ppo — 02 if P, #£0.
Pl’l’
| Py |Poo | Poc || ISsP-P | SL,P—-P | T,P-P
— — _ h2 -+ h2 — 12
=0|=0]=0 thgf Tng ATQP){E
=0|>0 bpt h2o gp)@5
=0]<0 0 7l Tl
70]>0 BBl + % Pee U 3 Pol + 1 Pee
#0|<0 0 —h|Pg|—|—%2ng —%|P@2|—I—%ng
# 0 =0 =0 AlPs| + 5 Pee | —hlPs| + 5 Pee I Pee
=0]#0 0 0 0
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d

Proposition 43 shows that if u, happens to vanish when uy does not, then we can expect the
numerical scheme to blow up because of the non-zero coefficient of h. In fact, in case the limit
of u,(z,0,t) exists as n — 400, it is not likely that it will be continuous in ¢ = 0. The best we
can expect is that

ug — lim  lim  w, (¢
0 150 oo n(t)

defines a kind of projection from C? to V°. According to Proposition 43, this projection might
be obtained by the asymptotic state as ¢ = +o0o of the solution of the PDE

0 else.

{ |uglsgn(uy,) if  w, =0,
Uy =

Of course, all of this is purely intuitive. Evans also predicted a projection property (see [32]) by
considering the DCMA Equation as the limit when £ — 0 of the more regular equation

2 2
U g — 2ugpugtyg + Uy Ugg
u? + 22u? '

Uy =

(13.3)

In particular, Equation 13.3 admits viscosity solutions as a slightly modified version of the
mean curvature motion. The difference is that Evans proved that when u is the characteristic
function of an S-shaped curve, his construction leads to a different projection operator, based

on a Maxwell area construction (see Figure 13.2).

X X

Figure 13.2: An S-shaped curve is immediatly transformed into a graph, the two dashed zones
being of equal area (Maxwell equi-area construction). “The smoothing effects of the heat equa-
tion are so pronounced that a multi-valued data instantaneously unfolds into a graph” (Evans).
The consequence for the DCMA is that solutions are not likely to exist for an initial datum
whose level curves are not graphs. Indeed, such solutions could not be continuous at scale ¢t = 0.
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13.4 Algorithms

In this section, we describe the algorithms we used to experiment our analysis on numerical
movies. These algorithms (and many others) will be available in the next public version of
the MegaWave2 software, which can be freely! downloaded by anonymous ftp to the address

ceremade.dauphine.fr or on the web server http://www.ceremade.dauphine.fr.

13.4.1 Data preparation

Even if a movie is realized in the conditions we described in introduction (that is to say, a
straight translation of the camera parallel to its horizontal axis), in practice it is impossible
to ensure that the camera movement has no vertical component at all. Hence, it is generally
necessary to apply little vertical translations to the images of a real movie in order to compensate
for the small vertical moves of the camera. Such an operation had already been performed (as
explained in [13]) on the “TREES” movie we got from the SRI International Center. We needed
to perform this operation on the “GARDEN” movie ourself (both these movies are presented
later). The determination of these little vertical translations is not difficult since they affect all
points of each image equally. In practice, it can be done by using a simple correlation measure.
Such a simple algorithm is quite precise enough for our aim : in fact, we discovered later that an
error of one pixel in a vertical movement compensation is immediatly overcome by the DCMA

filtering.

13.4.2 Filtering with the DCMA

In order to experiment the effects of the DCMA, we need to discretize the numerical inf-sup
scheme we described in the beginning of this chapter. The natural discrete choice for h is
h = one image, and in order to take into account the discrete nature of velocities it is also

natural to consider discrete 3-points segments of the kind

{(x—v,y,@—1),(x,y,@),(ac—l—v—l—e,y,@—l—l)},

where all quantities are integer and £ € {—1,0,1}. Hence, the discrete inf-sup operator is

ISu(z,y,0) = min max {u(z —v,y,0 — 1), u(z,y,0),u(z+v+e,y,04+1)}.
v € {~Vmazy -, — 1,0}
ee€{-1,0,1}

The parameter v,,,, must not be smaller than the largest velocity on the processed movie,
which can easily be estimated. More important is the non-symmetric choice we made on v
by allowing only nonpositive velocities. There are several reasons for this choice : first, if the

camera always goes forwards and never stops and goes back, then all velocities on the movie

for non commercial use only, see the MegaWave2 documentation.
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must be theoritically nonpositive. In addition, since the velocity field follows a causal evolution
equation, it satisfies the maximum principle and is then forced to remain nonpositive at any
scale of analysis. This proves the consistency of our non-symmetric choice of allowed velocities.
Another reason that justifies this choice and that we shall discuss later is related to the filtering

of occlusions.

