
13.5. EXPERIMENTS 245

Figure 13.12: Computation of the velocity �eld (minimum of 5 matchings).The representation is the same as for Figure 13.11, but this time the velocities were computedwith a less restrictive matching constraint of 5 images (instead of 12 for Figure 13.11).



246 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS13.5.3 Sensitivity to noiseWe now want to test how robust to noise our method is : are the DCMA analysis and theinduced velocity estimation still reliable when applied to a noisy data ? In order to check this,we took the previous \TREES" movies and corrupted it strongly by replacing 50% of its greyvalues u(i; j; k) by totally random, uniformly distributed and uncorrelated values. This kind ofnoise is called impulse noise : it is very destructive and impossible to remove e�ciently withlinear �lters. On this corrupted movie, we applied exactly the same processing as in the originalone. The �gures to follow (to be compared with the corresponding �gures for the original movie)show that both the visual aspect and the velocity �eld are well recovered by the DCMA althoughhalf of the original information was lost and replaced with random values.
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Figure 13.13: Filtering of the noisy \TREES" movie.Row 1 : images 18 and 22 of the noisy \TREES" movieRow 2 : images 18 and 22 of the noisy \TREES" movie processed with 31 iterations.The images on row 1 are very noisy : 50% of their pixel values were chosen by a non-correlated,uniformly distributed random generator (and this 50% amount of pixel was chosen itself by arandom generator). When playing the movie, one has the impression of looking at a TV-imagereceived in very poor conditions. In particular, it is almost impossible to see any detail of theground texture. Filtering this movie with the DCMA gives impressive enhancement results : notonly the noise impression is removed, but in addition some details appear that were not visibleon the �rst movie (in particular on the ground and on the left tree). This means that the DCMAtakes more advantage of the time coherence and redundancy of information contained in a moviethan the human visual system does.
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Figure 13.14: Analysis of the epipolar images.As on Figure 13.5, epipolar images are shown both for the original noisy movie (column 1) andfor its processed version after 31 iterations (column 2).



13.5. EXPERIMENTS 249

Figure 13.15: Computation of the velocity �eld (minimum of 15 matchings).Like on Figure 13.6, the four images on the �rst row are the 20th image of four di�erent movies :column 1: original noisy \TREES" moviecolumn 2: processed movie (5 iterations)column 3: processed movie (15 iterations)column 4: processed movie (31 iterations)Row 2 and 3 represent the extracted velocity �eld (for a minimum of 15 matching images), in theoriginal (row 2) and dilated (row 3) representation. As expected, not only the movie is �ltered,but the velocity of objects is recovered despite a lot of destructed clues due to the large amountof noise put on the movie. Of course, the velocity recovery is not as good as if the movie hadnot been initially corrupted, but the depth structure of the scene still appear on the bottom-rightimage.
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Chapter 14Extensions and conclusion14.1 Extension to more general geometric con�gurationsIn this section, we show that the geometric con�guration we adopted throughout our studyis not really required. In fact, the DCMA can easily be extended to a more general motion,provided that it is known or that it can be recovered (but we shall not properly investigate theproblem of motion recovery here).14.1.1 The camera motion is not horizontalPractically, it is di�cult to ensure that the camera moves exactly along the direction given bythe horizontal axis of the image plane. The consequence is that the y-sections (x; �) 7! u(x; y; �)of the movie should not be processed independently, for the epipolar lines are not contained inthe (x; �) plane. However, if the direction of the camera displacement is known, given by theangle � with the x axis, then it is theoretically possible to bring the problem back to the idealcase (� = 0) with the simple rotation of the image plane given byP 0 =  cos � sin �� sin � cos � !P:The angle � may be directly measured by an inertial system on the mobile robot. It can alsobe easily estimated on the resulting movie since it is a very redundant information.14.1.2 The camera motion does not lie in the image planeWe now suppose that the motion of the camera is not contained in the image plane, that is tosay its component along the direction orthogonal to the image plane is non-zero. We de�ne the(OX) axis as the direction given by the motion of the camera, and the (OY ) axis as the onlydirection orthogonal to (OX) and contained in the image plane. Then, the remaining axis (OZ),naturally de�ned from (OX) and (OY ) in order to form an orthogonal system, makes an angle251