The ST and IS operator being defined, we still have an alternative : either we iterate the
mean operator %(IS—I— S1T) as we explained in the numerical scheme, or we iterate the alternated
operator? 150S1. No computational cost seems relevant to choose between the two possibilities,
because it is roughly equivalent to compute 1.5 or simultaneously 1.5 and ST on a movie, and one
easily checks that one iteration of the alternated operator is also roughly equivalent, in terms of
scale of analysis, to two iterations of the mean operator. In fact, when we tried both solutions,

the advantage came to the alternated scheme, for two reasons.

The first reason is that it is purely morphological (and hence more consistent with our ax-
iomatic formulation), with the consequence that no new grey-level is created when a movie is
processed. This overcomes a purely numerical constraint : since the grey levels of a movie are
practically discretized (typically, in {0,1,...255} when represented by a 8-bit unsigned charac-
ter), the division by two is not symmetrical and the result often has to be truncated, which has
undesirable consequences after several iterations (notice that this cannot be avoided in practice
by considering float values because of the huge amount of memory involved). Of course, the
choice of an alternated operator is not symmetrical either (you can choose IS0 S[ or SIo[S),

but there are many less consequences.

The second reason is that a pure morphological scheme was more adapted to the algorithm
we chose in order to compute the velocity field on the movie. This will become clear in the next

section.

It is important to notice the extreme simplicity of the algorithm we presented : in particular,
it can be implemented very easily on a massive parallel machine. Our optimized code in C

language for one iteration consists of only 23 instructions.

13.4.3 Computing velocities

Of course, since the DCMA is devoted to the depth recovery — or, equivalently, to the computa-
tion of the velocity field —, it would not be enough to show filtered movies without checking the
consequences of the DCMA on their inherent velocity fields. For that reason, we need to devise
an algorithm to compute such velocity fields. Now comes the great interest of the DCMA : since
the multiscale analysis theoretically produces a perfect time-coherent movie, we can use a naive

algorithm to compute the velocity field.

2Though we did not prove explicitely the consistency of the alternated operator, it seems rather clear if we
compare it to classical related schemes.
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Our algorithm is global and takes only one parameter : the number n of matching images we
require to decide that a velocity is reliable. Given a point (29, yo, fo), we look for the maximum

value of k for which there exist two real numbers vy and vy satisfying
—Vpar S U1 < V2 <0
and such that?
V8 € {0g,....,00+ k}, Vo € {F(zo—nb),...,F(zo— v0)}, w(z, Yo, 0) = u(zo, yo, bo)-

Then, we decide that the velocity field in (zg, yo, fo) is non-computable if & < n, and equal to v,
if & > n (of course, the interval [vq, v3] is supposed to have a maximal length). The choice of v;
(instead of 1(vy 4 vy) for example) is logical but not very important since in practice we almost

always have vy ~ vy For symmetry, we also look for matchings in “past” times {6y — k, ..., 6p}.

®here, the function E() means the rounded integer part, that is to say E(z) =n € N & n — % <rzr<n+ %
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13.5 Experiments
13.5.1 TREES movie (natural)

We picked up the “TREES” movie used by the SRI center (see [13]) by anonymous ftp to
the adress periscope.cs.umass.edu. We obtained 64 images of size 256x233, which represent an
amount of data of 3.8 Mo. According to [13], this movie is supposed to contain 128 images,
but we could not find the remaining images ; however, 64 images were quite enough to test our

algorithm.

Since the images were very dark, we first applied an optimal contrast change? to the movie :
this process has only visual consequences thanks to the pure morphological invariance of our

algorithms.

As we said before, this movie did not require a compensation for small vertical movements

of the camera (it had been already done according to [13]).

Each iteration of the DCMA filter took 24 seconds. This represents a processing speed of
about 0.16 Mo/s.

This movie is not the best choice to highlight the good properties of the DCMA, because
of the strong occlusion caused by the foreground tree (we remind that our theory does not
handle with occlusions). This occlusion caused smudging effects on the right side of this tree
(and not on the left side thanks to the nonpositiveness of allowed velocities). However, these
bad effects excepted, the algorithm proved to behave very well. The first striking visual effect
of the algorithm on this movie is the strong time-coherence induced on the movie : it looks
like all images become exactly equivalent except that the relative velocities of objects differ.
In particular, there were important global intensity fluctuations between images on the initial
movie : such a defect was completely removed by the DCMA. One could object that this
regularization is paid by a visual loss of details on the ground texture. This is true and very
logical since all non-time-coherent details cannot be preserved by the analysis. Although the
DCMA has theoretically no spatial regularizing effects, such a spatial regularization actually

occurs as a consequence of the time regularization.

*Applying a contrast change consists of modifying an initial movie u into the movie g o u, where ¢ is an
increasing grey-level correspondance map. It is said to be optimal if the histogram of the resulting movie is as
flat as possible (which means that the grey levels are “used” in the best possible manner).
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Figure 13.3: Original “T'REES” movie.

From left to right and then top to bottom : images number 1, 9, 17, 25, 32, 40, 48, 56 and 64
of the “TRFEFES” movie (made of 6/ image). The camera has a straight translation movement
parallel to the horizontal axis of the image plane, and moving to the right. The relative positions

of objects vary due to their different distances from the image plane (the closer they are, the
quicker they “move” on the image).
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Figure 13.4: Filtering of the “TREES” movie.

Top row : images 18 (left) and 22 (right) of the original “T'REES” movie
Bottom row :  images 18 and 22 of the “TREFES” movie processed with 31 iterations.

The original movie has small details which cannot be tracked between successive images (they are
not time-coherent), because the Nyquist limit for the time frequencies has been exceeded during
the sampling process. The strong smoothing effects of the analysis (on the ground for example)
are necessary to ensure the time coherence of the movie. The smudging effects near the branches
of the foreground tree, however, are undesired and due to the incapacity of the DUMA to handle
occlusions.
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Figure 13.5: Analysis of the epipolar images.

The epipolar images are obtained by slicing the movie u(z,y,0) along (z,0) planes for fived
values of y. The resulting images (z,0) — u(x,y,0) are represented as follows : the x axis is
taken horizontal and the time axis 0 is taken vertical pointing downwards. The epipolar images
on colum 1 are taken from the original “T'REES” movie (the values of y are 20, 60, 140, 180,
220 respectively for rows 1, 2, 3, 4, 5). Those on column 2 are obtained after processing the
original ones with 31 iterations.

Remember that the DCMA operates independently on all these epipolar images. The level lines
of these images tend to become straight lines when analyzed by the DCMA ; a consequence is
that the time-coherence of the analyzed movie increases with scale. On the original epipolar
images, occlusions appear when two lines intersect : only the one with the smallest slope (i.e.
representing the object closest to the camera) remains during the occlusion, the other one being
occluded. Notice that occluded objects are often destroyed by the DCMA (see row 2 for example),
because the DCMA cannot handle occlusions.
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Figure 13.6: Computation of the velocity field (minimum of 15 matchings).

The four itmages on the first row are taken from four different movies : each image is the 20th
image (over 64) of the movie it belongs to. These movies result from the DCMA at different
scales :

column 1:  original “TREFES” movie
column 2:  processed movie (5 iterations)
column 3:  processed movie (15 iterations)
column 4: processed movie (31 iterations)

Then, the velocity field of each movie was computed on the 20th image using the algorithm we
described previously, with a matching constraint of 15 images. These velocities are represented
on row 2 : the white color means points where no matching was found with respect to the
constraint, and the grey scale (from light grey to black) measures the velocity from 0.0 to 2.0
pizels per image. On the third row, the velocity images of row 2 were “dilated” to produce more
readable results. Notice how the velocity information, which is almost inexistant on the original
movie (for the matching constraint we imposed), progressively appears on the DCMA as the
scale increases. Since the distance of objects to the image plane is inversely proportional to their
velocity, closest points appear in black and farthest ones in light grey. On the last image of
row 3, we distinguish the foreground tree in black, the ground from black to middle grey, the
background tree in middle grey, and the far background in light grey.
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Figure 13.7: Computation of the velocity field (minimum of 5 matchings).

The representation is the same as for Figure 13.6, but this time, the velocities were computed
with a less restrictive matching constraint of 5 images (instead of 15 for Figure 13.6).

The velocity images we obtain (row 2) are more dense because new computable velocities appear.
However, these new obtained velocities are less reliable due to the less restrictive matching con-
straint. This explains the noisy appearence of the images on row 3 compared to those of Figure
13.6. Notice that this noise decreases as the scale of analysis increases : this is coherent with
the theory which predicts that the velocity field is progressively smoothed as the scale of analysis
increases (see Proposition 37).