252 CHAPTER 14. EXTENSIONS AND CONCLUSION� with the direction orthogonal to the image plane (see Figure 14.1). The projection from thescene to the image plane is given byx = X � C � Z tan�Z + (X � C) tan�y = YZ + (X � C) tan�:Compared to the ideal case � = 0, the case � 6= 0 induces a deformation of the image planegiven by x0 = x cos�� sin�cos� + x sin� = x� tan�1 + x tan�y0 = ycos� + x sin�The map (x; y) 7! (x0; y0) is de�ned on (FR� f�cotan�g)� FR, the singularity x = �cotan�giving a characterization of �. Thus, all previous results should still apply, provided that werewrite the DCMA evolution equation according to this deformation map.
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14.2. CASE OF ANY RIGID MOTION 253everywhere ur 6= 0. This case is formally equivalent to the ideal translation along the X axis assoon as the polar coordinate r is substituted to the x coordinate everywhere. In particular, theapparent acceleration is � = DvD� = �u��ur with � = (�u�ur ; 0; 1):Rewriting the axiomatic formulation in that special case, we can expect to obtain the evolutionequation @u@t = u�� � 2u�ur u�r + �u�ur�2 urr;formally equivalent to the DCMA up to a change of coordinates.14.2 Case of any rigid motionThe two previous cases can be combined to cover all situations of pure translation motion ofthe camera. The case of pure rotation with a �xed axis (\radar motion") is not very di�erentfrom the case of pure translation : the �ltering is the same and only the depth interpretationdeduced from the velocity �eld changes.In case of a general camera motion (translation T + rotation R), there are 6 instantaneousmotion parameters : 3 for the translation and 3 for the rotation. More precisely, the movementof a physical point M(X; Y; Z) is given in the camera referential bydMd� = �T �R ^M;where we wrote ^ for the usual vector product in FR3. Then, the perspective projection (x; y) =1Z (X; Y ) induces in the image referential the movementdPd� = 1Z  �1 0 x0 �1 y !T +  xy �(1 + x2) y1 + y2 �xy �x !R = 1ZAT + BR: (14.1)while the well-known Motion Constraint Equation isru:dPd� + u� = 0; (14.2)ru standing for the spatial gradient of u. Combining Equations 14.1 and 14.2 yields a scalarequation satis�ed by the partial derivatives of u, with one unknow (the depth Z) and six motionparameters (T and R). It permits to compute the disparity d = 1=Z byd = �u� + (BR):ru(AT ):ru :Therefore, depth recovery is still theoretically possible as soon as the camera motion isknown. We guess that it is possible to rewrite the DCMA in case of such a general cameramotion, by introducing the motion parameters in the evolution equation.



254 CHAPTER 14. EXTENSIONS AND CONCLUSION14.3 OcclusionsIn this study, we made several allusions to the problem of occlusions, which is not solved by thealgorithm we presented. We know precise this point, and try to explain why this is the mostimportant improvement to be brought to our method.Two kinds of occlusions appear on a movie : the natural occlusions, occuring when apart of the scene masks another part (see Figure 14.2), and the boundary occlusions, whichhappen on the border of the image. The natural occlusions are consequences of both the scenegeometry and the camera parameters, and they can be theoretically avoided by choosing anoptical system with a small �eld width (or equivalently, with a large focal length). Of course,boundary occlusions cannot be avoided. In addition, avoiding natural occlusions forces therelative depth variations to be small, which prevents the depth estimation from being veryaccurate. Therefore, being able to deal with occlusions is a key point of the movie analysis, andit is not surprising that the human visual system makes a strong use of occlusions phenomena.
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large field width : occlusions appearsmall field width : no occlusion appearsFigure 14.2: Field width and natural occlusionsFigure 14.3 shows what appears in the epipolar plane when occlusions happen : the levellines with the largest velocity (i.e. with the smallest slope on Figure 14.3) occlude the otherones. The reason is simply that when an occlusion arises between two objects, only the nearestone (that is, the one with the largest velocity) remains visible. As in the spatial case (see [21]),the occluding line is characterized by the presence of T-junctions.
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occluded objectFigure 14.3: Typical occlusions in an epipolar plane14.4 ConclusionIn this study, we presented a multiscale analysis of movies which is well adapted to the depthrecovery. We devised it thanks to an axiomatic formulation in agreement with the depth recoveryproblem. This multiscale analysis can be viewed as a di�usion process along the movement, withthe consequence that it brings time-coherence to movies without performing an undesirablespatial smoothing. In particular, it permits to gather the redundant but incoherent depthinformation spread among the images of a raw movie into a perfect movie on which the depthcan be easily and robustly estimated.From a theoretical point of view, this multiscale analysis is described by a second order partialdi�erential evolution equation, which presents strong singularities and is not treated by theclassical theory of viscosity solutions. We proved uniqueness and existence theorems, althoughexistence is not ensured (at least in a classical sense) in the completely general case. This PDEhas interesting properties that can be physically interpreted : in particular, we proved that anideal movie (that is to say a movie which can be interpreted in terms of a camera movementand a depth map) remains ideal when analyzed by this scale space. We also showed that thecorresponding evolution equation is somewhat related to a simple minimization problem.We provided a very simple numerical scheme which can easily be implemented on parallelmachines. By performing numerical experiments on two real movies, we checked the goodbehaviour of this method, as a movie processing device, and as a depth-recovery preprocessingdevice.We think that this study is a good starting point to �nd robust solutions to the depth recovery



256 CHAPTER 14. EXTENSIONS AND CONCLUSIONproblem. The next step would be to adapt the theory for general movies where occlusions areallowed. Of course, such a generalization should require a non-continuous formulation due tothe nature of occlusions. It may also bring new elements to circumvent the strong singularitythat appears in the DCMA equation.


